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CHAPTER I
[ ]

EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARD SEQUENCE Sn/n

1.1 Introduction and Summary

Let (Q,F,P) be a probability space. A nondecreasing sub o-
fields of F is called a stochastic basis. A stochastic sequence
(Xh, Fn, n > 1) consists of a stochastic basis (Fn) and a sequence
(Xh) of random variables (r.v.) such that X is F -measurable. A

given sequence {Xn} of r.v. is a stochastic sequence if we put

F =3B(X, X,,..., xn), the o-field generated by X

.X . For a
n n

ljxg,..
given stochastic basis é r.v. t with values n=1,2... . <« such that
(w] t(w) = n)e F for each n > 1 is called a Stopping time (s.t.).
A s.t. is called a stopping rule(s.r.) if P(t < ®) = 1. We observe
the X's sequentially and must decide when to stop sampling. If we
stop at time n we receive a reward z = f(Xl’X2"' Xn), which
depends upon past observation only.

Unless otherwise stated we shall always assume E(Z;) < @ yhere

7 = max (-%,0). Let

¢ = (t | E(Z.) <=, t is a s.r.)
c, = (t | tec, P(t>n)=1)
v, = sup E(Zt), V = sup E(Zt)

teC teC
n

Let t be a s.r. such that E(Zt) exists.



The fundamental problem in the theory of optimal stopping rule is how
can'ﬁe find the-value of V and what s. r. will achieve V or come
clase'to it? We shall recall that the ess sup of a family of r.v.'s
qt; teT is a r.v. Q such that (1) Q 2.qt, t e T, and (2) if Q' is a
r.v. such that Q' 2,qt> teT, then Q'> Q. It is known that the ess sup
of é family of r.v. 's always exists, .and can be assumed to be the

sup of some countable sub-family.

Let v = ess sup E(Zt[Fn). Then the Fundamental theorem says:
tec
n

) = 3 |

(a) Y, = max (Zn, E(Yn+l' Fn))a.e.

(b) E(y,) =V

Then the Functional equation rule (FER) is defined as

o

1

first n 2 1 such that Z_ = v
- n n
= jf 7 <y for all n.
n n
In general P (0 <) < 1 and 0 is not a s.r. Seigmund (see [21])
has shown, however, that if we enlarge our class of procedures by
enlarging to s.t., with the convention that Zt=Zm = 1lim sup Zn when
<+
t==, then V is not increased and under the condition E(sup Zn)<b,0
is optimal in the extended class.
n
Let (Xn, F,n > 1) be a stochastic sequence. Let S, =% X.. Let
1
the reward sequence be of the form Zn = hn(sn). We are concerned
here with finding stopping rule t which maximizes our expected re-

ward, E(hn(Sn)). As history of the problem, we shall state and com-

pare a few results known in the literature:



(1) Chow and Robbins [4]

Let Xl,X ,++« be a sequence of independent identical (i.i.d.) r.v.

i+8

with P(X=1)=P(X=-1) = 4. For the reward sequence (R.S.) 1 ’
J+l

i+S

FE- R i=Q, + 1, +2, ... and j=0,1,w,... there exists a mini-

mal optimal stopping rule T (i) defined by 7 (i)=first n > 1 such
f 48 Ve
that aj+n(1 sn) 0
= ® if no such n exists

where aN(i)=o, a_ (i) = lim aN(i)
N n N2 n

a (1) = max(1%/n, sup E(i48,)" /n#t)) - i'/n

teTN_n

where TN-n = class of all s.r. < N-n. n=1,2,... N.
The main points in Chow and Robbins' [U4] method are by‘usﬁal backward
induction (see, e.g. [28]) they have shown that there exists a minimal
optimal s.r. for their R.S. and then passing to the limit N - « it

is shown that there exists an optimal element in C iff

* #
T.{(i) = 1lim Tw(i) is in C i.e. iff P(T(i) <®) = 1. To prove
J No o 3 j

* ‘ L
P(Tj(i) < ®) = 1 their lemma 1 states; an(O)= sup E(SZ/(n+t)) < 1/n?
teC

which was proved by solving some difference equations and applying
Stirling's approkimation, suited only for coin tossing r.v. Their
lemma U4 showed that for n 2}no and i = l3n% implies there is no
favorable continuation, The law of Iterated Logarithm implies that
the latter probability is one.

(2) Dvoretzky [10]

Let Xl,xg,... . be i.i.d. r.v. with mean zero and positive finite



variance 02. Then there is a s.r. TeC such that E(ST/TQ) =

sup E(St/ta) for @ > % and 0 < E(ST/T) < ﬂc/6% . Dvoretzky's method
Zzgsists of proving lemma 1 of Chow and Robbins [4] by taking into
consideration of second moment. Then by series of lemmas and repeat-
ed applications of Kolmogorov's inequality he proved his lemma 8
which is the generalization of lemma 4 of Chow and Robbins [L4].

But instead of considering truncated optimal rules he provedi

E(Sup S:/n)<@ (which is lemma 9 of [10]) and then appealing to
theorem 1 of Chow and Robbins [28] and the Law of Iterated ‘

Logarithm he proved the existence of optimal s.r.

(3) Teicher and Wolfowitz [27]

Let Xl,Xe, ... be i.i.d. r.v. with E(X) = 0, E(Xz) <o, Let

j 1= > <
the R.S. be C_8J j=1,2 and € >0, € <C_ €,

(n+1)%c_,, < n’C_ then there exists a S.R. t* such that
E(C,* §9%) = sup E(C,SY) for j=1,2.

t 7t el tt
Teicher and Wolfowitz used the classical sequential analysis

method of Wéld and Wolfowitz. Lemma 5 of them follows from Dubins
and Freedman [9] and is comparable to lemma 1 of [4] & lemma 3 of
{10]. their lemma 6 showed that for large K and n sufficiently
large Sn > Kh%_ implies there is no favorable continuation. This
lemma follows from an invariance theorem of Kac and Erdos and is
comparable to lemma 4 of [L] and lemma 8 of [10]. Lemma 4 follows

from Weiner's Dominated Ergodic theorem and is comparable to lemma 3

of [4].



() Siegmund, Simmons, and Feder [21]

Let X, X be i.i.d. r.v. with E(X) = 0. Let the reward

sequence be (Zn) = (n_& lSnla) where 2¢® $ > 0 and E(lxlmax(E,n)}<ﬁ
then the FER is optimal and also there exists a K > 0 for which

the FER stops at (n,y) whenever y > K n%L

Using this basic R.S. they examined the problem of optimality of
R.S. of the form CnSn s CniSnIB 5 n"% log+ISn[, etc..

Departing from the traditional approach of requiring that

E(sgp hn(Sn)) < @, they consider the class of procedure by dropping
the requirement that P(t < @) = 1, and introduce the extended s.r.
Then by modification of Teicher and Wolfowitz [27] and Dvoretsky's
[10] methods they are able to prove existence of certain reward
sequences hn of more complicated form by relating to them to a par-~
ticularly simple form.

(5) Siegmund [24] in an unpublished work proved that there exists an
extended optimal s.r. for the R.S. Sn/n when Xl,X2 «+.. be Indepen-
dent r.v. (not necessarily identical) with E(Xn) =0, E(Xi) = 1 for
all n and if moreover P(Sn E_Kn%'i.o.) = 1 then FER is optimal. .

He first showed that E( sgp S‘/n) < @ which implies that FER is op-
timal in the extended clggi. ?

His lemma 2 states that if K > L then for any extended s.r. t

E(E /t) < Sn/n on the set (P{t= COiFn) > 4/K, S, >k n%) which fol-

lows from Haje k--Renyi inequality. Then under the condition

L
P(Sn > Kn®i.o.) = 1, he proved by a contradiction argument that



FER stops with probability 1.

(6) Recently Chow [7] has proved that if (sn, F n>1) be Martin-

2 2
il = = - [y (e cee
gale with E(yann_l) cn 5 whe;e yn Sn Sn-l,Fo Fl F2
2 s
-3 = < = - Q0 1 —
o-fields, Xn Sn/sn, o Sy i ck &(Xn) uniformly intégra

ble, E( _1 ) <<= , then FER is optimal in the extended class.
1/2
1

8
1

Moreover if, for some K > 1, P(Sn > Kn? i.o.) = 1, then FER stops

with probabllity 1. He appealed to his general theory, i.e.

usual Y, o Vn,& 0 and proved that FER 0 is optimal in the extend-

ed sense by showing that Xi - 0 a.e. Then as in the proof of

Siegmund's result [24], replacing Hajek-Renyl inequality by his

Martingale extension of the last inequality he proved that FER

stops with probability 1.

Motivated by Siegmund [2] and Chow's work we extended Siegmund,

Simmons and Feder's work [21] in the Martingale difference sequen-

ces. Our method is a modification of Chow's [7] and Siegmund's

[24] method and an application of Burkholder's inequality [2].

It is worth to compare some unpublished work of A. Dvoretzky [11]

to the last mentioned Chow's work and our work. Dvoretzky proved

that if (Xn, Fn’ nil) be a martingale difference sequence with

2
(a) E (Xh | F = 62, constant < @ (b) 1/n Z (X2!F

1) ) >0 (i.e.

-1

all r.v. are not degenerate) n
M
(¢) 1/n > [XZ - 0 as n = @ (Lindeberg's
= /2 cond.)
lXil >0 n

then FER is optimal for the R.S. (Sn/n) vwhere § = xl+...+ X -



This time his proof consists of proving all lemmas in conditional
expection form. Then he proved the deep central limit theorem and
law of iterated logarithm for martingale difference sequences

(which is a slight modification of Levy's results) to get his
result.

In i.i.d. case C.L.T. and Hartman & Wintner's law of iterated log
implies P(sn > K n% i.o. ) =1for 0< k<o

Also in i.i.d, case if second moment exists and the r.v. are not de-
generate) Lirdcberg®s condition holds.

Therefore in i.i.d. Case Dvoretzky's coﬁditions and Chow & Siegmund’'s
conditions are equivalent.

It is to be noted that if X ,X, ,... be independent r.v. with

L o»
E(X ) =0, E(Xi) = 1 and Sn/n2 = N(0,1) then

P i
P(Sn > K n® i,o.) = P(1im sup Sn/n2 > K )

.
lim P(sup S /n®> XK )
1 - o nil n

1
> lim P(si/12> K) =1~ 23(K)>0

i -
if o< K<

where 3 (x) is standard normal d.f.
Hence Siegmund's result (24] in the independent case covers
Dvoretzky's [11] result.
It is worth mentioning that whenever law of iterated logarithm holds
(not necessarily independent case) Siegmund and Chow's condition
P(Sn > K n% i.o.) = 1 holds. We do not know any simple sufficient

1
condition (besides law of iterated log) for P(sn > Kn®i.o.) =1



when (Sn) is a martingale.

So far in the literature the finiteness of variance of r.v. is an
essential condition.

Dvoretzky [10] conjectured about the existence of an Optimal Stopping
rule for the R.S. {S /n} when (X } are i.i.d., B(X) = 0, B(X¥) < =
for 1 < o < 2.

In section 1.3 we partially proved his conjecture when {Xn} are
i.i.d. with common symmetrical Stable distribution with characteris-

tic exponent 1 < o < 2.

1
1.2 Reward Sequence { |§ | /n?} .

Lemma 1.1
= + -+ > 3
Let (Sn X+ X2 oo * X, F ,n> 1) be a martingale
with max(2,7) Then there exists a constant A,> 0
AR T -
n ——
2

- S 1°
such that E(Zn) < A.n where z, = (l—EL—) " > 0 and hence
-0 ot
: n

lim 'E(Zn) = 0 where « > B/2.

n-— o

(This lemma is the martingale extension of lemma 2 of Siegmund,
~Simmons and Feder [21])
Proof. Without loss of generality let C = 1

If0<7< 2,

} ] 3 ¢ 20! n -
B(Z_) <b -/z(zf/' ) = E /2(n EC‘/GISHIQ) < A,)n-'/2 «

*

If3y>2,



then by Burkholder's inequality [2]

n
s ey [ad
E(ls |7/n¥) < un™E (z x9)/2
n - 3 . 4 1
i=1
ey 5/2- n n
by Holder's inequality < M,n op?/2-1 5 ( = lxilJ)
: i=1
<p nP/2
-3
Lemma 1.2 Let (Sn=Xl Xt +X,F,n > 1) be a martingale
and E(|X |max(293) |F < la.e. for n=1,2,... O<B<2u
n n-1) —
let t be a stopping time. Then
E( [Xn+1 """ +Xti3 I | F)<s n3/2-a a.e. on (t>n+l)
o (t<=) ' "n/ =79 U -
t

B=2and B, =1 )

(This lemma is due to Chow [7] if o o

Proof. Let = 2> 2,

(n)
Define SN=Xn+l teoaant XN
Iet A ¢ Fn
(n)

. > » . . >
Then (SkI(n<t)A,Fk’ k>n) is a martingale with difference sequence

Xeln< t)a .

Since lSén) l*J is a submartingale with respect to Fk and

(n<t<k-1) ¢ F_ .,

k-1

. 2 a2 )
DB e LT ) e e
(t>n)a % k=n+1 t¥  ke=n+l  (t=k)A

A(k<t<k+1)



N ~ (n)
L[ -
k=n+l A(n<t<k) A(n<t<s-1)
) JEPp - s
k=;+] A(n<t<k ) A(n<t<k-1)

m N N
= Zkﬂck Where Ck = f '

S ),ﬁ ) f

k=n+1 A(n<t<k) A(n<t<g-1

By Burkholder's inequality [see [

for N=n+1 n+2 ..

Let dy ;ﬁc < / (n)lB

n+l A(n<t)

< A E(( Afn t)<
= Ag f (x5,1+
A(n<t)

By Holder's inequality,

N

iy S A v/\ ( }; ’Xﬁ’B

A(n<t)  j=n+l
< AB(N-n)B/g.P(A(n< t))

Now by Abel's summation method

2]]

ST

X ... +X§) )6/2)

n+l

| ¥ g/2-1
)) (Zm

J=n+1

55

B

10
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N N N

L =Y =0 s -0 -C¢ ~C!

' = - -{k+ + (N+

, L ) k (dk dk_l) ; (k- (k+1) )dk (N+1) Ay

k=n+1 k=n+1 k=n+1
N -z n/2
< (K TT-(k+1) ) Aq(k-n) P(A(r<t) )
K=n-+1

B-
+ (N+1)'°’dN (N-n) §ing(A(n<t) )

N .
= AP(A<e) ) K ( (kn)/2 (ee1n)?/? )

b

k=n+1
© i 3/2 3/2
J. ) k’ack < A, P(A(n<t)) — kY (k-n) -(k-l-n)'/ )
=n+1 =n-l
(n)
|sif © 3/ 3/2
Therefore E( U *;;I Fn) <A, T k = (k;l) on (t>n)
£ (<) | C (n+k )
k=1
8-1 © Bl
I J‘ 2
<A, const Tk (rtk) © < const Ou(n+u)-“ du
(=} 1 3
~+= + 1 .)/2-(1/
= const (n+u) du = Byn ° a.e on (t>n+1)
-C? ’ t ° 1
< + : .
If <2 E(t an+1 eeeees F X T 40! Fn)
By Holder's inequality
3/2,, -2c/7) 2 |
< u / £ 1
< E/(¢ X gt eee mJ Ht<m%%)

i(Bqnl'Z / 3))/2 - const. n /2~



Lemma 1.3 Let (Zn, Gn, ni}) be an integrable stochastic sequence and
Tn =Zl+......+Zn. Suppose that for positive integer n and some s.t.t

{relative to Gn) for which

E(ITEL%Q ) exists and for 0<3<2y

) <Bﬁng/2—a
~Ps

a.e. on (t > n)

then for any K = 2.aBB

%1
e | o) < | 1l¥ o
0

A=(t > n > m , P(t={ G ) >27B s 0/2
n 3/K , lTnl 3> Kn’l%)
%1

m.O is sufficiently large
(This lemma is due to Chow [7] in case 3 = o = 2, B2=l)
Proof. Case 1 3 <1

On A we have by Cfinequality

~
I~
}Tnl+| Zoq teoeetl

|
E(thﬁﬁinn) < E

‘t[ "G)
o | n
£
1 3
2 tieeia. + 2|
1w 13 o Fonal T Al
—lTn* B(1/t lGn) + E( 1 G )
!
%
<I >l B -
- gg( fﬁf—gn-Gh ) . f}t 2n,Gh) ) e B n3/2 e
- topl o / 3

n (2n)”
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_ B (2%-1)p(t>2n) B/2-x
= |7 |"(a/x" - o 2 6,)) + Byn
2%_1)p(t==|q
<In o - ) e
(2n)”
< |Tn}/i°! - (2%1) (KnB/e)/(En)Ol P(t=m|Gn) 4 BBnB/2-oz
<|T BQ’ B B/2—oz+BnB/2-cv_ .. . lT 30[
n}n G B T n}n

Case 7 # 1., On A, by Minkowsky's inequality

" |B . lz_ .. +

1/ 3 9

0 2 o) &V (e » /P (22 e
t t

fﬁl/B(ITn}ia!Gn) + (BBnB/g'O‘()l/B

As in the proof of case 1,

El/B(thl le,) < (lTnJ,ioz - BB:nE’/E'O’)l/B + (BgnB/z—a)l/'B

Therefore, 3 B
' < >
E(!Ttyta lGn) lTn}na for n® m_

|z |P 3
and E(' 'n ‘G) <!TJ,"cw on A
o
n
Remark;

Chow's lemma and this lemma are the martingale generalization



1k

of corresponding lemma of Siegmund [24]  Incidently lemma 2 of
Ruiz~Monacayo[20] is a trivial special case of the above mentioned
lemmas.

We state a lemma due to Chow [7] without proo?

lemma 1.4 If E(y ) 20 and 9, -0 a.e.

then f '70|<°° and V = f X

o< o<

Theorem 1.1 Let (Sn=Xl+ ...... +X , F, n2>1) be a martingale and

max(2,8) .
E(|x_ | an_l) <Cc<w®a.e.

_ B
let Z_ lsn)na for 0 < B<2x

then E(Z_ ) = V. If for some K > (2%B.)
)

o4
B>
=1

p(ls P>k n " 1.0.
n

then P(o<w) =1

(This theorem is due to Chow [7] in case B =a = 2, BB = 1)

n

Proof. Z Xk/ oc/B Z 1/1(20‘/B

1

By Kronecker's lemma 'S / Ot/B -0 a.e.
Therefore Zn -0 a.e.

By lemms 1.1 E(Zn) —~ 0

7.1 = less sup ®(I2,| ¥ )]
t>n



By Cr -inequality:

7l < |

lSn]B+]X +oeee. 4+ X ,Bf
l

ess sup E(C n+l t F )
tzn B ta n
by lemma 1.2
B
' o
<G ’Sn,}na + CB E;sl sup E<!<Xn+1 Foeenn. + Xt)IB/t [Gn>
J P B/2-a
< CB( Sn}na + Bgn )
- B/ 2
= CS(Zn + Byn ) =0
B/2-d (by lemma 1.1)
E( l')’nl ) < CB E(Zn) + CB-BBH- > 0

By lemma 1.4, E(Zc)=V

If o< ms then theorem is obviously true. So we can assume @ m .

S p/2 o
Now assume P(lSnl >Kn i.o.) = 1 for some K> 2°B

P(g=w) > 0. 2-1.

_ _ B B/2 oy
Define t=inf(n > m Hsnl >K , P(o = w ,Fn ) > 2 BB X)
o

2 -
Then t < a.e. on (g = ) *

Pub t' = min(t , 0) , then P(t' <= ) = 1lon (0 = =)

By lemma 1.3

15



sc,/o mes PIE,)

n—m+l t=n<o

;2; d/\ n/n L/\'St/t Z“/\

t=n<og <o

f IS "~o¢

'
- t

[

Again, Jf
t2 o

B
Therefore V=E(ZU) <E( s } a ) is a contradiction.
t1/t!

16

1.5. Existence of Optimal Stopping Rule When Second Moment is Infinite

In this section we shall assume that Xl,u.., Xh be i.i.d. r.v.

with symmetric Stable distribution with characteristic exponent

1<ag < 2. Let 8 =X +...+ X
n 1 n

Lemma 1.5 /
1/a-1
E( sup |S -S_|/k) <B_ n
k >n k ™n (64
for n> 1 and 1 <a <2
and %ysuplsi
&n>l —171—;/

Proof.

t
Since X's are stable with exponent 1<a< 2 , E(ﬁz )< oo
for 1 ¢a' < @ and E(!Skl/kl/a) < ¢(a,a'), a constant

independent of k.



By Chow's generalization of Hajek-Renyi inequality

P( max (lsk—snl)/k >u)

N> >n
at, N1 g a al a a
<1/u” (2 (k7 -(k+1) ,sE(lsk[ )+ 1/N E(lle )), 1<a'<a
n+l
N-1 af o ot
a' LI o
< 1/un et (™ Lo C(o,2') + Cle,at) o )

Let N »w then

P( sup (,Sk“sn,)/k >u) = l/ua’(a' ; kﬂi'-lﬁd'/a

Claa'))
k > n+1
[oe}
E( sup (lSk-Snl)/k) =L/ P(ISk-Sn! > ku for some k > n)du
K>k k.
0

n1/05..1

< f g % '+t o, ot
- 1.du + Alaa') ) k SR VAT
0 rl1/05-1

/ Kk du
n+l
a "t a'+w'fo ~{at-1)(1/a-1) 1/a”t 1/a™t
<n + %& n .n = +%; n
/o~1
1l
—Ban

Lemma 1.€.
E(S /'tlF <8 /n on ( P(t: oo,F ) > 2/K B.S >K nl/a) _
t n o n a’"n

for every stopping time t.
Proof.

E(St/tIFn)=SnE(l/t{Fn)+E ((S_t-Sn)/tan)

by lemma 1.5.

17
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-1
1/a
< Sn(l/n P(t_<_2n]Fn)+1/2nP (t>2n1Fn))+Ban
-1
1o

< Sn/n - 1/en P(t:»!Fn)-sn +B, 0"

< Sn/n on A
Theorem 1.2 Let X] seeey Xh 3ees, be i.i.d. r.v. with common Sym-~

metric Stable distribution with characteristic exponent 1< 2 .
Then the functional edquation rule o is optimal for the reward se-

dquence (Sn/n] where Sn = Xl+"' Xn

Proof.

Since by lemma 1.5 E(sup Sn/n) <w o is optimal in the ex-
tended class (see Siegmund et.al [21])
Suppose P{c =) >0

Let T=min (g, inf (n > 1 : P(a=oo|Fn) > 2Ba./K s sn>Knl/°‘ )),K > 2B
o

then T < on (0= «)

< }Z J[ Sn/n (by lemma 1.6 )
1 T=n<g
=. u/éT/T
71<0

Therefore E(ST/T ) > E(Sc/o) is a contradict on .

Therefore P(o < w)=1, if P(S_ >ka% 10y = 1
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-1 -1 -
J. Chover [3] proved that P( 1lim (n™% lSn](log2n) = ) =1
e

if {Xh} satisfies conditions of our theorem which implies

/o

P(Sn>Kn j.0.)=1for 0< K< o,

1.k Remarks

1. Following Siegmund, Simmons, and Feder [21] we define Zn=hn(Sn).

We will say that FER o, stops at (n,y) if 0, says to stop at n when-

Z Z

ever § =y. Let A = (y:cz stops at (m,y)) let Yh=gn(sn) and define
B = (y: there exists a > 0, b such that gn(zkiahn (z) + b for all

z and all n > m and g, = @ hm(y) + D)

Then by the application of Principles I and II of [21] we find that
FER 9, (for the reward sequence Yn) stops at (n,y) whenever
veA NB . Clearlyo_<= a.e. if P(S eA N B for some n)=1 i.e.
n n v non n
o <®a,e, if P(SeA NB i.o.)=1
y n n n
Therefore we can state the following theorem: ILet Xl’XZ"" be

martingale difference sequence

* ax(2,B) < ® > >4
with E(}xnr“ Py SC<euhere 2@ >8> 0. 1If

| +\8 o /oy -0 +

= > -

Y Cn(Sn) s CnPk(Sn) (@ > k/2) , n log lSnl are the reward se
o

quences with lim sup n Cn < ® and Pk is a polynomial of degree k with

positive lead coefficient, then FER cy is optimal in each case pro-

1
vided P(ISnI > Kn2 i.0.) = 1 for some K> 0. In the last case we re-

2
i < <
quire only E(Xn[Fn_l) <C<® .,
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(Since the proof is exactly the same as Siegmund, Simmons, and
Feder [21] we omit the proof.)

2. We can state Chow's resvlt [7] in more general form when the r.v.
are not necessarily martingale difference sequence. The Theorem
goes as follows:

Theorem (Chow):

Let (Snﬁ Fn’ n > 0) be a stochastic sequence with

2 2 _ _
E((Sn Sn-l) [Fn_l) =0, SO—O, Xn~Sn/sn where
-
0<s =Z%o0°~ -« . Moreover let X -0, (Xn) is uniformly
n 1 k n
integrable , '

1
E(l/si) <o , and

1
- 2
E((St Sn)/st I(t < w) | Fn) S,l/sn a.e. on (t >n) then

V:E(XU,)_; \ / Sq /S ap

g < w o

Moreover if for scme K > 1

P(Sn szi/E i.0.) =1 then P(o <w) = 1.



CHAPTER 1T

HIGHER MOMENTS OF RENEWAL STOPPING TIME

2.1 Introduction

Let (Xn) be independent r.v. with E(Xh) =y, E(Xn-p.)2
= 02 <®and 0 < <=,
Define N =N= inf(n > 1 ; z > c-n )= inf { n 2}!Sn > ¢}} where

Z =5 ~nu and S =X +X +...+X and ® > ¢ >0
n n n 172 n

Then it is known that when (Xn) obey the Lindeberg condition.
1
(Siegmund [22]); E(N)=c/p+o(c?), E(N-C/M)2=c02/u3+0(0)

According to Brown [1] the sequence of independent r.v.

(Xn) with E(Xn) =4, si = E(Si) -, n=1,2,... is said to obey a

Lindeberg condition of order k > 2 (i.e, L holds) if

n

) o in-ui =O(SI1§) as n = @ for all €> 0
7 ol s
J=1 IXJ- wl > e s

Brown has given equivalent condition for k > 2 as follows

n
L IJ }fj-ul =o(sn) as n = @, for all € > 0; and
j=1 |x.- >e s,
J d W - d
n
- k

(3) p E|X. - ul = o(sk) as n = ®
L . J n

J=1

21
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The conditions (1) and (2) are equivalent even in the case k=2,
which was due to Gundy and Siegmund. We shall prove that if L2k
holds then (N-c/u)zk =
1
(2x)! -2k

2kk1 u3k

&y o(ck) as ¢ = @ for k=1,2,3,...

Recently Heyde [13] in the i.i.d. case and Siegmund [23]

in the independent case when the r.v. satisfy C.L.T. proved that

N-c/u
(OQC/M3)%-~»N(O,1) but they have not proved convergence of moments

in the central limit theorem which is our particular interest here.
The case k=2 is being discussed by Siegmund [22] apnd his result is
slightly better than ours. Siegmund's’result is stated as follows;
Let X, ,X,,... be independent r.v. with E(Xn) =0,

2
E(X -u)" = o . ILet 0 <o <1 and

S_-ny
. o . X n
M= 1nf(n _>_ 1; Sl’l >n ) and if lim P(;;FJ—E- E X) = @(X)

then 1lim P((M-L)((l-a/)'l L% ou)'l_<_x) =% (X)
o

where & (X) is standard normal d.f. and I=(c/u)

Our result implies that the normalized variable -—g:gl%fz
(c7c/u”)2

has asymptotic mean of order 2k, k=1,2,... as that of standard

variable N(0,1) as ¢ = @ ., If we take into account Siegmund's

result (23] then even all odd moments of the normalized variable
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N-c[u _

2
(0%c/u3)
Our method depends heavily on the techniques developed by Brown

[1].

tends to zero as ¢ —» @

i

ofi

2.2 Lemmas, and Main Theorems

2k
Lemma 2.1 If (X ) be independent r.v. with B(x, ) 21, <

then they obey L2k’ the Lindeberg condition of order 2k, k=

2,3,...
Proof.
n
For k> 1, . E|X.-u|%F <n.2 1+ .55
=1 (C_-inequality)
o 2k K
which implies X E(Xj-u) = o(n")
J=1

. 2k k
Lemma 2.2 If (Xn) satisfy L then E(XN ) = o(E(N)) and

E(XN-u)2k=o(E(Nk)) where 0 < p < ® and E(Xn) = .
We shall state a lemma due to Brown [1]

-LEEEQ 2.3

Let 2 > 0, b > 0 be integers with a+b/2 = k and let
(NC » ¢ > 0) be a class of stopping rules such that
T

®as c=—=o , If (Xn) obey L then

k k
< @
E(NC) and E(NC) o1

a8 b k.
E(N | ch-u! = o (E(N))) as ¢ = =

(This includes lemma 2.2, when b=2k, a=0)
Theorem 2.1 Let (Xn) be independent r.v. with E(Xn) =y >0

L

B(X, - ) =%, B =y , EE )*-3<e . Then



2L

2
E(NQ) = 0(c ) and E(c-Np,)LL = O(c2)
In particular E(C-Np.)LF = 3su. cg/uz + 0(02).

2
Proof. By corollary 1 and 3 of [6] E(N ) <« and

1im E(N/c) =u Ffor 0<a<2... (1)
c — ®

which implies E(N2) = O(c2)

Therefore, by Theorem 7 of [5]

E(Zﬁ) = 602E(N ZE) + 4wy E(NZN) + BE(N) - 334E(N(N+1)) (2)
Now E(ZN) = 0, E(Zﬁ) = GzE(N) (by Theorem 2 of [5] ... (3)
Therefore, E(Zﬁ) -G Clu .. (&)

By (2) and (1),
B(zy) § &P (P).5 (2) +iwE” (12 (22)0m( (1)-3 (2 )em(m) o
< 60%.1/, o(e)EE(zm1/, o(e). °/uE o(chye

2w 0(e)-3 o™ (1/u 0fc)+1/u? 0(c?))

. (5)

Therefore, E(Zﬁ) = O(c2) as ¢ = @

2
2 2

Therefore, from (2), (5), and (1) E(NZ;) = .c as ¢c—®

Lo 2
2
b

Since, 0 < ZNn(c-Np) < X, > We have E(ZI\T«(c-l\Tp.)))1L EE(X;)

Therefore, E(Z§) = 3 + 0(02) as ¢ = ®

Therefore, E(ZN c2 - (c3-N/c? 7)) < E(Xﬁ)/c =o(l) as c =

Lo o Py E—
Therefore {E(ZN)/C ~E(c®-N/c”u)"} - o.
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Therefore E(c—Nu)u ~ E(Zﬁ) as ¢ - @

b 2
Therefore E(c-Nu) =35h ¢ + o(c2) as ¢ = ®
2
L “H 6
Therefore E(N-c/w) /c2 =3 /u as ¢ = @, '~ Q E.D.

The proof becomes very complicated in case moments higher than
bth. But in the i.i.d. case the proof is simpler due to the fol-
lowing observation:

Let M=sup(n: 5, < ¢), then M > N-1
But Heyde proved that in the i.i.d. case F(Mk) <@
i E(x')zfi (k> 1 integers) and E(|X|) <« and E(X) =u >0
Therefore E(Nk) < if E(X')k+l < ® and E(|X]) < =.

Also if Mh=max(O,Sl,S ..,sn), n>1

2’"

T=max (r>1: M <c) then T+l =N
and it follows from theorem 3 of Heyde (1966) that for positive inte-

gral r, E(Tr) <o if B(X )Y <®, By theorem 6 of Heyde (1966)

lim E(Tk)

k . -\ k+1
® = 1/ if E(x ) < @
K B(Y) X -kt
Therefore, E(II ) < ® and — - 1/u as ¢ = @ if B(X") <

c
for all k > 1 and EIX{ < ®, Theorem 2.1 is a special case of theorem
2.2 but to understand the more complicated proof of Theorem 2.2 better
we have given a slightly different separate proof of Theorem 2.1.
Theorem 2.2

Let X,, X,,... be independent identical r.v. with E(Xn) =u >0,

E(Xi) =0+ u2 then, E(N-c/p.)2k < e, E(N2k) = O(cgk), and



2k k
E(ZN ) = 0(c™), where Z, = XK - oy

Proof.

Since E(Ne) = o(cg), E(N-c/u)z = 0(c) and E(zﬁ) = 020/u+ o(c)

the theorem is true for k=1. We shall prove by induction. Without
loss of generality we shall assume 02 =1,

Define t, = min(Nc, [c]), then t, is a bounded stopping rule, and
hence Moment Identity holds (see Brown [1]).

Now suppose that the theorem is true for k-1 i.e.

26

B(-c/u) ™ < =, (1P = o(®™) , and B(ZE") = o™ (1)
for m=1,2,...,k~1,
By lemme (1) of page 21 (Brown [1]), if t is a stopping rule with
E(tk ) < and the (X ) obey L.. then
n 2k
2k
0 = E(Zik) £ ) (2x)!/(2ker)! E(Zik—r £/2 at,1r))
r=2
N .‘vl ' /)
—n . &L - il L
where A(n,r) =.n'¢/2 }Z S l? : ;1 E(Xi M)"‘E(Xiﬂ )
Q wl.w2....wz. - 1 L
l<il<°°°<i£<n

vhere Q= ( <wl,...,wz ): ‘each W is an integer > 2, Wl+...wﬂ=r)

s

ok
Therefore, E(Zik) = - ) (2K)!/(2k-1)! E(Zik_r £*/2 A (t,r))
r=2
K
e 2%) %2
+ 31 (“L)J "'i' ) T E(Zt J ;1 )
” (2k-23): 29 -
j=1 \ : 158 <. SLySt
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where Ai=A(n,r) if r is odd

- /2 3. --—iig‘-— br_. W W
A, =n"T Zoowy tooaw, L E(X, -u) 1...B(x, -p)'j
1 Q! 1 J 11 l,j
* 1i)<.. S sn if r is even

where Q' =Q -{(2,2,...,2)}
T r/2 entries

By Brown [1] page 25 Al(n,r)=o(l) asn=® , if {Xh} obey L

o) *

ok

Therefore, E(Zo") = - )  (2k)!/(2k-r)! E(Zik"rt r/2 A (t 7))
¢ = c ¢
r=2
k
) e oy

+ 31 (-1)9 2 (2k) E(ng 23 (6 +3-1)! ) (2)

: > t NS
j=1 (2k-2j)!j!eY ¢ bl

ik ~ Z;k and since {Zik , ¢ 0} is a non-negative

C c

Now for large c, Z

submartingale we have (by Doob [8] pp 32L4-25) E(Zig):: E(Zﬁk) for

lJarge ¢, Taking lim ¢ — =

k
B(zg) ) (LI s

2 =27

C

9) +o(Et§) for large c.

t

e

< ajEJ/k(tE) gl-d/k (zik) (by Holder's)
C

C_]J.
s

where ajzp,.are constants.
Therefore E(ng) <) E(tk) < ] E(Nk) for large c (3)
’ N/ - 4k ¢’ - wk ' ‘

where Mk 1s a positive constant.



2k
2ky _ 2k (2k)! 3
Now E(Zt ) = E(SJCC -c+c-utc) = E: TR E(Stc c)(c utc)
c 320
By Holder's inequality
ok 2k-1.
2k 2k, j/2k
b EGe/mE <Y (@ (s, o)
1 FT(Ck-3) 1 c

2k-3

b (m /PP (s o) 4 o(cR)

Cc

Now by lemma 2.2 (since L

o1 holds)

E(st —c)2k < E(xt )2k = o(Eti)

[¢] [¢]
So by (1),(3),(L), and (5) taking limc = @ , B(N - ¢/u)?E < e

Repeating the same argument and remembering that
E(zﬁk) <o iffE(Nk) <o We get

K .
2ky T (-1)7(2w):!

E(Z
N o1 (2Kk-23) 15129

E(Zﬁk—Zij) + 0 (E(Nk)) as c - @

Now E(IF) < 2570 ((c/u)®* + E(-c/u)®®) < o

Strong Law implies lim N/c = 1/p a.e.

C—»oo

‘ b
Therefore, expanding the function y in Taylor's series about 1 where

y=N.p/c and remembering that

E(lleb) = o(B(1%7?)), we get by (1) and (8) E(E) = 0(c2X).,

28

2k-j

(k)

(5)
(6)

(8)

(9)



29

Therefore by (1), (7) and (8) We get
B(zg") = 0(c") (10)

Corollary 2.1

Let Xl’XZ"" be independent identical r.v. with E(Xn) =3 >0,

k 2k
2 (2k)ico
B(X) = 0%®, then, B(zo") = {BELEZ 4 o (M) | ana

N E 125K
E(N-C/u)2k = 235%5%%51_; + 0 (ck) as ¢ = @ , for all k=1,2,3,...
kiI2'w
Proof.
Now by (7) of Theorem 2.2
X $+L,y .
B0 = ) AL (R By 4 o (mrt)) (1)

Pav] (2k-2j) 152"

As in theorem 2.2 We shall assume 02 = 1 and We shall prove by
induction.

. . b . .
Expanding the function y (L-py)® in the neighborhood of 1, where

vy = N/c, remembering that E(JXNIb) = o(E(Nb/Z)), and assuming

m

2 ! . e

E(ZNm) = Sgg%fﬁs— + o(c™) for m=1,...,k=1 (since it is true for m=1
ml2

(Siegmund [22])), We get from (1)

k )
22 =5 L

. k-j . .
(2k)% (2k~23)! < ? CJ/HJ + o(ck)
4 (2k-23) 15129 (k-j)12KI Ed
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k - .
k J+k. , . K
= (2k%10k' 51 Eil?),.%' + (Qki-; + o(ck) as ¢ ®
kio® & = \KTdJede k!2%
J=0
k
1
= El{_}){% 4 O(Ck) as ¢ 2 ® (2)
k2w

. < o <
Since 0 < ZN (c - uN) < XN

))2k

2k
We have E(ZN - (c-pN < E(XN )

it

Therefore, E(ZN/C% - (c% - N/c%p))2k < E(Xﬁk)/ck o(1)

X 1 1
Therefore, {E(Zﬁk)/c - E(c® - N/c? u)gk} - 0asc=® (3)

Therefore by (2) and (3)

1

L 1 1
E(c® - N/czu.)2k - LEE%LE as ¢ = ©®
ki2™u

k
H
Therefore, E(N - c/u)2k = igk%;%E— + o(ck) as ¢ ™ ©
k¥

Remark: We conjecture that the theorem 2.2 and Corollary 2.1 are true

for if {xn} are independent r.v. satisfying L, .
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CHAPTER TIIT

THE IAW OF ITERATED LOGARITHM

3.1 Introduction

In this chapter law of iterated logarithm results are proved vhen
the r.v. are not necassarily bounded. ILet (Xh, Fn’ n > 1) be a sto-

chastic sequence with Sn = X + X2 +.....+Xn. We say that the law

1

of iterated logarithm holds for the sequence (Xn) with norming

constant c¢_te if P(1im S =1) =1,
n n/

C
n

In theorem 3.1 we proved the law of iterated log when the inde-
pendent r.v. (Xn) do not have moments but they satisfy some Berry-
Essen type of bound as done by Petrov [19]. 1In Theorem 3.2 we have
tried to get law of iterated log for martingale difference sequence
which are not bounded like classical Kolmogorov type but under some
regularity conditions to be stated later (c.f. Stout [25]). Later
we tried to get some Berry-Essen type of Bounds to justify conditions
imposed in Theorem 3.1.

Finally we got some one-sided law of iterated log type of results
when the r.v. are martingale difference seguence satisfying some

boundedness conditions on all moments.



3.2 The Iterated Logarithm without Assumptions about the Existence
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of Moments

Lemma 3.1 Let {U.} and {Vj} , 1<k<n<®, be two sequences of

events. Suppose that for each k, the events {U ,U Uk,Vk} are

PYRERE
independent, and there exists a constant ¢ > O Quch that

n
P(Vk) > q for every k. Then P(U U WV ) > q p( U U, ).

k=1 k=1
Proof.
n
p( U UV)—P(J [(uyv,)° LU v (U D)
k=1 k=1 k-1 k-1
n
>p(ktilcu coL U U VD) = EP(UE... ¢ L UJR(V,)
, k=1
n
Y P(U] -+ - U, U )q—q(u U, )
) k=1 K

Theorem 3.1 Suppose that (Xn) be independent r.v. There exists a

sequence of positive numbers (Bn) such that Bn‘foo and Bn+l/Bn -1 (1)

1
P(Sn-Sk > -(Bn)’-) >q>0forall 1<k<n (2)
and
1 1 X ,
sup |P(s, < 5%x) - (21)F [ exp («t%/2) at| = o(10g B )-(1*) )
n n’ . v n
X o for some i > 0

1
T =2 1 )=
Then P(1im sn(a % log log Bn) =1)=1,

Proof. From the estimate
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(2]

J exp(-t2/2) dt ~ 1/x exp(-x2/2)

X
as x = ®

we get

2 2
(1+6)a > . < (1 -8

(log Bn)- <P(S_>a B2 tn) .(log,Bn) (3)

I 3

for 6 > 0 and a < (1+u) and n sufficiently large. where

1
tn=(2log log Bn)2 (1) implies that for each ¢ > O there exists (nk)

such that B < (1+)¥ < B K =1,2,...
k-1 Py

assume BO =0

Hence (1) implies B~ (l+c)k and
k

B -B = - ~ +c) as k- L
B 7B (B /By ) P e/ (1+c) as k (1)

11 .
Let U_ = {S > (1+¢)2t_B?} , ¢ >. 0
n n nn
We shall prove that P(Uﬁ f.0.) =0 : (5)

Now for each k, consider the range of j below

e 23 My 6)
1
pPut P(V,) = P{(s -5,)> -(B )2} > q > O for large k
J Prey S T
(by (2))
By lemma 3.1
-1 n al
we get P( 8k+l U.V.) > q P( Thaky u,)
j=nk J J j=nk J

It is clear that UjﬂVj implies



i Y
S >s. - (B )2 > (1+¢)°B2, t, - (B )
g1 I Pl J T4l

e

which by (4) and (6) asympotically greater than

i L
2 2

(l+e)%/(l+c) t, B2

+1  Tk+l

Choose ¢ > O close to O such that (1+e)/(l+c) > 1 + ¢/2

2
n

1 1
- > (1 +¢/2)2 ¢ B2}
and put A {Snk+l (1 +e/2) B P

This implies that UjﬂVjCAk for large k.

It follows from (3) that

), Bl) <Y 1/(10g B_ )" (1*e/2) - ) (K(10g (1+0))-(24¢/2) < &
k k k k
Therefore, by Borel-Cantelli limma

Dyey1™d

P( U Uj i.0.) =0

J=n,

this is equivalent to (5).

Similar reasoning applied to -Sn shows

1
’ > ' 2 i = >
P(lsnl (1+¢) B2t i.0.) =0 for any e >0

The rest of the proof follows inthe same line as Petrov [19], but

for the sake of completeness we are giving the proof.

1
Let ¥(n ) = (2(B. - B ) log log (B. - B )2
k S ko Pxa1
From (4) we get, log (B. - B ) < log (B_ )< 2k log (l+c)
n n n
k k-1 k
for large k.
1
5

1
Therefore, Y(nk)/BS c?

t ~
k-1 k-1

3k

(7)
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By (3), for 0 < y< 1, P(Snk - Snk_l > (1-y) ¥(n))

-

v

R(is, > (2-¥/2) ¥(n, )] N SN /2 ¥(n,)1)

> p(s_ > (1-Y/2) ¥(n )) - P(s >Y/2 ¥(n,))
> B n (1-7/2) ¥(n,)) - B( n = /2 ¥(n,

2 2
> log (Bnk)-(1+5) (1-Y/2)< (Log Bnk l)-v c/5

2
> 4 (e (1) (Y27 -V L) (-Y2)?

for k and ¢ large where A is a constant independent of k. Choose §

small enough such that (1+6) (1-Y/2)% <1

thenS: P(S, -8 > (1) ¥(n)) ==

X k k-1
since (S - S ) are independent, by Borel-Cantelli lemma
n n
k k-1
P(S. -8 > (1-y) ¥(n,) i.6. ) =1 for 0< y< 1 (8)
T Mg k |

‘ Py
Now (7) implies }Sn(w)] f.EBE t for n > no(w) a.e. Hence

: 1
(4) implies (1-v) ¥(n, ) - 2B t -
_ k nk-l nk—l

~ (1) (c/léc)%-'_- 2/(l+c)%) Bi t, as k=
k "k

since ¢ @ 0 is arbitrary, choose v > 0 and ¢ ® O such that

1
2

(1-y) (c/14c) - 2/(14c)® > 1 - ¢

[~

Hence (8) implies P(S_ > (1-¢) B
"k K

tn i.o.)
k

B
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1
> P(S. > (1~y) ¥ = 2B % i.o.)
> B( 0 (1-y) ¥(n,) ey T B0
> P(snk - Snk-l > (1-v) ‘i’(nk) i.o.) =1

this proves the theoren.
Remarks:
1. According to Khintchine a distribution belongs to class L iff it

- 1
is the limit distribution of a sequence Sn = (Sn - an)/Bg satisfying
anw and Bn+l/Bn = 1. So our theorem can be stated in loose terms as

follows: If independent sequence of r.v. belongs to the class I dis-
tribution and satisfy some Berry-Essen type of bound and also if they
take both positive and negative values with positive probability then
they obey law of iterated log.

It is to be noted that the usual case Bn = Uzsi is proved by

Petrov [19]. The main interest is when the r.v. do not possess fimite
variances. In order to verify whether the relation (*) holds we can
use the estimates of the remainder in the central limit theorem given

by Hertz [14]. According to Hertz [14] if ¢ > O

n
U, (c) = J‘ X2 aF;  and A (c) = Z c J | x| aF,
x| < ¢ 1 x| > c

where Fi is the d.f. of the independent r.v. Xi' Assume

[»]

Bi:y Ui(Bn) > 0, then Hertz [14] proved that if the r.v. are i.i.d.

l_.l

continuous and in the domain of attraction of the normal law, then

for sufficiently large n, there exists solutions (Bn) Of the last



37

equation so that Bn -

1 2 B
Iet A_ = sup|P(S_< B2x) - &(x) | < k'B 3 J A (u) du
n X n n - n Jy, ‘n

(theorem 5 of Hertz)

Let bn(c)

1

DN
1

!xlfp Integrating by parts
-1 rc
Now ¢ J Ah(u) du = —(A (c) + 1 (c))
0]

2
<
Therefore, A < k/Bn (An(Bn) + bn(Bn))

n

—k/B( S: Bf ledF + 1/B, YJ

. Pa x[f_B

for 6 » 0,

n
< /8] ((ogl3 )7 Vn [ I (20g] ) 3*0) ap,
|

1 X|>B
] n
3 x°| x| (10g]x] )1
+1s Y | git) _)ar)
4 l+6 1
1 |xl<p (log lxﬁ

.<_ k/Bi((J-Ogl Bnl )-(l+6) X: Bn ‘{ ]! X! (log!Xl )l+6dF
1 X|”B

+ (log Bn)'(lJ’é) z JXZ(long!)(h—G) ar. )

1 |xlsB
n

= k(Bi(log 300 Y (8 [ 1%l (2oglx)M GdF + X (1og| X[ ar ar, )
1 1XI>B X —Bn

= %/ (10g|B_| )L+o .l/Bi . T
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n
where L = E: (Bn leI(longl)l+6 dF, + sz(logIXE}+6 'dFi)
1 |Xl>Bn | x>,

So if Ln/Bi < b, a finite constant we get relation [*].

2., If the r.v. are symmetric they satisfy condition (2) of theorem 3.1

3.3 ILaw of Iterated Logarithm for Martingale Sequehce

Lemma 3.2 ILet (Dn, F s n>1) be a stochastic sequence. Let (an), and
(c.) be F measurable positive random variables such that a <c¢_,c_t*
n n-1 n n’n

Let

Y
n

D_ if |D_|<a
n n n

1t

0 otherwise

n
let P (Tim Ve z (Yk-E(YkiFk_l)

=a)=1 (1)

k=1

_ 2r, 2r 2r -1 >

If }: E(D, (D" + c*) I(iDnl __an)an_l)<m a.e. (2)

n=1 '

for %-f_r <1
n

Then P(TH 1/c_ Z (D,-g,) = a ) =1 (3)
k=1

vhere g_ = E(Dk I(]Dkl<ck).le_l)

Proof. Let Z_ =D_if |[D ]| > a
n n n - n

0 otherwise



thenD =Y +2Z ,LetZ =D ifa <|D]|<e
n n n n n n -~ n n
= 0 otherwise
thenZ_ =2 if |z | <e¢
n n n n

= 0 otherwise

Now applying corollary 3.1 of theorem 3.1 of Stout [25] (The proof

39

goes through if constants an and cn are replaced by Fn- measurable

1

r.v.) to the sequence (Zn, Fn’ nz;) we get by Kronecker's lemma

n
-1 -~ .
e 3: (Zk - E(Zlek_l)) 0 a.e.
k=1
Now D, -'g =Y - E(Y]F, ) + 2, - E(Z, le_l)

therefore, (L), (5), and (1) implies (3).

Theorem 3.2 Let(Pn,Fn, ni;) be a martingale difference sequence

n
. 2 21 2 _
with s E: E(Dk{Fk_l) - @ yhere E(Dlek_l) = constant.

k=1
Let a = o(s (log.s 2)d%) c = (2<210g log s2)% Moreover if
n n 2°n > “n “n n’ *

n

l/si E:E(Di I(IDI > ak)) - 0 and either, (a)E(Supan!/cn) < ® and

k=1

=]

«©
2y, 2r 2ry~1
b < l > <
(b) 2 E(Dn (Dn e }77) <, or i P(,Dnl an) ® | then the

n=1 n=1

law of iterated log holds for {Dn}_

(k)

(5)
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Proof. TFollows easily from lemma 3.2., corollary 3.4. and theorem
4.2, of Stout [25].

Remark: It is interesting to compare Theorem 3.2. with the recently
proved result of Stout [26]: 1let (Xn,Fn, n>1) be a martingale with

difference sequence D =X - X
n n n-1,

n
2 2

s = E:E(Dlej_l) ® and

1
=]
z (Knsn) E(D I(D K2/u2)]F ) < o

n n n’' n-l
n=1
o> 1
where K are F measurable, K — 0 and u_ = (2log.s_)° then lim
n n-1 n n 2 n

sup Xn/snun = 1.

3.4 Some Berry-Essen»Type of Bound for Independent

Random Variables

. . _ 2, =2
Let X), X,, ... be independent r.v. with E(Xi) = 0, E(Xi) =0y,

n

2 2

s -z ois 8, =X, + X +...+Xnandzn_sn/s
1

n
Let gn(e = I X" dF, €0
k~ Xl>cs
Let Fn(x) = P(Zn<x) and 2(x) be the standard normal d.f.

B.V. Gnedenko congectured that sup|F (x) - 3(x)] <c g, (e) where c is
X for large n
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a positive constant.
Ibragimov and Osipov [15] gave counter example to show that it is
false if the absolute moments of order 2+§ (6”0 is arbitrary) are
infinite.

However it is possible to find out a bound which is a function

of gn(c) and e.

Theorem 3.3 Let (Xn) be independent r.v. with mean zero and

satisfy Lindeberg condition then

mwp |7 () - 200l S 0y 0, gle,) + O g(e e, + gy(e,)/ey

= Qasn— o

Proof. By hypothesis g (¢) = O for every €0, following Loeve [16]
n

there exists a sufficiently slowly decreasing sequence en> 0 such
that (i) g (e )/e° ~ 0, (i1) g (c_)/e. = 0, (iii) & (c.) = 0, and
€\ n’ tn ? n* n’’ "n ? €n\n ?

supe 8 < y<o®,
P n Sn = Y

n>1
Define X = X_1if x| <e s,
=0 otherwise k=1,2, ... n
_ 2 2 2 2 2 2 2
a, = E(Xﬁ), cj = E(Xj) - a5, 5 = G t0,+ 0o +0
2
Now o, < G?
J J
> _2 n > n—2 n n 5
s -8 = YOJ—YOJ=7‘{£d% +?(JXd%)
1 1 1 |x|>en 1 |x|<e_s
n - nn

Since, E(Xj) = 0 for all j, by Holder's inequality



2

2 = 2
Sn ~ % = 2gn (en)sn

Therefore, 1<8/3 g (e ) if 's‘n < sn/z

So Gnedenko'sconjecture is trivially true in this case with C = 8/3.

2 -2
- - *n” n 2 -2 2
(Sn Sn) / Sn - Sn E’n - 2(Sn Sn)/sn

'« TV/T < e T >
Therefore, (Sn Sn)/sn < )-Lgn(en) if s sn/2

n

n
let Yn=1/snz XJ_ , 'z'n = l/-é'n z (Sc'j-é'j) s zn=1/s
1

1

((Zn<x) c (Yn < x)U (le|> ensn) U...u (]Xn!> ensn)

n

|
Therefore, P(Zn< x) < P(Yn< x) + Z P(;Xj{> ensn)

J=1

n

Similiarly P(Y < < Z < + >
imiliarly (n x_)__P(n x) E' P(IXJI ensn)

J=1

n

Therefore, !P(Zn <x) - P(Yn <x)| < y P(]le > ensn)

j:

= 2 I dFj(x) < l/e?l gn(en)
=1 |x|> € S, ‘

Therefore, for all x,lP(Zn< x) -0 (x)!

< 7 < -
< sip lP(Zn (xsn

LMS

J

if s

n

E)/5,) (s - ) E)/5,)

J=1

=~

Lo

(1)
(2)

(3)



n
s sup 2 ((sy- ) B)5,) -8 () | +1/e] g(e,)
1

2
=T, + T, +1fe g () (&)

2 2
— - 3\ = - )
Now E X, -a, c,< 2 s /o, E(X.~-a. =2 8 <2

((I 3 Jl) )/ j~n n/ 3 ( 3 J) n°n Y

Now applying Berry-Essen's theorem to X.,,X

124000
(see Feller vol II pp 521 [12] )
7,2 T /s, 22, /s if 5 > s /2 | (5)
1 n
TS 1/(em)2 ((sn-‘s"n)/En + 1/'s'n| z Eji) (by an estimate of Petrov
j=1
[18])
n n n n
a.l < = ‘ ; ! 2
z 5] < z | | x ar, ()] Y ] >x ar, (x)|< 1/ensn2j xar, (x)
j=1 =1 |X|< e s, j=1 |x[> e s 1 |x|%e s,
n n
— — 2) T ) o=
Therefore, 1/snl E: ajlfﬁ/(enbn 2J [ X dFj if s > sn/2
j=1 j=1 [Xl>ensn
= 2gn(€n)/€n (6)
Therefore, by (3) and (6)
T, 2 Cyle (e)) + g (e )/e ) (7)

Therefore, by (L), (5), and (7) we get the theorem.
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3.5 One-sided Lew of Iterated Log in the'Martingale
Case When the Random Variables aré‘hbt.Bounded

Recently Stout [26] proved if si - © and (Yh, Fn’ n>1) bea

martingale difference sequence with !Yni <K, s, / uﬁ'fbi'all n>1

n
where K_are F_ _ measurable with K= 0, s- ==§1E(Y%iF. and
n n-1 n n L T7V575-1)
1
213
= % i = = +. ..+
w (2 log, sn) . “then lim sup Xh/snun 1. vhere X =Y, Y

Relaxing boundedness condition on the r.v. by the same type of
boundedness condition on moments we are able to prove one-sided result

namely lim sup X /s u< 1
n n n—

2 2 2k
= — = 3 2 > > .
Let Gj E(Y?le_l), X =0, T,= first time S 2% > p>1, since
2
S - o, Tk is a stopping rule.
Lemma 3.3 Let t be a stopping rule such that max E(Y?[Fj_l)cifpk_e
A<t

where / is an integer and C F, measurable. Then for all £ > 0,

e

t
Blexp(M(X, - X )exp(-A°/2)(1 + hc/2) ) ol | F) <
j=4+1

On t24 provided A is F, measurable and 0 < AC < 1. (This lemma

L
essentially like lemma 1 of Stout [26] but for sake of completeness
we are giving the proof.)

Proof. By Fatou lemma for conditional expection, it suffices to
prove the result for t(N)=min(t,N) with >4,

Assume OEACE} and I = 1.

(t(M)22)
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N

B(exp(A(Xy ) %,))] Fyp) = Blexp(h ) T(8(W) 2 3)y,l7y )
=4+l

N-1

=l ) Ty 2 )7 M0 g 5 ! i)
J=4+1

For any j such that t(N) > j = £

B0 () > ))1F500)

=1 + (A. /co. + )\3/310- C + A /)_1_30'2 C2 b R )I(t(N) > J)

C1s x2/20§/2 (1+AC/3 + A202/3.u Fovrennas )I(t(N) > 3)
2.2,

< exp(r oj/2 (1 +ac/2) I(t(N) > J))

setting J = N and combining we get
2 2
B(exp(A (X, (yy=X, ) exp(-A /2) (1#Cr/2) o) T(g(n) > N)IFN-l)

N-1

el ) Iy s gy )
VRS

If 4 =N + 1, we are done, Otherwise, proceeding by backward induction

we assume that N

(exp(K(Xt(N) X,) exp(-) /2)(l+\C 2) >J T (m) > J) lF

j=n (3)
n-1
< exp(A 2 (t(N) J)Y ) for N2 n > 542,
j=4+1

N1

Then, E(exp(A z YjI(t(N) > j)!Fn—Z)
2+ -
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n-2

< exp(A zJ I(t(N) ij)YJ.) exp(—h2/2)(l+hc/2)7i_l I(t(N) 2_n~l))
J=4+1

follows by computation. Combining with (3), we get

N
B(exp(A (X, , =X ) exp(-(A5/2)(anc/2) Y 1 2
() ™0 L) 2 5) ollE L)
j=n-1 J
n-2
< exp(A ;1 I Y,
20 ) e 2 %)
J=A+1
Then by backward induction the lemma is established.
‘ _
Corollary 3.1 Let max E(Y?]Fj_l)/ci < (Cp )m 2
LSS T, for m = 3,4,....
and C is Fz measurable and p © 1, is a constant. Then
< - - - -
E(I((XT 'X,e)/pk > . )IFE < exp(~¢/2) (1-¢C/2) on T, provided
e is Fz measurable and O < ec < 1,
. . 2 2k
Proof. ILetting t = Tk and noting that ¢ <p s by lemma 3.3 we

k
get Blexp(t(X, -X,)|F, < exp((t%/2)(1+tcp™/2) p°F)
Tk J

on Ty 2 1 provided 0 < tC pk'i 1

k
E((I(XTK“XHPK%)IF‘&) < exp(-et) E(eXP(t(XTk'Xj‘ /v lr,)
< exp(-et) e}@((t2/2)(l+t0_/2)) if0<tC<1

putting € = ¢ yields the results.

Lemma 3.4 (Yj’Fj’ j 2 1) be a Martingale difference sequence with
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K_is a constant and K= 0. Then lim sup X /s u_ < 1 where
n n n nn —

243
w = (2 log, sn)

Proof. Since Kh ~ © there exists K = 0 such that Kh < K for n suffi-

ciently large and (1 + 68') K< 1 where §' is to be chosen later.

We shall prove P(Xn > (1+6) s 0, i.o.) =0 for all & = O.

P(X > (1+8) s u_ i.o.) < P(X% > (1+8) s u i.o.)
n nn Tk | Tk—l Tk-l
2
. 2 . 3 2 2 - - 2
N°W<ST 41 .uT Y ./(sT U )20 glogzpz(k l)/log2P .
k-1 k-1~ k "k

“Thus choosing 6§' ® 0 and p ® 1 such that (1+8) > (1+5')p, it follows

> i < 5 > 1 ;
that P(Xn (1+8) s i.0.) < )(XT (1+61) Sp U i.o.)

k k "k

Now from lemma 3.4 for any a # O

E(I(X¥ f.x)) < exp(-ax) E(exp(ax%

)) < 8Bexp(-ax) E(exp(alx; |))
" k

k

< Bexp(-ax) (E(exp(a XTk) + exp(—aXT ))
k

By corollary 3.1 with 2 =0

p(xeTek/pk > ¢) < 16 exp(-c2/2 (1-¢C/2)

' 2k 2k\%
Therefore, E(I > (1+8'( (2p log,P )) for large K.

Ly
(X%

2 -
< exp(-(1+8") logzpek(leK(lﬂS’)/E)) where C = K(2 1og2p2k) 2,

1
e = (1L+67)(2 1og2p2k)5) with (1+87)K < 1.

Therefore, for sufficiently large k

E(I QK)%)O < 2 (2k 1og p)™

2k
(g > (1+") (2p" "1log,p
k
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for some @ » 1 by choosing K > O such that (l+6’)2(l-K(l+6')/2 > 1

o)
1
Thus ;Z P(X% > (1+61) (2p2klog2p2k)2)) < ® , By Borel-Caentelli lem-
k
k=1

ma the result follows.

3.6 Concluding Remarks

(1) It is to be noted that i.i.d.r.v. satisfy the condition of our
theorem. So that we can get one part of Hartman-Weintner's law of
iterated log.
. 2
Also when (Xn) are independent N(O,Gn)

1
E(Xen)/cin = SEE%L - (2/e)rl n" (Stirling's approximation) (1)
nl2 ~

(n/(2 log,n (n-2)/2 goes to zero less faster than (1).
So if (xn) are independent N(O,Gi) they satisfy condition of our theo~
rem (2) It is interesting to note that if {xn} be independent r.v.

with

= 1asn= o,

n
2, 2 2 2
E(Xn) = 0, E(Xn) =0, s, -.Ej o é, and s.1/5,

k=1

moreover suppose that for every t > to > 0 there exists ¢ » 0 and

5 > 0 such that we have

exp(tE/Z (1-tc/2) ai/.si < E(exp(txk/sn)) < exp(t2/2(l+tc/2) oi/si)

wherever tc 5_60, then {Xn} obey the law of iterated logarithm,
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