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CHAPTER I
A SUFFICIENT CONDITION FOR THE

LAY OF THE ITERATED LOGARITHM

1. Introduction

Let (Q,F,P) be a probéﬁility sbace, aﬁa assume th;t (Sn,Fn,nal)
is a stochastic sequence (i.e. Flchc . « . eF are sigmé—fields
and, fbr each n, the random wvariable Sn is Fn-measuragie). We
séy that S, obeys the Law of the Iterated Logarithm if there is
a sequence bi’bZ’ . ; of positive real numbers such tﬁét
lim sup g 4y =i a.e., The name of this law is derived from the.

n > o “pn _

fact thét each number b, involves the function "log log" in the-
resulfé ﬁroved to date. (Note: throughout this.thesié wve will '’
refer -only to natural logarithms,)

Perhaps the best known result in this field is the Ceie;
brated Kolmogorov Law of the Iterated Logarithm (see [il] o£
P. 260 of [12)), which appeared in 1929. The result staéeé:

Let X Xz . « « be a sequence of independent random variables -

1’
with mean 0 and finite variance for each n. Define S,= Xp + X, +

2 _ .2 _ 2.%
« . . +an, sn = ESn, and t, = (2 log log sn) . If sn"*"° and

anlfmn = o(sn/tn) as n*®, then 1§m+sgp Sn/(sntn) =1 a.e.
This result generalizes Khintchine's result [10], which

proved the same result for the coin-tossing case (i.e. X, takes



value 1 or -1 with equal probability, for each n). It should
be noted that the condition mn=o(sn/tn) cannot, in general,
be replaced by the weaker condition mn=0(sn/tn). This fact
was demonstrated by Marcinkiewicz and Zygmund in [13].

The proof of Kolmogorov's result involved the ingenious
use of Kolmogorov's exponential bounds (see [11] or P. 254 of
{12]; indeed, most of the iterated logarithm results on record
since 1929 are based, to some extent at least, on Kolmogorov's
method.

Let Sl’ 89, - . . be random variables (r.v.). A sequence
bl,bz, . . . of positive real numbers is said to belong to
the upper class or lower class of 31,82, . . . according as
P[Sn>bn i.0.] is 0 or 1 respectively. So, for example, to
prove Kolmogorov's result it is evident that one must show
that, for every ¢>0, the seauence (1+e)sntn is in the upper
class of Shs while the sequence (l—e)sntn is in the lower
class.

In [3], Feller completes the Kolmogorov result, in the
sense that he provides some necessary and sufficient condi-
tions for sequences {b_} to belong to the uppér or lower
classes of Sn’ given the situation that Xl,Xz, . « . are
independent with mean 0 and finite variance, S,=Xp+

2 = 2-)- max <
+Xn, s = ESn ©_ and for all n, lSkSankl‘Ansn’ vhere An+0.

The results outlined heretofore have related only to
certain sequences of bounded random variables. However,

Hartman and Wintner [8) presented the following result in



1941: 1If Xl’XZ’ « + . are independent, identically distri-
buted (1.i.d.) r.v.'s with mean 0 and variance 1, then
lim s Y =
ot gP (X1+ . e e +Xn)/(2n log log n)* 1 a,e.

Recently, Strassen [18] has proved a converse to their
result: Let Xl’ X2= e« « « be i.i.d. and Sn=X1+ . e e +Xn
Then the condition 1%m+sgp ISnI/(Zn log log n)¥ce implies

EX{=0 and EX2<m. In fact, Xl has mean 0 and variance 1 if

1
1 - .
and only 1if 1%m+sgp Sp/(2n log log n)% = 1 and oo
1%m+12f Sa/(2n log log n)% = -1 a.e.

Some other results concerning the Law of the Iterated
Logarithm will be outlined in following chapters.

As noted above, the proof of Kolmogorov's theorem
depends on the exponential bounds. However, an analysis
of the proof of these exponential inequalities shows that
they are actually a consequence of certain properties of
the moment-generating functions Eetxn, properties that are
implied by the hypotheses of Kolmogorov's theorem. In this
chapter we will prove theorems which follow from these as
yet unspecified conditions on the moment-generating functions,

Our theorems will be shown to imply some known results,

including that of Kolmogorov, as well as some new results.

2. A Generalization of Kolmogorov's Theorem

LEMMA 1.1 Let S be a r.v. such that Eets<exp((t2/2)(1+tc/z))
for some ¢>0 and all O<tegl, Let €>0.

(i) 41if €c<l then P[S>€]<exp(-(€2/2)(1-Ec/2));



(ii) if e€c>1 then P[S>el<exp(-e/(4c)).

PROOF. By hypothesis, if tc<l we have
P[s>e]=P[et5>et®]<e"t® .EetS < exp(-te+(t2/2) (1+tc/2)).
Then (i) follows by setting t=€ in this inequality,

while (ii) will follow if we set t=c~1.

THEOREM 1.1. Let X1 X9, . . . be independent r.v. with

EX,=0, EX§=U§<w for each n. Define Sn=X1+ . .« X

n?
s2 = ES2 t2 = 2 log lo s2 Suppose there exists a
n n’ tn g g S, PP
sequence cy, €9, . . . of positive numbers such that
e, = o(tgl) and, for each sufficiently large n,

Eetsn/sn < exp(.¢2/2)(l+tcn/2)) provided O<tc,<I.
If, furthermore, (i) sp,*® and (ii) O#/sn+0 as n+o,

then lim sup s,/ (st )<l a.e.

PROOF. Our proof will closely follow that of Kolmogorov

in [11] or on page 260 of [12].

1
First, note that s,VSp+1s since, by (ii),

s2 -

1 < "n+l = 1 + 1 as n-o,
2 2 2
®n 1-0 4178041

Let §>8§'>8">0. For c>1, let n;, be the first integer
m such that sm>ck; such an integer exists by (i).

Then snk>ckasnkflmsnk, so snk'\ack as k+o, Note also

1
Throughout this thesis the statement "apvb," will be
equivalent to the statement "%ig an/bn=l.“



that ¢y ntg oo

For each k, define s*

ny =nkfi§nsnk Spe Choose c>1

S0 close to 1 that (1+§)/¢>1+8'. Then, since

(1-6)snk_ltnk_lmsnktnk(l-6)/c,

= : & :
Ag = [Sn2(1+6)sntn 1.o°]C[Snk2 (l+5)snk_ltnk_11.o.]
ClSp > (1+8')s_ t_ 1.0.]

k” Dk Dy

Choose k so 1a;ge that (1+8") < (l+6')—/§/tnk. Then, by
a variation of Levy's inequality due to Kolmogorov (see
[12], p. 248),

*
P[Snk2(1+6')sn1

1
g JS2P 080, > (146 s, ¢

knk—/anll

K

gZP[Snk3(1+6")snktnk].

Let ek=(1+6”)tnk; ciearly Eg*®. By hypothesis, tnkcnk+0

as k»o, so tnkcﬁksl for all large k. Furthermore, for
all sufficiently large k, (1 - ekcnk/2)>(l+5“)—1. Now,

since we are given that, for all large k, Eexp(tSnk/snk)

<exp((t2/2)(l+tcnk/2)) if O<tcnksl, we may apply lemma
1.1 (i) to find that, for all sufficiently large k,-

P[snk3(1+s")snktnk]<exp(-(1+a")2{t§k/2)(1—ekcnk/2))
<(iog s%k)_(1+6”) n t2k log C)—l—G”.

) P[S k;(1+5")snktnk]<m.

k=1 n

-3 * ¢
Zk=1 P[Snk>(l+6 )Snktnk]<m'



Hence, by the Borel-Cantelli lemma, P[S§k>(l+6')snktnk i.0.]

= 0. Therefore, PAg = 0 for all §>0, so 1im+sgp Sn/(sntn)

£1 a.e. Q.E.D.
LEMMA 1.2. Let S be a r.v. such that

(1) exp((t2/2')"(1—t:c))<EetS < exp((€2/2) (A+tc/2))

for some c>0 and all O<tcgl. Assume €>0. For any given
¥>0, there exist numbers €o>0 and no>0 (depending on Y)
such that, if €>e  and €c<n, then P[S>€]>exp(—(€2/2)

(1+y)).

PROOF. The following proof virtually duplicates that of
Kolmogorov (see pp. 255-257 of [12]).
Choose 0<fi<l such that (1+28+32/2)/(1—B)261+Y.

Let t be the smallest value of t for which

(2) 9e2e7B%t%/8¢1yy, oB2E2/8540.2 g ot?/4 55
and define €_=t,(1-B), no=(1—8)82/(8(1+8)2). Let
t=€/(1-B). If €>€_, then t>t,. If €c<n_, then clearly
8tc<B?/(148)%; in particular, 4tc<B2/(1+8)2<B/ (1+8),

so l<(l—4tc)-l<1+8. Hence we have

(3) 8tc582/(1+8)2 and 1-B<(l-4tc) L1<1+8.

Note that, from (3), it easily follows that 8tefl,

8tc<B2/ (1-B)? and B2/4>tc.



Now
EetS= - jf et*4qp[s>x] = tf e%* p[S>x]dx
0  t(1-B) t(1+B8) 8t w x
= - s>x1d
J_t, + ft(l-B) + ft(l+8)+ fst)te P[S>xldx

J1+J2+J3+J4+J5. We shall estimate these

integrals separately.
0 tx
Clearly Jigt f e “dx = 1.
-0

If x»8t and xc21l, then P[S>x]<e X/ (4¢) . -2tx by
lemma 1.1 (ii) and since 1/c28t by (3). On the other
hand, if x>8t and xcgl, then, by lemma 1.1 (i), P{S>x]
<exp(-(x2/2)(1—xc/2)) < e'le4 < e”2tX gence
P[S>x]<e”2tX 4¢ x28t, so J55tf:t e"t¥dx<1. Therefore
(4) JHg < 2.

Now let 0<x<8t. Note that, by (3), xc<8tegl. Hence,

(5) e*P{s>x]<exp(tx - (x2/2)(1-xc/2))
<exp(tx-(x2/2)(1-4tc)) since x<8t.

= - 2 - dg = ¢-(1-
Let g(x) tx (x4/2) (1-4tc). Then = t-(1l-4tec)x

2
and i_% = =(1-4tc)<0 by (3), so g(x) assumes its
dx ,

maximum value at x=t/(l-4tc). Note that t(1-8)
<t/(l-4tc)<t(1+8) by (3). 1If 0<x<t(1-8), then, since

g is increasing on (0, t(1-8)), we have g(x)<g(t(1-8))
=t2(1;B)—(1—B)2(t2/2)(l—4tc). But 8tcgB2/(1-8)2, so
1-4tc>(1-28+8%/2)/(1-8)2. Therefore, g(x)g(t2/2)(1-82/2).

So, by (5),



t (1-8) 20 .2
J25tf0 e8(X)ax ¢ t2(1-p)et (1-g°/2)/2

Similarly, since g(x) is decreasing on (t(1+g), 8t),
we have, for t(1+g)<x<8t,

g (x)<g (£ (1+8))=t2 (14p) ¥ (1422 (£2/2) (1-4te)
<t?(14p)- (1428482 /2) 2 /2=(c2/2) (1-82/2).

8t 2 2
Hence’ by (5), J4<tf eg(x)dxsstzet (1_8 /2)/2-
S Tt (148)

Thus J,+J 59t2 exp((t2/2)(1—32/2))=9t2exp(-32t2/3)=

2 74

exp ((£2/2) (1-82/4))¢ 1/4-exp ((t2/2) (1-tc))<EetS/4
by (1), (2) and (3).
Furthermore, by (1), (2) and (4), and since l-tc>1/2 by

2 R S
(3), I +Igg2gl/heet heqjy .ot (1REe) /2 g ts )

2
. by definition, J3>Eetsl2>1/2'et (l-tc)/Z. But

t (1+8)

2
€ (1-8) etxP[S>x]dx5tet (1+B)(t(1+B)—t(1—3))P[S>t(1—3)]

J4=t]
2
= 2pt2et (IHB)prs, 7.

L PISsel>l/2-exp (£2(1-8274) /2-¢2(1+8)) " (28¢2)~1

(48t2) " L.exp (B2t2/8) -exp (- (1+28+82/2)£2/2)

exp(~(e2/2) (1+28+8%/2)/(1-8)2) by (2) and

VWV

definition of t,

exp(-(€2/2) (1+Y)) by the definition of B. Q.E.D.

W



DEFINITION 1.1. Let X15%92, . . . be independent r.v.'s with

EXn=0 and EX§=U§<“ for each n. Define, for each n>1,

, 2_pal
n=X1t - - . +Ln, and sn—ESn. Then the sequence Xn

satisfies HYPOTHESIS A if there exists a sequence cj,C,y,
_1
. + of positive real numbers such that c,=0((log log s%) )
and, for all sufficiently large n, if t is any non-zero

real number such that lt’cn51, then, for each kgn,

2 .2 S 2.2
exp(;gk_f__ (l—ltlcn))<Eeth/Sn < exp(SEf_ (l+|t|cn/2)).
2 2
2s 2s
n n

REMARK. Hypothesis A sets forth the conditions on the
moment-generating functions Eet®n mentioned in the intro-
duction. As stated, this definition appears rather
complicated. However, it is easily seen that if
X31,X3, . . . have normal distribution with mean 0 and
variance Oi (ve will denote such a distribution by
N(O,Gi) throughout this thesis), then Hypothesis A holds.

From the arguments on page 255 of [12], it is clear that
2

]
n

then Hypothesis A is valid. The latter condition holds,

1
if anlfmn = o(s,/(log log s%)é) where s§=0% + . . .40
in particular, if the r.v.'s are uniformly bounded.
The following theorem completes Theorem 1.1:
THEOREM 1.2. Let X1:X9, . . . be independent r.v.'s with
2 2 '
EX,=0 and EXn=0n<°° for each n2l. Define, for each n,

2 2 2
a=X1+ .« . . #X_, SI21=ESn and tn=2 log log sn. Then, if



10

(1) s (44) o /s >0, and. (iii) ‘Hypothesis A holds, we have

1im sup Sn/(sntn) =1 a.e,.

n -+ o

PROOF. The method below is similar to the proof of Xolmogorov's
theorem. In view of theorem 1.1. we need only prove that
1%m+gup Sn/(sntn)a 1 a.e. Note that SpVSnh41, by (ii).

Define, for c¢>1, ny td be the smallest integer such that

snk>ck. As in the proof of theorem 1.1, s nek,
k
2_..2 2 2 _ 2
Let u, = snk - Snk-l and vy = 2 log log uy for each
) ‘ - 2 2 2 2 2 2
k=1,2, . . .. Note that ui’bsnk - snk/c = snk°(c -1)/c”,

and vk%tnk. Define C£=Snkcnk/uk’ and suppose 0<tci51,

Then (tsnk/uk)cnl <1, so for all sufficiently large k,
<

it follows from Hypothesis A that

exp((o? t2/2u2)(1—tc'))<Eeth/uk< exp((o% t2/2u2)(l+tc'/2))
h ] k k | k k
for all jg<ny and all t such that 0<tc2$1.

(1) holds for the r.v.(Snk-Snk_l)/uk by independence,

Let 0<8<68'<1. Define Y=(1—t5)'2 -1 and € = (1—5)vk.
Clearly €;,*~, Note that cé=o(t;i)=o(v£l), so that

ekci+0 as k*®, Hence, for all sufficiently large k, we

may apply lemma 1.2 to find



11

PpERlS, -5, >ue] >exp (- (1-6) 2 (1+y)vi/2))

=(log ué)-lm(log si )_1N(2kolog c)_l.
ok

L P! = ®©, and it follows from the Borel Zero-One

Law that P[Snk'snk—1>“k€k i.o.}] = 1.

Therefore 1%m+sgp (S S _l)/(ukvk)31-5 a.e., in fact,

ny o Uny

15
we have lim sup (5, = 1)/(snktnk)2(l-5)(cz—l)z/c a.e.

Dy -

Hypothesis A holds for the sequence —Xl,—XZ, e« e+, SO,
by theorem l.l,lim+sgp —Sn/(sntn)sl a.e.: from here it

follows easily that 1§m+i£f Snk_ll(snktnk)z—l/c a.e.

11 i
But pMLSSP Snp/ (s tn ) UM SR Sy =Sy )/ (sy th )

" l§m+igf S, /(

t
k-1’ ny Fny)

5(1-8) (¢?-1)%/c - 1/c a.e.

>146' a.e. if ¢>1 is chosen

appropriately large. But 8' is arbitrary, hence,

1im sup S

k » o nk/(snktnk)zl a.e.

Therefore l%m+sgp S,/ (sptp)21l a.e. Q.E.D.

COROLLARY 1.1 (Kolmogorov [11]). Let X1,X9, . .+ . be

independent r.v.'s with EXn=O and EX§=G§<® for each n.
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- 2_pa2 2_ 2
Define S =X4+ . . . +Xn’ sn--ESn and tn—2 log log sn. If

s,*® as n*® and if, for each n2l, Ian<an vhere a >0 as
F- N
n n

n*e_ then 1%m+sgp Sn/(sntn)=l a.e.

PROOF. Hypothesis A holds as in the proof of the Kolmogorov

exponential bounds ([12], p. 255) with cn=an/tn.

But 62/32$a§/t§+0 as n*®, so the corollary follows from
n =n _

Theorem 1.1.

COROLLARY 1.2. (see [9]). Let Xy,X be independent

95 0 e
such that, for each n, X, is normally distributed with

mean 0 and variance 0; (i.e. X_ 1is N(0,0;)). Let

n

_ < 2 .2 2_ 2
Sn—Xl+ e s +An, sn—ESn and tn—2 log log s If

s, and 0n/sn+0 as n?®, then l%m*szp Sn/(sntn)=1 a.e.

In particular, suppose Yl’YZ’ « « .« are i.i.d. with

N(0,1) distribution and that 2,539, . . . are positive

o
reals such that X ai = 9 but an/Bn+0 as n*®, where

k=1

2
B§=a1+ . . . +an. Then lim*sgp a1Y1"T - + an§n1=1 a.e.
; _ - 1
Bn(2 log log Bn)

2
PROOF. For all t real, Eetxk/Sn = exp(Uit /(232)), so
n

Hypothesis A holds for any sequence cn=o(t;1) as n?%®,

1

So let cn=s; and apply the theorem.

REMARK. Hartman's result [9] is slightly stronger than

corollary 1.2. He proves that the result of corollary
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1.2 is valid if s,*® as n>o and l%m+gup Un/sn<1° Further-

more, his proof is much more direct because use of the

2
exponential bounds is avoided; the relation 1-2(x)ve ® /2

vY2Tx

as x-»» (see [4], p. 166 for example), where ®(x) represents

the normal distribution function, is used instead.

THEOREM 1.3. Let xl’XZ’ - » » be independent, each with mean

0 and variance 1. For any o020, define Yn=n°LXn and
Zn=Yl+ o e s +Yn. If Xl’XZ’ . « » satisfy Hypothesis A,

then Yl,Yz, . « » also satisfy Hypothesis A and

1%m+5gp Zn/(nu(Zn log log n/(20+1))%)=1 a.e.

PROOF. By assumption, there exist numbers €C1:C9> + o such

that 0zc,=o0((log log n)'%) and, for all targe nj

¢7)  exp((£2/(2m) (1-|t]e))<EeFk/D cexp((£?/(2n))
(L+|t]e,/2))

for all kgn provided O<|t]c <1.

. . .
Let z%=EZ§ = 3 k2%, Note that z2

K=l nmn2a+l/(2a+l); in fact,

o.
(8) zianz +1/(2a+1), as is easily seen by geometric

1
considerations. Let c1'1=(2a+1)/2cn and v§=2 log log zi

nv2 log log n.

Hence c;=o(v;l). Suppose 0<|t|c;51, for n so large that

(7) holds. Then, defining tL=ka/E t/z_ for each k<n, we

n



14

have, by (8),

0<Itﬂ|cn$na+l/2Itlcn/znsltlcésl. Hence, replacing ¢t

by ti in (7), it follows that

tY, /z
exp(kzat2 (l-ltilcn))<Ee k n<exp(k2at2(1+|t1'{|cn/2))
222 222
n n

for all kgn if 0<|t|cé$l. That the sequence Yy,Y,,
satisfies Hypothesis A follows immediately, since
ltt]c sltf{e! for all kgn.
k n n
~L
It remains only to note that 2z *>° while na/zn=0(n %), so

that theorem 1.2 implies that lim+sgp Zn/(na(Zn log log n/

(2a+1))%)=1 a.e,

An immediate corollary is the following:
COROLLARY 1.3. Let Xl’XZ’ . « . be independent with

EX,=0, EX§=1. If IXnISmn=o((n/log log n)%), then, for

. noa
any 30, lim sup Ip. k¥ =1 a.e.
n .

naéééii n log log n
PROOF. As remarked egrlier (and established in the proof of
corollary 1.1), the condition concerning the bounds on the
X, sequence impligs that Hypothesis A holds for Xl,Xz,
The result then follows by theorem 1.3.

REMARK. A special case of Corollary 1.3 occurs when the

Xl’XZ’ - « « sequence is uniformly bounded. Such a result



is used by Gaposhkin in [7].

The theorems of this chapter may not be very strong
results. However, the following corollary will provide
a result which is implied by the results of this chapter,
but which certainly doesn't follow from the Kolmogorov
theorem and does not seem to be a consequence of any

other known result.

COROLLARY 1.4, Let Y3,Y9, . . . be i.i.d. with density
function f(x)=e_|x|/2, -wo<x<o, ji,e, Laplace distribution.

Define, for all n3l, X,=/nY,, and S =X;+ . . . +X_. Then

n?

lim S“P.Sn/(Zn log log n)% = 1 a.e.

n > ©

PROOF. It is easily checked that EY1=O, EYi=2, and

EetY=(l—t:2)-'l if |el<1. 1£f Y ,Y satisfy Hypothesis

12¥9s ¢ ¢ -
A, then, applying theorem 1.3 with a=1/2, the desired
result follows. (Note that the V2 factor in the result
follows since EY2=2.) Hence, we need only establish that
Hypothesis A holds for Yl,Y2 e o e

We will utilize the following inequality (see [4], p.
50):

(9) if 0<t<1l, then exp(-t/(l-t))<l-t<exp(-t).

Define cn=2n—1/4 for each n24. Note that if n>4 and

0<tcp%1l, then 0<t<n1/4 and (21:/n)(1-t:2/n)—1 =2t/(n—t2)

<2nl/4/(n~/5) = 2nl/4 < an~1/4 c
Vn(v/n-1)

n*
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So 0<t2/n<1 and (l-tzln)_l = 1+(t2/n)(l—t2/n)'1

= 1+(t/2) 2t/n(1-t%/n) " L<i4te /2.

Hence, by (9), EetY//E=(1—t2/n)-1<exp((t2/n)(l-tzln)-l)

<exp ((£2/n) (1+tc_/2)).

/_
And, again by (9), EetY/ o >exp(t2/n)>exp((t2/n)(1—tcn))
if n24 and 0<tcn<1. Since the distribution of Y is
symmetric, it follows that Hypothesis A is indeed wvalid

for the Y;,Y,, . . . sequence, as required.
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CHAPTER II
SOME RELATIONS BETWEEN THE CENTRAL LIMIT THEOREM

AND THE LAW OF THE ITERATED LOGARITHM

1. Introduction

In this chapter we will consider a sequence X1,%9,
of independent random variables, each with mean 0 and finite
variance. Let S_=X,+ #x_, s2=£52, t2=2 log log s?, and
. =X+ - . ns Sg 0’ th™ og log s, , an
for all x real, Fn(x)=P[Sn/snsx]. We will denote by g (x) the

distribution function of a N(0,1) r.v., i.e.

_y2
9(x) = 1 f}jm et /2

vY2n

dt. Then the sequence

X;,%X5, . . . is said to obey the Central Limit Theorem if,

for all real x, %ig Fn(x)=®(x).

If Hypothesis A of Chaptexr I is valid for X1,X9,
then it is clear that, for any real t, %ig Eetsn/sn=et2/2,
which is the moment-generating function of the N(0,1)
distributioﬁ; so the Central Limit Property wpuld imply
that the Law of the Iterated Logarithm is valid.

It ié not true in-general that thé€ Central Limit pfoperty
implies the Law of the Iterated Logarithm. Both Marcinkiewicz
and Zygmund [13].aﬁd Weiss [19] have constructed counter-

examples of bounded random variables Xl,Xz, « « « such that

sn“*"° and IXHISMn=O(sn/tn) as n?>® for which the Law of the
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Iterated Logarithm is not valid (in fact,

lim su . lim su
5 mp Sn/(sntn) <1 a.e. in [13] and i wp Sh/(sntn)>l a.e,

in [19]), but the Central Limit Theorem is valid.

Petrov [14] proved a result giving conditions which,
along with the Central Limit Property, imply the Lawv of the
Iterated Logarithm; these qonditions include assumptions on
the rate of the convergence Fa79. Assuming the notation at
the beginning of the chapter and defining - )

- = -— 7
M -mﬁggm |Fn(x) ¢(x)|, Petrov's result states

that 1im*SgP Sn/(sntn)=1 a.e. if s +e, S,vSp41> and 3§>0

M = 2 -1-9
such that M,=0((log Sn) ) as n-o,

Theorem 2.1 will state a result which contains Petrov's
result, namely, if SpVSn+1s S5, 1-Fn(xn)%1—¢(xn), and
Fn(-xn)WQ(—xn) as n>® for certain sequences {x,}, as n»o,
then lém+sgp Sp/(sptp)=1 a.e. This result will be shown
to imply some new results, including a useful corollary

relating to the Berry-Esséen bounds.

2, Results and Corollaries

LEMMA 2.1. Let ®(x) represent the distribution function of
2
a N(0,1) r.v. and suppose €>1. Then (i) 1-0(eg)<e=F /2,
and, (ii) for any given y>0, if ¢ is sufficiently large

2
(depending on y), then 1-9(g)>e~(1+Y)E“/2
PROOF. By lemma 2 on p. 166 of [3],

g2 2
1-0(e)< 1 e€°72 . -€2/2 while

9
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1-8(e)> 1 (1 1) e’fez/zoe‘(1‘“")52’2»‘(1“’)"’2/2 if €
Vim(e €3)

is large.

THEOREM 2.1. Let Xl’XZ’ « . « be independent with EXn=O,

EX§=G§<m; Define, for n2l, S =X;+ . . . +X_, S§=E5§s

2_ 2 = o
tn—Z log log 525 Fn(x)-P[SnSX s 1, and let @(x) be the

N(0,1) distribution function. For any number a>0, define
the sequence an=/;°tn. If (i) s »~, (ii) 0,/s,70 and
(iii) l—Fn(an)Wl—Q(an) as n*©, for all 0<a<A for some

A>1, then lim sup 8 /(s_t )51 a.e. If, furthermore,
n > o n nn .
(iv) Fn(-an)WQ(-an), then
13 =
(1) ;m*sgp Sn/(sntn)—l a.e.

REMARK. In the proof of [1l4], Petrov uses lemma 2.1 and
the restriction on M, to derive exponential inequalities
to replace the Kolmogorov exponential bounds. 1In the
following proof, we shall use the limit comparison
test, i.e. "if %}£ an/bn=1 for two sequences {a,} and
{b,} of positive real numbers, then ILa, converges if
and only if Ib, converges, where both summations are
over n=1,2, . . .." (See p. 360 of [1]).

Our proof below, like that of Petrov, will follow the
general method of the demonstration of the Kolmogorov

Law of the Iterated Logarithm, (see [11] or p. 260 of

[12]).
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PROOF. From (ii) it immediately follows that sn%sn+1 as
n*®, Let 0<8"<§"'<§<A-1 be arbitrary, and select c>1
so close to 1 that (1+8)/c>144"'.

By (i) we can define, for each k21, ny to be the

least integer satisfying s >ckss We shall con-

nk - nk...]:"

sider only k so large that

(2) n<npgy .. o and /§<(G'—6")tnk.

k
Clearly s_. “vc¢© and tnk’\:tn as k»», Define

ny k-1

s¥* = max S_. By a variation of Levy's inequality

g np_q<n<ny B

(see p. 248 of [12]),

*
(3) P[snk3(1+6')snktnk]szptsnkz(us')snktnk /Esnk]

"
52P[Snk2(l+6 )snktnk] by (2).
Let ek=(1+6")tnk. Then, by lemma 2.1 (i),

2 - 1y 2 _ wy 2
l-¢(€k)<e'€k/2 = (log Si) (1+6™) v(2 log c°k) (1+8™) .

0
Hence [1-® (g, ) ]}<=.
k= -k

1

But 1—Fnk(€k)ml—¢(€k) as k+~ by (iii), so'we can .apply

the limit comparison test ([1], p. 360) to yield

=™ 8
~ ™ 8

P[Snk>snk€k] = [1’Fnk(€k)]<m.

=1 =1

[+e]
%
Hence, by (3), i:l P[Snk>(1+&')snktnk]<w.
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By the Borel-Cantelli lemma, then,

PIS* >(1+8")s
By

nktnk i.o.] = 0.

Therefore, since s /c and by choice of c,

t v s t
nk_l nk"l nk nk

PISy> (1+48)s_t i.o.]sP[s§k>(1+6)s i.0.]

t
Rre-1 -3

SP5, >(146")s, i.0.1=0.
<

t
k Dk
So, since § is arbitrary, we have 1%m+sgp Sn/(sntn)sl a.e.
Now we will assume (iv) and will establish the second
part of the theorem. Let Gn(x)=P[—SnSx°sn]=1—Fn(—x).
Then, by (iv), we find that 1—Gn(an)=Fn(-an)%¢(—an)=1—®(an).
So the sequence -X;,-X5, . . . obeys the conditions (i)?
(ii) and (iii). Hence it follows from the first part
of the theorem that
(4) 1lim syp -g /(s t;) € 1 a.e.

Now let 0<5<6'<1,u2=s2 2

k nk_snk—l’ Note

v§=2 log log ui.

2 Cz-l o 2 N, S
that uk%_zf_ snk and Vi tnk. If A and B are any two

events, then PAB = PA-PAB®>PA-PB®. (This relation is
also used by Petrov in [15].

Define Ak=[Snk-S 1>(l—6)ukvk], k=1,2,

nk_
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Then
PA, 2 P{[snk>(1—6/2)ukvk]{\[snkilsngRS/zl}

W

P[S. >(1-8/2)u

v.} - P[S >uy, vy, 6/2]

W

R[Sy, >(1-8/2)ugv,] - B[S >(c?-1)s. ¢ 8731

nk_l nk_l n
for all sufficiently large k,
vi-d(e')-(1-P(e” where £€'=(1-6/2)t
(e)=(1-0 (")), = (1-8/2)ey

and Erﬁ(cz-l)tnkG/B, by (iii).
. k

Let Y=(1—5/2)-2—1. Then, by lemma 2.1,
- V1012 TR TN r2 ya1_ ra2_1y252.2
[1-¢ (e )]1-[1-2 (e '}>exp{ tnkIZ} exp{-(c“-1)“8 tnklls}
=(log sﬁ )_l[l—exp{(1—(c2—1)262)t§ /2}1
k 9 “k
If we choose ¢>1 so large that (c2-1)6/3>1. Then, for

all sufficiently large k, then,

2

o«
PAk>%(log snk)-lm%(Z log ck)~l. Then §= PA, =%,

1k

But the events Al’AZ’ . + + are independent, so the
Borel Zero-One Law assures us that P[Ak i.o.]=1. This

1i - -
means that km+S£P(Snk Snk_l)/(ukvk) > 1-§ a.e., and,

therefore,lim 5up (g S _l)/(s )>(l-6)(c2—1)%/c a.e.

> o ny oDk ny oy

Choose c¢>1 so large that (1r6)(c2-1)%/c ~ 1/¢ >1-68°,
and note that it follows easily from (4) that

lim inf g /(snkt

K > o np_q )>-1/c a.e.

Dk
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Therefore,

1im+s:p nk/(snktnk)zlim+szp (Snk-snk_l)/(snktnk)
+_1im+igf Snk_l/(snktnk)>1-6' a.e,
But §' is arbitrary, so 1im+sgp Snk/(snktnk)21 a.e. Hence
lim+sgp Sn/(sntn)21 a.e., which, with the fifst part of

the theorem, establishes (1).

REMARK. An obvious consequence of Theorem 2.1 is corollary

1.2: 1if Xl’*2’ . « . are independent such that Xn is

N(O,UZ) for each n, s2=024 . ., .402 and ¢ /s +0 as
n n 1 n n n

n*~, then (1) holds. In this case, the asymptotic
relations in the proof are replaced by equality, and our
method reduces to that of Hartman [9].

We shall now show that Petrov's result follows from

our result.

COROLLARY 2.1. (Petrov [14]). Let Xy,X9, . . . be indepen-

dent with EX_=0 and EX2=02. Define § =X+ . . . +X
n n n n

s2=Es?, t2=2 log log s23 for all real x let
n n n n

X
2
Fo(x)=P[s_<x°s 1, ®(x)=_L_ [ e t7/2 q¢, and let

2w =%
Mn=_2g£<m|Fn(x)—®(x)|. If s =, On/sn+0 and there exists
6>0 - 2 "'1"6
such that M =0((log sn) ) as n*>, then
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14 \
;m»sgp Sn/(sntn)=l a.e.

PROOF. We need only verify (iii) and (iv) of theorem 2.1.
For any 0<a<l+§, define an=/Z°tn. Suppose K>0 is such

that M <K(log si)—l—s for all n. Then, using the relation

2
-x“/2
(p. 166 of [4]) 1-0(x)v& . as x»», it follows that
. /2n x

M, (1-0 (a;)) "Lse (tog s2)717%: (1-0¢a ) 7!

1-§

V2K (am log log si)%(log si)a_ +0 as nwo,

But, by definition of Mn’ l—Fn(an) -1 an(l—CD(an))-1
1-%(a )
n
F_(-a,) F_(-a,)-0(-
and |—>—2_ - | n(-2n)-9(-25) < M_(1-0(a_))"1,
o (-a_) 1-2(a_) n n

It then follows that 1—Fn(an)wl—@(an) and Fn(—an)%®(~an)

as n*®, so the desired result follows from theorem 2.1,

Q.E.D.

COROLLARY 2.2. Let Xl’XZ + « « « be independent with mean

zero and EX2=U2 . Define S_=X_+ . . . +X_, 32=E82,
n n n 1 n n n
2 2 -2 @® Xﬁ
tn=2 log log s> and, for €>0, gn(€)=sn hX f .

k=1 |Xk|ZESn

For a*0, define the sequence an=/;°tn. Suppose there

exist a number A>1 and a sequence of positive numbers

PysP9s - + . . such that (L) gn(pn)gpi for each n, and

(ii) for all O<a<A, pn(l—Q(an))—1+0 as nro, If s -+
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and cn/sn+0 as n+®, then 1%m+sgp S,/ (spty) = 1 a.e.

PROOF. Again we need only show that (iii) and (iv) of
theorem 2.1 are true. Let us note first that, as in the
proof of corollary 2.1, both of the quantities

l—Fn(an)

_.n n 3
1- &(a )
n

and |Fn(—an)/¢(«an) ~1| are less than

or equal to Mn(l-é(an))_l, where M is defined as in
corollary 2.1.

By Theorem 4 of Berry's paper [2], an absolute constant
B>0 exists such that if gn(E)<€3 for some n31l and €>0,
then M g<Be. Hence Mn(1—<1>(an))'1 < Bpn(l—Q(an))—l*O as
n+o if a<A, by (ii). So l—Fn(an)ml—Q(an) and Fn(-an)mé(-an)

as required. Q.E.D.

COROLLARY 2.3 Let Xl,Xz, . « «. be independent, EXn=O,

EX§=02<w. Define Sn=X1+ . . . +X sz=ES2

H 2

t§=2 log log si. If (i) sn+°° as n**, and (ii)

3 <
SYR Elx,1°/02 = A<m, then MM SYP 5 /(s £)) = 1 a.e.

PROOF. First, note that 02=E3(x2)/0% < g?|x_|370% < a2,
n n n n n ~

by (i) it is clear that Gn/sn+0 as n-—>®,
Since A<®, by the well-known Berry-Esseen theorem (see,
for example, [5], p. 521) there exists an absolute

constant D>0 such that, for any real number x,

. -1 _ ,
lP_Gx)-o(x) tsps ™", where F(x) = PIS <x°s ].
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Hence, as in the proof of corollary 2.1, both
| (1-F (a ) (1-0(a ))" ! -1 and |F_ (-2 )/®(-a ) -1| are
bounded above by Ds;l(l—Q(an))—l, where a, = /Z°tn for
2, % 2,~a
a>0. But sn(l—Q(an)) v s_(4ma log log s ) 2(log s) -+00
n n n

as n*®,
Clearly, then, conditions (iii) and (iv) of theorem 2.1
are satisfied, so the required result is a consequence of

theorem 2.1. Q.E.D.

REMARK. Theorem 1.1, Theorem 2.1 and Corollaries 2.1, 2.2,
and 2.3 are all aimed at obtaining some results on the
Law of the Iterated Logarithm for unbounded random
variables. However, of all the above-mentioned results,
the most useful seems to be Corollary 2.3.: verifying
the conditions of the other results will be a very diffi-
cult task in general, it would seem, so that those
results would not appear to be very useful in many cases.

On the other hand, Corollary 2.3 depends on conditions
which can generally be quickly checked in some particular
cases not covered by the Kolmogorov [1l1l] or Hartman-Wintner
[8] results. It seems that corollary 2.3 will be most
useful in the case of unbounded random variables with
bounded variances. The following two examples present
two such cases: these results appear to be new, as they

are not obtainable from other results listed in Chapters
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I and II.

EXAMPLE 2.1. Let Yl’Y2° . +« . be i.,i.d. with density function
f(x)=ef|xl/2, ~o<x<® (i,e. Laplace distribution). Let

aj,azs « . - be any sequence of positive real numbers such

n

that (i) i:g a, Ta<® and (ii) sﬁ = ﬁ L a§+w. Define

X =a_¥Y S.=X,+ +X and t2 = 2 log 1 52 Then
n “n n> "n "1 ¢ n’ n g log S_ -
l:m*sgp Sn/(sntn) =1 a.e.

PROOF. It is easily verified that EY =0, EY? = 2, E|Y,|? = 6.

3
Hence sup EIan < 3ace, Therefore, corollary 2.3 applies.

n
EXAMPLE 2.2. Suppose X;,X5, . . . . are independent,
Xn='anwn where an24 are integers, W  is N(0,1) indepen-
Vo

dent of Vn’ which has chi-square distribution with a,

degrees of freedom (i.e. each X, has Student's t-distri-

bution). Define § =X{+ . . . +X_, 02 = EX?, s2=ps?,
n 1 n

n’ g n’ “n
and t§= 2 log log si. If ﬁgg a = a<®, then
1;m+S£P Sp/ (s ty) = 1 a.e.

I'((ap=3)/2)

23/2pa_r2)

I((ay-3)/2) 2

/ﬁ°F(an/2)

PROOF. E|wW, |3 = 2/2/7 and E|Vn|—3/2 -

By independence, EIXn|3 =
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a T((a -2)/2)

But 02 =
n 2T (a_/2)
n

. E|x_ |3 2<v/a_-T((a_-3)/2) T

.. 2 = = = = 0(/a,) = 0(/a)
02 VTT ((a_-2)/2)
n n

But cﬁ = a,/(a,~2)>1, so s *». Therefore, corollary 2.3

applies.
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CHAPTER III
ON THE LAW OF THE ITERATED LOGARITHM FOR
SOME WEIGHTED AVERAGES OF

INDEPENDENT RANDOM VARTABLES

1. Introduction

LeE-XI°X2’ ..+« be independent random variables, each
with mean 0 and variance 1. 1In this chapter we will be
interested in establishing some Law of the Iterated Loga-

rithm results for sequences of r.v.'s of the form

f(m/n)Xm, where f is a real-valued function,

0
]
g tp

=1
continuous on the interval [0,1].

The first result of this type appeared in 1951 and
was due to Gal [6]: Let r, represent the k! Rademacher
function (i.e. for 0g<xg<l, ry(x) = sign (sin 2k+lnx); it
is known that r1,f,, . . . are independent with mean O
and variance 1 with respect to Lebesgue measure) and let
Sp = r3t . . . Fr.. Then
; (1- l(-%l)rk g Sy

lim sup k=1 lim sup k=1
n <> o =n—)00

<1 a.e.

/%n log log n n %n log log 4

Some thirteen years elapsed before Stackelberg [16]

completed Gal's result by proving that, in fact, equality
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holds in the above relation.

In the same vein, Strassen [17] has shown that if

| . 2
xl,)(2, . . ° are 1-i-d-, EXl = O, EXl = 1, and

1
S =X+ . . . +X_, then, defining F(t) = [ £(x)dx, where
n 1 n t .

f is any integrable real function on [0,1],

[ty

lim su
n -)-oop (2‘[1

- 1 1
3 log log n) ZE=1 f(m/n)Sm =(f0 Fz(t)dt)“ a.e.

Furthermore, under the same conditions, he proved that, for

b |Sm|a af2-1 =-al/2
any a3l lim sup m=1 = 2(a2+2) °a a.e
- i af2 1 a,-%.a T
n(2n log log n) (f (1-tH ™%
0

In particular, if a=1, we get

N
S
lim sup k=1 k

n > o«

[}
ot
o
o

n%%n log log n

Further work on the Law of the Iterated Logarithm for
Cesaro's method of summation was done by V.F. Gaposhkin in

[7}]. He considered Xl’XZ’ . +« . . independent, EX = 0,

2
n

EXZ =1, IXHISIK°° a.e. for all n. Then for any ¢>0, he

proved that

n
: L . (l—_k/n)u'xk
lim sup k=

1
n > =1 a.e
/2§+1 n log log n

In particular, the Gal-Stackelberg result follows from

Gaposhkin's theorem by setting a=1.
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In this chapter, we will consider a sequence of
independent r.v.'s, each with mean 0 and variance 1, which
satisfy Hypothesis A (definition 1.1). Let f be a continuous

function on [0,1] and define 5,7 gt f(m/n)Xm. We will

provide some iterated logarithm results for this S, sequence:

these results contain Gaposhkin's theorem as a special case.

2. Preliminary Results

LEMJMA 3.1. Let (anm), n=1,2, . . . ,m=1,2, . . . , n, be

a double sequence of non-negative numbers: define
2 _ g0 2 2 2
s Zm=1 anm” tn = 2 log log s - Let Xl’XZ’ be

independent, each with mean 0 and variance 1, and define

Sn = Zm=l anmxm. Suppose there exist positive numbers

c_ = o(t-l) and an increasing sequence (nk), k>1, of
n

positive integers such that, for any k31, if O<tcn <1,

k
(t2/2)(l—tcnk) tSo, /S0y (t2/2)(1+tcnk/2)

then e <Ee <e

Define Py = P[Sn > a for a>o0.

k7 2yt

(o0} 2 -a 00
(i) If a>1 and Zk=l(log Snk) < o, then Zk= Py <o,

1

(11) If 0<a<l and Z._, (log s?2

k=1 nk) = o, then Zk=lPk=w,

% 2 (—-a
PROOF. (i). Let a>1 and Zk=l(log snk) <o, Choose ko so

large that a°tnkc <1 and a(l—a°cn1tnk/2)>l for all k2k .

Oy 4
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We may apply lemma 1.1 (i) to the random variables

S.. /s

ny/Sny to find that, if kzko,

2)-

Pk<exp(—a2(1—aocnktnk/2) log log sﬁk)<(log snk

It is clear that (i) follows.
(ii). Let O<ac<l, and define Y=a—l -1. Applying

lemma 1.2 to the random variables Snk/S we have, for

nk’
all large k,

Pk>exp(—a2(1+Y) log log sgk) = (log sgk)—a. (ii)

follows immediately.

LEMMA 3.2, Let Xl’XZ’ . « . be independent random variables,

each with mean 0 and variance 1, which satisfy YXypothesis

Ny

A; 1.e. there exist positive numbers cn=o((log log n) 2)
such that, for all sufficiently large n,
(£2/2) (1-]t]e ) ex, /e (£2/2) (1+e]e_/2)

(1) e < Ee < e

for all k<n, provided 0<|t|cnsl. Let (anm), n>1, mgn,

be a double sequence of non-negative reals; define

Sn Zm=1 anmxm’ Sn ESn, tn 2 log log Sn’ and

A = max (a

n 1<m<n nm)' Let a>0 and let {nk} be any increasing

sequence of positive integers.

(1) If a>1, 2=

k=l-(log sgk)—a<°° and An/§°c = o(sn/tn),

n
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B [o.e]
then Zk=1_P[lSnk|>a°snktnk]<m and, hence,

lim sup lSnk|/(s )<a a.e.

k > o

nktnk

oo -a
(ii) 1If a<il, Zk=l (log sﬁk) = and An/ﬁ?cn=o(sn/tn),

Ps

J=c.

[« o]
then 2k=

1 nk>a°snktnk

(iii) In particular, if simBzon for some B>0, if there

exists A such that A <A for all n, and if snk'\:Dck for

[e o]
some c>1 and D>0, then I,_; P[ISnk|>aosnktnk]<m for all

i1
a>1l (so km+sgp|snk|/(snktnk)sl a.e.), and

) Pl a

k=1 ] = for all 0<a<l,.

Snk> Bsnktnk

PROOF. Choose k, so large that (1) holds for all np such

= © = —l
that k3k,. Define c!=A /n°c /sy = o(t "), If

0<tcy. <1, then (t°anm/E/sn)cnsl for any m<ny; hence,

k
it follows directly from (1) that

tanmxmlsn

exp ((a2,t”/(252)) (1-te) ))<Ee
<exp((a§mt2/(252))(l+tc;k/2))

for all mgny. By independence, the hypotheses of
lemma 3.1 are fulfilled. (ii) is immediate from lemma

3.1. Note that —Xl,—Xz, . . » satisfy Hypothesis A, so

that this sequence also satisfies the conditions of

2)_

© a
lemma 3.1. Hence, if a>1 and Zk=l(log snk <o, then
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0
. S >ge
both of the series Zk=lP[Snk a Snktnk] and
- .
Zk=l P[—Snk>aosnktnk] converge. Then (i) follows from
lemma 3.1 (i), since P[|Snk|>a°snktnk] = P[Snk>a°snktnk]

+ P[—Snk>a°snktnk].

If sZNBgn; A gA;-and s, '\aD°ck for some ¢>1, then
n n k

o 0 -3
An/H cn/snSA/H cn/snmABcn 0((2 log log n) 2)

1
0((2 log log si) 2y,

Furthermore, log s%km2k log ¢, so, for a>0,

o (log s2 )"2 converges if and only if a>1. Hence,
k=1 nk

(iii) follows from (i) and (ii). Q.E.D.
DEFINITION 3.1. Let f be a real-valued function which is

continuous on [0,1]. Define f*=02:§1|f(x)| and

I1£]] = (flfz(t)dt)%, (i.e. the L%-norm of £ on [0,1].)
0

LEMMA 3.3. Let Xl’XZ’ . . . be independent, EXn=O,

'EX§ = 1, and assume that Hypothesis A holds. Let f be

real-valued continuous function on [0,1], with ||f]]|=1,

and define S, = Z;=1 f(m/n)Xm, Sg = ES&, and
t2= 2 log log 52

n n°

For 1<c<v/2Z, and each k31, define n,

2k

to be the integral part of c Then
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| X + . . . +X |
+
lim sup max nk-—l"'l n
k » o n; _.<ngn s t
=17k Tg-1 k-1

PROOF. Let us first note that

(2) s2 =132 fz(m/n)%n||f]|2 = n.

n m=1
So ny is a strictly increasing sequence if k is sufficiently

large. Furthermore, nk’\lc2k and tnk'btnl,_1 as k-o,

Let €>0 and define, for each k>1, and each nyp_1<ngny,

s x

. ng_j+1* « - - +X_. Tote that Esék) = 0 and

2
ESék) = n-n,_4. Now

‘1+2€)snk_1tnk_l-/2(nk—nk_If'= /(nk~nk_1)tnk l((1+2€)°

-1 -1
snk_l(nk—nk_l) —/7tk_l)

Wla=ny, 1)ty ((1+2e) (2-1)7% —v7 tar )

2

But ¢“-1<1, and ¢2 t;I <e 1f k is sufficiently large,

T N AT
so (liZE)snk_ltnk_l nemy ) > (+e)/ (o nk_l)tnk

for all large k.

© pe P max
k nk_l<nfn

(k)
S >(1+2€)s t ]
kl n | ) Dg-1 Pr-1

A

(k)
2P[ 1S >(1+2¢e)s t ~-v2(n;,-n )1 b
Ul ny | T T et S ] y

Levy's inequality

(k
< 2P{|Snk)|>(l+e)¢(nk—nk_1)tnk] for large k.
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For each n such that nk_1<n5nk, and each mg&n, define

a,n=0 or 1 accordingly as mgny _y oOr m>nk_1. Applying

lemma 3.2 (iii) for this double sequence, we find
il P[IS(k)|>(1+€)/(n -n, _)t__]<e
k=1 Dy k "k-17"ny
Therefore Z:=1 Pi <o for each €>0, so the result follows

by the Borel-Cantelli lemma. Q.E.D.
For completeness' sake, the following useful result

is stated.

LEMMA 3.4. Let X;,X,, . .

0 and variance 1, and assume Hypothesis A holds. Then,

be independent, each with mean

for any integer j:0,

n 3
lim sup Zm=1 m Xy =1
n = o = a.e
nj/—g—— n log log n
vV 23+1
PROOF. Immediate from theorem 1.3.
3. Main Results
THEOREM 3.1. Let xl’XZ’ . + . be independent, each with

mean 0 and variance 1, which satisfy Hypothesis A. Let
f be a real-valued, continuous function on [0,1] with

the additional property that the set {0<x<B| f(x) = 0}

has Lebesgue measure zero, for some B>0. Define
n i A
Sp = IN_ ) £(m/m)X,. Then 1M SUP 5 /(2n log log n)%x||f]] a.e.
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REMARK. The proof of theorem 3.1 given below follows a
pattern similar to that of the proof of the corresponding
half of Gaposhkin's result (see [7]). However, appropri-
ate modifications to his proof have been made to accomo-
date the more general sequence of random variables.

Lemma 3.2 is used to reduce the computation.

PROOF. Define sﬁ = ESﬁ, ti = 2 log log si. Without losing
generality, we may assume ||f|| = 1., Then si%n, by (2),

and tiNZ log log n.

For ¢>1, to be appropriately chosen later, define
n, to be the integral part of c2k, k31. As will become
apparent as the proof progresses, we will only be con-
cerned with large values of k, so we note here that
there exists a number ko>0 such that my <ny 4y for all
k2k,. We will restrict ourselves to values of k in

excess of ko.

n
_ k 2 2
For k>ko, define T, = Zm=nk—l+1 f(m/nk)xm and Gk~ETk.
It is easily shown that
2 -2 * 2
(3) o, v n (1-I(c"%)), where I(x)=f £°(t)dt. By
k k 0

hypothesis, the function I is strictly increasing on
(0,B), so that Oﬁ +» as k»>x if we choose ¢ so large that
c2<B,

Let 0<e<1l. For each n, _1<n€n;, and ms<n, define 2, m=0

or f(m/ny) accordingly as mgny _y or m>ny _;. Then, by
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w0
lemma 3.2 (iii),2k=l P[Tk>(1-€)°ktnk] = ®, But the r.v.'s

Tko, Tko+1, o o . are independent, so the Borel Zero-One

Law implies

(4) 1Im SUP q /(ope, ) > (1-€) a.e.

k »

= JSrr.—1Iy -2 2 2
Define N, = I(c™*) and qk = snk-ck. Note that Nc+0

as cow, Chbose c>1 so large that Nc<€/2 and 1l<Bc.

2

-2
NvI(e )
oy

-2, 2
“ny , wve have 0 /s

From (3) and the fact that s K
k

<I(c—l), since c~1<g.

(5) . . ok/snk<ﬂc<e/2 for all large k.

Now let, for n, _;<ngmy, and all mgn, anm=f(m/n) or

-

0 accordingly as mgn; _q OF m>ny .. Applying lemma 3.2

(iii) for this double sequence it follows that

lim su =
im sup |Snk—Tk|/(0ktnk) <1 a.e. Hence, by (5),

Iim sup |S

) = lim sup
k &> o

—Tkll(snktnk - k = o (Gk/sn )

Dy k

(|snk—Tk|)/(Ektnk)s €/2 a.e.
But, note that for all large k, it follows (5) that
2,2 _, =2, 2 2 2 2
ck/snk—l ck/snk>1-NC >1-(e/2)" >(1-€/2)".

(6) 1.e. Gk/s > 1-€/2 for all large k.
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From (4), (5) and (6), it is easily seen that

lim sup s /¢

. 2
2 2 € 3
k - o ny Snkt ) 21 a.e But, since s "n and

Dy
tﬁmz log log n, it follows that

lim sup

A
2
0 o+ S,/(2n log log n) 21 a.e. as required. Q.E.D.

In the following two theorems, we will furnish condi-
tions on f which are sufficient for equality to hold in

the result of theorem 3.1.

THEOREM 3.2. Let Xl,Xz, . . . be independent, each with

mean 0 and variance 1. Assume that Hypothesis A holds.

Let f be a polynomial defined on [0,1], say,

- . P ".1 el
f(x) = agtaix+ . . . +apx . Define Sn—zm=1 f(m/n)xm.

by

Then lim sup Sn/(Zn log log n)

-» 0o

- |1£]] a.e.

REMARK, Gaposhkin's'method breaks down for part of the

proof of this theorem. Ve have to use a new routine to

prove that Réz)(defined below) becomes small as koo,

PROOF. The result is obvious if f is identically zero a.e.

So we may assume ||f||>0; in fact, there will be no loss
of generality if we assume that ||f]||=1. 1In view of
theorem 3.1, we need only prove the "<* part of the
result.

For c>1l, to be chosén later, and each k>1, define n

k
to be the integral part of c2k. For each n>1, define’
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2
s2 = ESn and ti = 2 log log sﬁ. For all k>1, let

n = max -1 _ (1)_ max -1,
“k nk_l<n5nk(sntn) Isn snk_lls Rk nk_1<n5nk(sntn)
n .
Dt IV R JEVENN S S
(2) max -1 1
R = T
k nk—l<nsnk(s tn)_ l m=nk_l+lf(m/n)xm| and let
1 2
A= Z§=Olaml' Note that A>0 and Rk<R( ) + D; )
Now |an—1{f(m/n)—f(m/n YIX_| = ]z (n~3- J )Z k 1 mIx I
m=1 k-177"m §=0%] k 1 n
| A
n; -n n
P k k-1 -3 k-1 j
$ Ligl2, | (——)n z n'x_|.
j-OI jl nl:z. k-1 I n=1 ml
2k lim n) - iy 1am c23k_ 23 (k-1)
Since m e as koo, s ___;3____ = e c2jk
k 2
-t
23

Therefore, by lemma 3.4, lim+s;p é1)<2? Ola I(czj—l)c-zj.

Choose ¢>1 so close to 1 that

(7) J 0|aj|(c —1)c =23 €/2 and c-1'< g/4,

lim su (1)
Hence i mp Rk < eg/2,

Now consider Réz): First,
n -3 n h|
8 z < ) .
(8) I m=nk_l+1f(m/n)xmI j Ola Ink—l IZm=nk_l+lm le

For 0<e'<e/A, choose ¢>1 so close to 1 that (7) holds and

+2

(9) e'27¢*P*2 L1y > 4,
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n
k jy P ~2 ~2 2.
<£j<g W, =V j = X ..and 0° = G =EV .
For 0<j<p, let T Uk(J) Z¢=nk—1+1m 20 7 " Uk(J)
n 3 3 1 i 2j+1
Note that Zm_lmZJ N n23+1°f szdx = n°J /(2j+1), so
B 0

(10) &y v @2IFLo2Ithy 500yt 0 20 (2 (4342 05 (55417
k k k-1 k-1"n, .

2§ 2 2 'y 2
< nylgs t (e/A-€') /2 for all large k.
{— nk_l k-1

Furthermore, in view of (9) and (10), we have

2 95 2 ) o hi+2 -1
(11) ¢ nﬁilsnk /% e 2 0541) (42

> e'2/(c4Pt2 1) > 4,

= _ max n j j
lence, P, =P[_ <nfnk|2m=nk_l+1m Xl > (€/A)n, 18np-1tng ;]

k-1

Pl{w J - g
52_[I.k!>(£/A)nk_lsnkmltnk-l /2 5,1

SZP[lwk]/ak > g'n 1 by (10)

) s t /G
k=17mp_g oo’ Tk

] by (11).

52P[|wk|/ok > 2\:nk_1

- -
But, letting a8 m = 0 or m” accordingly as m<n _j or
Ny_j<mgngmy , we can apply lemma 3.2 (iii) to find that
o -~
Zk=lP[|wk|>20ktnl 1] <o,

-

. oo —
2(=1Pk <®.

So, for all 0<jg<p, lim sup max lwk(j)l/(ni )

k > o n ;<ngny ‘1Snk—ltnk~l
< e/A a.e.

From (8), then, it follows that



42

lim sup Réz) < (e/p) Z?
J=

o a,| =€ a.e.

O| J

(12) .. Mm SRR < 3e/2.

-1
For brevity, let v, = (Sntn) . Then

13) v, /v,

o1 4y Vnk_llnk v 1/c¢  and

(14) max lv.S_-v S | < Ry +(1-v, / )

nk_l<nfnk n-n nk—l nk_l k vnk—l

.

Va1lSny g

If we define anm=f(m/n), for each n21 and mg¢n, in

lemma 3.2 (iii), then

(15) lim sup S

v l a.e.
> oo nk _

nk”f
Hence, if k is sufficiently large,

max

max
v_S I\
nn
nk_1<n$nk n

k_1<n5n |+v |S l

v .S -v S
k | T'n Mg-1 Ng.y Tg-1" Pg-1

SRy +(1-v, / Yv Is |+ |'s

LV TE A T s TR A YIS Rt YHIE ]

by (14)
<2e+(c~1) (1+e)+1l+e, by (12), (13) & (15)
<1l+3e+e° (1+€) /4 by (7)

<1+5¢.

= max .
B O—P[nk_l<nfnk|8nll(sntn) >1+5¢ i.o.]

ZP[Sn/(sntn) >145¢ i.o.]

> o

Hence, 1im SUP g,/ (spt,) <1l+5e a.e. for all e>0.



Therefore, lim*sgp Sp/(spty) €1 a.e. as required. 0.E.D.

-~

REMARK. It follows from the First Weierstrass Theorem that
if £ is a continuous function on [0,1], then there exists
a sequence py,py, . . . of polynomials on [0,1] such that
p,+f uniformly as n»w. So it is plausible that we should
be able to replace the hypothesis "f is a polynomial' in
Theorem 3.2 by the more general condition “f is a contin-
uous function." The proof of this conjecture, however,
would require the interchange‘of a limit and a limit
superior: we have not yet been able to establish such a
result,

Nevertheless, theorem 3.2 can be extended to include

functions which are power series: this is done in theorem

3.3.

THEOREXM 3.3. Let X1,%9, - . . be independent, each with
mean 0 and variance 1. Assume that fypothesis A is
satisfied by the {Xn} sequence. Let f(x) be a power series

- % h| . _oh
on [0,1], say, f(x) = Zj=0cjx . Define Sn—2m=lf(m/n)xm,

and 32 = ES2 Then lim sup S_/(2n log 1lo n)l/2 =|!fl| a.e
n n’ n & g cTe

n > <«

REMARK. While the following proof will resemble that of
Gaposhkin [7], some stronger arguments are required.
Gaposhkin makes use of the fact that the function (l-x)a
is zero when x=1: but we have made no such assumption

about f in our theorem.
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PROOF. TIf f(x)=0 a.e., then the theorem is obvious. So we
may assume that ||f]||>0: in fact, we will again assume
without loss of generality that [1£]|=1-

In view of theorem 3.1, it is clear that we need only
prove the "' part of the result.
For ¢>1, to be chosen later, and each k>1, let n, be
2k

the integral part of c Note that since f is a power

series, it is continuous (in fact, it is absolutely con-
tinuous), it is uniformly convergent and absolutely

o]
convergent, in particular, I

. C, <o,
j=0 | J'
Define t_=(2 log 1 )%, and R, ,2{1) p(2) in th £
efine t_= og log mn)”*, and Ry,R 7 ,R, as in the proo
of theorem 3.2. Define, for k21, nk_1<n5nk,
(k) _
Sn —Xnk_1+1+ e e . +Xn. Then
(16) £ F(m/n)X_ = . [£(3/n) - (3+1/n))s )
m=n, ,+1 minidy = m=n, ,+1 i/n Jj+i/n j

where we define f(x)=0 if x>1.
Let €>0. By the definition of absolute continuity,
2l §>0 such that for any finite number of essentially
disjoint closed intervals contained in [0,1], say,
N

laj,b 1, n=1,2, . . ., N, if zn=1|bn-an|<a, then

N
I lEM-FCay) |<e/2.

Choose ¢c>1 so close to 1 that c2<2, c~-1<e /4, and

(cz—l)/c2<6/2. Then, for all k large, 1-ny_1/m4 <8, so

that if ny_y<ng<ny, then 1-(n,_;+1)/n<$.



n
. Zj=nknl+1|f(j/n)—f(j+1/n)| <e/2 +|£(1)].
so, by (16), R{P<(e/2 +]£(1)]) mafn<n Isik)l/(sntn)'
k-1 ~ k

Applying lemma 3.3, we have 1§m+sgp Rgz)glf(l)l+€/2.

lim sup (1),

k + o K Proceeding exactly

Now we will determine

in accord with Gaposhkin's method, we find:

n
5 k

m=

-1 ®
1 [Em/n)-f(m/ny_1) 1%, 52j=0 j

n-n

ind |
k k-1

So, by the definition of Rél), Fatou's lemma, and lemma

3.4,
. ) nd_pd
lim sup R(1)52"-" lc-l lim supy k .k—l
k »> o k j=0"'"3 k > o nﬂ
n
. k‘—lmjx
lim sup m=1 m
k + o - }
ni 1s t
i T R N |
® 24
= N Cc -1 .
ZJ=0lcj| 5 < €/2 1if ¢ is chosen
c

. lim sup
close enough to 1. Ience k + o Rk<]f(l)]+€.

Let vn=(sntn)-1. Then, as in the proof of theorem 3.2,

for all large k

sup . [vnsnISRk+(1—vnk/vnk_l)Vnk_1|Snk_li +vnk_l|S

< E(1) [+2e+(c-1) (1+€) +1+e by (15)

<1+]£(1)| +3e +e°(14+e)/4 by choice of

j__3
n, —-n ny..q .
Je | k=L |5 7% nix
3

ng-1

45
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c<l +e/4,

<1 +[£Q1)] +5¢.

-~

Since €>0 is arbitrary, it follows that

14
s el Sp/(s ) <1 +]£(1)] a.e.

Hence it follows that, in general, because s,vn,

(17) 1Im SUP 5 /(20 1og log n)™ <HEl] e Q+]e)]) a.e.

n > o

Up to this point, the proof has virtually duplicated
Gaposhkin's method: indeed, 1f f(1)=0, as in the case
Gaposhkin considered, then the proof would be complete.
However, since we have not made such an assumption, we
shall now provide arguments to show that the f(l1) term
of (17) may be deleted.

-

cij and hm(x)=f(x)—gm(x);

Then, g (x) is a polynomial and h, (x) is a power series

For m>0, define gn(x) = Z?=O
for each m20, and, since gm(x) > £(x) uniformly in x as
m*®, ye have Ilgm|l+|lfl|, and ]Ihm||+0.

Hence, for any m>0,

n .

14 % ‘ '
s 4 Sp/(2n log log n)? ¢ 1im*sip

(2n log log n)™*

Tpop Pa(k/n)Xy

1i
+ nm+sgp

(2n log log n)l(2
S Hepll+ g1 G+fn_(1)]) a.e.

by Theorem 3.2 and (17).

. 1
Letting m>», we get lﬁm*sgp Sp/(2n log log n)7 <l a.e.
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REMARK. Since the function f(x)=(1-x)%, for any 0>0, has
a power series representation (using the Binomial Theorem),

Gaposhkin's result in [7] follows from Theorem 3.3.
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