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1. Introduction and Summary

The distribution of the characteristic (ch.) roots of a sample co-

variance matrix § (one-sample case) or the matrix §i§21 (two-sample
case, see Section 3) depends on a definite integral over the group of
orthogonal (in the complex case replaced by unitary)matrices . This in-
tegral, either in the one-sample case or the two-sample case, involves
the ch. roots of both the population and sample matrices. Usually the
integral in either case is expressed as a hypergeometric series involving
zonal polynomials [4], [7]. Unfortunately, these series converge slowly
unless the ch. roots of the argument matrices lie in very limited ranges.
Furthermore, the computation of these series are not so easy and not
convenient for further development. In the one-sample real case, Anderson
[1] has obtained an asymptotic expansion for the distribution of the ch.
roots of the sample covariance matrix. In the two-sample case, however,
the situation is more complicated. Chang [2] has obtained an agsymptotic
expansion for the first term. In Sections 3 and 4 of this paper, we ex-

tend Chang's results obtaining the second term and also derive a general

formula which includes the formulse of Anderson [1], James [8], Chang [2]

*
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and Roy [13] as limiting or special cases. In Sections 5 and 6 we obtain
asymptotic expansions in the one-sample and two-sample cases in the complex
Gaussian population. Finally, Section 7 gives a comparison of the four

asymptotic expansions.

2. Notation

Before proceeding further, we list the notations which will be used
throughout.

The letters Jj,k,s,t,p,q,m and n with or without subscripts will
denote positive integers, and i =/-1 . Matrices will be denoted by bold
face capital letters and their dimensions are all p x p unless other-
wise stated. In particular, § and E with or without subscripts de-
note the sample and population covariance matrices respectively. f.‘,E, R,
and ,@, are diagonal matrices, and E, identity matrix. E,% and E
denote Hermitian, orthogonal and unitary matrices respectively. H’ is
the transpose of Ef, and E* is the complex conjugate and transpose of
U, O(p) and U(p) are the groups of all p x p orthogonal and unitary

matrices respectively. |oz| denotes the absolute value of «, and l£|

denotes the determinant of ,}5 . hjk is the conjugate of hjk' hjk.R
and hjkI are the real and imaginary parts of hJ.k.P hjkc denotes either
h. or h . Summation ¥ or L 1means LZ or X . Product
JKR Jhl j=1 5<k =1 i<k

P P
I or I means T or 10U unless otherwise stated.
J=1 i<k J=1 J<k

3. The Asymptotic Expansion of J

Let ﬁJ (j = 1.2) be independently distributed as Wishart (nj,p,&),

-1 -1y-1 B
and let the ch. roots of §,5,” and (§l§2) be b, and a (k=1,+4.,p)



i > P e > > < < < ven <
respectively such that bl b2 bP C gnd 0 al N a

Further, let us denote

‘i = diag (al’ Bpyeees ap)
B = diag (bl, by, aees bp)
and n = nl + n, - Then the joint distribution of bl’ b2""’ bp is given
vy (7], [10]
1 1
gn.  #(n -p-1)
(3.1) ¢ U a, tbv, * M (b-b) 0 ab,
=1 9 9 e 0 F g= Y
-in
- 1 1
Jogey 12+ 284 e,
where
(3.2) ¢ =T _(3n) {2°F (40, (3n,))7%
P 2 o) 2 1 P 2 ) 2

Lol 2
r) =m0 rel 454y,
J=1

and (Q'dQ) is the invariant measure on the group O(p).

From (3.1) we know that the distribution of the ch. roots of &.8

depends on the definite integral
-in
(3:3) 3 = Jorpy|T + A28ar " (@raq)
Let us transform first

(3.4) Q = &8

where S5 1is a skew symmetric matrix (Note that "S" was also used as the

~ ~

sample covariance matrix). The Jacobian of this transformation has been



camputed by Anderson (c.f. (2.3) of [1]),and is given by

(3.5) J=1+ Eﬁ% tr & + g%%TT tr §*

2
R - G
Lemma 3.1. Let A and B be defined as before, then £(Q) = |I + AQBQ'|,
QeO(p), attains its identical minimum value |z + AB| when Q is of the

form

i
=
o

(3.6) 4 .

Proof. See [1] and [2].

Lemma 3.1 allows us to claim that, for large n, the integrand in
(3.3) is negligible except for small neighborhoods about each of these
matrices of (3.6) and E consists of identical contributions from each of

these neighborhoods, so that

: 1
(3.7) 3 = aij(I)u + AQRQ'|TZ%(Qraq)

where N(I) is a neighborhood of the identity matrix on the orthogonal
manifold.
Lemma 3.2. Let g; (3=1,...,p) be the ch. roots of G such that

mex |g.| <1
<i<o ¢

then

1
T +6]™2" = exp {-in tr (G - %Gg + %G3 - )}



Proof: See [2].
Since we wish to compute up to the second term in the asymptotic
expansion of J , we need to investigate the groups of terms up to the

fourth order of S . Under transformation (3.4), we have

~

Y i i L
|7 + 2081 |72 = |1 + 48| 7P| + (8] + {7} + {85} + f5¥} + ... |7

)

where

{s} = RSB - RBS ,

{f?} = %(§§§? + EE?E - 2RSBS) ,
{83} = l(RS3B - 3RseBs + 3RSBS® - RBs3) ,
{s } = —E(RBSh - hRSBs3 + 6RS BS hRs3 BS + RS B)

and

a,
R = (I +AB) A dlag(rl, 2,..,,rp), rs =F;?':E (3 =1,:00,D) -
Tdd
Under transformation (3.4), it has N(I) - N(S=0) . If we put
E = {E} + {Eg} + {§3} + {Eh} + .,. , then in the neighborhoods of §=2,
the elements of E are very small, and hence the maximum ch. roots of
G can be assumed to be less than unity. Therefore Lemma, 3.2 is applicable.

~

By Lemma 3.2, we obtain
iy i 1
| +AQ8Q|™2"% = |1+ AB| 2“11 + G| 2n

|1+ 8|72 exp (- £ x([S]HsP14831408 M+ .0}



where

(sl ={s} ,

(571 = (9] - M5

(1 = (87} - 38)TY - ML) + 35

and

[8'] - (8" - HHE) - HSUg) - HLP + HPisy

1 2 1.2 2 L
+3(8} g7} + 58Ty - sy .
= -8 for all j,k=1,.,..,p, now we have

jk)’skj ik
tr{s] = tr(RSB-RBS) = 0 ,

Since § = (s

2 2 2
tr{87] = ({87} - 3{sY")
= tr(%RBSQ + %ngB - RSBS - &(RBSRBS + RSBRSB - RBSRSB - RSBRBS))
= tr(BS - SB)(I - RB)SR
2
= ¥ c.. 8,
<k Jk jk
where
Cy = (rkj - rjrkbjk)bjk =c .
(3-8) { o
rjk = rj - rk and bjk = j - bk .

Let us note that tr{§}f§?} = tr{g?}ggj, tr{§}{§?1 = tr{§?}{§}
2
and tr{§}2{§?} = tr{§3{§?}{§) = tr{§,}{§}2 + Similarly, after simplification,
we find

tr[§?] = tr{§?} - tr{§}{§?} +.%[§33 - 5 £

5.,8, .5, .
3<k<t Jkktt]

vhere



(3.9) = f(j,k,t) = rjkbkt - rktbjk rJrkthkat + rerthkbkt
rtr kb tbkt 2r rkrtb kbktbtJ R
orl8'] = tr(8') - (s} - 2ur() + we(g)(s5 - Hg)"
"’ e ISR
where
(310) = 8x) = (2 - Dr v+ Grr - 8208 - 25D
I 102
3%k " 5 0
(3.11) ¢ =y (&K t) = -%rkjbjk - %rtjbjt tdr b
*'%T r, 2k rtbit) + rj(rk *ry )b, k it
- ribakat ry(by * bjt)2
T (rk k Jt rterth rJrkrthk Jt)ka jt
= -%(cjk teg) tace - Sl
and
g = gl k t,u)
= 2lry by ¥ Tby) %(rkjbjk * TPt * TutPou t T juPuy’
* %T Tyl (g * 3bg,) ¥ 3rkrtbkt(bkt * 3by5)
* %Ttrubtu(btu * 3bjk) * %rurgbug(bu' * 3bkt)
] %Tjrt(bj Breg ) by = By )
* ru(b j)(bkt - Byy) - T 57k Pkt  tuluy

-r.rb. b b r

K t jk kt tu uj

-T er r b, b

ik kt tu uj

T I erbktbtubuJ

- 21 rkr r kabktbt b

uj



Note that $2 and $3 can be obtained from ¢l cyclically, i.e.,

changing j to k, k to t, t to j, then becoming ¢2, ¢2 becoming

y
1
¢3 and ¢3 becoming *1 + Moreover, we need not know the value of g,

because any term containing an odd power of a factor s when integrated

Jk
with respect to 8 reduces to zero (see below). From (3.9) it is not
; 2 2 2 2
= + + - + +
difficult to show that f St gt O g(cjkcjt © 1kt Cjtckt)
- hcjkcktcjt .

Finally, we can write (3.7) to be

b

(3:12) g =2 jzl(l +ab.) I

+ exp(-5 tr[8°] - tr (8% o) nasy -
J

If this integration is to be performed term by term on the expansion

of exp(-g tr[S3] -++s)d then for large n, the limits for each s

Jk
can be put to ¥« , since each integration is of the form
m,
n k
J exp(-3 % g Jk) T s e 45

N(S=0) i<k j<k

and most of this integral is given in a small neighborhood of S=0. The
mjk’s are positive even integers or zero since any term containing an

odd power of an s as a factor will integrate to zero. We expand

Jjk
exp(-g tr[§?] ~...)J, writing the terms in groups, each group corresponding

to a certain value of m. We have
» n 3, n L
(3.13) exp(-E tr(s’] -5 tr{S T =eed)d
=1 - = t[S]+ (t[s3]) +l?- tr§2

- 25 tr[ﬁ] +%-.- (tr(s ])2 teee .



Using (2.6a) and (2.6b) of [1], we obtain the following theorem.

Theorem 3.1. Let A and B be diagonal matrices with 0 < aq < a, < oo < ap
ahd bl > b2 > oeee > bp > 0 . Then for large n, the first two terms in
the expansion for J are given by

4}

-5 1
(3.14)  9=2°P 1 (1+ap)% 0 (ZL)2 (14555t +alp)] o0l ,
j=1 J 3 <k ncJ.k 2n <k Jk
where
(3.15) a(p) = plp - 1)(2p + 5)/12 .

Proof: In the proof, we include only terms without an odd power of an
sjk « First note that only the second, third and fourth terms on the
right hand side of (3.13) contribute the factor n ~ . After integration,

the first term unity has been shown [1] to have

(3.16) K =

- -2 -
(3.17) Kzt 2oyt D) +B2 s

M I SR R
8nj¢<t ©x%t k%%t St o8 3

and the third term n2(tr[§?])2/8 gives

, c. c.
(3.18) K{g% 5 (cckz + = LI C—JF
j<k<t S5kt 3k %kt 3t %kt
D=2 -1

1/p
-— T c.o ~5=()) .
n 54 jk  2n '3



10

Finally, since ¢tr S2 = -2 Z S?k , 1t is easy to see that
(p-2) tr SE/AE contributes
- ~1

(3.19) -5k =

C.
n <Kk jk

Adding (3.16 ) - (3.19) and factoring K out, we obtain (3.1%) .

Theorem 3.2. The asymptotic distribution of the ch. roots, b, >b, > .¢. > bp >0,

1 2
-1
= +
of S]S2 for large degrees of freedom n n, +ong when the roots of
- ’l - "l s .
ﬁﬂfé are Ay > A, > ... > kp > 0 where Xj =8, (j = 1,40+,p), is
given by
1 1 n
sn,  z(n,-p-1) -5
(3.20) cePq oa, Ty, T (1+a,b.)2 I (b.-bk)
j=1 9 S0 M VR
1 -
- 0 ab, 0 (;1:(?:11-)2 {1+§%[2 c_}];+a(p)]f...},
=1 9 jex POk i<k Y

where C, ¢ ik and o(p) are defined by (3.2), (3.8) and (3.15) respectively.

4. The Asymptotic Expansion of & When Roots are not All Distinct.

In the previous section we restricted the roots of population matrix
(Eﬁz;l)'l to be all distinct. However, the roots need not be all so.
And when we are interested in the likelihood of equality of population
roots, the asymptotic formula of Section 3 breaks down. Overcoming this
situation a general formula is derived which includes the case of distinct
roots as a special case. The one-sample case has been studied by James [8];
his result would follow from here as a limiting case.

Now let O<a; <...<a <a, =...=a =3 (L<kx<p-1).

~

Then

A = diag (al,..., By Byeee, a)



11
and the joint distribution of bl’b2""’bp of (3.1) becomes

1

54n k 50, - =3n
(k.1) Ca oo lj T +aQEQ'|  (Q'aq)
=L 9 Colp) v o~ ~ o
3(n,-p-1)
- I b o (b -bt) o ao, ,
j=1 Y i<t 3=

where q =p -k .

As in Section 3, we consider the integral

(L.2) 3 = jo( )|£ + ﬁ%%%’l-in (Q'aQ)
P

Now we partition the matrix Q into the submatrices Q. consisting

~L
of its first %k, and 92, the remaining q rows. If the integrand of

(4.2) does not depend on Q,, then we can integrate over 92 for fixed

Ql by the formula

~.

(]

(4.3) |

c.(aq)
Q, L ~

2

Co(aq, )

where

c, = népz {I“P(%p)}'l, c, = 2P {r, (30174,

and the symbol (dgl) denotes the invariant volume element on the Stiefel
manifold of orthonormal k-frames in p-space normalized to make its integral
unity. Make transformation (3.4) whose Jacobian is given by (3.5).

A parameterization of Q, may be obtained by writing

oL
/' e
Q (/s s
(k1) N I G Y e R
% S 0

~/



where §ll is a kxk skew symmetric matrix and §l2

tangular matrix. From (3.5), it is not difficult to show that

is a kxq rec-

Ce(dgl) = (d§11)(Q§i2){l + 0(squares of sjk’s)}

k k
where the symbols (dsll) and (dSl2) stand for 1 ds,, and I I ds,,
i<t 9 j=1 t=k+1 I

respectively.

Since we are only interested in the first term, all we need to in-
vestigate is the groups of terms up to the second order of E' which is
denoted by [§?]. As we did in Section 3, but remembering that the last
g ch. roots of é' are equal, it is easy to show that

k k

tr[Sg] = ¥ c.tsz.t + ¥ T c?tsgt ,
~ S A, RS B A
where
c =r b - r.r b2 = ¢ i, t=1 k i <t
gt 305t T TR T Sy A AN
(4.5)
c;t = rtjbjt - rjrtbgt = C%J J=l,~-0,k, t=k+l,o--,p
a.
—1751? if §=1, ..,k
Jd
r, =
J
a . .
'f_’_'a_g':' lf J=-k+l’oo',P P
J
rjt = rj - rt and bjt = bj - bt .

Therefore
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1 k _1 Y
(4.6) T +2qe'|™@" = 1 (1+21p)2" 1 (1 +ab,)2"
~oTTT =1 I N J
k k
. 1 2 o2
M exp(-3n cjtsjt) i I exp(-in €58 Jt)

J<t J=1 t=k+l

{1 + O(squares of sjt's)} .
Substituting (4.6) into (3.7) and using

J

yields

T + B! |72% (qrag) = 2Pc, j 1+ aqey! |72 (aQ)
o(p) e Aﬁ ~ o(p) v

1 1
(4.7) g =0 I (1+ab.)2® 0 (1+ap) 2"
Fq(%Q5 j=1 33 j=k+1 3

J J <x exp(-3n cJt jt)
511 5 9

k
I 0 exp(-in c°

)ds L1+ o) .
j=1 t=k+1

Jt Jt

For large n and aj's and bj's (3=1y+..,k) well spaced, most of

the integral in (h.T) will be obtained from small values of the elements

of Ell and §12 . Hence, to obtain an asymptotic series, we can replace
the finite range of Sjt by the range of all real values of Sjt . Thusv
3 = i g(uab)eﬂ I (1 +ap,) 3
q(I q) 521 J ektl 3

k o 2
1 J exp(-3n ¢ )ds
jet Yo Jt it Jt

k @ 5 1
I i} J exp(-3n %55 )as. {1 +0o(=)} .
=1 t=k+1 ¥~ Je et gt n



1k

Hence we have the following theorem:

Theorem b,1. The asymptotic distribution of the ch. roots,

‘ -1
> > .l.> b = +
bl b2 bp 0 of AJEQ ; for large degrees of freedom n =n n,

1 2’
-1,~1 _ - -
when ch. roots of (Eﬁ;é ) are 0 <a; <...<a <a . = .. = 8, = 2
(L<k<p-1) is given by
1 1 1
zan; k30 2(n-p-1) k 1
(4.8) C3 a oo a g bj 1 n (1+ ajbj) 2t
j:l J=1 j:
L
©on (1rap ) W (b, -p) 0 (L)
j=k+1 J j<t j<t 7%t

2
+ I I (~==) 1 db,

o 2
= =K+ j=
j=1 t=k+1 ncjt J

where
iq2 1 1 1
= 172 i 1 Y 1 -
cy =% (30){r,(3a) T (dn,) T (3n,)]
and Sy, and c;; defined by (4.5).

The result (4.8) was given by Chang [3], but he had an error in the

constant; he had

wp(p-1)-3kp . . . . L el an,
: —7 r(s3) Fp(gn){rp(gp) r (gnl) rp(§n2)} il 25 instead
r(ze)1 ™ J=1 | P j=1
%qnl k %nl
of C3 a II aj He had also error in the factors, he had

iy E 1, k o (L
n (1+ a_bj) 252 0 (1 +ap,)2" 1 n )2  instead of

J=k+L J 3=1 JI 0 gm1 b=kt Ot

k _in _l.n k 21-; 1

I (1+a,bp.)2 I (1+ab.)’2" 1 I (- o)2 . Note that
J=1 Jd j=k+1 J j=1 t=k+l nc®

gt
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k -in k 2n 3
for k=0, O (1 + ajbj) N | n )2 products should be

j== j= =k+ o
j=1 j=1 t=k+l nc'jt

1
assumed to be unity. Similarly for k =p, I (1 + abj) 2% ete. are
j=k+1

unity, and define Tg(x) =1, then 1<k <p-1 can be written

O<k<p.
(1) Ir x = O, i.e., ¢ =p, then a = ... = a, =a and (4.8) reduces to
1
4 %Pg 1 1 1 1 -1 2P%y
(4.9) s FP(EH){FP(EP) Tp(Enl) Fp(zng)} a
Yn -p-1) 1
« I b, I (1 +ab,)2" 0 (b, - bt) 1 dbJ s
j=1 I j=1 J i<t Y j=1
(k.9) is the joint distribution of bl’be""’bp under null hypothesis
L. =a¥g [13], and is an exact form where we assume no asymptotic con-

~) ~

dition. Moreover, in this case, the integrand of (4.2) is independent

of Q.

~

(ii) If x = p, i.., ¢ =0, then 0K ay < as < eee < ap, and

reduces to

in l(n —p-l) -3n
1 1 1 -1 271,21 (1 +a.,b,)2
2m 13
* I (b,-b) 0 ( )2 I db, .
gt 9 v s me

j¢ 9= d
This is Chang's result under condition 0 <a. <a, < «4s < 2y (c.f. [2]).

1 2

Now 1let bj = nlvj/n2 (3 =1,...,p) and let 0,

then (4.8) reduces to (3.12) of James [8]; (4.9) becomes the joint dis-

tend to infinity,

tribution of bl’b2""’bp under the null hypothesis §,= a I [13]; and

(4.10) is the first approximation of (1.8) in [1]. This is when F to

be taken as 1 .
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Se One-Sample Complex Case.

In this section we consider the one-sample complex situation. Let
5 be distributed complex Wishart (n,p,Z). Now £ is positive definite

i i . > > s9 e > > < see <
Hermitian. lLet bl b2 bp 0 and O <a.:L <ax2 a.p be

1

the ch. roots of E and respectively, and still denote

diag (al,aa,n-.,ap) 2

i > 0,
1

= diag (bl,be,...,bp) .
Toen from James [7] the joint distribution of by by, ...,bp can be

expressed in the form

(5.1) o ()17 APIB|"P T

J<k ?
g

I db,

(b. - b
J 3=

k

*,, *
exp(-n tr AUBU )(U_dH) ’
U(p) )

*
where (’I{ d'll) is the invariant measure on the group U(p). The group

U(p) has volume

"= gy - U (o)

where T’p(p) as defined in [7], i.e.,

1. - .x
'fx(y) - n2x(x-1) jnl r{y-j+1) .

From (5.1) we know that the dtatribution of bl,ba,...,bp depends

on the integral .

(5.2} Jl = I expl-n tr AUBU*](U*&U)
u(p) T T
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Lemna 5.1, Let A, U= (ujk) and B Dbe defined as before. Then

* -
f(U) = exp(-n tr AUBU ) = exp(-n £ T a.bu,u. ) has identical maximum

values of exp(-n tr AB) at each of the matrices of the form

o191 0

(5.3) 1% ,

vhere 0 <_cpJ <2m (J=1,40.,p)

* * * *
Proof: Since UU =1I hence aU =-U . dU* U and

~

¥* +* *
df = -n exp(-n tr AUBU ) tr (A - qU * BU + AUBAU )

* * * *
= -n exp(-n tr AUBU ) tr (BU'é - U AYBY )dE

* * *
for every dU . Therefore df =0 implies Etiﬁ = U AUBU i.e.

* * ¥
BU&H‘=UAU.B vhich means that B and Eé}l commute. But B is a

A~ g

diagonal malrix with real distinct elements, implies R*ﬁg is a diagonal
matrix. This can happen if and only if 9, is of the form with ei(pj

in one position in the jth row and certain column and zero in other
positions. After substituting those stationary values into f(E) we
obtain a general form

(5.4) exp(-n £ a,b_ )
= 0T

where bT is any permutation of bj(j=1,...,p) ar f£(U) attains its
J
identical meximum value exp(-n tr AB) when U is of the form (5.3).
The matrices of the form (5.3) are unitary and with ch. roots

elcpj (i=1, ees,p)s Now we impose p conditions on U (reason see later),
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namely all of the ch. roots are positive real. Then (5.3) reduces to I.
Under these restrictions, for large n, the integrand is negligible

except for small neighborhood about identity matrix, so that

(5.5) I, = IN(I) expl-n tr iUEgI*](H*dE)

where N( 5) is a neighborhood of the identity matrix on the unitary

manifold.
Lemma 5.2. Let U be a unitary matrix, and make the transformation
(5.6) U= e

where E is Hermitian matrix. Then the Jacobian of this transformation is

(5.7) J=l-%tr§2+é(tr§)2+g%ﬂ {S(trﬂ)h-ptrﬂh

- 11 tr ;33 tr § - 10p tr ;f (tr 3)2 + (5p2 - 3)(tr 52)2} + ...

Proof : Iet @ = diag(el,ez,...,ep) where ej(j=l,...,p) are distinct

~

nunbers. Since U 1is unitary, there exists a unitary matrix Ul with

real diagonal elements, such that

U@
U = 1589

*
Put H = (hjk) = U,8U, , then from Murnaghan [12], we have

- i (g - *
(5.8) (Uau) = I k4sin Z(GJ Gk) 'jl:l—-l dej(gldgl) .



19

Since H is Hermitian, from Khatri [9], we have

2 *
(5.9) O anh., 0 dh,dh, .= T (6. -8 ) 1 ae,(u au.)

where hjj (j=1,¢++,p) are real diagonal elements of H « Note that

tr = ¥ O .

Then using (5.8) and {5.9) we obtain (5'7)7

*
Substitution of (5.6) into tr AUBU  yields

¥*
(5.10) tr AUBU = tr AB + tr(AHBH - ABHQ) + tr(dm AHH_ie)
1,4 1 3 + & Al
+t_r(124m 3RaAH h H{)+... '.

This is rewritten using brakets to deflne the expres51ons in parentheses

80 that

*
tr AUBU = tr A,.._,.% + 'tI'{Hz} + tI‘{H3} + tr{Hh} + e

where Re W and JIm W denote the real and imaginary parts of W. Since

(5.11) tr{H°} = ¥ y.h_ B,

where ij = (a - a, )(L - zk) >0, for j,k=1,¢ee,p 8nd j<k.
Under transformation (5.6), it has N(I) - N(H =‘g) . Then (5.5)
can be written

(5.12) 3. = exp(-n tr éE) I exp( -n Z Y.

)

3
. exp[ntr{H -n tr{H}+...]J I dh I dh, .dh .
L 5 J j<k JkR ,JkI
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Since hjj (j=l,;..,p) are real; eéch one may rénge in a cgrtain
interval, and since they do not occur in the right hand side of (5.11)
and may lead to the divergence of the integral [11]; So we need to impose
conditions on H . We may put h (J—l,...,p) to be constants, but the
result is qulte compllcated (see Remark) For 51mp1101ty, we set
hjj = O(jél;...;p). In view of (5.6), this is equlvalent to imposing

p conditions on U . Thus each side of (5.6) contaiﬁs p2 - P parameters.

Under these éonditions; (5.7) and (5:12) reduce to

(5413) J=1- ig tr E? + ET%T7 [(5P2 - 3} (tr E?)2 - p tr E&] + e
and
(5.14) J, = exp(-n tr AB) exp(-n % v. )

1 N H-O) <k k Jk Jk

* exp(-n tr{H3} - n tr{H } - .l] 9 JI<1k dh, dethI

respectively;

Expand exp[-n tf{HB} - n tr{Hh} - «i.]d and write the terms in
groups. We have
(5.15) expl-n tr{El} - n tr{ﬁl} - e )T =

1- pﬁ tr f}f - n tr {53} - n tr {g}‘} +£—- (t‘r{f})2
+ E(%?T [(5p2 - 3)(tr E?)e - p tr E&] + uie .

It the ihtegratioh of (S;Ih) is to be pefformed term 5& térm on the

expansion of (5;15) then for large n ; the limits for each hij and
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hjkI can be put to T e , since each integration is of the form
I
exp(-n T ¥ ) I h, I adn. .dh,
N(EFO) 32k Jk Jk jk <k Jke <k JKR kI

and most of this integral is concentrated in a small neighborhood of Efo .
The mjk's are positive even integers or zero, since any term containing

an odd power of an hjkc will integrate to zero. Since

<o o0

. o - R dh . .dh,
(5.16) j_m, .f_m exp(-n s YK B i i) ,jgk JERT KT
= 1 o = I ij = C,
J<k ik J<k
(5.17) exp(-n Z vy, )h I éh, .dh
j_w I_m <k k Jk gk’ Tste <k JkR
= C*1°3+5:+* (2m - 1){2ny )"
and
(5.18) veo exp{-n T ¥y Y(n ™ 0 dn. _dh,
I_m f_w 3<k Jk Jk Jjk st st <k JER kI
- CSmIQ
m *
(ny )

Theorem 5.1. Let A and B be diagonal matrices with

cse > P hee P > .
0 < a; < ay < < ap and bl b2 bp 0 Then for large n

the first two terms in the expansion for Jl .are given by

(5.19) S, =exp(-n tr AB) T — {1+ % yi+

Yo teeel
1 3<i n‘vjk 3n <k Jk
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Proof': For simplicity, we include only terms without an odd power of
an hjkc and do not write € which appears with each term after inte-
gration, and denote

St = T Y-i
j<k 7

and s"

Il
g}
L]
-
-
w
~
.<

V58 T Vs VaYis v.k/vjsvks) .
J

Since tr E? = it is easy to see that -p tr H2/12

i
o
Code
™
o7
g

gives

(5.20) £ g .

From (5.10)

b, .
12 tr{ﬁd} = = f(j,k,s) Re h, PkePstPey 2
Jrykys,t

where (3, k,s) = aj(bj - hbk + 3bs) .

In detail we have

T {r(3,k,8) + £(k, 5,k)] h

12 tr{H“}
~ J, k&, SJS%J

k Jk kshks

+

£ £(3,%3)0 A )F

<Kk Jk Jk

]

X {[g(j:k)s) + g(s,k,j)] h.h.h
Jj<k<s Jk jk ks ks

+

le(s, 3,%) + g(k, 3,8) 1 B B

3

+ cg(k S}J) + g(JJs)k)] hJS JS ks ks
+ 2 (- by )

<k jk)(hjkhjk
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where g(j,k,s) = f(-j:k,s) + f(k,,j,k) . But g(j)k:s) + g(s’k’j) =

- thk - hyks + 3Yjs so that after term by term integration, 12 tr{Hh}

contributes
2 21 - - 2\ 2
(- 8/27) B (W g t¥ee) + (3/0)8" - (8/a%)s'
3<k<s
Since
T Y3i+ b YSIJ;*“ T v'.i--(p-E)S' .
s<j<k j<s<k j<k<s Y

L
Therefore -n tr{H } contributes

(5.21) [2(p-2)/3n18" - (1/kn)s" + (2/3n)s' .

Again from (5.10)

34 o 2 _ i,/
tr{H”} = tr Im AHEH = j<1§<s -3 w(g,k,s,)(hjkhkshsj hjkhkshsji

vhere Y(j,k,s) = aj(bk - bs) + ak(bs - bj) + as(bj - bk) .

It is easy to check that

-~

2 2 2
; = + - + +
¢ (J,k,S) YJk YjS + Yks E(YJijS ijYks YJSYkS)
. . 3432 .
so that after integration, (tr{H’1)" contributes

3
(1/207) T (Vi VisVie * Vis/VinVis * Vis/YixYss)
Jj<k<s

3 -1 -1 -1

te., (1/200)8" - [(p-2)/c338" , hemce (o7/2)(tr(E3})° gives

(5.22) (1/kn)s" - [(p-2)/2nls' .
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Adding (5.20) - (5.22), we obtain (5.19).

By Theorem 5.1, we have the following theorem:

Theorem 5.2. The asymptotic distribution of the ch. roots,

bl > b2 P e 2 bp > 0 of S for large degrees of freedom n, when the
-1
. > >c-o> > = j= se e
ch. roots of L are A ~ A, Xp 0 and a5 Xj (3=1,+44,D)
is given by

1oy 2

- 2
(5.23) K exp(-n '2 a,b.) I in (b,—bk) .g 3 z

2" Pap {1 +
g 9 g J s 393

where

g = n22(20-0+1) 2p(p-1)(f ()71
P

Remark 1: Since Yy = (ak - a.(].)()@‘j - Zk) 3, k=1,...,p and

-1 .
8, = kj (3=1,004,p)

Hence (5.23) can be rewritten

o3,

MR T o= 50 -2 1B P Mya, 1k 5 v,

+
3=1 30 g 3K

where G(Zp is a function of the ch. roots of I . It depends on lj
but not on b, . For n large enough, by a method used analogous to

J

Anderson [1], we can show

I (b, - b )/(n, ~2)
x4 KT Tk
to tend to unity with probability 1, and the chi-square distributions tend
to normals which corresponds to the real case for the asymptotic normality

proved by Girshick [6] .



25

Remark 2: for p =2, set hll = @ h22 =B where o and B are

constants, then we have

) = exp(-n tr 4B) —- {F(a,B) + G(o,B) +B(oyB) o5+ ee-
™12 M2 GV

where

2 L
B) + (0’2)108) } £,

P(0,8) = {1 + {225

2 11l 2 2
©a,8) = g + 3¢ + o - 8)° + Ha - ) + Hola - 8)s

Bo,8) =320 + 28 + 20 + o - 8)% + Lo - )% + Lo - )

b 3 2hegop

2

£ = £(x8) =1 - (o - 8

- I e 2
elo,B) = - 3 - zrzry (1307 + 15hap + 13873 + ...

[}
[

and
b = b(a,B) =§—5 + ue.

If oa=pg, then Jl reduces to

_ - 7T = &® . s | nm—"
3, = exp(-n tr éﬁ)nwle {1 - 7 <3 T8 " 108) oy,
2 L
2 oo
P13 Tt )
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If o« =B =0, then Jl beconesg

1 + 22

T
8. = exp(-n tr AB) —— {1 + + 4.4}
. ~~ Mo 3010 )+5n2y§2
or approximately (see Erdélyi [5] write
d, ~ expl-n(a,b, +a.b, )] —— {1 + = + O(_l)} .
1 171 22’ ny 30y, n2

6. Two-Sample Complex Case.

Let Sj (j=l,2) be independently distributed as complex Wishart

(nj, s gj), and let blzbgz...sz>0 and xlzxzz...zxp>o

1 -1 . _ as
be the ch. roots of 5,8 and T, %7 respectively. Let B = dlag(bl,be,...,bp) s
. -1 -1 .
A = dlag(kl,kz,...,xp), A=p so that aj = kj (3=1,¢.e,p)
0 < 81285 < eee < 2, - Furthermore, let n = ny + nye Then the distribution
of bl’b2""’bp can be expressed in the form [T7],

n n,-p
(6.1) c.lal YBl t T m (v, - ) [ |z + ause|(u"av)
i<k J u(p) 7 T "
where
;‘(n +n,)
(6.2) C p L 2

1 = ~ ~5
I'p(nl)fp( n,)

However, this form is not convenient for further development. Since

(6-3) JE = IU( ) l,-:E +éHABE*|—n (Efdg)
b
oD, PN
2 4o« k!¢ (1) ’
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where 02=ﬂp(p—l){?;(P)}—l 2

and [b]K and the zonal polynomial of a Hermitian matrix E', Ek(&)

are defined in James [7]. The use of (6.3) in (6.1) gives a power series
expansion, but the convergence of this series is very slow, unless the

ch. roots of the argument matrices are in limited ranges. _In the one

sample case, we have obtained a gamma type asymptotic expansion for the
distribution of the ch. roots of the sample covariance matrix. In this
section, we obtain a beta type asymptotic expansion of the roots distribution

of Sl§21 involving linkage factors between sample roots and corresponding
population roots. If the roots are distinct, the limiting distribution as

n, tends to infinity has the same form as that of (5.19) in Section 5.

If, moreover, ng is assumed also large, then it corresponds to Girshick's
result [6] in the real case.

Same as in Section 5, we here still require that Xl > kg > e > hp >0
and bl>b2>...>bp>0. It is easy to see that |5+,‘},\UPE*| is
positive real for all B and every U € U(p).
Lemma 6.1. Let ﬁ and E be defined as before, then £(U)=|I +AUBU*!, U € U(p),

attains its identical minimum value |I + AB| when U is of the form

;1
e 1 0

(6.4) e’

vhere OScpj<2TT J=l,ees, D
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Proof': Since 'I-}' is positive definite

i 1
|z +auBU"| = |I + A%UBU A3

P IS

L x 1
ar(y) = a|I + AZuBU AZ|
L %1 L x1.7 1 #1 L % 1
= |1+ A%UBU A®| (T + AUBU A®)™(A%au+BU A% + ASuBay”+A?)

* - ¥, - * * *
= |I+A4uBU | tr(A L+ uRy’) l(dg-gg - UBU dU*U )

i
H

* ¥, . ¥, - 5% - L *
I+A0U | tr(BU (&1 + uu)™t - UNa + upy")tupu)au .

for every dU . Therefore df(U) =0 implies
* . ¥, - ¥, - %\ = *
tr(BU (A7 + uBy )™ - v (A + Bu)uB) = 0, for every B ama U,

* - ¥, . ¥* -
implies BU (A% +upy)~t = y(a?

.

¥\ - *
+ uBy ) tuBy”

¥, - ¥, - ¥, - K, -
ive. BU (A +uBY) ™ u =0 (A" + uBt ) MuB . which means thet B and

¥, - *, -
E-(é 1 + UBU ) 1 U commute. But E is a diagonal matrix with positive

distinct elements. This implies that }f(ﬁ_l + E?Hf)-l H is a diagonal
matrix, say A . Thus ﬁhl = H(!}:l - E)’If - This can happen only if U
is of the form with ei(pj in one position in the .jth row and certain

column and zero in other positions. After substituting those stationary

values in £(U) , we get

(6.5) I (L+ab )
) 3=1 N

where b is any permutation of bJ. (J=1,+¢.,p) « It ig easy to see that
J
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(6.5) attains its identical minimum value |I +AB| vhen U is of the
form (6.4).
i,
Now we impose conditions on U, all e J (3=1,.¢,p) are positive
i,
real say. Then e J =1 for all j, and (6.4) reduces to I.

The above lemma allows us to claim that, for large n , the integrand

of c92 is negligible except for small neighborhood of 5 + Therefore

(6.6) s, =J"

where N( 5) is a neighborhood of the identity matrix on the unitary

manifold.
Lemma 6.2. Let 8; (j=1,¢+.,p) be the real ch. roots of G
if mex |g.l<1. Then
I<i<p
2+ 6™ = explom tr(g - 56 +5¢° - .0} .
Proof: -m log T (1 + gJ.)
lz+gl™=e =t

-m L log(l + gj)

s 97

1.2 1.3
- - + - eee [}
- em (G- 56 + 5 )

Since we want to compute up to the second term in the asymptotic
expansion of JQ 3 ‘we need to investigate the groups of terms up to the

fourth order of E . Under transformation (5.6) of the previous section



30

we have

*
AUBU" = AB + i(AHE - ABH) + (AHEH - ARH® - JAKCB)

2

+ -é—(A:BHS - 3AHPH® + 3AHCHE - ﬁ3§)

+ -;-E(ggif‘ - hagpgS + 6&@2&2 - LAHSEE + AH'B) 4 ... .

Hence
Al R POy S P s B B s W - SO h

where

a .

= -1, 2 a4 I R -
5_(£+’1}’}3) ﬁ—dlag(rl,re,...,rp) s -l+aj£j (3=1,+.4,0)

{1} = i(mHB - RHI) ,

©) = mm - gmm - gy

G} - game - smm - SR - %B)

and

(1) = dptm’ - v+ efnt - amdm el

Under transformation (5.6) it has rl}IJ('I\EJ) - N(H=0) . If we put
E' = {E} + [}'f} + {53} + {Eh} * ..., then in the neighborhood of H =0,
the absolute values of the elements of E are very small, and hence the
absolute values of maximum ch. roots of E can be assumed to be less than

unity. Therefore Lemma 6.2 is applicable. Thus we have
*. - - -
|z +auBy |™® = |1 +aB|™" «|1 +¢|™"

= |2+ 48| explon tx([E) + (8] + (0] + [£'] + ...))
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where
[E] = {E} 3
] = (&7} - 20)°
@) = 1) - FEHE) - 30 + 2
and
1 = |11 - 2EHE’) - 20 - 20609 + S )
P SEE 3ty - 2w

Since H = (hjk), hjk = Ekj for all Jj,k=1,...p under conditions

h, =0 (§=1,...,p) we have

tr{H] = i tr(BHB - REH) = 0 ,

2 2
i = () - 3m))
2
= tr(RHBH - REH + i(RHBRHB + REHREH - RHBREH - RBHRHB))
= tr(HB - HI)(I - RB)HR
= £ c.h,h. 5
5<k Jk gk jk
vhere
(6.7) Ci = (rkj - rJ.rka.k)bljk = Cy;
rjk = :c"j - rk and bjk = bj - bk .

Similarly, after simplification, we find

3 a [ —
trli’) = 2 Felhyhy b -hgh o hoo) o
J<k<s
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where
- = 3 - - +
(6.8) F =F(J,ks) (rkJ - rskbjk rjrskbjkbjs
rkrsngkbks rsrskasbks 2r3rkrsb3k ks JS) ’
and
tr[Hh] = % #(n 8. ) T Y, *h h . nh B, + £ ¥ +h_h_h h
~ Jx ik 1 Jk 3k js Js 2 Jk 3k ks ks

J<k<s

+ . + . +
T Y,*h.,h.h h r G (th_hkshSthtJ hjkpkshsthtj) ,

J<k<s J<kistt
where
(6.9) % = 8(j,k) = (r. rk Jk )rkJ ik (%Tjrk - %Tij) ?k - %r?ribgk
W
3 %% "2 %, ’
(6.10) ¥, = Yl(j,k,s)
= - %rkjbjk " %rsjbjs * 1 bys * 3r j(rygb 2 * rsbﬁa) trglry * T )by
- rﬁbjkbjs - Erkrs(bjk + bjs)2
- rj(rerska rsrjkbjs + rjrkrsbjkbjs)bjkbjs

1 1
= - = + + = -
3(Cjk st) ks ™ ©35%x%js

and
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G =a(i,k,s,t)
= h(rSJ 56 F TPt - E(rkJ ikt TerPrs T TesPet * TitPes)
6[r r (b 3bst) + rkrsbks(bks + 3btj) + r r b (b + 3bjk)
" rtribtj(btj *3b )] - %[rjrs(bjk o )by Fh)
tr r (b bjt>(bsk * bs't;):I B %Er rkb,]kbks st ] krskabksbst tj
Prrraby b byt e ban bebler ribaby bobes
From (6.8), it is not Aifficult to show that Fo = - %{c?k + c?s
+ Cis - 2(cjkcjs + € 13 %ks + cjébks) - hcjkckscjs} . Also note that VY,

and Y3 can be obtained from Yl cyclically, i.e., changing J to k,

k to s, and s to j, then Yl becoming Y2, YE becoming WB

and Y3 becoming Yl « Moreover, we need not know the value of G,
because any term containing an odd power of a factor hij or hjkI
will integrate to zero.

Finally, we can write (6.6) to be

(6.11) & =1 (1L+ap,)? I exp(-n £ c.h.h. )
S} I In(a=0) s K JEIK

* exp(-n tr[H l-n trLH ] - cel)d Jgk @ 5y pd0 sy T

vhere J is found in (5.7).
If this integration is to be performed term by term on the expansion

of exp(-n tr[H 7 - ...)J then for large n the limits for each hjkc
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can be put to ¥« . Since each integration is of the form

m,

- Jk
I exp(-n £ c.h_h, ) NI h, I dh. . dh, s
N(H=0) j<k Jk ik gk <k Jjke <k JER kI

and most of this integral is concentrated in a small neighborhood of H=0 .
The mjkfs are positive even integers or zero, since any term containing

an odd power of an h.

jke will integrate to zero. Now we expand

exp(~n tr[E?j - ««.)J , writing the terms in groups, each group corresponding

to a certain value of m . We have

(6.12) exp(-n tr[g?] -n tr[E&] - e )d

2
=1 -n trLE&] + EE(tr[E?])g - §§tr E?

1

A

{(5P2 - 3)(tr E?)E - p tr E&} + ooue .

Using formulae (5.16), (5.17) and (5.18) in the previous section, we

obtain the following theorem:

Theorem 6.1. Let A and B be diagonal matrices with O < &, <a, < .. <a

and bl > b2 > ees > bp > 0 « Then for large n , the first two terms

in the expansion for JE are given by

1
3n

- ; '_l .
(6.13) &, = (L+ap)? 0 =T={1+=0% L +8(p)] + .01}
£ = T s Mk g I ’

vhere

(6.14) B(p) =p(p - 1)(2p - 1)/2 .
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/
Procf: In the proof, we include only terms without an odd power of an

hjkc , and do not write C (where C is defined in (5.16)) which appears

with each term after integration, and denote

-1

| B
5" = % cjk

Jj<k
and

Sll

2 (e, fe.c. +ec, Jene  +ec,.fe.c )
5<k<s ks’ "jkjs Js’ jk ks Jk' “js ks
Note that only the second, third and fourth terms on the right hand side
of (6.12) contribute the factor n"t , using formulae (5.16) - (5.18) in
‘the previous section. After integration, the second term -n trcﬂ&]

contributes

J

2 oy 4L LD 2(p - 2) 1 ., 3/p
(6.15) 58t a) F s st - st 2(3)

and the third term ng(tr[E?])E/E gives

1 n_P=-2 & _ 1P
(6.16) E—S 50 St o~ n(3) .
Since tr H2 =2 ¥ h.h
- - . . s
jax  JE Ik

2
it is not difficult to see that -p tr EI/IE gives
B o
(6.17) Z- S .

Adding (6.15) - (6.17) we obtain (6.13) .
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Theorem 6.2, The asympiotic distribution of the ch. roots,

> > > = -+
bl b2 > bP 0, of §1§2 for large degrees of freedom n =n n

-1 -1
v e > =
when the roots of zﬁzé are Xl > xg > > Kp 0 , wvhere kj a

(5=1,...,p) is given by

p -
(6.18) c, mat vt (1+ad)™ O (b -1)° 1 ab,
3 ' l "l
M= u+s=[2 8l +.}
3<k "¢k j<k 9
vhere C,, ¢ i and B(p) are defined by (6.2), (6.7) and (6.14) respectively.

Te Comparison.

It is interesting to compare the formulae in the one-sample case with
the corresponding ones in the two-sample cage, and the real situation with
the complex situation. In the real case, there is a factor 1/2n but a
Tactor l/3n arises in the complex case. Unlike the one-sample case,
in the two-sample formulae, we find that there is an extra term of(p)/2n
in the real-case and B(p)/3n in the complex case (in the second term of
the asymptotic expansion for & in (3.1k) and J, in (6.13)), which is
a function of n and p only. In (3.14), if we write

L i
o=o(ab) =" T (1+ap) 1 (EL)Z
3=1 Jd j<k "3k
then the expansion for J with the first term alone, and with both the

first and second terms included are respectively w and w{l + [T cgi + a(p)])/2n} .

A similar comparison can be made from (6.13) for the complex case.
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