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Abstract

Consider the bivariate sequence of r,v.'s {(Jn,xn) , N :_0} with
xo = -» a,s, The marginal sequence {Jn} is an irreducible, aperiodic,
m-state M.C,, m < » , and the r.v.'s Xn are conditionally independent

given {J } . Furthermore P{J =j,X < len_l =i} = pini(x) = Qij(x) ,

where H (+),...,H (-) are c.d.f.'s . Setting M, mak{xl,...,xn} ,

we obtain P{Jn=j,Mn ﬁ_x|J0=i} = [g?(x)]i’j , Where g(x) = {Qij(x)} .

The limiting behavior of this probability and the possible limit laws for

{Mn} are characterized:

Theorem: Let p (x) be the Perron-Frobenius eigenvalue of g(x) for

real x ; then: 3) p(x) is a c.d.f. b) if for a suitable normalization
n

{Q.

1j(ai. x+bijn)} converges completely to a matrix {Uij(x)} whose entries

mn

are nondegenerate distributions, then Uij(x) = njpu(x) , Wwhere
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T. = lim
j - P

ij and pU(x) is an extreme value distribution, c) the
0

normalizing constants need not depend on i,j . d) pn(anx+bn) converges
completely to pU(x) . €) The maximum Mn has a nontrivial limit law

pu(x) iff g?(x) has a nontrivial limit matrix U(x) =’{Uij(x)}= {"f)U(x)}

m w,
or equivalently iff p(x) or the c.d.f, I Hy 1(x) is in the domain of
i2]

attraction of one of the extreme value distributions. Hence the only possible
limit laws for V{Mn} are the extreme value distributions which generalizes the

results of Gnedenko for the i.i.d. case.

TAITES

g

vess
33

SR

il

T



I. Introduction

The 1limit laws for the maxima of a sequence of independent, identically
distributed (i.i.d.) random variables were fully characterized by

B.V. Gnedenko [3]. They are the so-called extreme value distributions.

Precisely, if {xn,n > 1} is a sequence of i.i.d. random variables with

distribution function F(-) , let Mn = max (xl,xz,...,xn) . Then if there

exist normalizing constants a > 0 and bn such that

-1 _ g c .
P[an (Mn - bn) <x} =F (anx + bn) —— d(x} where o(x) 1is a

nondegenerate limiting distribution, then &(x) belongs to the type of one

of the following three distributions:

A(x) = exp{ - e X} S m <X <®
0 x <9
2, (x) = {exp{-x'a} x>0
_ cexp{ - (-x)%} x<0
\ya(x) = { 1 X ;— 0

where o 1is a positive constant.
Consider the analogous problem for random variables defined on a
finite Markov chain (M.C.) which are conditionally independent given the chain.

Let {Jn,n >0} be an m-state M.C. whose transition matrix P ='{Pij}

is irreducible and aperiodic., The random variables Xn,n >1, are

conditionally independent given the M.C. '{Jn} and P{Xn f_x|Jn_1=i} = Hi(x) .
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The distributions Hi(x), i=1,...,m are assumed to be nondegenerate and

honest (H, ( + ®) =+ 1) . Let M =max {xl,...,xn} and Q(x) ='{pini(x)}

i,j = 1,2,...,m . The Q-matrix governs the system. (There is no loss of

to depend only on J

generality in allowing the distribution of Xn n-1

-Pyke [5, p 1751]. The case where the distribution of Xn depends on the
pair (Jn—l’Jn) can be reduced to this case.)

By induction we establish that:

n _ m m m
Qj_j (x) = H]. (x) Z z see Z =1Pik1Hk1 (X)Pklkzo . .Pk k Hk (X)pkn-lj

k1=1 k2=1 kn_1 n-2 n-1 n-1

where QEx) = {ng(x)} is the n-th power of the Q-matrix (In this paper, we

are not concerned with matrix-convolution powers. ) Using this formula and

the conditional independence of the Xn , we get

(1.1) P{I_=3,M <x[I; = i} = Q’;j(x) .

We concern ourselves with the existence of normalizing constants

a,. >0 and bi' i,j=1,...,my, n2>1 such that the expressions

ijn jn

s -1 i1 . R
P =3, 2} in M, - bijn) 5_x|J0 =i} = Qij(aijnx + bijn) converge to

nondegenerate mass-functions Uij(x) at all continuity points of the latter

m
and such that Z Uij(x), i=1,...,m , is an honest distribution function.
i=1

If such normalizing constants exist, what are the possible limit matrices

(W)} 2



3.

P

Finally we establish basic properties of the normalizing constants
aijn and bijn and discuss the limiting behavior of the marginal distribution

of M .,
n

2. Preliminaries

A semi-Markov matrix (S.M.M.) Q(x) = {Qij(x)} is a matrix whose

m
entries Qij(x) , 1,j, = 1,...,m are mass functions such that Z Qij(+w0 <1,
j=1

A  S.M.M. is honest if for all i =1,...,m , equality holds, otherwise it is
dishonest. Unless ctherwise specified all distribution functions and S.M.M.'s
are honest.

Let {nQ(x)} be a sequence of S.M.M.'s. The sequence of S.M.M.'s

converges completely to a limit matrix g(x) iff -g(x) is honeét and for

[ O W Ny . C .
each l’J-nQij( )__»Qij(hJQWe write  Q(:) =+ Q<) .

A matrix analogue of the classical weak compactness theorem for
distribution functions holds for S.M.M.s: Given a sequence of S.M.M.'s

ng(x) , there exists a subsequence n and a limit S.M.M. g(x) (not

k

necessarily honest) such that n Q) -E*'g(-) ; that is, for i,j=1,...,m,
k
W
nin](.) _—r Qij(') .

Two SM.M,'s g(x) , X(x) are of the same type if there exist

constants A > 0 and B such that for each 1i,j Vij(x) = Uij(Ax+B) . The

following lemma of Khintchin is useful [2,p. 246]:

Lemma (2.1) Let U(-) and V() be two non-degenerate distribution functions.

If for a sequence {Fn(.)} of distribution functions and constants a, >0, bn

and o > O
' n ’ Bn




w

(2.2) Fplapgx # b)) —> U(x) , F (o x + 8.) v
Then:

o 8 -b
(2.3) L —mpago, DD .

a a

n n
and then
(2.4) V(x) = U(Ax + B)

Conversely if (2.3) holds, then each of the two relations (2.2) implies the

other and (2.4) .

The set of normalizing constants a > 0, bn sN > 1 is asymptotically

equivalent to the set of normalizing constants a, > 0 ’Bn , n>1 iff

A S.M.M. g(x) is a non-negative matrix for every x ; hence the
Perron-Frobenius theory is applicable. For a matrix A with real entries,

we write Q 3_2 ¢ Q) if aij >0 (aij > 0) for each i,j . For a

complex matrix B = {bij} > |Bl denotes the matrix {|bij|} . We use the

following theorem [6, p.30]:

Theorem 2.5 Let é Z.Q be an irreducible m x m matrix. Then:

1. A has a simple, positive eigenvalue equal to its spectral radius

2. To the eigenvalue pﬁ corresponds a positive eigenvector X>0.

3-

\ n

then Pa does not decrease when any entry of Q increases.)
N

] .
R

pé increases when any entry of A increases. (If A is reducible,




s,

Theorem (2.6) [6, pp. 28,47]: Let and g be two m x m matrices with

A
n,
9 5_|§| <A . Thenp If A is irreducible then pE = pé implies

<p, .
-V R—4

that |B| =A.

Theorem (2.7) [6, p. 13]: If A is an m x m complex matrix, then Qn + 9

entrywise iff Py < 1,
4"

For fixed x, Q(x) is a positive matrix whose spectral radius we

denote by p(x) . p(x) is a distribution function, Q( + ®) is stochastic;

hence p( + ) =1 . g(-w)=g s hence p( -2 =0. p(x) is
nondecreasing by Theorem (2.5-3) .

Furthermore:
Lemma (2.8) (1) If g(x) is (right, left) continuous at Xgs then p (x)
is (right,left) continuous at x, . |

(2) If p(x) is right continuous at X and Q(xo) is

jrreducible, then Q(x) is right continuous at Xy If p(x) 1is left
continuous at X, and Q(x) 1is irreducible for x > x, - € for some ¢ > O,

then Q(X) is left continuous at Xy -

Proof: (1) If Q(x) is left continuous at X, , select a sequence

it
hmea

xn1x0 . Then g(xn) —_ Q(x) and hence p(xn)¢p(x) . Hen;e p (x) 1is left
continuous at Xy - Similarly for right continuity.

(2) Suppose p (x) is left continuous at Xg - Choose a

sequence {x } such that x, - € < X #x; . Then Q(x ) ——J-Q(xo—)i_g(xo) .
1f there exists (i,j) such that Qij(x0 -) < Qij(xo) then p(xo-) < p(xo)

by Theorem (2.5-3), contradicting the left continuity of p(x) at Xy

Similarly for right continuity.
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Lemma (2.9): Let {ng(~)} be a sequence of S.M.M.'s and nQ(.) — Q ) .
Then pn(-)—EJp(-) where p(x) and pn(x) are the spectral radii of g(x)

and ng(x) Tespectively.

Proof: Weak convergence of distribution functions is equivalent to
pointwise convergence on a set everywhere dense on the real line, so

n%(.)-se-g(-) implies that for xeD , nQ(x)-—+ Q(x) ; D is an everywhere
dense subset of R . Hence for xeD , pn(x) —~ p(x) and hence pn(-)-ﬂe- (<) .

But Q(o) is honest, so Q( +x) 1is stochastic, Thus p( +») =1 and
NOETIC I

We can say more about the spectral properties of a S.M.M. g(x) .
Suppose there exists Xg <® such that for x > X, g(x) is irreducible.
Now let g(x) = (rl(x),...,rm(x)) , &(x) = (2,(x),...,2m(x)) be right
and left eigenvectors of g(x) corresponding to p(x) . The components of
g(x) and &(x) can be chosen to be non-negative and for x > X, all
components are then strictly positive (2.5-2) . As functions of x, g(x)

and &(x) are only determined up to arbitrary factors, since for any scalar

functions kl(x) and kz(x) s kl(x)x(x) and ‘kz(x)%(x) are also

eigenvectors. In order to discuss continuity properties and limiting

behavior of £(x) and %(x) we must specify a version of the eigenvectors.

Lemma (2.10): Let g(x) s g(x) , &(x) be as above. Restrict attention to
the domain x > X, where. g(x) is irreducible. We normalize g(x) and
n

n
g(x) by: ) r; (x) = ) 2 (x) =1 . Suppose R = Q( +=) is primitive.
i=1 i=1



We have

(m'l,;..,m'l)

M) lin g&)

X=rco

iig %(x) = (wl,...,#m) where ("1""’ﬂﬁ) are the stationary

probabilities associated with PB. Also p" — [ where I.. =7,
i 1] J
) 1f g(x) is (right, left) continuous at Xy > Xg s then E[x)

and %(x) are (right, left) continuous at Xy -

Proof: (1) x(x) is in a compact set. For any sequence xn+ + ®,

{r(x )} must have a convergent subsequence, say {r(x_ )} . Suppose
von '\:nk

m .
1im »(x_ ) =1r= (r,,::i.,T_ ) . Since r. = 1 , not all components of
k_)m n, by) 1) » m iZl i E p

X can vanish. Then 1lim Q(xn

i k)g(xnk) = ]1:: o (x, ),{(xnk) , so Pr=r.

k
Since P is stochastic and irreducible, its right eigenvector corresponding

to Perron-Frobenius eigenvalue 1 is uniquely determined up to a factor and

hence T, = m'1 ,i=1,...,m . Since every convergent subsequence of {g(xn)}

converges to the same limit, lim r(x ) = (m’l,.;.,mfl) . Similarly for g(x) .
Nrco

(2) Suppose g(x) is left continuous at Xy - Pick any sequence

{xn} such that x, < x +x, . Then Q(xn) — g(xl) and p(xﬁ)*.p(xl) .

0 1

By compactness, these exists a subsequence nk and $ = (sl,...,sn) such

m
that J s. =1 and limg(x ) =3 .
i=1 * k+°°£nk %

Hence iiz g(xnk)g(xnk) = ii: p(xnk)g(xnk) , 1i.e. ngl)i = p(xl) 5 - But

since Q(xl) is irreducible 5= {(xl) . All convergent subsequences have
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the same limit; hence 1lim {(xn)

Hm g(xl) . Similarly for %(x) and for

right continuity,.

Now iet Q(x) = {pini(x)} i,j, =1,...,m where P = {pij} is an
irreducible, aperiodic, stochastic matrix and gn —_— Q and Hl(.),...,Hm(.)
are rondegenerate distribution functions. There exist an integer k' such
that Rk >0 for k> k' and a real number Xg > such that for x > X

min {Hl(x),...,Hm(x)} >0 ., We may limit ourselves to the domain x > X,

K - 7
where 0 x) >g .

B

n
The conditions zi(x)ri(x) =1 and z ri(x) = 1 determine a

1 i=1

I o~

i
version of the right and left eigenvectors possessing the continuity

properties and limiting behavior discussed in Lemma (2.10). This version can

[}

m
) Ri(x) = 1 through the

m
be obtained from the one satisfying Z ri(x)
i=1 i=1

1=

r. (X)
transformations ri(x) > = ,i=1,,..,m . We assume

m
Z rq(x)zi(x)
oy 1

henceforth that Q(x) and &(x) are so normalized.
Usym the matrix M(x) = {ri(x) zj(x)} , 1,j = 1,e..,m . It is known
{4, p.248]:

(2.11) lim M(x) = [

X~
2.12)  M(x) = M(X)
Ne el N A
(2.13) For any vector YV = (Vl,...,Vm) we have:

MEOY = ( LEG0EC) and WHE) = (LEEILED -



L o T

(2.14) QUM = M(X)Q(X) = p (XIM(x)
(2.15)  limp ) (x) = M(x) . A
n-o

We examine (2.15) in detail., Set ,%(x) = Q(x) - p(x)M(x) . Then by (2.12)

and (2.14) , we have B"(x) = Q"(x) - 0" (X)M(x)

Theorem (2.15): Let Qx) = {pini(x)} » M(x), B(x) be as above. There

"
R0

exists a real number M such that 1lim Bn(x) = lim [Qn(x) - p-n(x)M(x)]
A N
n->ce n->xo

uniformly in x > M . Equivalently:

(2._17) gn(x) = pn(x),bg(x) + g(l) where 1lim g(l) =0 uniformly in x > M,
n-+e '

Proof: We can show by induction that |}én| < Igln for integral n .
Let E be the m xm matrix Eij =1 and B(x) = {B:ij(x)} . Fix N,

a positive integer such that maxlpbi‘j - wjl <nl. Set a = max IpN S N

i,j i,j

Pick € >0 such that a +e<m™ . Since lim B"(x) = P" - i, there
| o

exists M, such that for x > My ,]Br:j(x)l <a +e,i,j=1,...,m . Then

l'l\B'N(x)l = {IBIi\‘j )|} < (o +)E « n'E . The spectral radius of E is m so

the spectral radius of (g +¢) g is strictly less than 1 ; hence

((at+ e)g)n — ,?, as n -+ o by Theorems (2.6), (2.7) . So for x > MN s

BN (x) |P— 0 uniformly in x and since |BN(x) &y BnN(x) we have that
4" 4Y) 4 - Ny

|§nN(x) |—n—’)°1> 9 unifofmly in X > My .

Now for any n , write

4] N T - [N

[=IN n- =N . n
Bl =" wg " ol<lBT @l Y wf.
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For any n , the second factor is one of the following: Igo(x)I,Igl(x)l,.;.,

N-1 ~ .
[% (x)] . For k = 1,2,...,N-1 there exist real numbers Ml""’MN-l

. . k
such that x >M  implies IQ ) | E_E . So for X > M = max {Ml,...,MN_l,MN}
the second factor is bounded by E ; the first factor approaches Q uniformly g

in x > M ., This completes the proof.

We use the following lemma [1]:

Lemma (2.18): Let P ='{pij} bean mxm, irreducible, aperiodic,

stochastic matrix such that 1lim Rn = E . Suppose there are constants ci.

jn
N>
. . - . n

with O f-cijn <1,n>1,14i,j=1,2,...,m, such that i:g (cijn) = ¢ij . ;

i

Then: !

m TP - ;

lim {c.. p..}" = [.I. e '

- 1an13 [1,J=1 ¢1] ]E j

E

;:

3. Limit Laws %
Theorem (3.1): Limit Laws for the Q-Matrix: Let

PPNERYE S oo e

Q(x) ='{pini(x)} where P ='{pij} is irreducible, aperiodic, stochastic,

lim En = and Hl(-),...,Hm(.) are nondegenerate, honest distribution
n-re

functions. If there exist a.. >0 and b,. , i,j=1,2,...,m and n > 1
ijn ijn -

3

such that E
s -1 . s _ c ;

(PL3, = 3, 255, (M-by ) < x[Jg = 41 = {Qy5(a; 5 x + byy )1V, (0))

2

where Uij(x) is nondegenerate, then %

B g AV
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(1) Uij(x) is independent of i and is given by pU(x) ﬂj :

pU(x) is an honest, nondegenerate distribution function, the Perron-Frobenius

eigenvalue of {Uij(x)} .
(2) pU(x) is an extreme value distribution., In fact for all i,j

n C
p(&-x+bﬁg-*qﬂﬂ

ijn
(3 aijn and bijn may be chosen independently of i,j . pu(x) is
m . ‘ﬂ'i
of the form 1 ¢i 1(x) where ¢i (x) 1is an honest distribution function
i=1
n

=~

such that Hi (a. x + bn ) =, ¢i(x) for some subsequence n

X k

m T,
it H1 1(x) .

(4) The domain of attraétion of pU(x) includes also
i=1

The proof of part (2) requires a lemma. We state it now but defer

its proof until after the proof of Theorem 3.1 . Recall the representation
gn(x) = pn(x)g(x) + g(l) where lim g(l) = 0 uniformly in xe[K,»] for
a suitably chosen K .

Lemma 3.2: If plﬂx) >0 then: lim Mij(aij X+b.. )= “j for all 1i,j .

We can show more. If pU(x) > 0 then:

(a) 1lim H
T

i(aijnx + bijn) =1

(b,1) If there exists some io such that Hi (x) <1 for all x ,
0

then
1lim a.j X+b.,. =+« for all i,j .

PR N,

R AT T T T o T T T A T T T
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(b,2) If H.(x) =1 and H,(x,-€) <1 forall e€ >0 s
iy i

i=1,2,...,m and X, = max '{xl,...,xm} < o , then for x fixed

either (b,2,i) a.. x + b, > Xy for finitely many n and

ijn ijn
limeg,. x +b,. =X i
now 1IN ijn 0 i
or (b,2,ii) aijnx * bijn > X infinitely often and i

n
3 (aijnx + bijn) — g and pU(x) =1,

. n
(Note in g (aijnx + bijn) we evaluate each

n
component Q (.) at a.. x + b.. for
KL ijn ijn

k,2 =1,2,...,m.) :

Proof of Theorem 3.1: (1) We have:

H.(a.. x +b.. ).

n .
{Qij(aijnx * bijn)} = {pij. i*ijn ijn

There exists a subsequence n, such that for all 1i,j.

k

k X, ¢ij(x) for distributions ¢ij(x) by the

n
XxX+b.. )

ijnk 1jn,
weak compactness theorem. For a given x , if there exists an index pair (i,j)
n

k

) T —Q

Hi(a

e

-,

such that ¢ij(x) = 0 , then {pini(aijnkx + bijnk

[1]. Since ‘{pijﬂi(aij X+b )nk——s+ {Uij(x)} we have that, if for any, (i,j)

R L

Uij(x) > 0 , then for all i,j ¢ij(x) >0, For x such that $33(x) > 0

o AR L e T,

4

&

for all i,j we have ;
tp, H, ( by 3 Es [ e Ty g i
p.-H.(a.. x+b,. — . . X !

1j 17 ijn, ijn, i,j=1 1) v f

s

3

T—————-
T Ws e
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by (2.18) and also

n
k .
{pini(aijnkx + bijnk)} — {Uij(x)}
so that
' m T. P..
- i%ij .. .
Uij(x) [i,g=1¢ij ]nj and Uij(x) is independent of i .
m T:P: -
Set pU(x) = 0 ¢.. . 1J(x) . Then pu(x) is independent of the choice of

i,j=1 %

n
subsequence and pp(x) = ) Uij(x) for all i and
j=1

(3.3) pu(x) > 0 implies that ¢ij > 0 for all 1i,j

m
Since ) Uij(x) = py(x) , we have pu(x) is honest and nondegenerate

jsi
(by definition of complete convergence of S.M.M.'s). If pij > 0 for all

i,j , we see that none of the ¢ij(.) can be dishonest. This will be seen

to hold true even if some of the pij's vanish, Hence

" ¢

Hi(aijnkx + bijnk) . ¢ij (x) .

At least one of the ¢ij(-) is nondegenerate since if this were not the

case pU(x) would be degenerate.

3.4) Furthermore: [ 1 ou TTipij(a x+b,. 1" S0 (0
(3.4) L e i ijn ijn Pylx
3

since every convergent subsequence will converge to pu(x) .

i aoF B A e 8
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(2) For x such that pU(x) > 0 , we have

. N . n
lim Q. .(a.. x +b.. ) =1im [p (a.. x + b, . ) M. (.. x+b,. )+ o(1)] .
Q1J ijn ijn o ijn ijn” "ij*ijn ijn
Therefore

. n
xX)w., = lim a..x+b.. )n.
HOLE I11, CH 150073

by Lemma (3.2) and

— 1 n 3 2
(3.5) pU(x) = 1lim p (aijnx + bijn) for all 1i,j .,

n->oo

Therefore Py(x) 1is an extreme value distribution [31 .

(3) Since (3,5) holds for all i,j a,.

ijn and bijn may be chosen

independently of i and j (Lemma 2.1)

For a suitably chosen subsequence n, we have that

n
k
Hi(a

W
ijnkx * bijnk) - ¢ij(x) :

Since aijn and bijn need not depenq on 1i,j ,

ot
-y k w
Hi (a.n X + bnk) — ¢ij (X) 3

k

Therefore ¢ij(-) is independent of j . This implies that

m Tl'
P, (X)) = T ¢
R B8 15

iPy L
(x) = 1 ¢; () .

1j i=1

n
. k ¢
So each ¢i(o) is honest and Hi(an X + bnk) -—a—¢i(x) .

k

A TH) N O P g e

12Ny
o

3 e

o
ia

e

3

P

T
e

e
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e

T,
x
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m T.P: »

. itij
(4) Since | inj=1Hi (aijn lJn)] ——a-p (x)
by (3.4), we have
pij n mow, c
[ 131 e P T R CE R J S

™.
So T H, 1(.) is in the domain of attraction of Py -
i=1

It only remains to prove Lemma (3.2):

Proof of Lemma (3.2): (a) We fix x such that pU(x) >0 and

pick a subsequence . such that Hi(aijnkx + bijnk) converges. Suppose
that 1lim H (a X + ) = 2 . There exists a further subsequence n!
Kvoo Jnk 1Jnk . k
such that
I
H, (alJn' IJn') _— "pij (x)

and because of (3.3) and the assumption that p ,(x) > 0 we have ¢..(x) >0 .
P U ij

So taking logarithms:

|) — log l’) (x)

nk log H, (aljnﬁ * 13nk

and therefore

log Hl(a1Jnk + bijnﬁ) — 0

and
“i(aijn;(x * 13n')
This identifies 2 = 1 and since any convergent subsequence must converge

to 1 we have the desired result.
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(b,1) If Hi_(x) «1 for all x then p(x) <1 for all x by (2.6)
0

. n
and for all x ;12 qQ (x) =0 by (2.7) . Suppose aijnx + bijn does

. 0
not converge to + «. Then there is a subsequence n, and a real number K

such that a.. x + b < KO < + o for all k.

ijny ijnk‘—

Then
n n

k ) <Q k(Ko) —+ 0 as k — », In particular

(a.. x + b.._
Q ijng ijn,

Q..nk(a

55 ijnkx + bijnk) —s 0 . Since

"

Q ij(aijnkx + bijnk) — pu(x)nj > 0 we have a contradiction.
For this case, since ;iﬂ aijnx + bijn = + o , we have immediately

from (2.10) and the fact that Mij(x) = ri(x) zj(x) that
limM,.(a.. x+b.. ) =m. .,
poo 1) idm ijn j

(b,2,i) If aijnx + bijn > xo for only finitely many n then

there exists a positive integer Nx such that if n » Nx then

aijnx + bijn < Xpe Pick a convergent subsequence. n and suppose
1 1]
aijnkx + bijnk — x' < x, as k+e, If x'< Xy then there
is an € > 0 such that x' <x_, - € . Then for all n, sufficiently large

0 k
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gnk(aijn X + 1Jn Q (x -e) — g as k =« but also
k

My

Qi' (a.. x+Db_.
J ijn 1jn,

) — pU(x)nj >0 which gives a contradiction.
k

Hence x' = x, . Since any convergent subsequence converges to X the

0 0 b

sequence converges to xo .

Hence for n > N X, >a..X+b.. ==x n > «. we have
x? 70 ~="ijn ijn (1 i

Hi(a.. X + bijn) —_— Hi(xo-) . However from

(3.9) H.(a,. x+Db..) — 1, whence Hi(x =) =1= H (x So

i*ijn ijn 0)

Hi(°)’ i=1,...,m. are continuous at x, and hence so is () .

0

By Lemma {2.10) o (.), {(.), %(.) and hence M(-) are all continuous at

X Therefore lim Mij(aijnx +b,.)=M.(x,) =7, .

0 - . ijn® ij*vo j

(b,2,ii) If a.,. x+b.. > x. , for infinitely many n , then for

AP n n n
infinitely many n Q (aijnx + bijn) = P" . Hence Qij(aijnx + bijn)-—-+ "j

and by Theorem (3.8) this suffices for gn(aijnx +b..)— 1 and

ijn A
n
p (aijnx + lJn) —>1 as n+« _, So iiz Q. J(a X + bijn) =
. . N
= lim a,,  x+b.. M. .(a,. x + o(1)} , whence = lim M a; X+b,
Linto (a, x + by Mg (ay % + bysn) + o)}, whence g Lin 5

The lemma is completely proved.

If there are constants a;.o > 0,b n>1,1i,j=1,...,m for
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which '{Qi?(aijnx +b )}—E+ g(x) with Uij(x) nondegenerate, then by

ijn
Theorem (3.1), part (2), for fixed (i,,j,) the set of constants a. . >0 ,
_ 0°-0 o 1,30
b, . , P > 1 1is asymptotically equivalent to each of the sets a >0,
loJ On - . i o k&n :

bkzn for k,2=1,...,m, Without loss of generality we henceforth assume

that normalizing constants' are chosen independently of i and 'j .

Corollaryl(3.6) Convergence to Types:  If for given constants e >0, Bn

and a >0, b
KN Y n

[}

Q) (o x + ) e "{v;LJ. x)} and

1

- c.
{Qij(anx + bn) — Y(x). {Uij(§)}
where Uij(x) , Vij(x) are nondegenerate for each (i,j) , then g(x) and

X(x) are of the same type. There exist A > 0 and B such that

. -1 . -1 _
A = lim e, 3, and B = lim ;n (Bn - bn) and
N~ N»o

V35003 = Y = Peax + B) = {U;;(Ax + B)}. Furthermore U(x) =py(Of .

where pu(x) is an extreme yalue distribution and X(x) = pU(Ax + B)g .

Corollary (3.7): Asy@ptotic Independence: Given.
PR | s - i
{PLI_=j,a" M ~ b)) 5_x|J0 s i]} -+£Uij(x)} = py(x)I then

-1 c . s -1 _
P[an (Mn-bn) < x] ——+.pu(x) a?d iig P[Jn-J,a n(Mn-bn) < x] =

. i s -1 -
= lim P[Jn = j] lim P[an.(Mn - bh):iﬂfl -

> N -
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Proof: We have that

. -] .
111-3;2 P[J =3, a "M -b)< leO = ij = pU(x)'lTj so

. -1
lim Pla "M - b ) ileo = 1] =,pu(x) and

n-reo

. -1 _
lim P[an (Mn - bn) <x] = pU(x) . Therefore Mn has a limiting

-0

distribution which is an extreme value distribution. Next we have that

. PR | =
lim P[J_=j, a "M -b) <x]=
n->w
s NPT Y _ - _
= lim P[J_ = j,a "M b)) 5_x|J0 =1] = ﬂjpu(x) =
e :
= lim P[J_ = j] lim P[a'lﬂﬂ - b ) » x] which completes the proof.
e n s n " n n -

That the norming constants can be chosen to be independent of 1i,j is
not surprising. When we take the nth power of the Q-matrix we sum over
all paths of length n starting at i and ending at j . This entails
sufficient mixing of the distributions involved so that the effects of the
endpoints i and j become negligible for large n .

A further reflection of this thorough mixing when taking powers of

the Q-matrix is given in:

Theorem (3.8): There exist norming constants a, >0, bn » > 1 and an

index pair (io,jo) , 1 f-iO’ j0 <m , such that

T} C - .
(3.9) Q. (ax+b) —=>U, . ()
igdg @ n isdo
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with U, . (x) nondegenerate iff:
*odo

n c
g (a‘nx + bn) —{ Uij (X)}
where Uij(x) = pu(x)nj and pu(x) is an extreme value distribution and

-1y
T ig i OJO(x) = pU(X)

Proof: We need only show that (3.9) implies convergence of the

Q-matrix . Focus attention on any (i,j) # (io,jo) . Pick a convergent

n
k w .
subsequence n, and suppose Qij (ankx + bnk) — Uij(x) . We wish to

identify Uij(x) and so we select a further subsequence ni such that

nl
k(a X +Db ) N 6. (x) , 1 <i<m; ¢.(x) is a mass function.,
ny ny i T i
ni W mow, .
Hence Q (a_,x +b_,) — [ T ¢. (x)]g by Lemma (2.18), which identifies
b L * i=1 *

H,
i

™. m K.
i i
1¢1 (x)]nj . But [iI=Il¢i (x)]njo = Uiojo (x) and

=11

Uij x) =1

i

moom,
therefore [ I s 1x)] = ., 1y (x) ; this is a nondegenerate, honest
i=1 * Jo 199

probability distribution function, since the convergence in (3.9) is complete.
e -1
So 1lim Q. (a X + b ) U..(x) = [7." U, . (x)]n, . Since this holds for
ko 3 Tk H Jo *olo 3 |
any convergent subsequence

lin Q§ jgx +by) = [7 1y
110 Jo igdg

(x)]n . The pair (i,j) is arbitrary,

which completes the proof.
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Our results are related to those of,Gnedenko by the following theorem .

Theorem (3.10): There exist norming constants a > 0, bn , n>1 such

~1
that P[ a M - bn) < x] <5 y(X)  where py(X) is a nondegenerate distribution

. . n
function iff Q (anx + bn) N pU(x)J\I' . Hence pu(x) is an extreme value

distribution and the only possible limiting distributions for the sequence

' M_} are the extreme value types.

Proof: ,Given the convergence of the Q-matrix, the desired result

follows from (3.1) and (3.6) .
Now we suppose that 1lim P[ a;,l‘M

! -bn)_<_x]=pu(x) .

n

For some initial distribution (pi) , i=1,...,m we have from (1.1) that

. -1
(3.11) lim P[a "M -b)<x] lim Q (ax+b) .=p (x) .
- [ n N 121 le n’ Pi U

By the weak compactness theorem for SMM.'s we can select a subsequence
n, such that, for some 1imit: U(x) = {U (x)} lim {an(a X + b )} =
k v koo Ty

= {Uij (x)} . We will identify {Uij (x)}. Prom (3.11) we have:

Gan ] Z U P = 0,00
k=1 %=1 kg k
n W
There exists a further subsequence nl'c such that H (an,x + bn,)--—nbi(x)
k k
n
with the ¢i(x) . mass functions. We have Q (anl,(x + bnl'c) —_ r;‘U(x) and




I

22

also Qn'(a kx +b l.() — [ H i(X)] I by (2.18) . %
So Uij(x) = [irznlqaiﬂi(x)]nj and from (3.12) ;
moom, ;

o, 9 = k§1 Rgl [113 N (x)]w,bpk = L4 ‘o .

n
Therefore Uij(x) = pU(x)wj and {Qi?(ankx + bnk)}——+ pU(x)g . Since this

holds for any convergent subsequence we have gn(anx + bn) = pU(x)Q .

By (3.1) pU(x) is an extreme value distribution.
Criteria for the existence of a limiting distribution for {M } are
n

given in

Theorem (3.13): There exist constants a > o, bn, n > 1 such that:

1 c .
(3.14) g (anx + bn) —_ pU(x)g where pu(x) is a nondegenerate

(extreme value) distribution function

TETTE o i AT

o
(3.15) iff o (ax +b) —ro (0, :
or.:

(3.16) iff [ H H (a X +Db )] ——+-pU(x) It follows that Mn has a
i=l

et - &

limiting extreme value distribution pU(x) iff p (x) or equivalently

B Y-

m .
Il Hi 1(x) are in the domain of attraction of WU(X)

T ST

Proof: Given (3.14), the latter two statements follow from theorem (3.1) .
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Assuming (3.15), there are two cases:
Case I: If p(x) <1, x < »,(3,15) implies p(anx + bn) -1, n+o,
for all x such that pu(x) >0 and ax + bn -~ , Hence

lim M..(a x + b ) = 7, ., Therefore
e LD n j

+

. om . n
lim Q (anx + bn) lim fp (anx + bn)M(anx
> N>

bn) + o(1)] and

. n
iiz Q (anx + bn)

p U(x)’% .

Case II: There exists x. < «» such that p(xo)

0 1 and p(x0 -g) < 1 for

all € >0 . DPr a fixed x such that pU(x) > 0 , suppose ax + bn > X,

for only finitely many n , then for n sufficiently large ax + bn <Xy -

In fact ax+ bn —> X, as n -+« ., To show this, suppose there is a

subsequence n, with a x+ bn —r x' < x as k+eo

k X X 0

Then for some ¢ > 0 ,x' < Xy - € . Now 1lim p(ahx + bn) =1 [3. p. 439] and

N-»oo
limp(a_ x+b_) =1 . But
ko Tk My
limp(a_ x +b_ ) <p(x") <p(x, -¢) <1
k»e Pk M T -0

yielding a contradiction, There are no subsequential limits less than Xy
and hence ax + bn — Xg - Thus p(anx + bn) -4-p(x0 -~ ) and since also
p(anx + bn) — 1, p(xo ~-)=1-= p(xo) and p(.) is continuous at Xq -
So Q(-) , r(:) , 2(-), M(+) are all continuous at Xq (2.8-2), 2.10-2) and

limM..(ax + b = 7, , Therefore
oo 13( n n) j

B PED AcE) N A k]
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lim Q"(a x + b_) = lim [b"(a_x + b IM(a X+ b ) + 0(1)] and
n-)cog n n N n na' n n v

I11_1';2 g(anx * bn) = pu(x) I.

Suppose ax + bn > X, for infinitely many n , then pyx) =1

and Qn(anx + bn) = '13'" for such n . If ax + b_ < x, for only finitely

n 0

many n , then 1lim Qn(anx + bn) = I, as was to be proved. If ax + bn <x

N 0

for infinitely many n then we partition the set of positive integers into

for aill n, and

sets {nl} and {nz} such that a x+b < x 1

x+bn >x0 for ailil nz. As above anx+bn—-+x as n,4 + o

a
n, 2 1 1 0 1

and M(-) is continuous at Xg s SO.
n, n,
lim (a,x+b )=1lim b "(a x + b_ )M(a x+b ) +0o(1)] and
nl-mQ ] n e y mv | v
n; n,
hn-:w g (anlx + bnl) = rI\I, Since .Q, (an2x+ bnz) =1 for all n, we have

ny

S .
. :3;1: Q (anx + bn) = [ as was to be shown.

Now assume (3.16) . By the weak compactness theorem for S.M.M.'s

we can select a convergent subsequence n such that

k

n
k : . .
{Qij (ankx + bnk)} - {Uij (x)} . To identify Uij (x) as pu(x)n i

we select a further subsequence nl'( such that for
\J
1<i<mn, H.nk(a X + b ,).1-.-‘-"'-.» ¢, (x) with the ¢.(x) mass functions,
-7 - i ng ng i i
and therefore

A S Ry

L

——
e
e

R e oy
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nlz nooA,
Q (an*x.-!- b"l'c)_’['n1¢i (x)IL by (2.18) . But
. 1=

moow, n; m o7

[lzlﬂi (anl,‘x + bn]z)] ———»iglcpi (x) and also
m oo, nl'( moem,

[ BH, (@ ,x+b )] —pyix) so T ¢, (x) =p,(x) and
I S U j=1 * v

{Qij (an X + bn )1} — {Uij x)} = pu(x),l\il .

k k

This holds for all convergent subsequences, and hence for the full sequence.

Remark: Minor difficulties of a technical nature arise when P  may be

reducible and/or periodic, The details are forthcoming,



