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1. JIntroduction and Summary

Many robust‘estimators of the location parameter of a-symmetric'unimodal
disiribution have been proposed in the past several years, e.g. [12], [14], [23].
Ali. of them have the desirable property of being relatively insensitive to
outliers or ''wild observations.'' This paper investigates the effect of
serial dependencé in the data on the efficiency of the following estimators:
the: mean, median, trimmed mean, the average of two symmetric percentiles and
the. Hodges-Lehmann estimator.  We study the estimators when the observations
are assumed to come from a strongly mixing stricfly stationary process (S.S.P.).
Gaussian procesées are studied in great detail but we also study the behavior
of -ome of the‘estimators on a first order autoregressive process with a double-
exponential marginal distribution (F.0.A.D.P.). One general result (Theorem 6.1)

states that for any Gauwssian process for which all the serial correlations {pn}'
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are non-negetive, the efficiency of any linear combination of the order
statistics relative to the mean is greater than the corresponding efficiency
in the case of'independent observations. The same result holds for the effi-
ciency of the Hb ~7»ann estimator. On the other hand, on first order
autoregressive Gau551an processes (F 0-A.G. P.s) as p approaches -1 , the
efficiency of any finite linear combination of sample percentiles relative to
the mean approaches O . The corresponding efficiencies of the Hodges-Lehmann
estimator and the trimmed mean have a non-zero limit~

On tﬁe F.0.A.D.P., the median is the most efficient estimator studied,
altiough it is not the best possible one. For all -‘alues of p , the median
is twice as efficient es the mean while the Hodges-lehmann estimator (HL) is
-alvays moreiefficient than the mean but less efficieht-than the median. In
cortrast with‘the Gaussian case, the relative efficiency of the HL estimator
gels worse as p — +1 and better as p - -1 .

In ordefvto stuly the acyrptotic properties of estimators one needs to
obtain their asymptotic distribution. Cogburn [4] showed that the sample
percentiles are asymptotically normally distributed for data from a general
uni.'orm mixing S.S.P. but his rzgularity conditions seem hard to verify. As
al® the estimators we concidar are functions of the empiric c.d.f. we introduce
a rotion of mixing which is stronger than ROSenblatt's.strong mixing [3], [19]
and verify that the‘expiric c.d.f. does converge to a”Gaussian process. Our
notion of mixing is vealier than the concept of © mlxlng introduced by Doob [6].
In partlcular, it is satisfied by all the first order autoregressive processes
we study in detail. For CGaussinn processes, much weaker conditions suffice,
ard this is discussed in Section 3. |

Section 4 is devoted to obtaining a general expression for the asymptotic

variance of e general linear combination of the order statistics. Its use is



illustrated on Gaussian processes.

The Hodges-lehmann estimator is diécussed in detail in Secfion 5. A
special result ié given to insure its asymptotic normaiity under weaker con-
ditions than are required for the empiric c¢.d.f. to converge to a Gaussian
process. Sections 6 and 7 are devoted to a study of‘the relative efficiency
of our estimators on Gaussian and double-exponential processes. Both first‘
order autorégressive processes are étudied exhaustiyely.

The last section (8) of the paper is concerned with various models of
contamination which lead to dependent processes. Recently, Hoyland [13] studied
the behavior of the HI, estimator in a contamination model which is a special
case of the first model we consider. The second model leads to a stationary
process which has a contaminated normal (in the sense of Tukey [24]) marginal

distribution.

2. The Median

Let x(l) < x(a) < oses € x(n) dencte an ordered sample of n observations

{Xi] from a strictly stationary stochastic process (S.5.P.) with continuous

merginal c.d.f., F(x) . The median, M, is defined by

x(m&l) ' s if n=2m+ 1
(201) M =

¥

1
E(x(m) + x(m#l)) , if n

In this section we adapt one of the standard methods, [1] and [15], of deriving
the asymptotic normality.of the median in the case of independent observations
to the case of dependent observations. We illustrate some of its properties

on Gaussian sequences and also on a first order autoregressive double-exponential



process (F.0.A.D.P.). This section serves as an introduction to the methods
used in the paper and the type of results we obtain.
If {X;} 1s an S.S.P. with median y (which will be assumed to equal O

in this section), the ordinary sign test statistic Sn can be expressed as

n
(202) ’ Sn = I Yi »
i=
where
(2.3) Y, =

Under suitable mixing conditions, Sn is asymptoticélly normally distributed
and it is the sum of dependent binomiai random variebles. Indeed if {Xi} is
an S.5.P. obeying Rosenblatt's [19] or Cogburn's [4] uniform strong mixing
conditions or Rozanov's [20] complete regularity condition, Sn will be asympto-
tically normally distributed. In the appendix to this section we verify that
Sn obeys the other conditions of the Blum~Rosenblatt [3] central limit theorem
for jaussian S.S.P.'s where the correlation coefficients satisfy & lpkl < ®,

The asymptotic behavior of the median, M, is deduced from that of Sn as
follows. Supbose M<y, then IM - VI is the length A of an intervel
containing the.observations between M and v . The number of observations

betﬁeen M and 'v is Sn - n/2 which is approximately normally distributed, i.e.,

(2.4) : s, - n/2 ~ ¢ /Var 5, ,



where ¢ is a standard normal r.v. Note that the sign of e specifies
whether M <y or is >y . Since the number of observations in a small

interval of length of A about y is spproximately
(2.5) nf(v)a ,
equating (2.4) and (2.5) yields

/(5 )

n

(2'6), M-V=A~;We_ .

=

This ''heuristic'' argument can be made rigorous as long as the c.d.f. F(x)
’hgs a non-z2ero derivetive at vy . |

Throughout this paper the asymptotic variance of an estimator will always
meen the variance of its asymptotic distribution and‘the asymptotic efficiency
of two estimators will be thelreciprocal of the rﬁtio of their asymptotic var-
iances. Thé asymptotic variance of the median on Gaussian processes is given in

- Proposition 2.1. If [Xi] is a stationary Gaussian process such that

z ka|-< © ,  then

1 7 |
(2.7) v(M) ~ E'kz arcsin p|k| .
= =0
Proof: Clearly
n .
(2.8) v(sn) = I V(Yi) + = Cov.(Yi,YJ) .

i=l i,j

Recall that if X and 2Z are jointly normal with zero mean and correlation p ,

then P(X >0, Z>0) = 1/k + (1/2n)arcsin p . As the correlation between



two random variables k time units apart is Pk’ Cov(Yi’Yi+k) = (2n) lorcsin Plx|

and V(S ) = (2n) Z (n - |k|) arcsin p As I lpkl <o,

k=-n 'kl
, . .
(2.9) | Un V(s /n) - Z arcsin plkl
S « B 2 -} k==

and (2.7) follows from (2.9) and (2.6) .
We illustrate the proposition by considering a simple moving average

process. let {Zi} be i.i.d. standard normal r.v.'s and let

- -1/2 - -1/2
xi = (m+1) [Z0 + ...+ Zm], x2 = (m+1) [Z1 + ... 4 Zm+1], etc. As

1-|kl/tm+1), 4if |k] <m+1 ,

(2'10) p_k = pk =
‘ 0 ’ otherwise »
(2.7) becomes
(2.11) ‘ v(M) ~ -( 2 Z arcein (1 - -%I) + g)
3=1

which can be regarded as the variance in the case of independent observations
plus a correction factor. As the variance of the sample mean, X s 1s (m+l)/n )

the reciprocal of the efficiency of the median to the mean is

m
w0) 2 T arcsin (E%I) + nf2
(2.12) . = '

v(X) m+ 1




When m goes to infinity at a smaller rate than n , formula (2.12) is a

Riemann approximetion to

, ‘ 1 :
(2.13) , 2 I arcsin x dx = ¢ -2 ~ 1l.1h .
: 0

It is interesting to notice that the efficiency of M to X as m approaches
is about 87.7% which is much highei‘ than the efficiency (63.6%) when the obser-
vations are independert.

We now give‘an example which shows thaf Gaussian processes exist for
which thg asymptotic efficiency of the median relative to the mean can be
ﬁrbitrarily close to one. We choose the Py >0 in.a.manner that the piece-
wice linear function connecting them will be convex. Then, by Polya's theorem,
ﬁhe {pk} will be the correlation sequence of a stationary process. Of

course, p, = 1. For k >1 define

‘ l+e
K+l K+l l+€ 1.
) g e <x+k y0<ps Tre
(k+x) 2 - (Ey
K+2

where € will be chosen to be arbitrarily small and K large. Using Riemann

approximations we obtain

l+e

. o © ' | o _
’ ' k 2 1 K+k P i
- N
and
| : e
(2.16) L p ~ 1+ r £ ax .
~® 1l x



By choosing K large, the ratio 1im V(M)/V(X) can be mede arbitrarily close to

n = o

: f arcsin px-(l+€) dx
1

(2.17) | .
® _~(1+e) ax
e

As arcsin y <y + (g-- l)y3 , the ratio (2.17) is

o L4 (g'- 1) p3(2 + 3¢)¢

(228) < -1+ @-Dee 2430,

pe ™t
which can be made arbitrerily close to 1 , by choosing e sufficiently small.

Since most stationary processes discussed in the time series literature
are Gaussian it is interesting to study a non-Gaussian process. We shall use
the first order autoregressive double-exponential process to illustrate the
effect the marginal distribution can have on isospectrél processes.

The double=-exponential process is treated by explqiting the following
characterization, due to Gastwirth and Wolff [7], of its characteristic function.
Specifically they proved: »
lemma 2.1. If o(u) = ¢(u) [q + (1-q) ¢(u)], -»<u<e, with 0<qg<1

and p a real number, 0 < |p| <1, then o(u) is of the form

(2.19) ' eu) = (1+o2u)L ,

2
where o >0 1is g_scale parameter. Furthermore, q = p2 259_ a? = 02/2 .

This characterization is more meaningful when it is interpreted in terms
of an underlying stochastic process with independent errors. The process satisfies

the stochastic difference equation



(220) % =t (@0 + (la)e]

where O stands for the random variable which is degenerate at the origin.

In the stationary case, Lemma 2.1 states that Xi i

if and only if both have a double-exponential distribution with the same param-

and €, obey the same law
. eter. Thus, a first order autoregressive process with double-exponential mar-
ginals exists and the error term is a mixture of a degenerate random variable
and a double-exponential random variable. If IpI +_0 » then with probabiliy
one the error r.v. will be zero aﬁ tharee ccnsecutive times. Once this occurs,
p and the mean can be estimated perfectly from the curve Joining the
three observed vélues of the process. Thus, the estimation problem is a non-
regular case.

In order to calculate the asymptotic variance of the sign test statistic
note that it follows from lemma 2.1 that xi+k = pkxi +.ﬂk s where
nk = pzk'o + (1 - pak)e and € 1is en independent douﬁle-exponential r.V. 80

that P[xi >0,

X e > 0] = 1/k + pk/h , and (see [8])

- =1t+p
(2-21) 1lim v(sn/n) = §¥iTpy -
. n—-o
Using (2.4%), (2.6) and the asymptotic normality of the sign test [8] we obtain
the following

Proposition 2.2. When {Xi} {g_g_first order sutoregressive process with

double~exponential marginals the median Eg.asymptotically pnormally distributed

with mean 0 and variance

B j
ST
|
©

*

(2.22)



LU

Since the asymptotic variance of the mean on first order sutoregressive
2 ' ,
data 15 & L0  proposition 2.2 implies that the median is twice as effi-

1-p
cient asymptotically as the mean for all values‘ of p on double-exponential -
first order autoregressive data. In Section 6 we isha.l_l gsee that the Gaussian
situation is quite different. Indeed as p = -1, the mean is infinitely
more efficient than the median. '
Another interesting consequence of inequality (2.18) is formalized in

Theorem 2.1. The efficiency of the median to the mean on completely regular

stationary Gaussian processes such that Py 20 forall k and I Pr <e

is always greater than or equal to its value, 2/m , in the case of i.i.d. r.v.'s.
Proof: As O S_.pk <1, substituting the bound (2.18) in formule (2.17) shows

that

nv(M) ~ % L arcsin p S Z o * ("-2l -1)z P
k .

As nV(X) ~ £ p, » the reciprocal of the efficiency is lim ﬂ%)- < I,
‘ ‘ , n -~ o V(X)
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Appendix: A Summary of .ixing Conditions and Their Application to

Statistics of the Form Ef(xi)

A key step in the proofs of the asymptotic normality of the median and the
convergence of an empiric ¢.d.f. of a general S.5.P. to a Gaussian process is that
the sign test statistic is asymptotically normally distributed whenever the basic
S.5.P. is strongly mixingb[S] (or, equivalently completely regular). In order to
prove asymptotic normality one can use the concept of maximal correlation between
sets of r.v.'s [23], however these conditions are hard to verify in non-Gaussian
cases. We therefore develop analogs of Rosenblatt's mixing number and introduce
énother measure of dependence, between Rosenblatt's and Dogb's which is readily
computable.

If {Xi},-i.e. I and {Xj} i € I are two indexed families of r.v,'s the mixing

number measuring the dependence between them is

(2.1 a(133) = sup | P(AB) - P(A)P(B) | ,
A,B -

where the range of A is the Borel field generated by the {Xi}_i e I and the range
of B is the Borel field generated by the {Xj} jed, : Rosenblatt's mixing
nunber for stationary processés will be denoted by aﬁ.and is defined as

(2-2*) o o = a(1;J)

where I = {i; i < 0} and J = {j; j > n}. For finite sets of r,v.'s

I-= {il,...,iq} and J = {jl""’jr} the mixing number (2.1) will be denoted by

* » . - 3 0
(2.3) a(il,...,iq; Jl,...,Jr).
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Our measure of dependence is defined in terms of a function measuring the
conditional deviation from independence. Let Z = {Xi’ i € I} have distribution

Q and !! = {Xj,'j g J} have distributidn R, and (Z,W) have distribution P, then

C@ah AL 33 ) = [ | Pedzly) - Q@) |

All of our conditions involve the LS norms of the function A(I; J; y). Since

@5 Ila@ = s I 1 )PE Ig) - o ° ree1Y/*

where F is a partition in the g-field generated by the {Xi, i e I} and {Ek} is a
partition in the g-fiéld generated by the {Xj, j € J},it is not necessary to have a
bonafide conditional probability. The analog of (2.3) is

*
(2.6 ) A(il,oco,i ; jls"‘,jr; y) = A(I; J; y) ’

q

where I = {i ,...,iy} and J = {jl,...,j } .

1 T

We also define

»
(2.7) A(n; y) = A(T; 5 y)
where I = {i: i <0} and J = {j: j > n}, and

(2.8) _ 8, = [ atn; AR = || am) |];-

For stationary processes, if '1l < .. i.iq < j1 < e g_jr, it is obvious that
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(2.9%) JRICTTPRIE NN I N | | s |,

where n = j1 —-iq

Remarks: The quantity || A(I; J)||, equals the total variation of P - QxR.

_oreover,
(2.10%) : a(I; J) < 1/4 |} a(1,) ||

On the other hand conditions using the s-norms of thé function (2.3) are weaker than
those depending on the concept of ¢ mixing introduced by;Doob [6] and developed by
Billingsley [2] and Serfling [22]. Indeed, for stationary processes Billingsley's
¢, is 1/2 Hoam) ],

At this stage it seems appropriate to illustrate the compytability of
reasonable bounds for the s-norms of A(k) for first order autoregressive processes.

For .iarkov processes 4(k) = A(0; k) and A =|| A(K) ||. Using the representation
¥ =
(2.11%) | X, =0 X+ U
and denoting the stationary density of Xk by f and mass of the non-absolutely con-

tinuous component of the distribution of Uk by ii and the density of the absolutely

component by fk we have
(2.12%) 8Os ks y) =i + [ | £() - £ (x - o"y) | dx

If the density f is not supported on a bounded interval of the real line, then
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(2.13%) ' sup A(0; k; y) =
y

This shows that autoregressive processes are not ¢ mixing. !'e now discuss three

examples,

Example 1: Our f1rst example 15 the double-exponential process. Here m n'ka

and fk(x) = (f)- ,(1_-p ) e l e yl so that

“k
2149 a0,k = o™ v fas| e IX L q T Xyl g,

k
<02 w172 [ o™ e I¥lax 4 f(1/2) (1207 | 671Xl g Ixo0"y] | dax

k3 :
< 2% E'DkIYl (1-0%%y.

iloreover, the ilinkowski inequality implies that

1/s

(2.15%) e (1, <207 4 0¥ 3 1
so that A < c:lpkl
k—

Example 2: For Gaussian iiarkov processes we must bound

2 2
-(x -py)"/2(1-p7) 2
-1/2 -x /2
(2.16%) A(0; k; y) = (2m) I | -e I
- ';“p2;17

dx ,

which is bounded by
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©  -(x-oy)72(0-0%)  _-x%/2(1-09)
2am @n Vi) ¢ i

S - | dx +
o (1095172 (1-021/2
-1/2 o /201-6%) -x%/2

The left side of (2.17*) is treated by noting that both functions are probability
densities which are equal when x = py/2. lhen p > 0 and y > O this integrand is
positive when x > py/2 (when y < 0, the reverse is true but the same Bound occurs by

symmetry) so that

-Gx-on)’/201-0%) /20109

\ -1/2 _
(2.18*) (2m)° /12 -;-;7337-' EIT;E;T7§:- | ax
, IRy _.2 o2 2
= 2 12 [le (x-py)"/2(1-07) _ - X /2(1-p )] dx
[(2m)(1-p )] oy Co
2
2 Y12 21501402
= -*——-—~———75 1/2 e dt =
[(2m) (1-p")] -py/2
2 2
4 1 y/2 et /2(1-p7) dt < Kloy]
(-oH? (212 0 T (-0H1?

The right 51de of (2.17) 1s bounded by observing that the integrand is bounded by

c X p2 e * /2 when | e -x? o /2(1 =P ) - (1-p )1/2 | < 0. When
|ye—x b /2(1-p ) - (l—pz)l/2 | > 0, an application of Taylor's theorem yields
the bound
- 2 1/2
o5y M2 L1 | < metra-ehY

(2.19%) | a-
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x2/2

2 -
e . In any case the integrand

which implies that the integrand is bounded by Bp

~in the right side of (2.17")is bounded by
| | 2 2 -x%/2,.. 2.1/2
(2.20%) (Ax™ + B)p" e /(1~p")

so that the right side of (2.17*)is bounded by sz so cxpression (2.17) is bounded by

2 1
Kp . K 1oyl 2,
1,52 1 21PY|

1-0%

(2.21%) 173

where (l-pz)'l/2 is absorbed in the constantsC,, C, if |e|l is bounded away from 1.

Thus,

2
k oY M2y 2 k

2
2.22% k) || =c :
(2.22% |} a) || = cpp UL U

k
*pczfl)'l 1

liore gemerally, applying the lMinkowgki inequality yields

2k

(2.23%) 1800 11, < ¢ + ¢ylol* 115,

th absolute moment of a unit mormal r.v.

where g is the s
Notice that (2.23*) is very similar to the result (2.15%)obtained for the double-

exponential process and one might be tempted to conjecfﬁre that for Markov processes

8, = 8(0,k) 5_C|pk|. This is not true as can be seen from considering our

final example.

Example 3: For the Caﬁchy process Un is a Cauchy r.v. with scale parameter (l-pk)

so that
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(2.24% A k; ) =t [ | s 2L dx ,

2
T a e e’
=Y

where y = pk. Expression (2.24) is less than equal to
2.25%) ot [ a=xD - anta s ZranhTt ] axos
L antasta-nd Tt - antar e and Y ax

We discuss the case where y>). The left sidc of (2.25) is a differcnce of two

probability densities which are equal when x = :-__(l-y)ll2 and the factor (1-#:(2)—1

is larger whén x> (l_y)l/Z . Hence the left sidc of (2.25) is

2.260 <2 [ @ g asdra-nh T e

|x]>(1-v) 12
< rasdt - g taed/aen? e
x> (1-y) /2 |
= %{arctan (1—7)'1/2 - arctan (1-7)1/2] < 2v.

The second integral in (2.25*)is handled by substituting w = x(l-y)-l,
z = yy(1-y)"} yielding

(2.27%) bl - R S ¥

(1+(w-z)2) 1+w2

which is the difference of two Cauchy densities with locations z and O respectively

and the dcnsitieé are equal when w = 2/2. The same type of argument used above shows

that expression (2.27%)is
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-1 - 4 .
(2.28%) < 4n”" arctan I§T¥¥§)l L Ty aretan (ylyl) < C arctan . yly|,

~if y < 1/2. Thus,

(2.29*) A(0; k; y) < 2y + C arctan vyly|

and
(.30 [[atallg s2v v c [ ]| arctan (1p)]° —Lgmay ] M5,
| - m(1+y”)

By decomposing the range of integration and using clementary inequalities onc can

show that
(2.31%) BIRICIH TR yM?
when y = pk and Ks is constant dcpending on s, llore interesting is the casc where
s =1
Here

y-1 . © -
7 2 g+ 21 anH ey

(2.52%)f | arctan yy|(1eyH) " lay < 2 [
- 0 (1+y ) Y'l

wherc we usc the bound arctan x < x for y 5_(7)'1. The right side of (2,32%)is

(2.33) < 20(1/2)¥ 1og(1+ (¥ ™) + T =y« y 10g(1 + (4B
so that

2k

(.34 ] 8001y < cp* + Cp* 10g (1 + o7
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- <2k nearly
For large x, log (1+x) is cssentially log x so that log (l+p “") is/2k log (1/p)
which implies that

: )
(2.35%) 1 a1, < 8" + Bke®.

Remark: If one refines the argument to get lower bounds on p(k), one can show that
the k term in (2.35) cannot be ecliminated.

In order to prove the asymptotic normality of the sign test statistic we need
the following Lemma due to Ibragimov [14a]:

are _
Lemma 2.1*. If U and V/ bounded EZ.Cl and C2 respcctively and U is measurable

w.r.t. the Borel ficld generated Ex_xi forie I and V ig_measurable w.r. t, gﬁi

Borcl field genefatedvhz_xj, j € J, then

(2.36%*) Cov(U,V) < 4C.C,a (I; J).

1%

We now formally state

Theorem 2.1*; Vhenever {Xi} is a strongly mixing S.S.P. such that

(2.37%) I a(0k) <«
k=1
n n '
2389 1 ) pin (a(0,5; K, w05 §,K), a(0,k; §)) = O(n)
j+k=1 |
- and
(2.39%) 5 VY min(a(0; i,i+§,i+j+k), «(0,i; i+j; i+j+k), a(0,i,i+j; i+j+k)
i+j+ksn |

= 0(n)
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n : ‘
then any statistic of the form Sn = X f(Xi), where f is a bounded function is

i=1
asymptotically normally distributed, i.c.

N
a i/

(2.40%) n"1/2 [Sn-E(Sn)]si'N(O,oz) ,

where o = lim n~! V(S ).
' B 13 0 n

Remark: Thesc conditions show that asymptotic normality is determined by the
strength of dependence of various subsets of four r.v's which suggests that strong
. mixing should.not be necessary.

Proof: The result will folloﬁ once the fourth moment condition of the Blum-
Roscnblatt Theorem is verified, i.c., letting Ai = f(Xi)-E[f(xi)], E|EAi|4 must

be O(nz). Expanding Elei[4 = EZZXE(AiAjAkAz) one obtains

2

(2.41%) £ EAg s 451 E(AfAj) + 6L I E(A? A? al)

{A) + 125 LT E(AA
i ij i<j 1

i<jk

+ 24 L L L I E(ALA_AA)).
i<j<k<t lJAkl

As the Ai are bounded with mean O, I E(Ag) <Kn, LL E(Af Aj) g_an and

2

) E(Ai Ag) < Kn", when K is an appropriate constant. Now

E(AiAj)E(Ai) + Cov(AiAj; Ak) ,
R 2, _ . 2
(2.42%) E(AiAjAk) = COV(Ai, AjAk) R

2.
Cov(A; A5 A)



21

Bounding the covariances by Lemma 2.1* yields

IE(AiAJ.)lE(A,f)I + K a(i,j; K)

(2.43%) |E(AiAjA§)| < K a(i; j,k)

K a(i,k; j),
Since E(AiAj) = E(Ai)E(Aj)+Cov(Ai,Aj), IE(AiAj)l < K a(0, j-i) ,

(2.44%) L
i

' 2 2. < |
I I JEAA) JE() <n” K a(0,k).
< J k 13 Ak kzl .

As E(AiAjAz) 5 |E(AiAj)|E(Ak)2 + Kmin(a(i,j; k), o(i; j,K), ali,k; §))

(2.45%) I I IEMAAAD <0’ K ] af0,k)
i<je<k 3 k=1

+nK I I min(a(0,j; k), a«(0; j,k), a(0,k; j))
jk
where j-i and k-j ére now denoted by j and k. The fourth order tcrms arc handled by

noting that if i < j <k < £

(2.46%) |E(AiAjAkA£)| < IE(AiAj)I |E(AkA£)| + K a(i,j; k,2) ,
Ka(i; j,k.l) ’
K a(i,j,k; £).

A§

2.2 . ¢ 2
(2.47) ¢ & t ¢ |E(AAD] |[EAAD] <2 K° (] a(0,o)°,
i<ji<k<g l 1 Ak t rzl
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(2.48%) Zz;l»s(AiAjAkAz)l <n? k' [2 a0,m]% +

z z r
i < j <k <

K © 3 ¢z min(afy,J; k,£), a(i; j,k,L), a(i,j,k; £)
i<j<k<t _

The second term on the right side of (2.48) is

<KnZ min {a(0,5; j+k, j+k+£), a(0; j,j+k,j+k+L), a(0,j,j+k; j+k+£)
J B

I Z
j +k+€<n
when j, k and £ now denote j-i, k-j and £-k. Thus, assumptions (2.37*} (2.38%) and
(2.39*)imply that (2.45*%)and (2.48*) are O(nz) so that the conditions of the Blum-
Rosenblatt theorem hold.

An important Corollary of Theorem 2.1* is

Corollary 2.15. Let {Xi} obey the conditions of Theorem 2.1*, then the finite

dimensional marginal distributions of the empiric process vn [Fn(t)fF(t)] con-

_ verges to a multivariate normal distribution,

n
Proof: For any t, Fn(t) = n'l 2 Ii(t), where Ii(t) is 1 if Xi < t and O otherwisec.
_ i
k
For any sect tl""’tk of k values of t any linear combination Z a.Fn(tj) is a func-
v ja1

n

tion of the form n-1 Z f(xi),and Theorem 2.1* applies
i=] o

Remarks: 1) Corollary 2.1* includes the asymptotic normality of the sign test statis-
tic.
2) The condition of Thecorem 2.1* hold whenever I k2 @ = 0(n).

3) Sinece ak S-Ak’ Theorem 2.1* is valid whenever £ k2 Ak = O(n). This condition is

casily verified for the three iiarkov processes discussed in this appendix as

Zszk converges in all three cxamples.
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We conclude this section by showing that for Gaussian processcs the sign test
statistic is asymptotically normally distributed if Z]pkl < =, Since bounded
functions f have finite_variance and the normal distribution is determined by its
moments we can approximaté f in Lz(w.r.t. the normal distribution) by a polynomial

-1/2 n

P_ so that [ £ - PEII = ||f€|| < €. The statistic n’ P_(X,) is asymptotically

i=1

normally'distributed by Sun's Theorem [23]. The variance of

n n
i=1 -n

wherewe have bounded Cov(fe(xi), fe(xj)) by slpi_jl by Sarmanov's Lemma [20]. By

the liann-Wald Theorem [16] the result follows.
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3. The Convergence of the Empiric c.d.f. to a Gaussian Process

In this-aection we show thgt the empiric c.d.f; of a strong mixing S.S.P.
‘converges to a Gaussian process provided thet the A(or a) functions defined in the
-Appendix to Section Z obey some regulérity conditions. These conditions are
weaker than Doob's concept of ¢ mixing so that our result is stronger than
‘Billingsley's Theorem 22.1. In particular, the Gaussian, Cauchy and double-
exponential first order autoregressive processes are not ¢ mixing but satisfy
our conditions. For Gaussian processes, a special result is derived showing
thet I kal <o guffices to guarantee the convergence of the empiric c.d.f.
to a Gaussian process.

The first step in the proof is an application of a lemma of Rubin [21]‘wh1ch
" staces verifiable conditions which imply Prokhorov's necessary and sufficient
condition for processes to converge to a limiting process with a.s. continuous
sample paths. The next step is to apply Theorem 2.1* to prove that the finite
dimensional marginal distributions converge to the appropriate multivariate
Geussian distribution. | |

Before stating our main result we prove a generaliéation of Doob's Lemma 7.1 [6]

which applies to our A functions. Specifically we have
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lemma 3,1, If £ and g are functions such that E(If(x)lq) <o,
B(la(N)|™) <= apdaf F+2+%2=1 md 1Sa 78 Se, then
1. 1

1/q rTs
(3.1) lcov (2(x), e < 277 |2l] llell, lla , »
where A is defined in the appendix to section 2.
Proof: Writing | o
(3.2) cov [2(N)e(1)] = [ e(v) { [ #(x){ap(xly) - aa(x)1} ar(y)

and applying the Holder inequality to g(y) end h(y) - If(x)[dP(xly) - dQ(x)]

ylelds
!
J

(3.3) Jeov 2mem] < [ [ lsI” ar(y) ] T - [ [ In(x)1® ar(y)]

Applying the Hilder inequality to h(y) and 1 yields

t

(3.4) n1® < ([ 126al® leptxly) - aa()])a *p)
Setting %— - %i +%  applying the Holder inequality again yields

t

(3.5) j'lf(xﬂt |ap(x|y) - aq(x)] < (I [2(x)1? |ap(xly) - dQ(x)D q-[t_-\-(y)ls -

se that the second factor on the right side of (3+3) 18 bounded by the t°° root of

| e wded
(360 [ ([ 120 Jer(xly) - aafx)] ) ? + [a0y)] aR(y)

ctHi

(3
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Applying the Holder inequality once more shows that (3.6) is

| t 148 t
a1 <[ [ (] lel® laptxly) - aa@)]) arn] & & %) aR(y) ] ®

and (3.1) follows by taking t*® roots and noting that |
-8 [] 12G)]® |ar(xly) - aq(x)] ar(y) < [ 12612 [tlar(xly) + aa(x)] ar(y)
< 2_[ |£(x)|? aa(x) .

A further uscful generalization is

Lemma 3.2. If‘fi has support Fi’ g; has support Gi’ where the sets Fi are

pairwise disjoint and the sets Gi are pairwise disjoint, then

_ 1
—
. 1
(3.9) 2 cov(fy, g) <2/ [I£l1, el 11 o7

W0 |

S

where f = if,, g = g and g,r,s are as in Lcmma 3.1.
Proof: Observe that in deriving Lemma 3.1 only that part of A(y) for y in the

support of g is used. Letting XG denote the indicater function of the sct Gi

and Ai = AX Lemma 3.1 implies that

G-’
i
1 1
' Va |1e || g1l 11T 3]
(3.10) Cov (f;, g) <2777 [E 1, Heyllg Ha; s

The conclusion follows by applying Holders inequality to the series and using the

fact that the supporting sets of cach function are disjoint.
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The main technical result of the section is glven by

Theorem 3.1. Whenever {X } 1s a S.8.P such that

-]

(3.11) 1 sl <=,

(3.12) E, min(|4(0.5; #0111, 118005 3,34911,) = 0 (n(log m™)
J+kzn

(5.13) ) ~min(}]a(0; i,i+j,i+j+k)||1, |1ao,i; i+j,i+j+k)||1
i+j+k<n : :
11809,1,1+35 1+5+) 1))

= 0(n(log n) )

an either

7.14a) " : y llA(O,k)||$'<vw for some s > 1
e
(7.14D) a(0,k) = o(k”! (log K)7O°Ey

1/2

‘hon the empiric pricess n [Fn(t)-F(t)] obeys the conditions of Prokhorov's

ccatinuity theorem, i.e., as n > = it converges to a process with a.s. continuous

prths if the finite dimensional marginals converge.

Before proceecding to the proof of the theorem we recall some useful results
diwe to Rubin [211.

Lemira 3.3 (Rubin). Let Xn be a scparablc process defined on [0,1] such that

"3.15) Xn(t4T) - Xn(t) > - wn(u) for u> 0,
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where L is increasing on (0,1), and for some A > O

| 21 . o
G161 E| X /2 - (|

]

<y, <o,

For any € > O, let Rn(e) be the smallest integer such that

-Rn(E)

(3.17) v (2 ) < €.

n

The Prokhorov  continuity condition is satisfied if for every ¢ > O andn > O

_ RE na
1lim 2 Y < u.

(3.18) n i=£ in

A frequently useful corollary is

Lemma 3.4. ;g_xn is a separable process satisfying (3.15) and

)‘ .
(3.19) R A RN LR NONEEXNC)

then Prokhorov's condition is satisfied if for every ¢ > 0 and > O therc is an

s —

‘Z_EBEE that -

: . . i 1/a+1 ‘
(3.20) - 1im ) 2" ¢ 271) <n

where R is as in Lemma 3. 3.

Remark: If Yin in Lemma 3.3 or ¢n in Lemma 3.4bcan be written as a sum
of a fixed finitc number of functions satisfying (3.18) or (3.20) respectively,

the conclusion follows.

Proof of Thecorem 3.1: Letting'Yi = F(Xi) onc ean transform the empiric process

to the umit interval and we shall assume that this has been donc. We shall
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verify that the conditions of Lemma 3.3 arc satisfied where A = 4, wn(u) = nl/2 u
and Rn(e) is the Qmallest integer greater.than log (l/é) + 1/2 log n, where loga-
rithms are taken to the base 2. Let Bi(t,u)v='1 if_Yie[t,t+u)~and 0 otherwisc
and let Ai(t,q) = Bi(t,u) - u. e shail»omit the arguments u and t wherc no confu-
sion will arise. The computation of thc bounds on thc fourth moments required to
verify condition (3.18) is similar to the derivationof Tﬂéorem 2.1*, First we note that
'if V(t,u) = g ‘Aj'(t,u), W(t,u) = g Ai (t,u), thcn:fvlil, E]V]qizu for all

=1 7k g=l g _
q>1, EIWI < 2u for r > 1, and Lemma 3.1 implies that -

1.1
. ) ) —_— = .
(3.21) |cov(v,w)| < min 279 2w T A1_1/q||s,'Cu) ,

wherc C is a constant.
Note that any product of Ai's is a constant plus a linear combination of indica-
tor functions (of sets whose¢ probabilitics are < u), and if the intervals [ti’ ti + u)

are disjoint
| o 1-1
(3.22) ¢ |Cov(V(ti’ti +u), N(E e w)| < 12 /q1| A /q||s .

Clearly (3.22) is minimized when q = ® and s = 1. (For the duration of this proof

||+], without a subscript will denote Ilslll ) i
2

j

i1

_ _ n . .
We now bound the terms in the expansion of n E{ z Ak (l—%-, —%9}4.
1 k=1 2 2

Arguing as in section 2 but using more powerful bounds wc obtain

'_2 Zi n
(3.23) ¢} §

4, <
je1 k=1 B 2/n ,
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-2
(3.24) n Z ¥ ZE(Ak Ap) =

j=1 k=1
k#L

-2
<n

and i
2

G w2 ]} § el adea? ] HE(Ak) B 00 1
J

j=1 k=1 £=1
k#L

<427 4 2m!

Next

k

'z'

1

n

)

21
-2 2
(3.26) n"°| Y E(AS AA )| <
jzl IZ#%#I% 2

21

z 2 Cov (Ak’ Al)'

j=1 k=1 £=1
' k#L

n ‘ 3 B
Y os a2 <2807 § |
, k=1

£=1

i=1 k#L #

NEYCASIIE

n? YT 1Y B B

30

IYCRIE

2 2
% Cov(A_ ,4})

257757 min (ICov(Alz(,AzAm)I,ICov(Alz(Az,Am)I, lCov(AlfAm,Az)D

The first term is bounded by 4.2

£

(3.27) 2 5 YT ming]ack; &,m]], ack,e ], [lag,m; 21

6l Yy
K<F

The most complicated term is

min(]|a(0; k, &) ||, {{ac.k;0)1]y.

- Y 114(0,2)|| and the sccond is bounded by
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-2 ‘ -2
3.28) 24 E(A A A 24 E(A Ay) E(A A
(3.28) 24n @E%&E(ﬁbﬁﬂin L IE(A A E(A A

E 2025 § VY ¥ min (lcoving Ay, 80801, ICOV(Ak,AzAmAh)[,

ICov(AkALAm’Ah)I).V

Treating the second term in a manner similar to that used for the second term of

(3.26) shows that it is

(3.29) < 24iln”} § min(| |8(051,i+§,i+j+k) ||, ]]8(0,i;i+j,i+j+k) ]|,
i+j+k<n ‘

11a00,i,i+j; i+j+k)||)

For the first term in (3.28) it is necessary to use an individual bound for one fac-

tor and Lemma 3.2 for the othér. Thus, the first term is
G0 cam e VB LT T Hassnll, ey, apl

casn @2 1T et ol Ham wil

1-1/s

< k2™h E,||A(0,k)||s I llacomil,.
m

If we use Ibragimov's 1lemma for the individual factor, we obtain the bound

- n .
(3.31) M Y min(2™Y, «(0,8) Y |lac0,k)]].

£=1 ~ kzn

Putting terms together we see that
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2* : .4 8

(3.32) I OEIXG2Y - xG-ys2 |t < § ¢
j=1 or=l

where the g's arc the various bounds derived above. ' To chock that (3.18) is satis-

fied notc that therc are O(log n) terms and cach summand crin in the bound for Yin

)1/5

is either o((log’n)—s)_uniformly in i or the series -(cri

converges uniform-
-i=1 -

ly in n. _
Remark: 1If the original {xi} are strongly mixing, the ‘éo'nd:ltions of Theorem 3.1
are étroager than the conditions of Theorem 2.1*,'50 that the finite dimensional
margirals of the empiric process converge to a multivariate normal distribution and
the process con&erges to a Gaussian process.
A useful Coréllary is

Corolléry 3.1: Vhenever {X } is a strongly mixing s.s.p. such that A

ok (1og k)%, n'/?

tinuous paths.

k
[F (t)-F(t)] converges to a Gau551an process with a,s. con-

Proof: Since a(0,k) and ||Aa(0,k)}| < A, (3.11) and (3.14b) arc satisfied. The
left side of (3.12) is less than 2 Z kAk and thc left side of (3.13) is less than
k=1

3z kZAk so the result will follow once Zszk is shown to be o(n(log n) As Ak

is o(k'z(log k)~ ) and as thc logarlthm function is slowly varying we arc done,

Remark: By the monotonicity of Ai no better result of this typc can be obtained.

Remark: Theorem 3:1 applies to the threc Markov processes discusscd in the appendix

to scction 27:
Remark: In tﬁe futurc we shall call any process (Xi} obeying the conditions of
Theorem 3.1 a stfongly mixing AS process.

An alternate Theorem using only the mixing numbecrs is .

. Theorem 3.2: whenéver Xi is a strongly mixing s.s.p. such that a = O(k-s/z),

- then the cmpiric process nl/z[Fn(t) - F(t)] converges to a Gaussian process.
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Proof: lThe finite dimeﬁsional marginals converge to.Gaussian marginals by fheorem
2.1*. The verification of Prokhorov's conditions procceds as before except that
Lemma 3.4 is‘psed.and the covariances arc bounded by K hin (utak). In the expan-

sion of n"2 E(Z-Ai)4 the worst terms, as in Theorem 3.1 are thosc in the expansion of
YYYT E(AL A, A A)
k<%<m<h Ak Ah ’

wherc the bound is

-1

(3.33) i (] minCu, )2 + 7t 2 k% min (u, @),
X - _

It can be shown that in the sccond term the u does not improvc the bound

appreciably, th»refore to satxsfy (3.20) we requxre that

R () o R_(e) -{z-lskn(e))

Gy § @l e)S @ ala? gl 11_2
AL k * ,-1/5
i=g , k 1-2
' - f Rn(e) 1/2
is <n. The second factor approaches a limit and 2 ' /€. This is equiva-
lent to the first factor being o(l) or I k2 @ ="o(h1/2). As L is a monotonically
-5/2 |

).

decreasing sequence this rcduces to @ = o(k
Now wo cxamine the first term in (3.33) which depcnds on

2 -
(3.35) 2 min (z s o) < ) v o(27+51y

k=1 k=1

which is O (2"61), where we have used the assumption that o0 = o(k's/z). Hence

R (g) : '
(3.36) I o 2 min(zd, a)Z)MS <0 ] o708

i=l i=
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¢

which can be wade less than n if £ is chosen sufficiently large.

»

As before a much better result can be obtained when the original r.v.'s

{Xi} are a Gaussian process. We require

Lemma 3.5. For every :* > 0, § » 0, m > © there exists d number ¢ > 0 and polynomi-

als S, R, R independent of ii, such that whenever ) 1,' XZ’ Yl,. - ’Ym are jointly

and the covariance

i A i X = o .’X. = . o
normal with means O, variances 1, E(Xl“z) P, I:(‘(1 J) T1_‘|

matrix of the (X,Y) vector
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has determinant exceeding 6§ , 0 <a<b<atM, B =1, ..(X,), a=%8B,),
. - ‘- - -1 (a’b) 1 i

thenf_OI_‘g_ll_ y’ &Sy‘iSb f_°£i=l, -.o,m ’

(3.39)  |B(3)- (3, @)¥ey) - B((5,- @)(B,- @))|
oSO 2 B lryl+ 0 5 fr,D)
s 40t
=T g e T T g g T

if min % |71 < & o m=1 ,

(3.38) IE((Bif o)(By- o)|Y=y) - E((B - a)(B,- o))|
2 m 2 m ' o
<)ol = 2 lnyl #1 Zlr,l)  othervise .
1= 350 Y 1= gm

 Proof: The conditional distribution of X, and x2 given Y19 veey Ym

is normal with means TiQ-lY and covariance matrix

-

) {1 o Y o

(3-39) Z(p,rl,TQ) = - Q. (71 72) R

[ .
\e 1 T2

where Q 1s the covariance matrix of the Y's . By the uniform noﬁsingularity,

all elements of Q-l are bounded by 1/6 and all elements of z-l(p,Tl,Té)

as well as the determinant of that matrix are bounded by 1/ .

Let

(3-40) P(D;fi»72)Y) =
b b

I 1 2 . RN | -1
T75 eXP - =Hx=7'Q “y)T “(py1,r7. ) (x-17'Q y)dx‘dx .
ava 5 Iz(p”l""e)' /2 2 1’2 . 1772
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Then expanding,

(3-8)  E((B,~ o) (B, a)|¥=y) - E((B,- a)(B,- o))

='P(p:Tl:Tz:Y) - P(Oyo,Ta)Y) - P(O,Tl,O,y) - P(D;O)OJY) + QP(OJO:O:Y) ’

Now the right-hand expression in (3.41) is

_ 1 .
(3042) Jg [Pp(tp)tTl:tTa:Y) - Pp(tp,0,0,y)] 9
+ [PTl(tp’tTl’tTa’y) - PTl(O,tTl,O,y)] U

- ) d
+ [PT2(tp,tTl,t12,y) PTE(O,O,tTa,y)] T, dt

t
=‘Jz IO [PpTl(tp’STl’sTe’Y) + PpTl(SD:tTl:§721Y)J pTy

(tp’sTlvaTe)Y) + Pp,r (Sp).sTl}th’y)] pTa

+ [P
2, .

2

+ [PT T (Sp)tTl,st,y)."‘ PT '(spysTl)tTe)Y)] r.t.ds dt .

172 172 12
Since Ty and 72 are vectors, by P‘r 71 we mean ? PT .Tli s etce.
1 i 1
Hence the expression is bounded by
- aep(r,tl,tz) BEP(r,tl,te)
(3.43)  [el(= Inyy] s + 2 |1y swp )
: | or atli | or atzi
2
.'a P(r:tl:te) ;

+ XX ITliI lTejl sup

Bty By,
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where the_.sup is over the smallest convex set generated by the covariance
metrices. An elementary algebraic argument shows that all matrices involved
>in the argument are uniformly non-singular, so that we can differentiate under
_the integral sign and obtain the result that all second derivatives of the
integrand of (3. 40) are bounded by a polynomial R(b) , which proves (3.38) .

If min Z |'r | < 1/25‘ or m=1, the sum of the regression coeffi-
i

cients will not be near 1 for both variables, and hence for all x, y with

aniSb, aSyJSb
| - -1 -1
(3.44) (x - 7'Q"y) 8(0,71,72) (x - v Yy) 2 rb? - g .
We-mayassumersz .
Now -
R % b -gn? 2
(3.45) j‘ I e dx,dx, = (j e dx>
a‘a a 7
1.2 12 £ r
b - § 2 b -Ex 2 2-5
5<J. e dx) _<_(f e dx) (b -~ a)
a a
2-1/2
from which (3.37) follows with ¢ = /2 , S = 2aM e R

‘Now let us verify the Prokhorov continuity condition for stationary
Gaussian process with £ |pi| <@ . Instead of using the usual probability
integral transferm, let us transform to density 6t(l-_-t) ; 1ee.,

1>(1r'i <t) = 3t2- 2t3 . We now have /nf {E;IY(t+u)-FY(t+u‘)} - {FnY(t)-FY(t)])> -6/n u,

which is not essentially different from the case of the probability integral

transform.
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The proof of Rubin's Lemma involves showing that

R 21‘
(3-46) T s Plr, () -6l > ) - o,

i=k j=0
where I Ci < e'. We shall bound all except the extreme terms for each i by

a hth moment Markov inequality, and the extreme ones by the Tchebychev inequality.

We can even use a fixed number instead of gi for the extreme terms. Now

' -1 2, _ 1 )
-(3-47) EL(X (2-%x00)%] = = £z E(AiAj) s
| 1.2
. ) _ 1 "2 _ a.o2t 1-3d
wnere A= I e as [ gme T oax o g R

Now E(Af) = o(l-e) and by Sarmonov's lemma [20] , IE(AiAj)I < alpi-j' . Thus

' . o -21
(3.48) E[(x (27) - xn(o?)é} < 31+ 2z lo, 1) 3

and hence P(lxn(2-i) - Xn(O){ >e¢) < K €-22-2i , whick is more than ade-

quate for our purposes.
For the remaining terms, we proceed as before to verify Rubin's lemma.
We will illustrate the use of Lemma 3.5 only on the fourtn-order terms; the

others are even easier.

Let Bi = It,tﬂl(Yl) >y @ = E(Bi)l Ai = Bi ,"': o , and t Z 5
The terms for t < % give an equal contribution. let i < j<k<yg and
. consider
- - .
(3.h9) E(A, 1B Ah ) E(AiAj)E(AkAE} [E(A 'ka ) - E(AiAj)‘Bsz)

- o B([E(A A%, ) - E(A;A,)]B, )

- o E([E(AiAjIXE) - E(AiAj)JBz)
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8

5 | |
- < =
or oyl + loy,l <2, we can amply (3.37) to

2
all terms on the rignt side of (3.49), obtaining

If "pik, + ’pizl <

(‘3- 50) IE(AiA JAkA z) - E(AiAj )E(AkA z) |

<3 al+°Q(b)(|°ij|(Ipik|+'°if.|+'p3kl+'pjﬁl)

1t oyl + 1oyl _>_§ and oyl + loy,| 2;2_-, we just use

6Mw Q(b)(lpikl+|piz|)(ijkl+lpj¢|) 8s a bound. Furthermore, o < 6(1-t)u .

Also, since the normal tail drops off rapidly, (l-t)l+cQ(b) and (1-t)R(b)
ére uniformly bounded for all terms. Hence, except for 2 multiple of n terms,

if i<3j<k<yg

(3-51) [E(ApaaA )] < IE(AA)] [E(AA))]

. Ku1+c

oyl oy l+lo I+lo g 410y, 1)

+ (ol #leg Dllogl+le;,10)

2, | 1+
Sulogsl oy, + k™ Cloy I Cloy I+l l+l0, I +10, 1)

+ (logl*lpg eyl +leg 1)

The sum of these terms is bounded by

l+c
)

n?M(u®+ u "since lei_j] < o .

Tne remaining terms are bounded by Ko , or 6KM?(l-t)R(b)u , 80 that their
sum is bounded by Cnu . We obtain similar results fér the other terms. Con-

sequently, we can apply Rubin's lemma with ¢n(u) ;.M(u2+ ul+c),+ Du/n .
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L. The Asymptotic Distribution of a General Linear Estimator_

In Section 3 we proved that the empiric c.d.f. formed from a strong

'.mixing As process converges to a Gaussian process. This implies ﬁhat any
sufficiently smooth linear. comblnationcﬁ'the oxrder statistics is asymptotically
normally distributed. In this section we derive an expression for the asymp~

'totic variance of any linear combination of order statistics. We do not,
however, investigate the exact conditions required for its validity. After
deriving somevéeneral formulas we specialize to Gaussias processes in order
to 1llustrate-the1r use.

If x(l)' <ee. <X,y are the order statistics from & sample of size n

from & S.S.P., a linear estimator W is a statistic qf_the form [9]

n
. W = ot
where
(u'a) : . wi = ny [ i;l ? xj.?] ’ i’ l, esey N

and vy 15 a measure of variation 1 and finite total variatiomn on [0, 1] .
th

" If A€ (0, 1), then x(i)'for 1 = [nA] is the sample L'~ fractile.
If W, and W_. denote the ath and sth sample fractiles end x = F-l(a) R

1 e
Y = F-l(B) the population fractiles, the asymptotic joint distribution of -

Wl and Wé is given by

Theorem 4.1.. If f 4is continuous at x and y , then the sample fractiles

gggglg.stronglj mixing A% process are asymptotically Jointly normally dis-

tributed with means x and y and covariance given by

© P[X<x, X<y] - .
(4.3) 2t g (X< x 4. vl - of .
| q=-o £(x) £(y)
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Proof: For each observation X, define the indicator r.v.'s

i
: : 1, X<z {2, X<y
: 0 , otherwise ; 7 0 , otherwise .

As in the derivation of the asymptotic distribution of the median

(h5) W= x ~ -[nf(x)]7s, Wy~ -[ne(y)]7s,
wheré

‘ n n
(h.S) 8, = ifl [Yi(a) - o) and‘ S, = ifl [YI(B) - B8] .

"The r.v.'s Sl and 82 are Jjointly asymptotically normally distributed and

the calculation of their covariance proceeds as follows:

_ o .0 B
‘h.?? Cov (Sl,Sa) = n ifl ji:l_Cov [Yi(a);YJ(B)J
-~ _(n-1) '
= 2tz (n-la]) Cov [¥ (a),¥.(8)]
g=-(n-1 ° 4
4o , :
- & Cov [Yo(a),Yq(B)] a8 N-weo ,
q: -0

As - Cov [Yo(q),Yq(a)] = P [xo< X, xq< y] - of , substituting (4.7) into
(4.5) ylelds (4.3) . | |

In particular we have

| | _ . th’ o
Corollary 4.1. If Z(i) e i=1, ..., k arethe )\, sample percentiles and

k v
if Zw =1, then W=2 w,g2 is asymptotically normally distributed
B | i - i=1 1%1) =

k .
with mean £ w,F Y(,) , and variance
Hth Bean 2 wiF Uy
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[ -]

=1 -1, .
z o z P[Xo< r-'l (x;), xqflp (;.J)] xixJ
L 2[F (1)1 £[F 7 (r,))

(4.8)

5!?‘

—l J—l

=-m

provided that _{Xi} is a strongly mixing A S.S.P. with a continuous density
st F(A), 1=1, oo, k. -

Remark: Actually Theorem 4.1 and its Corollary are valid for S.S. P.'s satisfying
the conditions of Theorem 2. l _

. At this po;nt we shall operate heuristically. Assﬁming that  is suf-
ficiently regular, the general linear estimator W .bagéd on the measure v
will have asyupto_tic variance | |

P[X < F (), X < ()]~ ap

(4.9) V({/nw)~ z —— = - dv(a) dvw(p) .
R j JJ 2[5 (a)] #[7(8)] vl

The interchange of summation and integration is valid in the case of a finite
number of sample percentiles but requires justification in general. At this
point it may be instructive to note that fhe term ih (4:9) for q =0 is the
variance in the case oflindependent observations so that (4.9) can be regarded
as the variance in the independent case with correcfion terms for each”qth
order dependence.''

For purposes of calculation it is often conveﬂiént to express the measure

on (0, 1) in terms of an equivalent measure pu on ,(fm, @) defined by

a[F(x)] = £(x) du(x) .

In terms of u , (4.9) becomes

(h 10) V(/a W) ~ z f j (PLX,< x, X <y] - P[X < xJP[x <¥1} au(x) duly) .
Q==

4
:
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In order to use fo:mula‘(h.lo) one needs a reasonable éxpression for
P[xo< X, xq< y] - P[xo< x]P[Xq< y) . Fortunately, for normsl r.v.'s we have

Temme 4.l1. L{' X and Y are two correlated standard normal r.v.'s with

- correlation coefficient T , then

2.2
(%.11) P[X<a, Y<b] - P[X <alp[Y <b] = % e-(a +<)/2

2 Ry (2)R (o)

AP
-

h

where Hk(a) _15 the k" Hermite polynomial.

Proof: The bivariete normal density function can be expressed in terms of the
Hermite polynomials as follows [11]:

: v ‘ k
(412) (om t(ei) 2 e-(x2+y2_2nxy)/2(l-n2)= (2n)'1e'("2*‘1'2) /23 5_{-_(_:%&_(1)11
' k=0 )

= ¢(x:y,'ﬂ)r .

The probebility desired is

&t B b (Re?) e ® BRI
(23) [ [ ro(xy, ) -p(x)(y) Jax dy = | J(E‘n) le‘ ()2 3 X :‘f

-0 w0 -lD =0 k=l

dx dy,

where ¢(x) denotes the standard normal density. Integrating (4.13), efter
interchanging the summation and integration operations, yields the right side
of (4.11). | |
Remark: Formula (4.11) remains valid when 1 =+ 1.

Before discussing some examples we introduce an assumption on the measure 1
which allows us to freelj interchange summation and integration operations.

letting
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Ix au(t) |, x>0 ,

(b.1k) u(x) = °o
f au(t) , x<o0 ,
-X

and its ''total variatioh function'!
rIdUI(t) y x>0 ,

_ ) o

(k.15) : p(x) =
J‘- ldlll(t) y x<0 ,
-X

* ' '
we shall assume that p (x) is in- L2 w.ret. the normal density function

o(x) = (2m) Y2 X2

. Substituting (4.11) into (%4.12) yields
Proposition 4.1. The asymptotic variance of a general linear estimator on

Gaugsian-ppcesses such that 1)2 loyl < = is given by

_ | . o o o ®
(4.16) V(/aw)~ £ = ;—lf(p|q|)k= z ;{1:5 E .(P]q])k ’
: - g=-o k=1 k=1 q=-
o N > o
d o [T,
| '. | 5 ® c
Remark 1: The assumption that p(x) is in L guarantees that ol Kt

converges.
Remark 2: If du(x) .is a symmetric measﬁre, i.e., the original measure v
gives equal weight to the ith and (n+l--i)St order statistics, then its odd
Fourier~Hermite coefficienté vanish, so that only tefms.involving Cok+l
appear in (h.l6). | |

Remark 3: At times it may be convenient to separate the q = 0 term in (4.16)

as it is the asymptotic variance of /A W when the observations are indepen-

dent, i.e.,
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(] ©

k k

PN CI R
Q=1 =

M 8
il MG
+

(u.17) V(/a W) ~ 2

k=1 k

Il ™M 8

This implies tﬁat positive serial correlation (pq >0 -for all q) increases the
variance of a general linesr estimator.
Remark 4: As the exact conditions for the validity of expfessioﬁ (4.16) for
the asymptotic variance are not known in complete generality we note that when-
ever the regularlty conditions of Theorem 4.1 and & kal < o, the mean,
trimmed mean and‘any finite linear combination of sample percentiles are asymp-
totically normally distributed with the stated asymptotic variance.

We now discuss several examples.
Example 1. As a check, consider the mean, X . Her; ‘du(x) =1 . Since
Ho(x) = l., ¢, =1 while ¢ =0 if k 1, Thds,” V(/n X) = = x| as
is well known. o
Example 2. The median M is'rqpresented by a measure dp(x) which places an
atom of mass (277)1/2 at 0 sothat c, ., = ek(o) (2k 1)! while c,, =0 .

2k
For each q in the right side of (h.16), we have

' » _ 2k-1):1 2k+1 .
(4.18) kZ; ST C R plQl = arcsin p[QI

and suming over gq yields (2.7).
Example 3. Consider a finite combination of sample percentiles, i.e., let v

give weight w

1

to x(i) » where 1 = [nxi] ’ ‘O < M < aee < L. <1l and let.

-1, _ oy -1
a, = & (xi) : then dp(x) =0 if x a;, and du(gi) = wi¢(ai) « In this

case ¢, =[Zw Hk (a )]2. Later we shall study the average of two symmetric
k 1 ik-11

15 % MS

percentiles, W(a), wherg A= o 1 1

l-o, &, -a; and w=ws= 1/2. Since

. . _ R
Hgk(-a) = H, (a) , while H2k+l( a) = Hék+l(a) ) €y=0 and c, o= Hek(a) s
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so that
' ‘ ® }[2 (a) @
~ - 2k 2k+1

Example L. _Cné_bf the most widely studied robust estimators is the trimmed

mean, defined by

(4.20) | T o= (-2t Jjn xan(xl) ,

An

. g
where An is the sample ¢ h quantile, Bn is the sample (l-a)th quantile
and Fn(x) is the empiric c.d.f. In terms of measures, dv(u) = (l-zd)fldu
for o <u<l-¢ and O elsewhere, while du(x) =_(l-2a)-l. Thus,

‘a _
¢ = (1-20) 2[ J Hk—l(x) ¢(x)dx]2 which is O for even k and equals
'-a _

b(1-20/) "2 Hﬁ_z(é)tpz(a) for odd k >1 , while ¢, =1 . Thus

1
v 5 2 |
-] he-a -] 5 -l(a) P K
(k.21) V(/a T(a)) ~T+25 (p) + —B—u 5 AL " .5 o
| | o Tl a (1-20)n 31 (2591)8 o (o,

. a ) .
where To= (1-20) l[ I xedF(x) + 2@&2] is the variance in the independent
-a
case.
It should be mentioned that one can derive the'aéymptotic normality of

the trimmed mean by showing that (4.20) is representable by

(2) re s -2 om0 VB)

where Gn(x) = Fn(x) - F(x) , provided that the underlying density is continuous
at +a . This gives an explicit representation of ‘T(a) in terms of the em-

piric c.d.f. which is asymptotically a Gaussian process;
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Since we shall study, in detail, the behavior of the linear estimators
On:F.O.A.G.P;'s. for reference we specialize the general results in

Proposition h.2. On F.0.A.G.P.'s ,

a2 ® 2j+1 ng(a)
(.23)  V(/n W(a)) ~ me® + 2% 531 (25+1)1

J=0 1l-p
‘ -a ® H2 (a) 23*’1
2 he 2 2j-1
b.2h)  V(/n T(a)) ~T + 2R 4 z .
(b.24) (vo T(e) o 1-p (1_20)2 je1 (23+17" 2J+l

Finelly, we have

Proposition 4. 3. On F.0.A.G.P.'s, the asymptotic variancc of any unbiased cstima-

tor approaches as p > + 1 and the asymptotic variance of any symmctric estimator

approaches O as p + - 1.

Proof: As € 20 Vk the first result is an immediate consequence of for-.

mula (3.16) . For symmetric estimators,

2k+1

. . [--] - g
_ : ~ 2k+l | l4p-
(b.25) V(/n W) o) . .

1
oo (k1)1 1-p

. ,
As p - -1 each term (l+p2k l)/(l-pekfl) approaches 0 and the result

follows as Te /kl < =

Remark: From (kr.25) it 13 clear that the variance of any symmetric linear
estlmator 1s an increasing function of p « The variance of a non-symmetric

estimator remains an increasing function of p for O S p<1

5. The Hodges-lehmann Estimator

-One robust estimator which has received much attention recently is the

Hodges-Lehmann [12] estimator which is derived from the Wilcoxon test. If

XJ} seny Xn are n observations from F(x) s the Hodges-lLehmann estimator,
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"HL, is the median of all the pairwise averages of the X's , i.e.,

o , Xi+x. n
(5‘1) ‘ o HL = med { 5 }i,J=l .

In this.section we shall give general conditions for the asymptotic normality
of HL and show that they-are.satisfied by strongly,ﬁixing Gaussian processes
sﬁch that I ]pkl < ® , Moreover, we shall évaluate explicitly the asymptotic
variance of HL for these Gaussian processeé and the autoregressive double-
exponential process so that the effect.of serial correlation in the data can
Be explored numerically.

Instead.ofrworking with the Hodges-Lehmann estimatbr it is more con-
venient to discuss an asymptotically equivalent estimator which is defined

in terms of the empiric c.d.f. Fn(t) by

(5.2) M = 2 HL = median {Fn(t)*Fn(t)] ,

wneie. * denotes convolution. The estimator HL? is the median of all
pairwvise averéges, where the average of a pair of distinct observations is
counted twiée while the individual observations are counted once. This is
.qust a consequence of the fact that 'F_*F_ places mass on™% at the (;)
points of the form X5 if 1 4 j and places mass. 02 at the n :points

‘ * : ' ) * ,
of the form 2x, . If M denotes the median of F *F , i.e., F *F (M) = 1/2,

* * '
then HL =M /2 . The idea underlying the proof of asymptotic normality of

x .
HI., is similar to the proof of asymptotic normality of the sign test. The

n2

number of pairs of observations X,, X, such that X,+ X, <0 is Fn*Fn(O)

i’ 17
and should be asymptotically normally distributed. Using the density g(0)

of F*F at O in place of £(0) , one can convert the asymptotic normality
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*
of FKFn(O) into the asymptotic normality of M  just as in Section 2.
. ¥*
Theorem 3.2 can be applied to show that HL is asymptotically normal,
. .
however, the HL is asymptotically normal under weaker conditions. In terms

of the conditions on the empiric process
. | 1 o
(5.3) th)=n/%ﬁ3ﬂ - F(t)]

in a neighborhood of 0 , we have

Theorem 5.1. The estimator, HL* » 1is asmtoticallx normally distributed when-

ever the fouowing conditions are satisfied:

(5.4a) (Gn* F) (0) is assymptotically normally distributed
(5.4b) there exist two sequences of reals w, and A such that
w -0, A = but xn'l/e-.o_ ,
n n — "
* - (g + -
sup o P{IGn F(x) (Gn F)(o)| > wn} 0
|xf<an
n
and
(5;L|.c) sup P{In-l/aGn*Gn(x)l > wn} 088 n-o
]x,<.xnn_l/2
(5.4d)  (F*F)'(0) exists.
Moreover, - '
(5.5) | o2 5+ 6 ¥¥(0) / (7F)1(0) B 0

and

(5.6) nl/e o~ N(o, o?)
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where o° is the variance of (Gn*F)(O) / (F¥F)t(0) .

Before giving the proof we should like to discuss the asgumptions. Clearly,

- -1/2 -1
. ¥* = * % o
(5.7) _ F ¥ =F*F +on G¥F +n "~ G, G,

Assumptions ‘b and c state that there i1s a neighborhood ebout zero of order
larger that n'l/a such that in the neighborhood Gn*F ' is essentially
(Gn*F)(O) while n_l(Gn*Gn) is essentially O . Thus, in a peighborhood of

order greater than n-l/2

1/2

, (Fn*Fn) - (F*F) differs from the random variable
on” Gn*F(O) by terms of order op(n-l/e) . Asymptotic normality of the
sign-type statistic then follows from the first asstmption end fhe fourth as-
sumption (d)-guérantees the asymptetic normality of g, |

Proof: Ietting o denbte‘ (F*F)'(O) » by the definitioh of a derivative and'

assumption d , there exists a sequence p, = 0 such that

(5.8) | (F¥7)(x) - (P¥F)(0) - x| <, lx] -

for |x| < xnn'l/z « ~Next select a sequence Q ~ = slowly so that
(5.9) Q, sw '_1/2 P{[(c*F)(x) - (c *F)(0)| >w }=~0 ,
Jx|< A B
(5.10) q  sw p{la Y36 %0 (x))| >w =0 ,
-1/2
| x]< AN :

and ann = 0 . The existence of a sequence Q satisfying conditions (5.9)
and (5.10) follows from assumptions (b) and (c) respeetively, Fimally, select

a sequence h - o/ such that Qh -, Qh <)\ and Qhe, =0 (The
1/2

interval (-thnnf , thnn'l/e) is the desired neighborhood of zero which
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-

is larger than n-l/e.) At all points of the form
khn
(5.11) | X=\n?§ sy ~Q, SkSQ .

relations (5.9) and (5.10) imply that

(5.12) | | |ivn*Fn(x) - *P(x) - on /2 G_*F(0)] < 3wnn'l/2

except with small probability. Substituting (5.8) in (5.12), shows that with

larze probability (w.l.p.)
(5:3) R0 - PR0) - ax - 2 Y oam (0] < lal + 322

In particular, it follows from (5.13) that w.l.p. if Fn*Fn(x) <1/2 , then

-1/2

(5-ih) | ax + 2n (Gn*F)(O) < pnlxl + 3wnn'l/2

while if Fn*Fn(x) >1/2, tnem : )

(5-15) | ox + zn"l/e(Gn*F)(O) > -onIIXI - 3v'r_ntfl/2 .

Thrs, welsp.

(3.16) oY 2'[(Fn*Fn)(thnn'l/ 2y-1/2] > aq_h + 2(Gp*F)(O)—annhn- 30 >0

H® ‘ h = =0 -y o
since (Gn F)(0) has bounded variance, P 8 B, = 0, w, =0 but eQh -

Similarly w.%,p.
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1/2

(5.17) (F *F )( Q n n 1/2) -1/2] €0 ’

’ * 'Qn Qn
s0 that w.;.p. M  lies in the interval [ l/E” 1/2

] and there exists

a k such that

(5.18) RV kn_ < M < n‘l/2(k+1)'nn , 4, <ksq, -
Let o
(5.19) o Y = 1/2 aM +2n l/E(Gn*F)(o)) .

l/2) >1/2 , it follows from (5.11) that w.l.p.

Since (F *F )((k+l)h n
(5.20) . Y2 -pQh -3 -h .

As (Fn*Fn)(khnn ) £1/2, (5.14) implies that w.l.p.
(5.21) ' Y < annhn + 3w + hn .

As hn’ LA

that (Y) ~ O 4in probability. Hence

end #Qh .  all approach 0 as n=- o, (5.20) and (5.21) imply

(5.22) /2  * 2(G_*F)(0) 3 .
“ o
- (c_*F)(0)
. G *¥F)(0) P
(5.23) 1/2 _—_ P
o

and the asymptotic distribution of nl/2 HL is that of (Gn*F)(O)/a .
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Ip'the appendix to this section we verify thét;the'gssumptions of
Theorem 5.1 areisatisfied by strongly mixing Gaussian prbcesses such thaf
z 'pkl <o, A similar (but simpler) argumeﬁtbwill show that the first order
autoregressive double-exponentiael process also obeys Theorem 5.1 so that HL
is asymptotically normally distributed for data fromJthe processes we shall
diséuss. We now proceed to calculate the variance ofnthe asymptotic distpi- 
~ bution of HL for observations from these processes. The following'elemén-r

tary and well known lemma will be of use:

lemma 5.1. If F'(x) = £f(x) is symmetric about O , then

(5.24) B (F*F) ' (0) = f ® £2(¢) at .

-C0

In order to .calculate the variance of F*Gn(o) » it is often convenient

to express F*Fn(x) as follows:

(5.25) o F*Fn(x) = f P(x-t) an(t) = n'ligl F(x-xi) s
'so that
(5.26) G (0) = JVQE{NmQ—ECN«QD .

i=1

In particular, when f 1is symmetric about O ,

: n
(5.27) g (0) = n'l/gizl{F(xi) - 1/2}
and |
(5.28) Ve [F%_(0)] =§§§E[Ng)-§wm9-§].

In the case bf i.i.d. . symmetric r.v.'s, we have the-following

w
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lemma 5.2. When the r.v.'s X5 X2, .e. are i.i.d. symmetric (about 0) ,

the variance of F*Gn(o) = % .
Proof: Clearly,
. ‘ 1.2 1 1
Y - E - - = - — = ——
(5.29) n Var [F*e_(0)] [F(X) - 2] J'F2 dF J’F F+i o= S

‘bThe knownvféct that the asymptotic variance of the Hodges-Lehmann esti-
matof is given by [12 (I fz(t) dtzj-l in the case of i.i.d. symmetric r.v.'s
is ah immediate consequence of formulas (5.23), (5.24) and (5.29).

A non-trivial use of the representation (5.28) occurs in the derivation
of the asymptotic variance of HL on double-exponential first order auto-

regressive data. Specifically, we have

Theorem 5.2. When {X,} is & F.0.A.D.P. the gsymptotic variance of the

Hodges-Lehmann estimator is given by

| © 35
Y, .30 —E )
(5.30) n V[HL] ~ =+ =t - 3( L ) if p >0
| | 301 T (ew?)?
and | N 3kl |
(5.31) av{HL] ~ 2 Z (p'%! - ——155) if p<O.
2 Jo-o (2+]p]191)?

Proof: From (5.23), n V[HL] = 16 V[F*Gn(o)] on double-exponential data.

_Since the c.d.f. of the double-exponential distribution is

(5.32) | Fm)=§+§u-e4ﬂ)%nu

(5.28) becomeé
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e . SRR
(5.33)  av(Fg (0)] =(P)Z ZE[(l-e 7 )(1-e *)sen (¥,Y)]
| n =1 k=1 Ik

Using the Markov nature of the process and letting n - « , one obtains

n 1, @ Il -l
(5.34) VIFG, (0] ~ () ZE (e " )(1-e ) sen (¥.1,)]

J:-m

To compute the expectation in (5.34) note that one can assume that ¥ >0.

J

Suppose p >0 , then A = p” and using the characterization Lemma (2.1),

one obtains, for j o,

- SR R S B b Y o '_
(5350 Bl@-e °)(-e ) san (1 r)] = [ (1-eT)eWE(2-e™)
_ . .
: CO - O . .
+ (13 f ge—y' (1-e™V)ay + f %'(l’-e-xx-y)dy
0 | -ax < o
-Ax
- I %; (2-¢"™) ay1} ax

-0
which equals

| e™1-e™)02-e™) + B3 (22-e™) - axe™)} ax

0 .
LA (2:i)2 '
Wnen Jj =0, the expectation is % so that for p > 0
(5-36) b v[re (0)] = %,+ % . (o) - .3j i
J=1 (24p")!

and
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b, 30 oY
(5.37) n V[HL] + 3( = —) .
| 3P T (avp?)?

The derivétion of (5.31) when p <0 is similar and is omitted.

For Gaussiéh’processes it is more convenient to make a direcf computation
in terms of the r.v.'s which indicate whether (Xi + XJ) is less than O (the
medien) and éonvert this to obtain the asymptotic vafiance of M*_ Just as the

: * *
sign test ylelded the asymptotic variance of the median. Of course HL =M /2 .

Let _
| 1, 1f (X, +X.) >0,
(5.38) L, = !
' ' -1, irf (xi+xj)<o,
and S = X I .

all pairsviJ

The random variables Xi, Xk, XJ, XZ are Jointly Gaussian with

covariance matrix

+ Ple-1]  Ply-1]  Ple-i
Plk-i| 1 Ple-31  Plx-g
(5.39) N .
| Ply-1]  Plx-j Pl3-2]
1l

Ple-i]  Plk-g]  Pls-4l

Thus, the covariance matrix of the two random variables Xi + Xj and ‘Xk + Xz is

2(1 + plj‘il) . Y
(5.40) | ’
Y 2(1 + plk'El)
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h = ’
where vy , plk&il + plj‘ﬂl + pli‘ll + p,J‘kl and tpe correlation between

2(l+p|j_i|)l]§i(l+p|k_z|)l/2

(5.41) » p* =

Since

i

- . N
Cov (Iij, Ikz) h(r[xi+ xJ >0, X+ X, > o] - h)

7 )

. : K )
(5.42) . var(S) = b Cov(Ii., Ikﬂ) = %- L . arcsinp .
' all pairs J i,j,k,2 -

Notc that
Cov (I Lol <oy gyl ¢ ley; gyl + loji-g)! * lo 5!
so that

-3 ‘ s -3
(5.43) n z‘z Lz c°v(11j, Ip) = lim |h%<n n>TzIsx Cov(;ij, Lp) »

e
uniformly in n, where thc last summation is ovcr those indices where the first of
i-k, j-2£, i-£, j-k which is smallest in absolutec valuc is h. Consequcntly

e -3 . . S |
(5.44) limn " Z LI Cov(Iij, IkZ) = Z limn ITz: Cov(Iij,

n-»>e

e

where the last summation is as before. Lot us now investigatc one of the latter
~limits. Assumc for cxample, that h = i-k. 'lc break the sum up for fixed i and k

into those terms for which onc of the rcmaining differences is at most T in

N\
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magni'tud'é twhére T > h) and into thosc which all the k remaining diffcrences
exceed T. The first sum has at moét (6T+1)n térms.andfso gives a negligible con-
tribution. Each of the remaining terms is closc to (2/#) arcsin ‘(o|h|/2). Sihce
therc are (n;lhl) pairs i,k with h = i-k and there are. four choices for the
pair with thc smallest spacing, the hth term in .the r.i_.ght side of (5.44) approaches |

8{1 arcsin (p|hl/2). Thus

N _ ) p
(5.45) _ n 3 Var(S) ~ % Z arcsin —ILL .

h z

. : *
Now the statistic corresponding to the sign test ‘statistic is the m_xmber S

o .
' * n S
of peirwise means (or pairwise sums) that are < O. Essentially, S = al
s0 that |
(5.46) n 3 var(s ) ~ % L arcsin -é—‘- -
. I N ‘

The sar derivation as given in Section 2, with n replaced by n° eand £(0)

replaced by the demsity of X, +X, at 0, which is 1/2 Y7 in the normal

J
case by Lemma 5.1 ylelds
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* - ’ [}
(5.47) : Var(M ) = n 1 8 2 arcsin —lel-l- .
_ h

* % S
As HL =M /2, the asymptotic variance of /m HL is given by

(5.48) ~ Var (/A HL) ~ 2 L arcsin -inl .

, ; 2

h==~x o

In Section 2, we noted that for Gaussian processes with non-negative
serial correlation the efficiency of the median to the mean was always greater
than or e_qtial to its efficiency (rgr') in the case of independent observations.
An analogous result is true for the Hodges-Lehmann estimator and is obtained
from the following elementary

lemma 5.4, For 0 <y <1/2, arcsiny < @m/3)y .

The result is an immediate consequence of the fact that
Proof: (arcsin y)/y is an increasing function en [0, 1/2] so that it 1s
alvays < 2 arcsin (1/2) = n/3 .

We now formally present

Theorem 5.3. The efficiency of the HodgeseIehmann estimator, HL, to the sample
mean X , on strongly mixing Gaussish S5.S.P,'s such that s >0 for all k

and I p < , is slvays greater than or equal to its yalus, 3/m, in the

case of 1.i.d. Gaussian observations.

Proof: Ilemma 5.4 implies that

(5.49) ‘ 2 arcsin (Dk/2) < (n/3)y |

Using formule (5.48) end the fact that V(/n X) ~ I p, it follows that the

reciprocal of the efficiency is
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(5.50)  lim ‘-’-@I‘J- < I
n-o V(X) 3

Appendix: Verification of thMe Conditions of the Theorem for St
Mixing Gaussian Processes Such That £ lpk[_< ®,

In this appendix we shall show, in detail, that conditfons (S.4a) and (5.ub)
are satisfied. The argument showing that condition (5.4c) is sgtisfied is a
tedious calculation which is similar to the proof in the appendix

of Section 2 and we omit 1t. Condition (5.k4d) is obviously satisfied.,

Verification of Condition (a):

Letting {Xk] denote the r.v.'s of the process we have derived the

representation

(5.17) e (0) = Y2 2 {F(~ )-E[F(- )J}‘
‘ ' n K=l xk xk '
As the {Xk] are strongly mixing, the r.v,'s F(-xk) ere also strongly mixing
‘as they are functions of X+ The asymptotic normality of the right side of
(5.1*) follows from tﬁe BlumeRogenblatt central limit theorem,

Verification of Condition (b)s

Let

(5.2%) () = sw [Fxvt) - (o)) .

When F(t) is the normal c.dof., B(x) < |x| /7.

Now
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nls s Cov[F(x-X, ) ) - F(-Xi)][F(x—XJ) - F(XJ)]

-(5-3*)' Var[F*Gn(k) - Fa (0)] =
- 13

2 ] Jreteex)en(x, D00 (e )-B-x, ) 08 (3, o2, (x, )08 (37

where Py, denotes the jolnt e.d.f. of X, and X, while P, =nd P, dencte
v ‘ *
the reapective marginal c.d.f.'s. Applying (5.2 ) to the integrand shows that

in a small neighborhood of O ,

(5.u*) Var(F*qn(g)-F*Gn(o)) <n" e (x) z z J]'Idpid(x ,x ) -dp (x )dP (x 3o,

Since [f |dpia(xi,gj) - dPi(xi)dPJ(xJ)l is a function of - |pqu| rwhich'is

bounded by a constant K times Ipi-J' as long as the 'pkl. are bounded

*
away from one.  Thus, the right side of (5.4 ) is

1 2 (a-1) 1o
CESIEE LR ACR. E Ko, 4l < p°(x) = " nlel ko | < k'p%(x)
I'=s=\ll= '

-

where K' 1is another constant. Hence the variance of-'[Gn*F(x) - Gn*F(O)]
can be made hniformly small in & neighborhood of the origin. Applying

Chebyshev's inéquality yields

| | a2/
(5.6%) R {low(x) - o xr(0)] > KB

W
n

As  B(x) -~ 0 as k - 0, in fact at the same rate, d@ny sequence W, 0 at
a slower rate than knn-l/a -+ 0 will satisfy the conditions.

Remark: In order to verify condition (5.4b) for data from an arbitrary
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continubus_distribution one muct find a seqQuence wn appfoaching 0 at é

‘ . . =1/2 , - :
slowe? raﬁe than B(Lnn / ) « Then the same argument, replacing Py by

IIA(O,k)IIl, applies'in general. The customary tedious fourth order moment

argument shows that if I Ak < =, then

P(] %:: G %G (x)] >€¢) -0 unifofmly in x . In the Gaussian case, we can
n n n

instead use the condition & lpk| < @.

6. The Efficiency of the Estimators Relative to the Mean in Gaussian Processes

In this seétioh we study the efficiency of our estimators relative to

| X on Gaussien pfoéeasesf In particular, their behavior on the F.0.A.G.P. is
analyzed in detail. We first show that all linear esfimators are robust

ggainqt positive dependence {all P 2 0), Jjust as the median and the Hodges-

Lehmann esfimators are. We then specialize to data from a F.O.AgG.P. and

evaluate>the relative efficiency of our estimators fo: various values of p .

A snort teble (6.1) is presented which summarizes' the behavior of the median M ,

the Hodgés-Iehmann.estimatpr HL , the mid-mean (254 trimmed mean),>the

5/ trimmed mean and ﬁhe average of the 25th and 75th percentiles for various

values of p . A more extensive survey of the behaviof‘of the g-trimmed

“mean, T(a) , _ahﬂ the average of two symmetric percentiles, Wa) , 88 «

(the fractile used for trimming or averaging) varies is presented in Table 6.2.

For the estimatér W(a) it turns out that the optimum chqice of o in the

case of independent observations'remains nearly optimum for small values of p .

The behavior of the relative efficiencies of our estimators as p - -1 1s
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also quite interesting. As p - -1, the efficiency of fhe median or any

finite linear combination of sample percentiles approaches 0 while that of

HL or T(w) approaches a finite limit. This is in sharp contrast

with the case of independent observations where the efficiéncy of M to i

-is always 2> 1/3 provided that the density sampled is‘symmetric and unimodal.
lIn order to.discuss the efficiency of linear estimators. we isolate the

féllowing result:which was the basis of the proofs of Theorems 2.1 and 5.3.

Specifically, we have |

Lemma 6.1. If S is any estimator such that

(6.1) - WES) ~ = ale)

q==c

wnere g(p) is a function satisfying g(p) <pg(l) , then

o ) s(pq)
(6.2) lim %ﬁ§§i§% = gfi?L‘*"" < g(1) .
. n-=o« Zp
G

- In particular; lemma 6.1 is applicable whenever g(p)/p 1s an increasing
function of p . Typically 'g(l) is the asymptotic variance of /18 ‘in the
case of independent observations. We next apply lemme 6.1 to derive

Theorem 6.1. The efficiency of any unbiased linear combination of the order

statistics relative to X on strong mixing Gaussian process such that

Py > 0 for all k and = kal <« 1is always greater than.gz equal to its
value when the observations are independent. ‘

1/2

W 4 for any linear combination W ,  is given

Proof:‘ The variance of n

by (k.16). Setting



64

| | = o (p)"
(6.3) glp) = = =5
o k=1

and recalling that Ck 2 0, the result follows from‘Lemma 6.1.
gggggg: This efficiency-robustness resﬁlt depends héavily'on the assumption
that the process is Gaussian. Our analysis relies heavily on the orthogoral
expansion of the bivariate normal density function (Lemma-3.l). -The fact that
on F.0.A.D.P.'s, the‘efficiency of M to X always 1s 2 suggests that this
result will not be generally true.

For the remaihdér of the section we shall.assume that the {X1] are a
F.0.A.G.P.  Then the reciprocal of the efficiency of any unbiased linear

estimator W is given by

N V({/B W S Sk 1, 1-
(6.4) lim ~~ = p = ... zP
n-o V(/EX k=l ¥ 150 1P

~as V(/T X) = (1-p)/(1+p) . An interesting mohotonicity property of the relative

efficiency is based on~the following elementary
' £

Lemma 6.2. For all g >0 ;iez . %i% decreases as p goes from O to 1.
. l-p
F - >0 liE£ . 2P decr i fr =l to +1
For odd £ 7 1+p cases as p goes from to .

Applying Lemma 6.2 to expression (6.4) yields

Corollary 6.1, The effiéienqy of any unbiased linear estimator W relative

IS
<

on data from a F.0.A.G.P. is an increasing function of p for 0<p <1,

1=

W 1is a symmetric linear estimator the relative efficiency is a monotonically

increasing function of p for -1 <p<1l.
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Proof: The first part of the Corollary is trivial as c¢_ >0 ‘and each term

k
in (6.4) decreases as p increases. The second part of the Corollary follows
as ¢, = 0 for symmetric estimators. | |
Corollary 6.1. implies that for any symmetric linear combination of the
order statistics the situations when p approaches +1 and -1 yield bounds

for the relative efficiency. Using L ’Hospital's rule we can derive

Theorem 6.2. The reciprocal of the efficiency of any gymmetric linear estimator

relative to X as _b -+l or -1 is given by

. @ C..
(6.5) i WWAW) 4 5 2t ,
p=1 V(/mX) j=1 (aj+1)(aj+1r):
and ,
| | o o
(6.6) 1im WAW) oy 20

p--1V(/AX) 30 (23)!

Expression (6.6) may be infinite.
Expressions (6.5) and (6.6) can be evaluated for the median without

recourse to the explicit values of As thisanalyéis also applies

cEJ+l .

to the HL estimator we formally present

Theorem 6.3. If p >0, then v(X) < v(H) < V(M) ,

’ v(X) 2 -
(6.7) o2y VOO T nlee® 9184
and |
(6.8) lim gt~ 9853 .

p~ +1
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Proof: As nV(M) ~ I arcsin pk , and nV(H) ~2 Z arcsin_(pk/e) the first
assertion follows from the elementary inequality: x < 2 arcsin (x/2) < arcsin x .
The limiting efficiencies are evaluated by using the fact that the arcsine function
has a Taylor series, i.e.,

x2J +1

(6.9) | arcein x = I a,
J=1

In terms of this expansion,

' bl , 2J+1
(6.10) nV(M) = L arcsin plkl = Za, I (p23+l)lk! L it rrro i
Thus, the reéiproéal of the efficiency is asymptotically
' - = 2j+1 )
(6011) ’ ’ Yiﬁ-d_l = Z a. l+pe.+l . i-,_p »
vixy 3 Y 1-p% P
.th .
A8 p -+l , the J term approaches aj/(23+l) » 80 that
| - a
v '
(6-22) e 0F - @
R p—1 J
From the expansion (6.9), it follows that
' 2) .=l
84 1 Ix arcsin y p Pin X ,
(6.13) Z Z‘%ﬁﬁ-y = 3 " dy = ;I z cot z dz .
0 0
J - .
Evaluation of (6.13) at x =1 yields
V(M) T /e o
(6.14) lim A f zcotz dz = Zlog2 .

p-1 v(X)  ~ (ejt) 0
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Similarly, the asyﬁptotic variance of the Hodges-lehmann estimator is
» expressible as |

©

||

i (23+1) x|
. e . IFi
(6.15) V(H) = 22 arcsin N = 22 Z a'j 223"“1
==e0 T vj
. Ve o el
= 3 . l_p2;j+l *

 Thus,
! [}

2j+1

v(H) _ -2j l4p T 2
(6.16) pliml v p¥iml Ejaa 2 1B 1 T EE %3 (23+1)
. 3 =1

The right side of equation (6.16) is obtained by evaluating expression (6.13)

at x =1/2. Thus,

1T/6 © 23+l
- B mﬁL_.]

. V(H) o
(6.17) lim = 2 zcotz dz = 2| = -
p-1 V(X) h [6;d g (ag)i d

where the B,j are the Bernoulli numbers.

The asymptotic relative efficiencies of M and HL as p approaches -1
is given in ‘ | -' |
Theorem 6.4 If p <0 , then V(X) < V(HL) < V(M) ,

(6.18) . 1lim X—%} = 0 ,

p = -1

and

(6.19) TR &9 . 4 .
: p-~ -1
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Proof: By L'Hospital's rule,

l‘rpz‘j 1 . 1-p

- = i+, .

(6.20) lim
' p~-1 1l-p

Substituting (6.20) into the formula (6.11) yields

(6.21) lim. ‘l(ﬂ_l = Za, (2j+41) .
p~-1 V(X J
Similarly,
(6.22) 1im !@l = L a, (2j+1) 273
p —=-1 V(X) J
Since
_ < _
S-S5 dy  _ 23 .
(6.23)  Lax = arcsin x = = £b.x
» _ J» ) '[O ’\/l-yg I J s
it follows that 8y = bJ./ (2j+1). Thus,
(6.24) lim K_M-:)- = Zb, = lim 7%.5 = o
 p=-=1 V(X) R
and
(6.25) 1un WH = L 2

p=-1V(@ BC (1721 =¢ '

The behavior of the median a8 p = -1 is quite 1nteresting because n

times its variance decreases to zero as p —~ -1 and yet'its efficiency relative

to X approaches- 0 . later we shall see that this is characteristic of any
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finite linear combination of sample percentiles., As robustness studies are
~ usually concernéd with the sensitivity of procedures to small departures from
the 5asic aasumptiona we present Table 6.1 of the efficiencies of several
robust extimators for various values of p . ALl these estimators, which are
robﬁst against outliers, are robust against positive serial correlation. For
| all p, the 54 trimmed mean is the most robust as one would expect as it is
the estimator whiéh is ''nearest'' X . For small p, :1._e., =3<p<S+3
the relative efficiehcy of the HL estimator is witﬁih 3¢5 of value in
the case of i.i.d. observations, The efficlencies of the*ofher estimators

appear to be more sensitive,.
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Table 6.1: The Asymptotic Efficiency of Some Estimators Relative to X

6n First Order Autoregressive Gaussian Processes

5% Trimmed Mean Mid-Mean

Average of 25th and 75t

"

. P M H Percentiles
-1 .0000 | .8660 .5000 5000 . .0000
-9 1517 .8673 .9129 .5418 2423
-.8 2214 8714 .9200 .5688 .3608
-7 .2801 .8783 9267 -5995 4559
-6 +3344 .8875 .9337 .6332 .5323
-5 .3868 .8985 .9408 .6686 «5952
-4 .4384 +9106 +9482 . TO4T 6489
-.3 4895 +9229 +9556 <ThoT +6960
-2 5399 | .93u8 .9626 7753 377
-.1 .5892 9456 .9690 -8076 «TT49
0 .6363 9549 <9Thk 8367 8079
.1 .6815 .9628 +9790 .8622 .8370
2 <7234 <9691 .9826 .8838 8627
.3 . 7619 9740 .9854 .9018 .8853
b 7967 9778 +9875 <9164 «9051
5 .8278 .9806 »9891 .9230 . +9225
.6 .8549 .9826 +9903 9367 «9377
.7 .8780 .9839 .9910 <9430 +9510
.8 .8968 .9847 <9915 <ShTL 49624
.9 .9109 . «9851 .9918 .9h93 9715
1.0 9184 | .9853 -9919 +9501 +9766
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The resu;fs ianablé 6.1 do not provide a comprehén;ive survey of the
behavior of the estimators T{a) and W(a) since one is inferested in the
optimal choice of. @ and how this value changes with p » In the case of

,indepéndent.normal-obseryations, Mosteller [17] showed that the optimal choice
of o for W(a) is about .27 . Of course, the optimal choice of a for
T(o) 1is O since 'T(O) 1s the asymptotically efficient estimator X.

It is interesting to observe that the optimal éhoice_éf o for W(a)
does not vary very much from its value in the independeht case. Wnén p=.9;
the -optimal valué'fbr @ ig about .20 and when p = -.9-, the optimal |

~ choice for o is abaut .35 . Moreover, for .2 <@ < .4 , the efficiency

bf w(a) is alwa&s.higher than the efficiency of the ﬁedian. Since W(.27)

' or any approximafioh to it such as w(.25), is only slightly harder to compute
than the median and is qpite'a bit more efficient than the median for indepen-
dent and first order autoregressive Gaussian data, its_use-in practicg as'a

:quick estimator‘caq_bevrecommended. For smmll p , -;2‘$ p £.2, an inter-
.polation showed that w(.27) vremains nearly optimum. »Fih;ily, a glance at

" Table 6.1 shows that vw(.25) behaves very similarly to T(.25) on most

first order autoregressive proﬁesées so that our results glso supﬁort the

claims in recent literature t5]; (9], (147, [24] concerning the robustness

|  properties of T(.25) . | : |

The results reported above are based on Table 6.2 .



Table 6.2: The Asymptotic Efficiency of W(e) and T(a) Relative to X

- r(.10)

w(.3)

p w(.10) T(.2) w(.2) . 1(.3) Cm(Ls) Wb
-1 .8000 +0000 6000 0000 .4ooo .0000- | .2000 .0000
-.9 8221 | .134) 6363 .2131 4476 .2683 2739 2817
-.8 8345 .1967 6574 »3146 4833 3936 3323 | .3622
-.7 | .8u6Y .2511 | .6806 k037 | .5226 | .uB07 | .3872 | .k222
-6 | .852 | .3044 | .7068 | .4823 | .5634 | .5470 | .4384 | .4737
-5 8732 +3581 .7352 | .5507 ,6049 6021 4883 .5234
- .8882 4120 . T649 6100 ,6466 6509 537k 5717
-3 | .903k | .u652 | .Tou7 | .6619 |- .6877 | .6952 | .585%6 | .6186
-2 .9180 - | .5173 8234 - 7075 .T274 .7358 6326 .6638
-1 | .9314 | .5677 | .8500 | .7479 | .7647 | 7727 | .6775 | 7067

0 .9430 6160 .8736 | .7838 . 7987 .8059 . 7196 . T463

1} .9528 | .6621 | .89k0 | .8158 | .8289 | .8353 | .7581 | .7823

.2 | .9608 | .7060 |..9111 | .8u46 | .8550 | .8610 | .7927 | .81k

.3 .9670 «THT3 +9250 .8703 8772 .8831 .8232 .8421

4] 9720 | .7858 | .9361 | .8936 | .8956 | .9021 | .Bug6 | .8660

S| 975k 8210 | .94k6 s9147 | .9103 | .9183 8720 .8860

.6 .9780 8524 | 9509 9332 | .9219 .9320 .8g0L .9025

T] 9797 | 8794 | L9554 | 9497 | .930h | .943h | .9050 | .9156

.8 .9808 .9016 | .9582 .9637 .9362 +9530 .9158 .9253

.9 .981k4 .9180 .9598 9745 +9395 .9607. .9227 .9320.
1.0 .9816 9269 | .9602 .980L4 .94C6 9652 | .9252 .9356
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We conclude this chapter with the analysis of the behavior of the
efficiency of any symmetric linear combination of the order statistics, W,
relative to X as p — -1l . First we need

Lemma 6.3. The fécig;pcal of the efficiency of any symmetric estimator

relative to X as p =~ -1, is given by

o - 5 (x2- 2txy + 3)
(6.26) lim 'I f ——iﬁfnff e 2(1-¢%) du(x) du(y) .
-1 2 -t .
Proof: Since Cpy = 0 for symmetric estimators, (6.16) is just
- K
-] C o c. t
6.2 r o—f— - oun L (z X
-2 a1 (L SEREC ( k=0 !
and
, k . .
_ : ckt
(6.28) s g = [ <x v <] - 60} ax) auly)

where Pt denotes the joint c.d.f. of two standard normal r.v.'s with

correlation t . Differentiating (6.28) with respect to t yields

‘ . 2 2 '
K _ - 1im jf i e” (x*-2tay+y /2(1-%7) g () au(y) .

(6.29) z
t=1° 2¢1-tH1/?

In order to illustrate the use of Lemma 6.3 we prove

Corollary 6.2. The efficiency of the o-trimmed mean; relative to X on
P,0.A.G.P.'s, equals (1 -20) as p=- -1.

Proof: For the q-trimmed mean, let B = Q_l(l - @) so tnat (6.29) becomes
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o s . (xe-?ia_cryz)
_ , . B : L
(6.30) 1lim y(/m (o) = (1-20)-2 lim 'I I 2(1_t ) dx dy

1
—_—Te
n-e VYTX) t - 14B-B on(1-t%)1/2

The‘integral is jusﬁ the probability that two standard nbrmal r.v.'s with
correlation t are bothin (-B, B) « As t -1, .t.‘_hi.s apprqaches the prdban
bility that a‘siﬁgle standard normal T.v. is in (-B, B) which is (1 - 24) .

In order tp-derive the limiting efficiency of a géneral linear estimator
as’ p - -1 we‘heed

Lemua 6.k, TFor any € >0,

6.31 lim £ (x,y) du(x) auly) = 0 .
(6.31) t_il_‘l“[ £(%¥) au(x) duly

|x-y] > ¢

Proof: As fi(x,y) >0, (6.31) certainly holds if the same limit with p

*
replaced by u  is valid. Since

. t 2
| - === (x-y)
(6.32)  £,(x,¥) = (en ¥1-t° )L e'(x2+Y2)/?(l+t) . 2(1-t2)

Lt .

_ N 2(1-t%) . i S 2

6.3 [ [ g00v @'t ') 5 o5 I RAESRENCIE
|x-y|> € B a

Integration by parts and applying the Schwarz inequality yields
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e[ [ 2 TT T - [0 ST o

I 73 53

. y : . : 2? i
=U p.*(x)e h xv l t dx] [ Jl B (x dx]K % 2 %T:t—% dxjo

(1+t)

As the i‘ight_ side of (6.34) is Ke(1-t)" 3/2(1+t)° 1/2 , the right side of (6.33)

is o ) €2t

e
(6.35) - < K(1+t)-l(1-t)‘2 e 2(1-t%)

which -0 as t-~1.
In contrast to the limiting behavior of the trimmed méén any estimator based
on a measure with an atom at any single order stétistic has limiting effi-

ciency O (relative to f). This is shown as follows. As any symmetric uni-

modal density is a mixture of uniform densities

2
X

| E ) “
(6.36) e - [ 2% (x) an (v)

where 1T 1is a probability measure and Xy(x) is the indicator of tne set

fx: |x} <y} . Substituting (6.36) into (6.32) and (6.26) means that we must

prove that
> dy, (v) du(x) du(y) = = .

' - x2+ 2 )
(6.37) tl:_t.m;%t III% . éjl—ﬁf‘)l X (x-y)

By the lemms we can restrict ourselves to the region [x-y| < e . Letting

z = min (€, w) , (6.37) becomes
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| | 6D L - ‘
lim i-j[jfi;eah“5 Eﬁ:zdﬂﬂdmw]éhgw :

(6-30) s /o 2z

As t -1, _nt(w) places more of its mass in a small neighborhood of the origin

so that the limit in (6.38) is

| . (22
1T oy ) '
(6.39) -tliml ff/—g-ﬁe —z‘g;— du(x) du(y) .

0

Z =~

When u = o +'Bul s where o is a unit mass at { and { 18 not an atom

of p, , evaluation of the double integral in (6.39) yields

(6.40)

2 | 2 } |
- €5/ (14t) - ¢5/2(14t) L2 L. 2 |
((lig?r)(eﬂ +o e Z Jrg ./%_1'? e ¥ /20 du, (¥)
~Z

i 2+ 2
+ 32 j j 7%§ e é%i:%jl ,iéﬁf:zz

= du, (y) du, (¥)
The third term is > 0 as it is essentially the limiting efficiency of an
estimator based on Hy As t -1 and z - 0 the first term is - 0(1/z)

while the second is 0{1/z)o(l) as is ''smooth'' near { (¢ not an atom).

ul .
Thus the reciprocal of the relative efficiency approaches « . In particular
the Winsorized mean and a finite linear combination of,saﬁple percentiles
nmave this property.

A more general condition for the existence of a positive limiting relative

efficiency is formulated in
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Theorem 6.4, ILet A(u) be the Riemann-Hellinger intégral

2
- /2 2
I T,

(1) if p is & positive measure (p =p ) and A(u) = » , the limiting

relative efficiency is O .

. * :
- (41) if A(p) exists and is finite and if B(u ) , the upper Riemann-

Hellim;er integral corresponding to A , is finite, then the reciprocal of

the limiting relative efficiency is A(u) .

Proof: Iet

2 z+(ntl)w z4v+(n+l)w - (x2+y2) '
(6.41) K (z,t,wv) =) [ | A= e T 4wl
: =1l

z+nw 2+vinw

Clearly

(6.42) lim ;l; H (z,t,w,0) = A(p)

o | M- i
w=20

if A(u) exists and

(6.43) lim % H (z,t,w,0) < B(u) -
t -1 " .
w=-0

Now let p be positive. Then
: 2.2 ' '
x“+
: - TL X (x-y)
1 1 2(1+t
(6.4k) E;,Hu.(z,t,w,o) < ff‘fgge ) "'""é’;,m du(x) au(y)

"which, from (6.42), proves (i) . (See Figure 1.)
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Figure 1

To prove (ii) , let 0 < § <1 be a fixed number. Define

- W
(6.45) _ Hu(t,w) = Io Hu(z,t,w,o) dz .

let s<z, r=2-5,. Then (see Figure 2)

W

(6.46) [ B (2,8,4,0) 4z - r”

H (z,t,s,0) dz
0 Yo H

2 2

X 4y : .
=T .” Xw(x-y) € 2. 1) “du(x) du(y) - R(w,s,t)

where

78
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v : 2, .2
r z+nr z+s+(n+l)r Xt

| I X (%) e 2T qu(x) au(y)

z+(n-1)r “z+s+nr

(é.hY)‘. fR(w,s,t)I =2 'j;

| 2.2 ' -
. v z+nr z4s+(n+l)r - 4%-117
<2 I I f e © lft a” (x) dp*(y)

0 Yz+(n-1)r Yz+s+nr
<2 Hax (t,r
<2 Ex (47)

" Now let s = (1 -§)w, T=¢éw. From (6.&6)-énd (6.%7) ’

' xoaye : ' _
(6.48) |2 [[ x,Gv) 2 () auly) - 5l (6,0) - B, (t,8))
< r—J"’- El-l* (t,r)

Now

ﬁ; (t,r) = w2A(u) + 0(W25 y
(6.19) - H (6,8) = s%A() +o(v°)

ﬁu*(t:r) = rZB(u*) + 0("’2) “';
S0 » | P2 . o
(6.50) L[xev) e 2 () any) - (- D A

< 6B (n) +of1)

The result follows easily from (6.50).
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Figure 2

7« The Behavior of Some Estimators on the First Order Autoregressive
Double-Exponential Process '

In this section we shall summarize the behavior of the mean, f-, median, M ;
the average of two symmetric percentiles, W(«) , and the Hodgés-Iehmann
estimator, HL , when the observations come from a F.O.A.b.P. Not surprisingly
the results indicate that the median, M, remains thevbest estimator of the
four estimators studied. More interesting is the fact that the HL eétimator
is more efficient tﬁan the mean, f', for all values of p so0 that it retains
its desirable robustness property. In contrast with tne‘Ggussian.situation,
however, the efficiency of the HL estimator to M (the.best one considered)
decreases as p — +1 and increases as p - -1 . In the Césé of independent
observations from a double-exponential.distribution the efficiency of the HL
estimator to the median is 75 % . In the case of observations from a F.0.A.D.P. ,
as p — +1 this efficiency drops to 69.8 4 while it‘rises to 90 % as

p"-lc
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- We begin the section by deriving the asymptotic variance of the
estimator W(a&) :

Theorem 7.1l. The average W(a) of the upper and lower lOO aﬁh percentiles

on a F. 0.A.D.P. is asymptotically normally distributed- with expectatlon " the

mean-gg.thé process and asymptotic variance given px
2 (o cosn vol¥! ||
(7.1) lim nv [W(a)] = Z cosh vp + ginh vp' ')
n=-o k=-m
N 2 ; ved p2j+l . 2,; p2j+l vzjfl
= 1 . : [ |
o (23! 23+l © %y, 2dH (23+1)!

_ ‘ th ’
where Vv is the upper o point of the double-exponential distribution.

Proof: The only part of the statement that does not follow directly from the
results in_the_appendix to Section 2 is the calculation of the asymptotic

variance. We evaluate it using formula (4.3) where x=-v, y=Vv, B=1-a,
£(v) = £(~v) = % v I = e®ix =@ . Formula (4.3) depends on P[Xo< vy L <]

which one evaluates by noting that

il

-

(1.3) R [X <Y, X< V) VoP X<y, x>V] .

' From Lemme 2.1, it follows that

[AOR | o

e* {(l - ozk) I'm‘k e dy} dx

- v=p X

It
°

VR ] o

(7.4) P [X < vy X > V]

(; -Apk)e-2v e-vp
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so that

| -2y k k
(7.5) S Covv[Yo(-v), Yk(V)J = EK'“(l - efvp + pke-vp ) .
Then (h.s) becomes
. | ) )
(7.6) ‘ . n-l by (1 + plkle'\)p'kl_ e-\)pl I) L

As both»sample percentiles have the same asymptotic variance, which is

e x| | volXl
(7.7) ntr (¥ 4 plk'evp’ -1) ,
R
‘the asymptotic variance of W(a) is
| | 1 x| ] = ] |k
(7.8) Lot pzelle e ) . - (P - ey
c=—co : =—® v

which is equivalent to (7.1).

As_é first application of Theorem 7.l we prove

" Corollary 7.l. The median has the minimum asymptotic variance of any average

of two symmetric percentiles on sny F.0.A.D.P.

Proof: The variance of the average of two symmetric percentiles can be regarded
as a function of v for 0 <y < ® o For any p >0, the function (7.2) is
increasing in- v so its minimum is attained when V = 0 . For negative values

of p , differentiating (7.1) yields

(7.9) | z D'zkl sinh Vpl2k| + lel cosh.vplkl .

The second term in expression (7.9) equals
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| X x| 23 25 2541
(1.10) = pIkl cosh Vplkl = XX plkl Lo 1)% = 5 1+ p23+l
(23)¢ i (2i)t1-p

which increases as a function of v for any value of p . The first term in
expression (7.9) also increases as a function of Q for all values of p so
that (7.9), the derivative of the asymptotic variance is a positive increasing
function of y : Hence, the asymptotic varianée attains its minimum when.
v=0 vwhich corfésponds to a = %‘ or the median.

When.we compare the efficiency of any estimator W(a) to the median as p

varies we obtain the following analog of Corollary 6.1z

Corollary 7.2. The efficiency of any average of two symmetric order statistics,

"W(a) , to M on F.0.A.D.P.'s is an increasing function of p .

Proof: Expanding the term eV in formula (7.2) and collecting terms shows that

the reciprocal of the efficiency of W(a) to M is given by

| o . 2141 o
pay T PLe | ER gLEe
3=0 (23)! 1 - p29* 3=0 (23+1)f 1 - oY 1 4,

By the second part of Lemma 6.2 each function

1l +
1l -

2j+1
p

2j+1
0 J

l1-p
l+p

(7.12)

decreases as p increases from -1 to 1. Hence, the reciprocal of the
efficiency decreases and tne result follows.
The Hodges-lenmann estimator, HL , is always more efficient than X but

is always less efficient than the median. This can be proved using‘Tneorem 5.2
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but we omit the details. Using the same methods which yielded Theorems 6.3

‘and 6.4 one obtains

Theorem 7.2. On data from a F.0.A.D.P. the limiting ratios of the asymptotic

variances of the estimators considered, as p—+1 are given EX.'

lim V(i}/V(M) = 2 ,

p— +l

lim  V(H)/V(M) = 2 [3 log (2,-) *-35]- ~ 1.4328
p—~ +1

lin V[w(a)]/V(M) _ simny 7 VA

p = +1 - v 3=0 (25+1)(2j+1)!?

~where v is the upper ath fractile of the double-exponential c.d.f. ,

lim- V(H)/V(M) - 10/9
p -1

and

Lim  VW(e)YV(M) = coshy +yve¥ .
o) -1 : .

In.Table Tal wé presgnt the asymptotic efficiency of the HL' estimator
and several averagés of symmetric percenfiles, w(.45) , w(.b) , w(.25),
and W(.l) relative to M for various choices of p . lohe‘interesting obser-
vation is.that ail_the estimators seem rather more sensitive to small values |
of p than in the Gaussian case. For instance, for Gaussian datﬁ the HL
estimator has efficiency .995 ‘at p =0, .866 at p.= -1 and >.923 at
p = -.3 S0 that about 36 $ of the total change in éfficiency is achieved
when p = -.3 . In the double-exponential case 47 ¢ of the total change in

efficiency is achieved at p = ~.3 + This behavior isvcharacteristic of all
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the estimators.
Probably the most basic cohclusion that can be drawn from Table 7.1l is

that the efficiency of the HL estimator decreases as p increases which is

the exact opposite of its behavior in the Gaussian case. This suggests that
it is not possible to find one estimator which will be robust against positive
serial correlations for all éutoregressive progesses.  As the relative effi-
ciency of the HL estimator to the median appears to be a monotonically de-
creasing function of p achieving its minimum value .6979 at p =1, it
appears to be-more suitable than the ordinary meen for general use. Moreover,
the efficiency ofvthe HL estimator on Gaussian processesbis much superiqr to
thé median or the average of two symmetric percentiles.(especially when p is

negative).
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Table 7.1: The A.E. of the Estimators H, W(.45), W(.4), w{.25) -and w(.1)

o v(m)/v(m)  v()/vm(.L5))  v)/vw(.L))  v(e)/vW(.25))  V(M)/V(W(.1)) |
-1 9000 .8908 .T669 . 3793 +0939
-.9 8991 .8908 . T672 .3804 .0948
-.8 .8961 8912 . 768k <3842 0975
-5 | .8653 .8938 TTTT Jhke .1192
-.3 .8210 .8965 .T87L <476 . 1460
-1 . 7709 .8990 7962 . 4837 .1810

0 <7500 . 9000 . 8000 - 5000 2000
+.1 .T336 .9008 .8031 5142 .2139

.3 <713k .9020 8075 5355 .2527

.5 .7038 .9027 .8099 5483 2775

.8 .6986 .9031 .811h . 556l w2958

.9 6981 .9031 .8116 .5572 .2978 ©
1.0 6979 .9031 .8116 <5574 .2984
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B, Two Models Allowing for Contaminated Observations

ln”this séction we study two ﬁrocesses which are models of & basic sequence
o ;@i;de rqvuis ’{ei} which are subject to possibl? contamination. The first
procéss assumes that the observations come in groups. Each group has a common
sontaminant and thé-size of a group is determined by a discrete renewal process.
rhis‘model_éan‘be considered as a generalization of Hoyland*s [13] results
wnen each gfoqp‘has the same sizev(c) . The secénd mpdél:assumes that the pro-
e altérnateé between groups of observations with a‘QOmmon contaminant and
Cong of upcontamiﬁated observations. The stationary ﬁarginal distribution
f the second process is a contaminated normal distributién, in the sense of
Tuiey [24] when the {ei} and the contamingnt are normélly distributed (with
d{"rarent variagc;s). ' | |
Qur general fesults imply that for the first proééss fhe efficiency of
iy linear combination of tné order statistics or the HL  estimator, relative
Lo % is greater than its relative efficiency in the case of inaependept ob-
m) e atlons whenevgr the €; and thne coptaminant are nor@ally distributed_°
Process 1: Assume ﬁhat & process is composed of phasgs whose lengths (Ll, L2, coa)
~iim a discrete renewal process; l.e., the probability that a phase lasts for
i . observations is p'j = P(L=j) . When a phase begins»ai#ontaminént U is
wdded to a:basic-sequence € of 1.1.d. r.v.'s throughéut that phase.. Letting
#(i) denote the nﬁmber of renewals (phases) that haye occurred by time i ,

the process xi is representable as

(Bay X, =U

‘Whenever E(L) is finite the process will be asymptotically stationary. Indeed,



88

by éhbosing the stationary distribution for the renewal process as the time

until the first renewal occurs, the process can be made strictly stationary

-]
from time O . We denote the generating function of L by ?(z) = % pjzj and’

discuss the asymptotic behavior of X , M and H~L when € ~ 1(o, e2) and

2 + 02= 1l and we

and U ~ 7(0, o°) . It will be convenient to assume that e
let r = 52/02+‘e2 . The asymptotic behavior of the three estimators is given in

Proposition 8.1: When the observations are from Process 1, 88 n = «

(8.2) V(D ~ R re(D/e)
(8.3) | Y(M) ~'_§% (1 + %-Eé%%%% arcsin r)
and o - |
' 6 $11(1
(8.&) .V(H-L) ~ é& (1 + ; —;7%I% arcsin ;') .

Proof: As usual

v

n .
b v(xi) + L5 Cov(xi, xj) .

(8.5) 02V (X)
’ 1=1 i3

It X1 "and Xj are not in the same phase, they are independent. When Xi

and Xj,-are in the same phase, Cov(Xi, XJ)

r ; As n ~ o, the number

of different phases is approximately n/E(L) = n/¢'(1) . - The average number
of ordered pairs of distinct observations that occur in a phase is

E(L(L-1)) = @*'(1) . Hence; as n -

: o~ p®r{l)r
| (8.6) v.f+§ Cov(X,, Xj) *“”;T%f%“ | )
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‘and
(8.7) VE ~ (e er(L)/ern) .
To derive (8.3), consider the sign test statistic 5, Its variance is
n :
(8.8) v(sn)\ = £ (1/4) + z[P(xi> 0, X,> 0) - 1/4] .

i=j=1 1$5

The terms in the second sum on the right side of (8.8) are O unless 1 and J

e
Counting the number of correlated xi's as in the preceeding paragraph yields

"
(L + %,-&%-% arcsin r)

and (8.3) follows from (8.9).

are in the same phase in which case P(X1> o, Xj> 0) - /b = L aresinr .

(8.9) (s,) ~

=1

The derivation of (8.4) follows the ome in Section 5. There is one sim-

plification. In_calculating the variance of I Iij ,'-one need only calculate

(8.10) oz [P(x,+ Y >0, X
i,

2> 0) - 1/u4]

where Y, Z are independent of Xi, Y., and of each other and have the

J v v
stationary distribution of the process. The number of‘other terms is of lower

order. When i =j, ,P(X.+ Y>0, X+2Z>0)= 1/3 as all the r.v.'s are
symmetric. If i and J are not in the same phase P(Xi+ Y >o0, Xj+ Z >0)= i/h .
When Xi and Xj are in the same phase they are correlated and Xi+ Y, xj+ zZ

will be jointly normally distributed (comnditionally) with covariance matrix
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(8.11) 2 2
r
> 1
Thus,’ P(Xi+ Y >0, Xj+ Z>0)-1/4 = é%-arcsin r/2 , when 1,) are in the
- same phase and the variance of the appropriate sign test statistic is
. 3 -L- —]-_- tt l
(8.12) n (12 i %$7§T% arcsin r/2) .
Converting this to the variance of the H-L estimator as before yields
(8.13) L (1 + 6 (1 arcsin r/2)
.13 3 et 61 , .

From fofmulaé (8.2); (8.3) and (8.4) it follows that for small r ; if
o' (1)/9'(1) approéches ® , the three estimators exhibit tne same behavior.
"As n 9''(1)/9'(1) 1is the expected number of correlations it is apparent that
the variances of the estimators really depend on the'totai amount of cortelation
between the observations rather than just on r . In other words, a feﬁ réally
large groups (i.e. ¢''(l) large) has a greater effect’than‘many small groups. .
Also, for any fixed value of r , the efficiency of both M and HL trelative
to X is an increasing function of '¢"(l)/¢'(l) . This is essentially an
vapplicétibn'of iemma 6.1 but can be seen directly here as (arcsin r)/r and
arcsih(r/Q)/(r/E)' are increasing functions of r .

 ﬁsually we are concerned with values of T > /2, i.e., the coﬁtaminant ‘
ordin&rily has a lérger variance than the underlying i'i;d. r.ve's .« As T =1,
all the terms in the parentheses in formulas (8.2), (8. 3) and (8. h) approach
| [l + @r(1) /¢ (l)] 80 that their relative efficiencles redude to thelr effi-

|
ciencies in the case of indepehdent observations. This 1s expected as each
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group is essentially one observation from the contaminant.

' In order to illustrate the results, we present the A.R.E.'s of M and
HL to X for various values of r and T = @'(1)/[¢'(1)+9'*(2)] 1in
Table 8.1. Of course, fpr aﬁy r the efficiency ié monotone decreasing in 1
as T is a deéreaéing function of ¢o''(1)/®'(1) . |

In all ceses, éxcept T =0 , the efficiencies approach the case of i.i.d.

observations where r = 0 or 1 . For moderate values of T, 1i.e., ¢"(l)/¢;(1)
is not large, the A.R.E.'s of both estimators are not greatly increased compared
to the independent case. wa¢Ver for small values of T the effect of large
values of ¢"(1) fakes over. In the limiting case, T =0, when r |is
small the A.R.E,'s approach one. At first glance this méy seém surprising.
ﬁowéVer T -+ 0 is equivalent to ¢''(1)/9'(1) ~ « and for small r ,
2 arcsin(r/2) ~ r ~ arcsinr. |

Model 1 can be regarded as a genéralization of Hoyland's [ 13]) model, in .
wnich L is a constant ¢ . He studied the Hbdges-lehmann estimatof but gives‘
a formula for arbitrary distributions which essentially.replaces i aresin r/2

2

by P(X,+Y >0, X+z> 0) - 1/4 , where X, eand xJ ‘are in the same con-
tamination period in formuls (8.12) and used the general conversion factey cf

(-~} .
the density of xi + Xj at 0, 1i.e., I fz(t) dt in the conversion of the
-0

sign type statistic to the Hodges-Iehmann estimate. The asymptotic variance
of the median given in {8.3) can also be generalized to an arbitrary marginal

distribution and is

8.3 —L s 843y
( .3 ) : hfe(O)n ®'L
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i
tamination period. Of course, in Hoyland's case, ¢"(l)[¢'(l)]-l =c¢c~1.

where A = P [Xi> 0; Xj> 0] - l/k when X, and ){.j are in thé seame con-

It may be instructive to compare the effect of having random group sizes
in place of constant group sizes on the variances of our estimators. If we
take a geomefric distribution for L , so that P(L=j) =.qj-lp y J=1, 2, e
r‘and P(z) = (pz)(l-qz)-l , ¥(1) = p-l and ©''(1) = 2qp“2 . If we assume
that the average group size is ¢ , then p = 1/c 8o that @''(1)/9'(1)=2(e-1) .
Thus the factor due to dependence is doubled if the size of a group is geo-~
metrically‘distributed with mean ¢ rather than always eqﬁal to ¢ . Finally,
we note that in Hoyland's model T = l/c » 80 that relatively small values of
T are probably of interest and for any value of r the relative efficiency |

of both M and HL dincreases with the size c¢ of each group. His Table 1

of the A.R.E. of HL to X is consistent with this.’



Table 8.1: The A.R.E.'s of M and HL for Process 1
V(X)/v(M)
r 0 ] .2 3 5 .7 1.
o) 1.0 .637 .637 .637 637 .637 .637
Qo .998 767 +T10 .683 658 646 637
.3 .985 .858 . 789 745 .693 . .663 637
5 «955 875 .819 .775_ .T16 .676 637
o7 | .903 .854 - .813 179 725 _.683 637
.9 . 8ok .781 . T60 «Thl . 706 676 .637
1.0 637 .637 .637 637 637 .637 637
v(X)/v(HL)
A 0 .1 .2 3 .5 .7 1.
) 1.0 «955 «955 +955 «955 +955 <955
.1 999" { 916 | .967 | .963 | .9%9 2957 | 955
3 996 .985 977 972 964 .960 +955
.5 -989 .983 | .978 973 -966 961 | .955
.7 979 <975 .972 =970 .965 .960 .955
.9 .96l+_ .963 962 961 «960 <957 955
1.0 +955 .955 955 <955 955 +955 <955

93
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Process 2: The second model assumes the process alternates between two types

of pertods (or phases). During the first phase X, equals e, where the e

i i i
are i.i.d. standard normal r.v.'s. During the second phase xi =€ +U,
‘where U is & N(0, ) random variate independent of the € and is a

common component of the observations during the phase.v-Thns, we have & period
of pure observations followed by a period of contaminated ones and then another
period of pure observations, etc. We shall call the phases in which uncon-
taminated observations occur pure periods and the other phases contaminated
periods.

While we were motivated by a model which assumed that the lengths of
the two types of periods were determined by two independent renewal process
(the sofcalled alternating renewal process) our analysis is more general.
Denoting the starting tiﬁes of the pure periods by sj and the starting
times of the contaminated periods by tj our analysis will be valid provided
that (BJ’ tJ) is a stationary difference process. lLet p equal the
(stationary) probability that an index i is in a contamination period and
let y denote the expected number of indices Jj # i which lie in the same
contamination period as the index i . The number vy is the average number
of other observations with which Xi has non-zero correlétion. In the case
when the lengths of the fwo periods are determined by renewal processes with
generating functions Y(z) for the length of pure periods and ¢©(z) for thé
length of contamination periods we have |

9r(1) o' (1) P

8.14 = = -
@) ey ™M Y oy T e@
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The marginal distribution of Xi is the contaminated normal,
(8.15) q N(O, 1) + p N(O’ 1+0)

since with probability q , X lies in a pure period and has a unit normal

i
distribution while with probability p , Xi lies in a contamination period
and has a normal distribution with mean O and variance 1+ . The asymbtotic
behavior of X » M and H-L are given in the following:

Propbsition 8.2: VWhen observations come from Process 2 the estimators i', M

and H-L are asymptotically normelly distributed with asymptotic variances

given by
(8.16) VE) ~ (14 (pry))

1 2y R
(8.17) V(M) ~ 117 {1+2 arcsin ]
and &Y% 2 o . Al 2 n o
= (1+ ={ q“aresin + 2pq arcsin % p“arcsin ~—- ])
(8.18) v(n-Ly~ = T " il —_ V(a+n)(o+om) e .

n3
(2 + —229 4 22
sz /TN

Proof: The mefnod of proof is the same as that of Proposition 8.1. In thé
derivation of V(X) the individual variance, V(Xi) is 1 +pN and

Cov (Xi’ XJ) =0 unless X, and Xj are in the same contamihation period.

The proof is the same as that of (8.2) with r replaced by 7 and ¥''(1)/9'(1)
' replaced by y . The asymptotic variances of the median and H-L estimators

are also found in the same manner. The only part which is more difficult is
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the calculation of (8.10) the variance of the sign test statistic for the H-L
estimator. When Xi and Xj are in the same contamination périod they are

(conditionally) jointly normal with covariance matrix

wn 0
n1

(8.19)

As Y and Z are independent r.v.'s with a contaminated normal distribution
(8.15), the r.v.'s X;+Y end XJ+ Z are mixtures of bivariate normals with

mean O and the following covariance structures (and mixture weights)

(2#1) 7 L
(8.20) r = , with probability q
Ll a2+
o4 7 _
L = » with probability 2pq
n 2+21 _
2420 1 | 5
L = s with probability p
Ll 2+27 '
Thus,
(8.21) P(X,*+ ¥ >0, X,+ 2 >0) - 1/k -
1,2 1 2 i
=(q“ arcsin + 2pq arcsin + p° arcsin ——-)
am il J(2+) (2+21) 2+21
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s0 that the variance of the appropriate sign test statistic is

F 1 Y 2 . _ T 2 ]
(8.22) n [ T EF(q arcsip i%ﬁ + 2pq arcsin e + p° arcsin E:gﬁ)]
Since
‘ 1 2 2
(8.23) g0) = = (% + 224, B,
» /Zn /T /ey /N

the variance of H-L is given by (8.18).
Remarks: As the variance , 17 , of the contaminating distribution approaches

infinity the variance of X approaches infinity while

(8.24) ) - - 9
2 q2

and

(8.25) nv(H) = 3—"1; (1 + ¥(3¢%+ 3pq + 1°)) .
q

Thus, the efficiency of H~L to the median becomes

» (1 +v) , :
(8.26) 3 qQ .
_ 2 1 + ¥(3¢°+ 3pq + p°)

In particular, if p >1 - /2/3 , the efficiency of H-L to the median is
<1, regardless of the value of y Jjust as in the case of independent con-
taminated normal observations [10]. However, the Hodgés-Lehmann estimator is
more sensitive to contemination in this model since (8.26) increases as a

function of vy .
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Remark: It should be noted that the analysis given for fhe two processes in
this section really depended only on the following assumptions on the process
generating the periods. Fof Process 1 as long as the lengths Ei and their
sqﬁares Lf obey a law of large numbers the results, éuitably.interpfeted,
will hold. For Process 2 the lengthé Zi and their squargs, 3? » generating
the contaminatién periods must obey a law of large numbers while only the |

lengths, Li » . of the process generating}the pure periods need obey a law

of large numbers.
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