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Abstract

Finite matrices with entries pij Fij(xl,...,xk), where {pij} is
Stochastic and Fij(-) is a k-variate probability distribution are dis-
cussed. It is shown that the matrix of k-fold Laplace-Stieltjes trans-
forms of the pij Fij(xl,...,xk) has a Perron-Frobenius eigenvalue which
is a convex function in k variables in a suitably defined region. The
values of the partial derivatives near the origin of this maximal eigen-
value are exhibited. They are quantities of interest in a variety of

applications in Probability theory.
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1. Introduction

A natural combination of the theories of stochastic matrices and
of distribution functions, which arises in a large number of problems of

analytic Probability theory, is the theory of semi-Markov matrices.

In this paper we wish to consider properties of semi-Markov matrices

involving multivariate distributions.

Definition: k-variate semi-Markov matrix.
Let Q(x) be an mxm matrix, whose entries are real valued functions

defined on Rk such that each entry Qij(§) may be written as:

1) - QlJ(E) = Pp F--(xls-'-u,x-k) s

ij "ij

where Fij(xl,...,xk) is a k-variate probability distribution and where
m .

P;; >0, ) Pgj5=1, i=1,...,m, then Q) is a k-variate semi-
j =

Markov matrix.

We note that if pij 0, the probability distribution Fij(') may

be arbitrarily chosen.

Definition: Irreducible semi-Markov matrix.
The semi-Markov matrix Q(x) 1is called irreducible if and only if

the stochastic matrix P = {pij} is irreducible.

Definition: Nondegenerate k-variate semi-Markov matrix.
The semi-Markov matrix Q(X) is nondegenerate k-variate if and
only if for every v = 1,...,k there exists a pair of indices (i,j)

such that pij > 0 and the corresponding distribution Fij(xl,...,xk)'



has a marginal distribution Fij(+m,..., xv,...,+m) which is not degenerate
at zero.

The nondegéneracy condition eliminates the case where one or more
of the k-variables Xys+-+5X ~are actually redundant.

Henceforth we assume that Q(x) is an irreducible and nondegenerate
k-variate semi-Markov matrix.

We now consider the k-dimensional Lebesgue-Stieltjes integrals:

k
(2} qij (51:"'p6k) = qij (5_) = fk exp[- Zlgvxv]
R Ve
dxl,...,xk Q5 xyoereaxd

which we refer to as the Laplace-Stieltjes transforms of the entries
Q4 (xp5ennx) of Q).

The functions qij(gl,...,ek) are obviously defined.for Re 51 = 0,...,
Re g = 0, but they may not be defined anywhere else. We ére mainly
interested in the ca;es where the domain of definition of the qij(g) is
larger, as is the case in most applications. |

We distinguish the unilateral and the bilateral cases.

In the uniiatéral case, we assume that all Fij(xl"f"xk) corre-
sponding to indices i,j such that pij >0, concentrate all their mass

on the positive orthant X, 3_0,...,xk > 0. In this case all integrals
in (2) exist for all { with Re £, 20,...,Re & 2 0. Moreover all
the functions qij(zl,...,ak) are jointly analytic in Re El > 0,000,

Re & > 0 and any function obtained by sétting some but not all of its



variables equal to zero is analytic inside the corresponding part of the

boundary of the set Re £ > 0,...,Re € > 0. The latter statement is

obvious if we realize that setting one or more, but not all of the ¢-
variables equal to zero, corresponds to taking the Laplace-Stieltjes

transforms of suitable "marginal' distributions of Qij(xi""’xk)'

The bilatergl case encompasses all distributions not in the
unilateral case.
In our discussion of the bilateral case we shall assume that there

exist 2k real numbers gi and g , 1=1,...,k such that:

(3) -wisg<o<£i<+m, ial,'c.’k
and such that in the '"box':
@) El<ReE <€, i=1,...k,

all functions qij(gl""’gk) are analytic in 51""’§k .

In order to discuss both cases simultaneously, we shall refer to the
domain D in the unilateral case as the open positive orthant '51 > 0,...,£k >0

and in the bilateral case as the box EY S &5 S Efs-enfy S 2k

2. The Perron-Frobenius EigenValue'ofjﬁfgj.

The matrix q(§) with entries qij(El,...,Ek) is an irreducible, non-
negative matrix for every real point & in the domain D or.on its boundary.

It follows from the classical theory of nonnegative matrices, [1,4], that



q(€) has an eigenvalue of maximum modulus, which is real, positive and
of geometric and algebraic multiplicity one. Denoting this, the Perron-
Frobenius eigenvalue, by p(E) = p(El,...,Ek), we set out to discuss

the properties of p(£) as a function of g€ over the domain D. 1In

the simpler case where k = 1, this was done by H. D. Miller [3].
We shall assume that the reader is familiar with the basic properties

of nonnegative matrices as discussed in the references listed above.

Lemma 1
A1l functions qij(gj, i,j =1,...,m are convex functions over

the domain D and its boundary, i.e. for £ and n in the closure D,

we have:

5) q_ij[a£+ (1-a)n] < oq; ; @) + (1-0) q;; (D)

for all 0 < a <1, and all i,j =1,...,n.

Moreover if g;# n and 0 <a <1, strict inequality must hold

in (5) for at least one pair (i,j).

Proof:

Since for all real k-tuples (xl,...,xk), the funcfion

k -
exp[- Z vav] is strictly convex over the domain D, the inequality
v=1 :

(5) follows immediately from the definition of qij(gj.



To prove the next statement we must clearly consider only those
pairs (i,j) for which pij > 0. The corresponding Laplace-Stiéltjes
transform qijcglf""gk) is strictly convex with respect to all the
variables which explicitly occur in it. The variables Ep which do
not explicitly occur in qij(gl,...,zk) correspond to variables x_ in

T
Fij(xl,...,xk) with respect to which the marginal distributions are

degenerate at zero.
The nondegeneracy assumption may be restated as saying that every

variable €, v =1,...,k must occur explicitly in at least one of the

functions qij(el,...,gk) .

Let now £ # n. In particular Ev # n,- Let (i,j) be a pair

such that qij(gl,...,gk) contains Ev explicitly, then for 0 < a < 1

qij[(l-a)n + af] < oq; ; (&) + (1-a) a4 () »
since qij(-) is jointly strictly conve;'in all variables upon which it
explicitly depends.

Superconvex Matrices.

Let f be a positive function defined on the convex set T e K. Then

f is superconvex if log f is a convex function on T. Clearly, f is super-

convex if and only if for each E,neT,

£(ag + Bn) < [£D)I*[£)]®; o + 8= 1

a >0, B>0,



Definition:

A matrix A(§) = [Aij(gg] is superconvex if for each (i,j), Aij(g)
is superconvex on T.

The proofs of the following lemmas can be found in reference (2) or
(3).
Lemma 2:

If f is superconvex on I', then it is convex there.

Lemma 3:

Let y(§) be any non constant positive linear function on P. Then
y(£) is not superconvex. N |

Folldﬁing Kingman tZ) we let C denote the class of all superconvex
functions along with the function which is identically zero on T.
Lemma 4:

C is closed under addition, multiplication and raising to any positive

power. If for each n, fn eC, so does lim sup fn.
n-> o

Lemma 5:

Let A(g) be a superconvex matrix on I and let p(f) denote its largest
eigenvalue. Then o(g) €C. |
Lemma 6:

Let A(E) be a superconvex matrix on T' and suppose p(g) is not a constant
function. Then p(§) is strictly convex on T.
Proof:

By lemma's 2 and 5, p(g) is convex on I'. Suppose now that p(§) is in
fact linear. Then by lemma 3, since p is not constant, p(gj is not super-

convex. This contradiction implies that p(g) is strictly convex on T.
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Theorem 1:
Let £ =0 + i 1 where £ € D.

(a) The Perron Frobenius eig.envalue, p(£) is analytic at 5 = g in the
domain D.

(b) p(o) is a sfrictly convex function of ¢ in T), suitably continues on
the boundary.

(2) As in the univariate case, Miller [5], for each real g, p(og) is a
simple root of the determinantal equation IzI-g(g)l = 0. Since
IzI-g(g)I is an analytic function of the k+1 complex variables,

z, OgseresOys vthe result follows from the implicit functions thebrem
for analytic functions.

(b) We need only show that qij (o) is a superconvex function for each (i,j).

This follows at once since

ezt B 2NE g

<[ fe2Xaqmi*r e 2%aqui®
D D

forg=o+ix, E'=g'+1iz1', & £ €D, and g:X = 0;X; +...40. X, .
This is just Holdens inequality for a Banath space with a finite measure.
Consequently g(g) is a superconvex matrix and so p(o) is convei; By

lemma 1 p(g) is not constant and so by lemma 6 p(0) is strictly convex

on D.

: . _ * * %*
By suitably convex an the boundary D we mean that if E =0 +ite

*
and if E n” £ where e_';_n e D then p(g n) + p(g*). Hence we have p(g) is

strictly convex on D.

Q.E.D.
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The entries of q(£) are all suitably continuous on the boundary and

hence p(£) is suitably continuous on the boundary, since convergence of
a sequence of positive matrices entails convergence of thgir Perron-

Frobenius eigenvalues to that of the limit matrix.

Thé theorem 1 implies in particular that p(¢) is a continuously
differentiable function of ¢ in D. 1In the unilateral case one may
easily verify that -p(g) 1is also suitably differentiable at all boundary
points of the positive orthant D, with the possible exception of the
origin.

In many applications, see Neuts [6]; the quantities

(11) oM = [%E;pcsl,....sknﬂ

play a fundamental role. In the unilateral case, the derivatives at

£~

are to be understood in the same '"suitable" sense as in theorem 1.
We denote by a(:), the mean with respect to the variable x, of

the probability distribution H, (xl,...,xk) defined by:
m
(12) H (x),0..,%) = jgl Ps; Fij(xl,...,xk), is= 1,....,m

(v)

i.e. as is given by:

(13) afv) = {k x d . H, (x),.. X))



(v)

Provided the integral (13) converges absolutely. In this case aj
is also given by:
)

) L
(14) Cl-if = '[ag\) qlJ (51""’Ek)]§=g

j=1

where the derivative is in the suitable sense in the unilateral case,
Furthermore, 1let nl,...,nm' be the sfationary probabilities associate.

with the matrix P, i.e. the Trow-vector g = ("1""’"m) is the unique

solution to the equations:
(15) T =1, e =1,
where e is the columnvector with all its components equal to one.

Theorem 2

The quantities Mj are given by:

v (3)
(16) | Mj = -121 mos .

In the unilateral case, this is provided the means aﬁJ), i=1,...,m
exist. In the bilateral case, our earlier assumptions encompass the existence

of these means.

Proof
Let x(&) and y(f) be right and left eigenvectors of q(£)

corresponding to p(£), normalized such that y(£)-x(§) =1,



———————
N
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and y(8)-e = 1. It is known that such a normalization is possible and
uniquely determines X and y for every £. Moreover as £ tends
(suitably) to 0, we have that Y& + a1 and x(g) + €, componentwise.
The components of x(£) and Y(E) are (suitably) continuously differentia-

ble functions of £ in 5.

We have that:

m
AN 1 ay; Cpeen) x0,.005) = P nsfy) X (E1aeenty)

for v=1,...,m and all & in D.

Differentiation with respect to &4 yields:
3 d
(18) p(gls""agk)'a'q xv(EI"”’gk) + xv(t:l""’gk)ﬁ p(gla---,gk)

m
d . a__
J xj(El:-'-,Ek)ag_ q\)j(E].’.”’Ek) + ‘Zl qvj(gl""lgk)agi xj(El»---,Ek)-

1 i j=

Upon letting E > Q_ (suitably) and noting that p(0) = 1, we obtain:

2 M) B
(19) [agi *@leg + M = -al +j§1 p\,j[_agi %819

for v = 1,...,m,

Multiplying by ™ in (19), summing on v and applying (15), it follows

that:

m .
(20) _ Mi = - vaa\gl)
v=l.
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Remark

Formally, the quantities Mi appear in the same manner as the first
moment does fiom the Lzplace-Stieltjes transform of a probability distri-
bution. A natural question to ask is whether p(gl,...,gk) is itself the
transform of a probability distribution. The answer is hegative in general.

Consider the following example of a 2x2 univariate semi-Markov matrix

Py " Py =0 PPy vl

It is easy to see that:

o(8) = [£(0) £,
where fl(g) and fz(g) are the Laplace-Stieltjes transforms of the
probability distributions Flz(-) and FZI(')‘ It is well-known that
fl(g) and fz(a) can be chosen so that their product is not the square

of a Laplace-Stieltjes transform of a probability distribution, e.g.:

3

- 1 1-¢
fl(g) =e€ ’ fz(g) = 2 + -Z-e
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