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CHAPTER I

AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION

-1
OF THE CHARACTERISTIC ROOTS OF §l§2

1. Introduction and Summary

The distribution of the characteristic (ch.) roots of Elgél
depends on a definite integral over the group of orthogonal matrices.
This integral involves the ch. roots of both the population covariance
matrix and the sample covariance matrix. Usually the integral ié
expressed as a hypergeometric series involving zonal polynomials [8], [16].
Unfortunately, this series converges slowly unless the ch. roots of the
argument matrices are small, Furthermore the computation of this
series is not so easy. In the one sample case, Anderson [1] has ob-
tained an asymptotic expansion for the distribution of the ch. roots
of the sample covariance matrix. His expansion is given in increasing
powers of n-l, where n is the sample size less one, up to the first
three terms. In the two sample case, however, the situation is more
complicated. Chang [6] has obtained an asymptotic expansion for the
first term. In this chapter, we extend his result to the second term.
We also compare the asymptotic expansion for the two sample case with
that of one sample case [1].

Let Ei(P xp) (i=1, 2) be independently distributed as

1

. - -1,-1
Wishart (ni, P Ei) s and let the ch. roots of S)S,” and (zlg2 )

be Lj and 3 (3 =1, ..., p) respectively such that



> > .. > ces < . t let
£l 22 zp 0 and O0< ay < a, < ap Further, le

us denote

A = diag (al, 85 vees ap) ,

E dlag (»el, 2'2’ seey ‘Zp) H

n=n, + n, , and I is a px p identity matrix throughout this
chapter. Then the joint distribution of zl, 22, e zp is given

by [16]: [19]:

(1.1) ¢ T aim zZ(n -p-1) g (4. - 2.) i az,
i=1 i i< Ji=1
- B
j |I+AH:LH'| 2w am)
0(p) ~o
where
n + n
(1.2) c=rp( 2){2Pr(2n)r(—n)}
Fb(x) = b (b- l) T (x-2j+3) ,
Jj=1

and (H'dH) is the invariant measure on the group O(p).
From (1.1) we know that the distribution of the ch. roots of

-1 . .
S]S2 depends on the definite integral

(1.3) J=jo( ) lI+AHLH'|-

s

(E' dﬁ)



2. The Asymptotic Expansion of J

Transform first

(2.1) H=ed

where S (p x p) is a skew symmetric matrix. The Jacobian of this
transformation has been computed by Anderson (c.f. (2.3) of [1] ) ,

and is given by

(2.2) J=1+ ELﬁTg tr §° 4 %T%+§ trELL

2
4+ 9p_ - 20p + 14 (tr S2)2
8(6!) ~

+

Lemma 2.1, Let A and I be defined as before, then

f(H) = |I + aHIH'| , H € O(p) , attains its identical minimum value

|T + AL| vwhen H is of the form

(2.3) - o,

Proof: See [17 and [6].

Lemma 2.1 allows us to claim that, for large n, the integrand
in (1.3) is negligible except for small neighborhoods about each of
these matrices of (2.3) and 5 consists of identical contributions

from each of these neighborhoods, so that



(2.4) g = 2P I |1 + aHLH' |
N(I) ~ T

V] |

(&' dg) >

where N(I) is a neighborhood of the identity matrix on the orthogonal
manifold,
Lemma 2.2. Let bJ. (3 =1, ..., P) be the ch. roots of B (p x p)

such that

then

IE + Elm = exp {m tr(f]% -'2]-"}22+ %:%3 - o).

Proof: See [6].
Since we want to compute up to the second term in the asymptotic

expansion of & , we need to investigate the groups of terms up to

the fourth order of § . Under transformation (2.1), we have

AHLH' = AL + (ASL - ALS) +% (ALS2 + ASQL ~ 2ASLS)
+ % (As3L - 3A82LS + 3 ASL52 - ALs3)
+ —2]5: (ALSLL - uASLs3 + 6AS2L82 - hAs3Ls + AsL*L) + e

Hence



n n n
2 -2 L )
T+ 2= |zean] Zre (s} (1) (s8] B
where
'rl 0
-1 ‘2 %3
R=(L+AL)7A= .. > Ty =T @=L p)
o) T dd
P
{S} = RSL - RLS ,
{82}=-32:(RL52+Rs2L-2RSLs) ,
{s3 = (RS3L - 3 RE°LS + 3RSLs2 - RLS3)
~ g lan o di'a 4 ~ e a2 o avd lan o atd
and
{s”} = é% (RLsLL - 4ASLSS + 6aSPLS® - L ASSLS + AS“L) .

Under transformation (2.1), N(I) - N(S =0) .

{5} + () + (5 + (8] +
4]

~

P 1@

s the elements of § a

¢h. roots of G can be assume
~

Lemma 2.2 is applicable., By L
+« n
A . |1 + ALl
-2
= |1 + Az 2 exp {-

If we put
+ee » then in the neighborhoods of

re very small, and hence the maximum

d to be less than unity. Therefore
emma 2.2, we obtain
-8 -8
2 }I + Gl 2
n 2 Y4
Fer( (8] + 571+ (821 + (572 + ..}



(5% = (%) -2 (5)®

(5] = (8%} - M) -5 (s} + 5P
and
(5] = (8"} -$(HS”) -3 Hs) -315°92 + 2e1%(sD)
1 2 L2172 1l
+ 3{SHSHsY + 5(s7}{s)” -5 (5]
Since 8 = (sij) 855 =555 for all i,j =1, .e., P , NHOW
we have

tr[S] = tr(RSL - RLS) = O

tr[5%] = t2((s°) - 3(s}?)

tr(3RLS® + 1RSPL - RSLS - % (RLSRLS + RSLRSL - RLSRSL - RSIRLS))

~r~ PN BN

tr(LS - SL) (I - RL) SR

P
= 3 C..s?.
i< 1J 1J

J

where



C..=(r,.-r.r.0..) 4 .=-C
1j Ji 1 J 1] 1J J1
(2.5)
r..=r, -1, and L.. =4, - 1,
ij i J 1] 1 d
Let us note that
2 2
er{sHs") = e{sTHs)
tr{s}(s°} = er{}{s} ,

and

wr{s)(s) = wr(8}(s°Hs) = e {PY(s)® .
Similarly, after simplification, we find
6r(8%] = (8%} - te{5)(s°} + 3(5)°
£ %

where

£(1,3,k%)

H
It

it

S =r L. . 4+Tr.r. L .0, I S
rij jk erﬁlJ rlerﬂlJ ik * rJrlkﬂlJka

B S e e e N A

ahd



tr[Eu] = tr{Eh'} - tr{g}{EB} _ ‘%'tr{gz} . tr{S} {82} _ {S}

P P P
=Tt 4 % \,rlz 2 4+ 3 b5 5
i<y M i<i<k icj<k © 1 3k
P b
2 2
+ T ¥.s + ¥ gs,.8..8 .S . ,
i<j<k 3 ik® jk 1< ij7Jk ktTti

where

' e ay 2 1 1 "12,2 1224
@.7) @ =9(,0) = (ryrghy = Srgsbyg + Gryzgm 54005 - 5rivyeys
1 1.2
= —C. -~ —-C,
37i 2713 °

(2.8) ¥, =V (1,3,%)
__ 1 1 1 1 2 2
=7 Fihy T Fabik T Bt t 3T U0 T Ty
2, 1 2
Fry (e ) g - T8 50 Erjrk(ﬂij * Ay

r r. .4 )N p

1 rJ ij 1k Tk ij7 ik * 1 3 k ij 1k

= - (¢
" 3( ij ¥ C )'+Ircak 13 1k

and



= g(i,j,k,t)

m
g

ﬂij+rka +r, 4 . 4r

- 31 31 Tkt T 160

1 1
= 5lry 2Ty 545e) - 5

1 1 1
+gratyyg (g #30) + 5rar g (05,930, 0) + gryr b (4,430, 5)

1 1 - -
gy by (Bg*3050) = Frmy (0557250 ) (B0, 0)

l N
t oty (052 ) (g -2ye) - L5157 e 1 T T3 ks g et T

" N s bt tes T TR T Mk b T or Tl by bt bes

Note that ¢2 and ¢3 can be obtained from *1 cyclically, i.e.,
changing i to j, j to k, k to i, then wl becoming ¢2,
Wa becoming ¢3 and ¢3 becoming wl' Moreover, we need not know

the value of g, because any term containing an odd power of a factor

sij when integrated with respect to sij reduces to zero (see below).
From (2.6), it is not difficult to show that  f£° = 0= +C2 +C2 -2(C. .C.
ij ik “jk ij ik

+cijcjk+cikcjk)-ucijcjkcik .

Finally, we can write (2.4) to be

N

P
J exp (- % T C. 2 )

P -
(2.9) S=2PT (1+a.4, :
’ ( al 1) N(S=O) i<j ljslj

i=1

P
« exp (- g tr[S3] - % tr[Sh} - we) J 1 dsij .
~ ~ i<j
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If this integration is to be performed term by term on the expan-

sion of exp (-~§ tr[S3]-...)J then for large n the limits for each

Sij can be put to. + o , since each integration is of the form
b P m, .,
I exp (- g z Ci.si.) I si%a ds,
N(s=0) i<y MM ey M J

and most of this integral is given in a small neighborhood of S =0 .
The mij's are positive even integers or zero since any term containing
an odd power of an sij as a factor will integrate to zero. We expand

exp (-~§ tr[g?] - ...)J » Wwriting the terms in groups, each group

corresponding to a certain value of m. We have

(2.10) exp (- § tr[§3] - g- tr[gl‘] - )

2
=1 - B erfs'] + Be(ex[821)? + B2 s

2
-2 tr[§6] . g—(tr[s“])"‘ o

Using (2.6a) and (2.6b) of 1] we obtain the following theorem.

Theorem 2.1, Let A and L be diagbnal matrices with 0<a,<a <...<ap

172
and zl>%2>...>zp>o . Then for large n, the first two terms in the

expansion for & are given by

1
p P >

y _ aP = 2 N\ { Lol }
(2.11) & =2°P 1 (1+ai,ei) n(no. - ) 13 2n[zcij +a(p)l + .7

i= i<y~ i



11

where

(2.12) a(p) =p(p-1)(ep+5) /12 .

Proof: 1In the proof, we include only terms without an odd power of
an sij' First note that only the second, third and fourth terms on
the right hand side of (2.10) contribute the factor n-l. After inte-

gration, the first term unity has been shown [1] to give

nji~

: b
(2.13) k= 1 ( =20 >
..~ nC, .
3<] 1j

The second term -n tr[Su] / 2 contributes

P P
1 -1, 3(p -2 2 o
(2.14) Kz = C"*h‘n( >+Ln- ¥ C

e o5 1 2 30 iy 1
B, (ot i )+ 2D}
Mk > %%k %30 CaCix en\ 3

and the third term ne(tr[s3])2/ 8 gives

C. -2 P
(215) K{-S—- z (c 3 ék * P'h-z i’%(ép)}

i<j<k ij gk



p
Finally, since tr S2 = ~2 3 s?. s it is easy to see that
~ i<j
(p-2) tr Sz/hi contributes
-2 P 3
(2.16) e I A
12n R |
i<

Add (2.13) - (2.16) and factoring X out, we obtain (2.11).
Theorem 2.2. The asymptotic distribution of the ch. roots,

£I>£2>...>AP>O s, of 8 S"l for large degrees of freedom n =n, + n

~L2 1 2

-1 1
2> >\ > = -
when the roots of 2122 are Kl he . KP 0 where xj aJ (3=1ye..5p) ,

is given by

1 n
p 3zn 3(n -p-1) -~ D
(2.17) c2Pqoa Ty T (1+az)2n(£i-z)
i= i<j J
P RN 1 -1
e Ti d,@i I <T> {l + EE[Z Cij + (X(P)] + ..-} s
i=1 1<i > 245

where C, Cij and o(p) are defined by (1.2), (2.5) and (2.12)

respectively.

3. Remarks
In (2.11), if we write
a1
2

n
p - — p
w=wla,2) =2P 0 (1 +a.4,) % 1 ._2.“_> ,
. iTi . . ncC. .
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then the first and second approximation for & are w and
w {l + [20;§ +a(p)l / Zn} , and hence we know that w[zc;§+a(p)] /2n

is omitted when the first approximation is used.

It is interesting to compare (2.11) with the corresponding formula
in the one sample case (c.f. (2.8) of [1]). We find that there is an
extra term «(p)/2n (in the second term of the asymptotic expansion
for J in the two sample case) which is a function of n and p
only. Moreover, if we replace zj by nlﬂ,j/n2 in (2.17) and let

n, tend to infinity, then the asymptotic distribution of the ch. roots

2

of Slfél reduces that of §, , which was given by Anderson (c.f. (2.8)

of [1]).



1k

CHAPTER II

AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION

OF THE CHARACTERISTIC ROOTS OF Slgél WHEN

ROOTS ARE NOT ALL DISTINCT

1. Introduction and Summary

James [17] has studied the Bartlett-Lawley tests of equality of
the smaller characteristic (ch.) roots of the covariance matrix using
a conditional distribution of the smaller sample roots given the larger
roots, obtained from a gamma type asymptotic approximation to the
roots distribution with linkage factors between sample roots corres-
ponding to larger and smaller population roots. In the two sample
case, we obtain a beta type asymptotic approximation to the roots dis-
tribution. If Dy

tends to infinity, then the problem reduces to the one sample case

the sample size of the second sample less one,

discussed by James [17]. We also derive a general formula which
includes the formulae of Anderson [1], James 17}, and Chang [6] as

limiting or special cases.

2. The Asymptotic Expansion of & When Roots

Are Not All Distinct

Let Si(p xp) (i=1, 2) be distributed as in the previous

chapter and 0 <a.,<...<ag <a

1 By T e =a, (L<k<p-l). Then

a
b
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A= diag(al, cees By s waes a) ,

~

and the joint distribution of 215 s enes zp of (1.1) in Chapter I

becones
1 n
sgn. k - -
(2.1) ca ' a = J |1+ ammn'l ® (1'an)
i=1 o(p) ™~ ~o
D a(n -p-1) P
"0 a, 1 (z - 2.) n ag. ,
i= i<j J i= 1

where g = p - k., As in Chapter I consider the integral

]
s

(2.2) d = j ! + AHLH'| (H'aH) .

Now we partition the matrix H into the submatrices Hl and EQ

consisting of its first k and the remaining q rows of H respec-

tively. If the integrand of (2.2) does not depend on H, , then we

can integrate over Eé for fixed El by the formula

(2.3) jH c, (@) = c,(am)
~

where



16

and the symbol (dﬁl) denotes the invariant volume element on the
Stiefel manifold of orthonormal k-frames in pe-space normalized to
make its integral unity.

Make the transformation

lm

(2.4)

==
1l
o

where S is defined as in Chapter I, and the Jacobian is given by

~~

(2.2) of Chapter I.

A parameterization of H, may be obtained by writing

~L
| (Ei (/51 fhz\z
H = = exp 4 i
(2‘5) ~ \H . _S O 14
\ 2 { TR ~ /)
where S is a k x k skew symmetric matrix and S isa kxg
~LL ~12

rectangular matrix. From (2.2) of Chapter I, it is not difficult to

show that

—_ t
CZ(QEI) = (dgll)(dglz){l + o(squares of ;5 s)}

k
where the symbols (dgll) and (Q§12) stand for .H' dsij and
k . 1<J
I I ds.. respectively.
i=1  j=k+1

Before we find the asymptotic expansion of (2.2) we prove the

following lemma.
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Lemma 2.l. Let A and L be defined as before with £l>£2>...>ﬁ5>0

0 < < = ...=a_ = 1) .
a;<...<a <a r . 3, =2, (L <k < p-1)

If we partition H = such that H, consists of the

N

last q rows of H , then |I + AHIH'| does not depend on H, .

Proof: See [7].
Since we are only interested in the first term, all we need to
investigate is the groups of terms up to the second order of § which

is denoted by [82] . As we did in Chapter I, but remembering the last

q ch. roots of A are equal, it is easy to show that

k k P
tr{s?] = ¥ ¢ .s2.+% T C?.si. ,
~ iy MM a1 gegn N
where
C =r. .4 - r 22 = =C i, j=1 k i< 3
ij T T33%ag T Ti%i%s T Y 2T e 5 J
(2.6)
. o=r. 0. -r.r 05 = P =1 kK, j=k+1
i3 T Tty T TiTitg T O PR e B S prene B
5
{ 1_%;a!zi if i=1, (.., k
= /
I‘i \
a
L 1+a{7 1f 1=k+l,'o,P b
o -J-i

r.. =Y, -2, and L.. =4, - 4,
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Therefore
(2.7) |T + AxLH'] = 1 (1+a.8,) oI (1+ as;)
~ooenn i=1 T =kl
k k »p
. T exp (—%nC..s?.) T 0 exp (-%ncg.si.)
i<j R TS [ S | J 3
- {1 + o(squares of sij's)} .
Substituting (2.7) into (2.4) of Chapter I, and using
.1 -4
- f] 2 t D | 2
|T + AHIH'| (H'ag) = 2° ¢ | |I+ anmw'| (aH)
yields
'2 n
.nEq k --2-p _g
(2.8) d = T (L + aizl) T (1+az.)
r (: g i=1 i=k+1 *
q 2
K n 2
'I J 0 exp (- 5C13515) 9845
s Sl<J
~11 22
k p
- 1l i exp (- gcz.s.a) ds,, {1+ o('% )Y .
i=l jek+l g

For large n and a,'s and L,'s (i=1, ..., k) well spaced,

most of the integral in (2.8) will be obtained from small values of
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the elements of Ell and §12 . Hence, to obtain an asymptotic

series, we can replace the finite range of Sij by the range of all

real values of sij . Thus

‘qu K n D n
1 -4 -1
S = I n (1 + a, %5 ) 2 1 (x + azi) 2
r <ﬂ> i=1 i=k+1
g N2
k o o
! exp (- 2 .s5.) ds..
i<j Yo 2 ij i 1ij
k P ©
M1 J exp (- —C ) ds, {l + o(- )}
i=l j=k+l 1374

Hence we have the following theofem;
Theorem. The asymptotic distribution of the ch. roots, £l>£2>...>£ >0
=Agoren : : p

of

-1 ]
SJSE y for large degrees of freedom n = n; +n, , when ch. roots

2

n

of (El,\zél)'_l are 0<a;<...<a <a vee = @

1 K okl C 00t T % (1<k<pl)

is given by

2an; k 30, p 3(n -p-1) k -5 D - 3
(2.9) C3a Ma, =T g n(1+ai;z,i) T (1+af,) !
i= 1= i=1 i=k+1
k 1k p L
o ~N 2 2
1y =) T(E=) " ()7 1o,
i< i<j i i=1 j=k+1 ij i=1

where
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oy =% 1, (2 ) o () mymry )

and C,. and €0, defined by (2.6).
ij ij ‘
The result (2.9) was given by Chang 7], but he had an error in

the constant ; he had

1 1 1
EP(P'l)‘EkP n,+n 3n
FUCHCINCONEILIC) BT
@7
%—qnl k %nl
instead of C3 a H ay . He had also another error in the factors,
; _nfnek M
he had T (l+as,) 2 1 (1+a,8,) 2 {1“13‘76‘4}
i=k+1 i=1 t 7 —1 J—k+1 B0
n n
k - = p - k 2
instead of T (1+a.f.) 2 o (1+as ) 2 1 H (; 2“ -\ .
i=t tt gkl 1 i=l j=k+l nC

3. Special and Limiting Cases

k -2 ;
For k=0, T (l+as,) 2 H 2"
i=1 ‘ 1*1 J=k+1 "~ nC

products

Y
should be assumed to be unity. Similarly for k=p, 1T (1L + aLi) “ ete.
. i=k+1

o] }a]

are unity, and define To(x) =1, then 1<k <p-l can be
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written 0 <k <p.

(i) If k=0, i.e. g=p , then ay = ...=a =a. In

b
other words, all ch. roots of population covariance matrix Zigél
are equal, i.e., a£1= ces = a;1 and (2.9) reduces to
n.+n 1.2 n n -1 3
12N 3p 1 2\ P\ 5pn
1 ( ) 2{ <- (—-— r (= 1
(3.1) I, = LS00 ST, (3] a
p 3(n-p-1) p P
|1 g, H(l+af’)2H(0-ﬂ,.) mde, .
=1t i=1 i<j J i= i

(3.1) is the joint distribution of Lys Doy wees ’ﬂ"p under null
hypothesis I = ag, (28], and is an exact form where we assume no
asymptotic condition. Moreover, in this case, the integrand of (2.2)

is independent of H .

~

(ii) If x=p, i.e. q=0, then O<al<a2< ..<P. In other

words, all ch, roots of Eﬁ-zl are distinct, and (2.9) reduces to

1 1
l 2 \ n2 Tl p Enl E(nl"P'l) :
(3.2) rp = { ( 2/1‘ <—§->} izlai 25 (1+ai..ei)

1

o P 2 p
m-0) 0 (ER)T noa .
i<j d i<y i i=l |

This is Chang's result under condition O'<al<a2<...<aP (c.f. [6]).

(}v] §=]
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Now let 4, = nlvi/n2 (i=1, ..., P) and let n, tend to

infinity, then (2.9), (3.1) and (3.2) reduce to the limiting forms

i kK 1 P 1 . k P
(3.3) Chaaqnl I a2™1 1 vi(nl P l)exp(-%nl )M aivi)exp(-%nla X vi)
i=1 * i=1 i=1 i=k+1
p k1 k P -5 P
-1 (vi -v,) T t.2 1 I ti. T dv, s
i<j O B B T R N R

i P 10 .. D D D
(3.4) c.a?®™ 11 V.Z(nl P l)exp(-%nla b3 vi) il (vi-vj) it dvi ,

5 i=1 1 i=1 1<) i=1
and
1
P 1 2 e D P V.=V, P
(3.5) ¢ MafL v P Negp(dn zav) 1( 2L ) nay,
N | i 1, iif [ .Na.-a. .. i
i=1 i=1 i<j J 7i7 i=l

respectively, where

o = (YR ()r, (D)
2 aN2/"p\ 2 ’

Q
I

. n ipn 2 n -1
5 <—2];>2 * ﬂ%P {Fp<%>rp<§>} ?
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6= ()TN B (3

i = (aj - ai)(v:.L - Vj) i, =1, vouy k and i< j ,
and
o ) .
tij = (a - ai)(vi - vj) i=1l, vo.y k, J=k+1, ..,, D

Note that (3.4) is the joint distribution of P ﬁg, cres zp

under null hypothesis g = al [28] and (3.5) is the first approximation

of (1.8) in [1]. This is when F +to be taken as 1 , Furthermore,

(3.3) can be rewritten as

lnl k k 2(n -p-1) k ViVy -V,
(3.6) ¢, n ag exp(-%nl £av,) 0V, 1 <: :) n dv,
i=1 * i=1 1 i=1 i<j a478y
% dan, D p  3(ny-p-1)
. H H < ) exp(-—gnla T v,) 1 v,
i=1 j=k+1

i=k+1 i —k+l

P o
o 1 (vi -v,) I av.
K+1<i<] I g=k+1 *

3

which is exactly the same as (3.12) of James [17].

(3.6) can be written as dF, + dF, , where



2k

dF, = dFl(vl, cees vk)

1
k %nl k P 1 k
= const. Ma, ~ 1 I (a-ai) 2 exp (-%-nl T aivi)
i=1 *  i=1 j=k+l i=
k Z(nl—p-l) k v, .*% k
I v, <a ) il dv
i=1 i<J i=
and
(3’7) sz = dF2(Vk+l’ o3 vp! vl’ b Vk)
Lo k ‘ P
= const. a2%™1 1 H (v =V ) exp(-%nla T ov.)
i=1 j=k+1 i=k+1 ©

p  2(n-p-1) P
- I v, 0 (v.-v.) T av. .
i=k+1 kil<i<j © 9 i=k+l L

From dFl we know that the first k sample roots v

are asymptotic sufficient for the population roots

l, L] Vk
-1 -1

al 3 see ak ]

ar is the conditional distribution of the last roots, v

2 ..Q’V

k+1’ D

given the first v which does not depend on the population

l, ey 'Vk,

parameters al, cens ak .
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CHAPTER III

AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE

CHARACTERISTIC ROOTS OF A COVARIANCE MATRIX IN THE CCMPLEX CASE

1. Introduction and Summary

Let E(p x 1) be distributed multivariate complex normal N(u, I)
where E[{] = and I is positive definite Hermitian. There is a

unitary matrix Ei such that

* - 2
(1.1) Uy, = .

i
>

*
where u, is the conjugate transpose of U, and Ay > A, Z e 2 kp> 0
are characteristic (ch.) roots of £ . Let T = gz(g - W) . Then
no~ N, n) -
L= / + e + - i j
Clearly, E, W “121 + fi up s Where Hg is the jth
column of H

1 * If j=>r , then hj are very small the corresponding

lﬂj!, the absolute value of ﬂj are nearly zero and with small error,

we may write

EELT T foee Ty

Thus we are interested in those principal components ﬂj which have

large variance.
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Let Z(p x N) be the sample matrix of N observations from

N(u, ) s ‘then the sample covariance matrix S 1is given by

1 N
where n=0N-1 and v, = ¥ >z,

It is known that W= q§ has complex Wishart distribution on
n degrees of freedom, Since § is positive definite Hermitian, we

can write

where U is the group U(p) of p x p unitary matrices with real

diagonal elements, and

3
"

0 ,epf

where zl'i £2 Z el 2 Ep > 0 are ch. roots of S . Then from

James [16] the distribution of the ch. roots £ g can

12 323 ceey “p

be expressed in the form
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. ~ -1 o P P
(1.2) o (PP { r,(n) Iz} P jgkuj - 1)° jgldxzj

. I exp [ -n tr Zflyggf'] (gfqg)

U(p)
*
where (U dU) is the invariant measure on the group U(p) . The
group U(p) has volume
(p~1)
*
vp) = | (T = i
U(p I’P(P)

where Fp(p) as defined in [16], i.e.

~ 1 (e P
e = 72PN 1 rpoge1) .
J=1

Replace E by Elg with Ul defined in (1.1) then the distribution

(1.2) depends on the integral

* *

(1.3) g = I exp [ -n tr AULU ] (U du)

U(p)

-1 -1
wvhere A=A 7, so that a, = ). and 0<a, <a, < ...<3 .
~ o~ J J 1-"2- - P
Since J)l can be written

o "~ ~ ~ l

(1.4) S =Ve) = B c.(-4) c (n)k! ¢ (T )]
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where CK(E) is the zonal polynomial of a Hermitian matrix B as
defined in [16]. The use of (1.k) in (1.2) gives a power series
expansion, but the convergence of this series is very slow, unless
the ch. roots of the argument matrices are small, For the real case
Anderson [1] has obtained an asymptotic expansion for the integral

. . . . s s . -1
and his expansion is given in increasing powers of n =, where n

is the sample size less one. In his paper, for p =2 , he defines

o @) - fHeo@) ] lgf =21}

where 0(2) is the group of 2 x 2 orthogonal matrices, then

J

exp [- -2’1 tr AHIH'] {(H'qH) = 2J Y ixp [- -g tr AHLH'] (H'dH)
T o< —

o(2)
Unfortunately, for the unitary group we do not have the similar

property. In order to overcome this difficulty, we need to impose

conditions on U(p) , the number of conditions imposed is equal to p ,

the order of U € U(p) (for the reason see Section 2).

2. The Asymptotic Expansion of Jl

Since the procedure used to find the asymptotic expansion for Jl
. > > > > > >

requires that kl KQ cee Kp and ﬂl by Z e ﬁp » hence

in this chapter, we consider only the case of distinct ch. roots of

the population covariance matrix,
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it

Lemma 2.1. Let A, U (ujk) and L be defined as before. Then

P P

exp(-n £ £ a.fu,u, ) has identical
j=l k=) J K Jkk

*
£(U) = exp(~n tr AULU )
maximum values of exp(~n tr &) at each of the matrices of the form

ol 0

(2.1)

u i } 3 < j = * 9 e L]
where uy s the conjugate of Uy and 0 < s <eom (j=1, > D)

*
Proof: Since UU=1I hence
AmSeR——— ~ P~ AJP

* k3 %
W =-graw-y o,

* ¥* *
df = -n exp (-n tr AULU ) tr a - dy *LU + AUL dU")

* »* * +*

= -n exp (-n tr AULU ) tr (LU A - U AULU") ay
* 3 *
for every dg . Therefore d4f = 0 implies ’{.H’é = U AULU  i.e.

H._I'*ég = E*&LV which means L and E*'j}g commute. But E is a
diagonal matrix with real distinct elements s implies E*’{-\E is a
diagonal matrix. This can happen if and only if U 1is of the form
with eiq)' in one position in the jth row and cgrtain column and
zero in other positions. After substituting those stationary values

into f(g) we obtain a general form
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P

(2.2) exp ( ~n T a.f_)
. i,
J=1 J

where sz is any permutation of 2j (3 =1, ..., P) or £(U) attains
its identical maximum value exp ( -n tr AQ) when E; is of the
form (2.1).

The matrices of the form (2.1) are unitary and with ch. roots
ei@j (3 =1, ..., p) . Now we impose p conditions on U (reason
see later), namely all of the ch. roots are positive real. Then
(2.1) reduces to I .

~pP

Under these restrictions, for large n , the integrand is neg-

ligible except for small neighbbrhood about identity matrix, so that

(2.3) I = J' exp [ -n tr ’.QLIALH*] (g*dg)

m(I)
where N(g) is a neighborhood of the identity matrix on the unitary
manifold,

Lemma 2.2. Let EKP X p) be a unitary matrix, and make the

transformation

(2.4) oy = X

where E’ is Hermitian matrix. Then the Jacobian of this transfor-

mation is
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(2.5) J=l-%trg2+rlzé(trg)2+-27%ry{5(trﬂ)h-ptrrlih

- 11 tr Btr & - 10p tr K (tr B+ (50°- 3)(tr B)%} + ...

~

Proof: TLet

where ej (7 =21, ..., p) are distinct real numbers. Since Y
is unitary, there exists a unitary matrix Eé with real diagonal

elements, such that

*

U = e i'g‘e%

*
Put H = (hjk) = 22@22 » then from Murnaghan [25], we have

p
(2.6) (g*dg) = T lksin®

p *
1
s(6, - © I ae,(U.du

J=1

Since H 1is Hermitian, from Khatri [18], we have

(1) T I I 2 1 as (o)
2.7 Hah,, il dh, _dh, = I (6, -8 I ds8.(U,du,
=1 j3 <k JkR kI j<I J k =1 J~2 ~2

where hjj (3 =1, «vus P) are real diagonal elements of H and

hij and hjkl are real and imaginary parts of hjk . Note that
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P
tr B = Iz @

m
J

Then using (2.6) and (2.7) we obtain (2.5).

*
Substitution of (2.4) into +tr AULU yields

N .
(2.8) tr AULU = tr AL + tr (AHLH - ALH2) + tr (Im AHLHE)

+ tr (f% ALHL‘L --% Re éﬁ?&ﬁ + %’éﬁ?&ﬁ?) P

This is rewritten using brackets to define the expressions in paren=

theses so that
*
tr AULU = tr AL + tr {gz} + tr {53} + tr {gh} +oae

where Re B and Jm.E denote real and imaginary parts of B . Since

(2.9) tr {H) s T.on.E
. = X C.. h_h,
9 ra <k JKT3k ik

Pt = - - > O = .
where Cjk (ak : aj)(ﬂj ﬁk) 0, for j,k=1, oo, p and j<k.

Under transformation (2.4), it has N(I) - N(H =,Q) . Then (2.3)

can be written

p ~
(2.10) I, = exp (-n tr AL) I exp (.n T C.h_h. )

3 4 . P
.expl-n tr {H’} - ntr {H'} +...10 N ah,, 0 dh, _dh,
<k JJ <k JER ™ JkI
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Since hjj (3 =1, ..., D) are real, each one may range in a
certain interval, and since they do not occur in the right hand side
of (2.9) and may lead to the divergence of the integral [22]. So we
need to impose conditions on ,E . We may put hjj (i =1, eees D)
to be constants, but the result is quite complicated (see Remark).
For simplicity, we set hjj =0(j=1, ..., p) . In view of (2.4),
this is equivalent to imposing p conditions on U . Thus each side
of (2.4) contains p2 ~ p parameters. Under these conditions, (2.5)

and (2.10) reduce to

(2.11) J = 1--19—2-trH +-—m[(5p -3)(trH) -ptrH:\

and
a P
(2.12) J, = exp (=n tr AL) I exp (-n z:k chth jk)
N(H=0) J
. 3
exp [-n tr {H’} - n tr {H } - .14 H thkR thI

Jj<k

respectively.

Expand exp [-n tr Lg?] - n tr LEF} - ...]J and write the terms

in groups. We have

(2.13) exp [-n tr {E?} - n tr {E&} - eee JJ =

1--1'i-trH2

2
2 -ntr (B} - ntr (B L (e ()2

5y [0 - e B - pr B .l
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If the integration of (2.12) is to be performed term by term on
the expansion of (2.13) then for large n , the limits for each
hij and hjkI can be put to + ® , since each integration is of
the form

P Dy P
j exp (-n z c h, ) T n I dh. _dh

Jk k Jk < JkC . jkR JkI

where hjkc denotes hij or hjkI , and most of this integral is
concentrated in a small neighborhood of E’=’Q . The mjk's are

positive even integers or zero, since any term containing an odd power

of an hjkc will integrate to zero. Since
[>] @ p
2.1k j e X exp (-n %O ) 1 dh,. _dh.
( ) e e p (- JkaJka <k JkR T JkI
1
P 2p(p=1) p ~_
= 0 —Z— = % ) it cji = Cc ,
i<k ank j<k
(1s) [ o[ exp )norq
15 [ ree I exp (=n Z C h 1 dh_ _dh,
o C® 3<ic Jk Jk Jk’ “stc <k JkR T JkI
= (-1:3+5++ (2m - 1)(2ncs,c)"m
and
®© o P~ m P
2.16 f . [ exp (-n T C h h I dh, dh,
( ) ® o p (- <k gk Jk Jk)( st st) j<k JER kI
C(m!)
~
(nCSt)
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Theorem 2.1. Let A and L Dbe diagonal matrices with

< < < ... < > T > 0.
0 al a2 ap and zl 22 ﬂp Then for

large n the first two terms in the expansion for Jl are given by

P - 1 P o~ ,
(2.17) Jl = exp (-n tr AL) 0 ~ {l +== T C. + ... }

i<

Jj<k ank
Proof: For simplicity, we include only terms without an odd power of

an hjkc and do not write C which appears with each term after

integration, and denote

P ~
5 - 3
i<k Y
and S S CAVCA RN S A
j<k<s k Js Jjk ks JX' "js ks
o p
Since +tr H = 2 ¥ h_h s 1t is easy to see that
~ Jk Jjk
Jj<k
2 .
-p tr H/12  gives
b
(2.18) - -~ 8
6n :
From (2.8)
N b
12 tr {5’} = oz f(j,k,s) Re h. khkshsthtg R
Jrk,s,t

where f(j,k,s) = aj(zj - hzk + 325) .
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In detail we have

L
12 tr %E } = p¥ .[f(J:k S) + f(k’J,k)] th K kshks
'J:k>s9s%3
. . 2
+ = £(ik,j)(n kh )
i<k J

= = {lg(ks) + g(s,k,3)1n
j<k<s Jk thks ks
+ [g(S,J,k) + g(k:J:S)J Jk thJShJS

+ [g(k S,J) + g(J,S k)J hJs js kshks}

+ % (-uc o) By h )2
j<k

where g(j,kss) = f(j:kgs) + f(k)j>k) . But g(jskas) + g(s,k,j) =

- hcjk - hcks + 3st so that after term by term integration,

12 tr {E}} contributes

( - 8/n2) 53 (ch "c‘Ji + )+ (3/P)st - (8/)sr
J<k<s

Since

s Tl z"c‘l+ 5 TE = (p-2)s .

s<j<k I jes<k IF j<i<s
Therefore -n tr {E&} contributes

(2.19) L2(p - 2)/3nls' - (1/bn)s" + (2/3n)s' .
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Again from (2.8)

tr {1}

tr JIm AHLH2

i e
- = (s -
j ?<s 5 v(g,k,s)(hjkhkshsj hjkhkshsj)

b ( 5 = 7 - - -
where ¥(j,k,s) aJ.(Nk ES) + ak(ﬁs ﬂj) + as(,(’,j Ek) .
It is easy to check that
2 - - "12 "2 ’\2 ~ ~ ~~ ~ o~
17(3,k,8) = Cjk + st + CkS - 2(5jkcjs + CjkaS + CjSCkS)

so that after integration, (tr LE?})E contributes

(1/203) = (/% Be * /s * Cs/TinCs)

§<k<s s ks js’ jkks ks’ "jk js
-/l ¢ @ELaTELTY
j<k<s jk Jjs ks

i.e., (l/2n3)S" - U(p - 2)/n3]S' , hence (n2/2)(tr Lg?})z gives

(2.20) (1/4n)s" - [(p -~ 2)/2nls' .

Add (2.18) - (2.20), we obtain (2.17).

By Theorem 2.1, we have the following theorem:
Theorem 2.2. The asymptotic distribution of the ch. roots,
Ly > 22 > .02 Ep >0 of S for large degrees of freedom n,
when the ch. roots of X are hl > Ay > .. hp > 0 and ay = h;l

(3 =21, ..., p) is given by
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D D~ P ! 1
(2.21) Kexp(-n £ a_g.) T c.i(z.-zk)e nae  Pag {1+ g; ) c.i + ...,
g1 3737 s T sz dd 3 i<y 3

where

K = n%p(2n'p+3) ﬁ%P(P—l) { F'(n) }-l .
b

3. The Limiting Case

i T = - ) - 0 i —
Since Cjk (ak aj)(,(’,j ”k) jok=1, ..., p and

a, =\, (j=1, ..., p) . Hence (2.20) can be rewritten
P P
6(x) 1 (s -2)/0, -2) 1 £ Pe by a,
Jj<k J J j=1 J J
where G(Z) is a function of the ch. roots of % . It depends on

A, but not on ﬁj . For n Iarge enough, by a method used analogous

to Anderson [1], we can show

Y

o (e, -2)0, -1)

<k 9 FTTI Kk

to tend to unity with probability 1 , and the chi-square distributions
tend to normals which corresponds to the real case for the asymptotic
normality proved by Girshick [12].

Remark : for p=2, set h., =a, h,, =B where o and B are

11 22

constants, then we have
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{F(a,a) + GlasB)—

n012 n012 n 012

o1

exp (-n tr AL)

where

> 4
Fla,B) = {1 s Lo =8 | (e-B) } £,
12 240

Glas) = & + 52+ Fla - 0)%0 + 2o - 0)%8 + ikl - B)g

B(w,B) = f +2g+2p +——-(a - 8)% + 3(a - 8)% + 5o - )%

2 11 L 3 2k 2 2 3
® - <tente @

= 2(@,8) =1 - 350 - B

g = 8(08) = - 3 - zrEryl3e” + 15ko8 + 1387} + ...

and

Hy
i

b = b(a,p) = ﬁ% + ...

If =8, then Jl reduces to

r_9=ex( 1 _-az_ah)—!'__.
L = exp - G- - ) 2
n012

22 a2 czl+ 1

*E-T - T3 e +--~}
12

If «=p=0, then Jl becomes

+ B(Q’B)—E%-é_ + e } s



3, = exp (-n tr AL) — {1+ s gfe +}
nC,, 3nC12 L5n 012

or approximately (see Erdélyi [11]) write

~ P m 1 1N
3, ~ exp [-n(al»l + azﬂe)] — { 1+ == +o<-—§ /} .
n012 3nC12 n
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CHAPIER IV

AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION

OF THE CHARACTERISTIC ROOTS OF Sl§;l IN THE COMPLEX CASE

1. Introduction and Summary

Let S, (pxp) (j =1, 2) be independently distributed as
2 _

. v - > > cee > >
complex Wishart (nJ_, P, ,ej) > and let &y >4, 2 Z 4, 0

1
>
and A 1 IN

15 Eo

p 2 -++ 22, >0 e the ch. roots of gg’l and %

respectively. To save notations, let L = diag (ﬂl, fps wens & )

D
A = diag ("1’ Nos oo xp) :g:’jgl so that a; = )\31 (=1, «ovs P)
0 < ay < a, < ... Z ap . Furthermore, let U* be the conjugate

1 2

chapter, unless otherwise stated. Then the distribution of

transpose of E s n=mn +n and 5 denote '{p throughout this

Dys Bos eees f’p can be expressed in the form [16],

n ny-p P ®op ¥

(1.1) c, lAl 1151 1% 1 (.cj - ﬂ,k)e j |z + auu |y au)

j<k

J U(p)
where

T (n. +n
(1.2) ¢, = = ,

I"p(nl)l"p(ng)
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U(p) is the group of all p x p unitary matrices and ngqg) is
the invariant measure on the unitary group U(p) .

However, this form is not convenient for further development.

Since
3y - <
(1.3) 3, = J |z + avwy |77 (U avw)
U(p)
o (a3, € (-4)T (L)
= C2 Z - s
k=0 K k! CK(E‘)

where C, = np(p-l){?E(P)}_l ’
and [b]K and the zonal polynomial of a Hermitian matrix B , ‘EKQE)
are defined in James [16]. The use of (1.3) in (1.1) gives a power
series expansion, but the convergence of this series is very slow,
unless the ch. roots of the argument matrices are small. In the one
sample case, we have obtained a gamma type asymptotic expansion for
the distribution of the ch. roots of the sample covariance matrix.

In this chaplter, we obtain a beta type asymptotic expansion of the
roots distribution of §1§él involving linkage factors between sample
roots and corresponding population roots. If the roots are distinct,
the limiting distribution as n, tends to infinity has the same form

as that of (2.17) in Chapter III. If, moreover, n, is assumed also

large, then it corresponds to Girshick's result [12] in the real case.
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2. The Asymptotic Expansion of &2

Same as in Chapter III, we here still require that

> .. > > SR S >0, i
?\l ?\2 }\p 0 and 2 5 ,Zp 0 It is easy

*
to see that Lj\[‘ + AULU l is positive real for all E and every
Ucu(p) .
¥*
Lemma 2.1. Let A and L be defined as before, then £(U)=|I +AULU |,

ygc U(p), attains its identical minimum value lg + &l when U is

of the form

(2.1) U = €
i !

where OScpJ_<2n id=1l, ... P .

Proof: Since A is positive definite

¥* L w1l
|T+ AU = I+ AULU A2
1 » L
ar(y) = a|{I + AULy 42|
1 oyl I %l .4 1 *» 1 1 4 1
= [T+ APULU'A2] tr (T + A%ULU A®) ™ (A%QU-LU A% + A2ULdy - A%)

+* - i * *
|2+ aug’| e (a7 + oo’ Hav-zu® - vy au-u’)

il

* %, - % - *, - ¥, - *
!£+AULU!tr (l,g(él+ULU)l_.g(Al+ULu)lULU)dg .

for every dU . Therefore df(U) = O implies
*, - - ¥, - ™ *
tr (LU (Al+ULU)l-g(él+ULU)lULU):O,for every L and

U, implies



by

1

# - St - 3+ - ¥ - *
W™ )™t = v e ) i,

K, - -
Yy = g4+ uw) ML which means L and

i.e. Lgfgéfl+ ggg*)'
E%Qéf%+ EEE#)-{E commite. But L is a diagonal matrix with positive
distinct elements. This implies that E#(é:l+ Eégf)f%g is a diagonal
matrix, say A . Thus éfl =‘H(Qflf EQE%. This can happen only if U
is of the form with ei@j in one position in the jth row and zero in
other positions. After substituting those stationary values in fQE),
we get
(2.2) g (L +a.4_ )
j=1 T

where {f_ is any permutation of ﬁj (=1, ..., P) . It is easy to
see that %2.2) attains its identical minimum value LE +‘££l when U
is of the form (2.1).

Now we impose conditions on U , all e1®5 (j =Il, «ees P) are
positive real say. Then ei¢3 =1 for all j , and (2.1) reduces to E;

The above lemma.allows us to claim that, for large tn ,> the
integrand of &é is negligible except for small neighborhood of 45 .
Therefore
(2.3) 5= s am' ™ (@lay

N(Z)

where N(g) is a neighborhood of the identity matrix on the unitary

manifold.
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1, ..., P) be the real ch. roots of

Lemma 2.2. Let q; (3

Q(p x p) if max |q.| <1 . Then
- i<j<p Y
- 1.2 1
‘£+g‘m=exp{-mtr(g'§g;+‘-}@,J3"a-a)}.
Proof:
IS
l1+q]™ = e ™108 jgl (1+q5)
P
- o h jgl log (l+qj)
- 12,13 ..,
. o mtr (Q - 59 + R i)

Since we want to compute up to the second term in the asymptotic
expansion of &2 > Wwe need to investigate the groups of terms up to
the fourth order of S . Under transformation (2.4) of Chapter III,

we have

¥*
AULU = AL + i(AHL - ALH) + (AHLH - %A - %ﬂgﬁg)
- e? - apn®s 3 g - )

+ §E§é£ﬂ% - LAHIES + QéE?EE? - BAROLH + ﬁﬁfg) +oaes s

s el Vo

Hence

|2+ ™™ = iz an! P T () 4+ ) ¢ (80 ¢ (B ¢ .

where
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,..ﬁ
b=
j S )
]

i(RHL - RIH) ,

{(£°} = RELH - -;—'RLHQ - %gggL ,

~

) = s’ - smowd + 3w - mL)
and
(8" - R - b’ + enfu et + ')

Under transformation (2.4) of Chapter III, it has N(I) - N(EEQ) .
If we put Q = iﬁ} + {Hz} + {g?} + &fﬁ + ... , then in the neighbor-
hood of H =0, the absolute values of the elements of H are very

small, and hence the maximum ch. roots of Q can be assumed to be

less than unity. Therefore Lemma 2.2 is applicable. Thus we have

|2+ Ay | ™ = |1+ AL{ ™|z + g ™"

=1z + Al enp {oer (0 + 2D+ 21+ B 4 )

where
[,I;I‘] = {,I:I_,} ’
5] = (&) - 3P
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(5] = {2} - $(uHE") - $(8°)imd + 5(m)°
and
11 = ' - 3t - 20w - 200 + L)

1 1.2 2 1...h
+ SN + 360 -

Since H = (hjk) hJ_k= hkj

conditions hw =0 (j =1, ..., p) we have

for all j,k =1, ..., p under

tr [B] =1 tr (RHL - RIH) =0 ,
| 2 2
tr (] = tr ({F) - 3{m°)
= tr (RHLH- RLE>+ L(RHIRHL + RIHRIH - RHIRLH - RLHRHL))
= tr (HL - LH)(I - RL)ER
b -
= o C, h. h »
jax JK 3k gk
where
‘ = - i A”J = -
(2.4) Cjk (rkj T STy jk) 3k ,ij
= - = - 0
rjk rj rk and zjk ﬂj e

Let us note that

tr (BHE} = tr (£)E .

b EHE) = e )
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and

o PE) = b WEE - e B .

Similarly, after simplification, we find

b

34 - e
tr [B'] = = Fh . ~h. h h ) ,
j<k<s Jk ks sJ Jk ks8] ‘

where

L

(2:5)  F = F(3:k,8) = 5o b v 3k 5 s 5k s

) )
+rkrsj”jk”ks Ts¥sk” Jsﬂks -2r jrkrs jkﬁkszjs) ’

and
(1= ZoyF)° Ron E o+
~ j<k Jk jk j<k<s l Jk Jkis js J<k<s thks ks
b o) ( )
+ 2 Yorh, > Ge(h..h_h  h, .+h ,
j<k<s 3 Js JShkS ks j<k%s#t Jk ks st t] Jk ks st tJ
where
3 =0 2 1 12,2 1224
£ 5 = . - 2 X 2 1
(2.6) @ = 3(3,k) (rjrk”jk 3 kJ Jk (3 j re~ 3 kJ) Jk 2rjrk£jk

e
i

(2‘7) l Yl(j)k-)s)

i

1 1 1
- P = J;
k"% Fsitis” Wek'ks™ 35
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2 1 2
Tilsctse” ETkrs(ij+£js)

£ L. v r 4 )4

-rj(rk 3873k s k78 55K s Jk js Jk js

) 1

1
'E«Gf’%s " T%s™ CCys 2

and

[}
1]

G(J ,k,S,t)

i

l n
Te5255 ket E(rkgzgk+r RIS
1
* 3[ J Tx Jk(z +3£st) “%’'s ks('e +3£ )+rsrtﬁst(zst+3£jk)

+rtr (th 3N )] - —[r r (z zsk)(zjt+zsf)

N ﬁ y /. ”~
(Lt byy) gyt ) - 2[r3rkz s st 5 e o s st T

n
T st tet byt trjﬂjkrks”stﬁtg T s e s bt b

From (2.5), it is not difficult to show that F° = --&{c§k+ c

+ 02 -2(c,,C. +C,.C +C.C )-Le
Jk js  7j j

ks jk ks “js ks Also note that ¥,

Jk ks JS}
and Y3 can be obtained from Yl cyclically, i.e., changing j to k,

k to s, and s to j, then Yl becoming Y Y, becoming VY

2> 2 3

and Y3 becoming Yl. Moreover, we need not know the value of G R

because any term containing an odd power of a factor hij or hjkI

will integrate to zero, where hij and hjkI are the real and

imaginary parts of hjk'
Finally, we can write (2.3) to be
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p
-n
(2.8) d. = 0L (1L+a.t.) f exp (-n 2 h. )
» exp (-n tr [H31 -n tr [Hu] e )d ﬁ dh. _dh
24 ~ ce i<k jkRjkI °

where J is found in (2.5) of Chapter III.
If this integration is to be performed term by term on the
expansion of exp (-n tr [H’] - ...)J then for large n the limits

for each h, can be put to + ® , where h,. denotes either
Jke - jke

hij or hjkI . Since each integration is of the form
[ ( ) nndE g
exp (~-n Z C Oh i dh., _dh s
NQ@fQ) <k Jk Jk Jk <K Jjke <Kk JkR JkI

and most of this integral is concentrated in a small neighborhood of

H=0 . The mjk's are positive even integers or zero, since any term

containing an odd power of an h will integrate to zero. Now we

jke
expand exp (-n tr [E?] - ...)J , writing the terms in groups, each

group corresponding to a certain value of m . We have

(2.9) exp (-n tr [H ] -n tr LE&} - ved)d

=1~-n tr [Ef] + (t [H3]) --—~t H2

{(5132 - 3)(tr 5)° - p tr Hh} + .
2(6!) ~ ~

Using formulas (2.1k), (2.15) and (2.16) in Chapter III, we

obtain the following theorem:



Theorem 2.1.

< < <
0 a a2

1 ces <

a

£

and 1

>0

M,

> .

51

Let A and L be diagonal matrices with

ee & ﬂp > 0 . Then for

large n , the first two terms in the expansion for 32 are given by

p
S = f
(2.10) 4, .n 1+ ash
J=1
where
(2.11)
Proof:
an h, , and do not write

jke

p
) o
J j<k

C (where

i1 { 1
T {1+ =
ank 3n

B(p) = p(p - 1)(2p - 1)/2 .

C

P .
Z Cjk + B(p)J + "'} 2

i<k

In the proof, we include only terms without an odd power of

is defined in (2.14) of

Chapter III) which appears with each term after integration, and

denote
P
§' = L Co
ik J
and
s" = g (c, /c..c.+¢C,./Cc.C +¢C
<k<s ks’ "jkjs js' "Jk ks

jk/stCks) *

Note that only the second, third and fourth terms on the right hand

side of (2.9) contribute the factor n-l,

using formulas (2.1k) -

(2.16) in Chapter III. After integration, the second term =-n tr EE&]

contributes

(2.12)

2. AP 2(p = 2) o 1w, 3P
3nS * n(2) N 3n St - ﬂ'ﬁs + n(3> P
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and the third term ne(tr Lg?])g/e gives

1 1 P‘2 |_1-_p
(2.13) I S 5= 8' - < 3) .
2 p =
Since tr H = 2 T h‘kh'k s
~ j<k 9%

it is not difficult to see that -p tr E?/le gives
Y
(2.14) =8 .

Adding (2.12) - (2.14) we obtain (2.10).
Theorem 2.2. The asymptotic distribution of the ch. roots,

-1
> > > 0 > ~
Zl £2 cos s 0, of SlS2 for large degrees of freedom

-1 :
n =n, +n, when the roots of D5 are Ay > Ay Z .2 xp >0,

where hj = a7t (j =1, ..., P) is given by

P nl nl-P ~-n P ) P
(2.15) c. T a.” &, (1 +a.f.) UL -2)° 10 az,
j=1 9 N j=1

P (RN IR S

J<k J<k

where C C.. and pB(p) are defined by (1.2), (2.4) and (2.11)

1’ “jk
respectively,
3. Comparisons
It is interesting to compare (2.10) with the corresponding

formula in the one-sample case, i.e., (2.17) of Chapter III. We find
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that there is an extra term B(p)/3n (in the second term of the
asymptotic expansion) which is a function of n and p only. It
is also interesting to compare (2.10) with the corresponding formula
in the real case (c.f. (2.11) of Chapter I). The term corresponding
to B(p)/3n is wo(p)/2n there.

Finally, let us note that if zj in (2.15) replaéed by nlzj/n2

(j =1, ..., p) and let n, tend to infinity, then (2.15) reduces

2
to (2.21) in Chapter III.
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CHAPTER V
THE DISTRIBUTION OF CHARACTERISTIC VECTORS

CCRRESPONDING TO THE TWO LARGEST ROOTS OF A MATRIX

1. Summary
The distribution of the characteristic (ch.) vectors of a
sample covariance matrix was found by Anderson [2], when the pop~-

. . i s . 2 .
ulation covariance matrix is a scalar matrix % = ¢“I . The asymptotic

distribution Tor arbitrary 'E also was obtained by Anderson [3]. For
unknown L , the distribution of the ch. vector corresponding to the
largest root of a covariance matrix was found by Sugiyama [30] and
Khatri and Pillai [20]. In this chapter, for arbitrary ‘g » we obtain
the joint distribution of the ch. vectors corresponding to the two

largest roots for the non-central linear case, i.e. when the rank of

the mean matrix is one.

2. Notations and Some Useful Results

Matrices will be denoted by bold face capital letters, and their
dimensions will be indicated parenthetically. The m x m identity
matrix will be denoted by Em > and in particular, I denotes Ep-2
throughout this chapter. [c| denotes the absolute value of « , and
Lgl denotes the determinant of X . 0(n) denotes the group of all

orthogonal n x n matrices.

Let ’g(m X m) be any symmetric positive definite matrix. The
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zonal polynomials Z.(S) are defined for each partition K=(kl,k2,...km) s
ky, 2 k, Z .. 2k 20 of k into not more than m parts, as certain
symmetric polynomials in the ch. roots of §, (see James [14], [15],

[16] and Constantine [8]). Further (see Constantine [8])

(2.1) | cwsmar = o (9)c (m/c, (L)

0(m)

where dH is the invariant Haar measure on the orthogonal group O(m) ,
normalized to make the volume of the group manifold unity. Also note

that (see [8])

I bl umd T (£,%) (u)
(2.2) -S;ékgl 2(m+l)Lzm ',§lu 2(m+l)CKQE§)Q§ = Fm(t - u? - CK(E)

where T is a positive definite matrix,

1 _ m-1
r_(u) = am(m=1) r p gy
i=0

and
m-1

! F(t+ki- ). .
i=0

r (t,k) = i (n-1)

Let R(n x n) be an orthogonal matrix such that the first
r(< n) columns have random elements and the remaining (n-r) columns
depend on these random elements. We will denote dR(n’r) a nor-

malized measure over this space, i.e.
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j ) oy
o(n) ~
o, 2R
In terms of Roy's notation [28], let J(R) = 2"/|—== IR
a(RD) ~I

Thus JQ&) is a function of random elements of ‘B . We will write
(n,r) -irn n
(2.3) R = w T (Z)I(R)

Lemma 2.1. Let U(p x n) and V((p-r) x (n-r)) be random matrices,

(p < n) and let

/%Y . 0 \

(2.)4-) E = ’Ii * G

be a transformation such that the first r(< p) column vectors of

orthogonal matrices H(p x p) and G(n x n) contain random elements,
and o, + 0 (i=1, ..., r) and a2 > az .. a2 ” 0 be the

i . 1 2 T
first r non-zero largest ordered ch. roots of UU' . Then the

Jacobian of the transformation is given by

(2.5) JU t Beps gy vevs o, ¥, ) =
r
c 1 |C¥iln-pia§£ - ’Y‘VV" I (Q,f - d?)dE(P’r)dg(n’r)
i=1 i<j J

where



1 -1
- O fo @y @)

o7

Proof: Taking differentials of (2.4), and both sides, pre- and post-

multiply ‘E' and G, we obtain

H' (V) ¢ =
// %, 0 /ey
H'dH +
() ™~ a
L v
0 v 0
Let
W1
H( (d’g)’g = W = * e
wpl

Since H'df and (dG')G are

matrices, hence we can put

and

=y 0 "
(ag')g

Pxp and nxn skew symmetric
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12 1n
- 0 cee b
(dG')G=B= 12 2n
~ ~ ~ ; o a9 L3N N ) LI N ] L ]
g
\ -bln -b2n oe 0

Denote W (r,r) to be the matrix from W by deleting the first r
~~ ’ land

rows and the first r columns of W. Similarly for A r,r) and
~ Lasd ’

B « Then
N(r:r)

QJ. Oli
D= (e ) (3 1),

(w. . w.
i3°" 51 s 5

and (Wi,r+l s ""Win’wr+l,i""’wpi) =
\ - X \
~ 1~
(ai,r+l""’aip’bi,r+l"'"bin ‘)
- t
O"rIwn-r v
imply
= J(w W., ¢ b..) = 2 2 4,5=1 r and i< j
ij ij, ,:]i . aij’ lJ al aj sd = PR AR a 1= J »
and
I, —'J(wik, Wes #8500 by k=r+l, oo, n; L=r+l,..., D)
= o, |"Pd 1 - v i=1, eeu,r .



¥
Moreover J(aU : W) =1 J, = J(wii : dai) =1 , i=1, .u., T

and W = A V+dv + VB
N(I‘,I‘) ~(r,r)~ ~ "N(r’r)
implies J(W(r r) av) =1 .
~ , Ll
Finally,
*%
J, = J(aiz, biy dhiz’ dg 3 k=r+1, .o, n, 4=r+1, ..., D)
=1 i=1, ooy r .

where hij and gij are the ith row and jth column elements of H

and G respectively. Therefore

J(au : dH, do

15 +ees da, dV, 4G)

J(ay : WJIW dhu, cees dhm, dorys wees dor , 4V, dglk,

oo dg s k=T o+l ou.,np L=r+l, ..., p)J(g)J(g)

r %%
151 I, J.9, ii[j JijJ(dH : E)J(E(r,r) 2 Av)J(H)I(G) .

Using (2.3), we obtain (2.5).

In (2.5) if we put xi = ozi i=1, ..., r and notice that

each A, corresponding o; and -o;, then (2.5) can be written
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(2.6) J(U : H, M Xy ees AV, G)

r 1 e . |
=Cl )\]?.(n p-1) l}‘j}, - ,\V,Y,'I 1 ()\i_ )‘j)dﬂ(P’r)dﬁ(n’r) )

i=1 i<

Lemma 2.2. Let V(m x t) be a random matrix and Alm x m) be a

symmetric matrix. For definiteness, assume m <t . Then
rl
- 1|y - ' | B 1
(2.7) J {agm Wbz, - v | e, (v Jav

1 ' , =1
= n2" (5 + Bhie (a) {r (s + BBi)e (1))

i . 1
: AU I t thmtl 1= gbm( B+t )+d
2 Z L ot 8e,n GG {(B T3 )a} a : >
q=0 5

where ¢ >3(m-1), 8>3m-~-1), a>b>o0 ,

8 =9 {V such that bI - VV' is positive definite}
m
K = {kl, Kys ey km} s ZKi =k ,
i=1
(x)K = Fm(x,K)/Fm(x) if x is such that the gamma functions

are defined and
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m
jz 6i =q+k=4d
(2.8) \ i=1

C gg m is the coefficient of CG(B) in the product
3h ~

of ¢ (B)Cp(B)

Proof: Let us write

h =f laz - vv'|%lb1 - vv'iD c,.(AVV') av

Then

h =j' lax - v |%b1 -vv' |P ¢ (avv')av J gH .
~m ~ ~L ~e K A~~~ ~ —~
9 o(m)
Making transformation V — HV and notice C(H'AHVV')=C,(AHVV'H')
then
Cy (A)

- - ' | - 8 '
b= oy [l e w1 e ey

by (2.1). Let V' =8, then

bl 1, 1
~m Fb=5(mt+1 10 B
h =C, Io |s|? 2(mtl) lal - s|"|oL - s|” c, (8)as

where

1
_ _omt i (& -1
Co = ™ Cela) er(z)csc(hml )} .
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Next, put §’= q§l s we get

b
-1 1.1
_ o m{orprat)+k ja,vm 1 2t=3(mtl) 1 _o by o 1B
h=Ca 13, LS 135 7o () )48,

By Constantine [9], notice that

ZS : cp(®) = lz,- 517
a0 1

h can be written as

e

g=0 T &

where &, 6. and g6 are defined by (2.8).
i K,T

. b t N
Finally, put §, == T then by (2.2) and rm(-z-, 8) = I‘m(e)(g)6

we have

ZV mo- gbmd B+t )+q+k ('a)j!l 8
L® . BK,m
LI 4

O
@Pﬂe

1, 1
0

~

(==

-1

1 (-@)
”Emtcx(é) {Cn(fﬁn)} Z 2 a!ﬂ tgn Co (L, )(2)
1 &

q=0

-1
) o+l t+m+l mo- gbml B+3t ) +qtk
r(e+ 2 {r (s + B2 5} Ty .
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After rearranging, we obtain (2.7).

3. Distribution of the Characteristic Vectors Corresponding

to the Two Largest Roots of a Matrix in the Non-Central Case

Let the matrix X(p x n) be distributed as
-3pn . -in | -1
(M 2" exp {3 tr £ (X - WK - 0]}

1 1
(3.1) (2m) ™" {2]™2  oxp {-d tr T 4 tr T - L obr oixx
2

~ e ~ Ao ~ A

where E['}\(‘] =M .

Making transformation

ozl 0]
— 1
X==L . )
T
\O Y

where r <p, L(p x p) and g(n X n) are orthogonal matrices,

Y is an (p-r) x (n-r) matrix and o:’i > ozg > ,..> ozi >0 are the

first r largest ordered ch. roots of XX'. Using Lemma 2.1, the
joint density function of L, Cys Oy vees o, Y and g_,' is

given by



1 r
1 -p 2
(3.2) ¢ 1217 0 e |"P ler - ] 0 (ef - oP)
i=1  * ! i<y * 9
f al 0
cexp {3 tr 2y v o g7 | o L
\ r
Lo v
2
@) . O\
- . r
1 tr§1£ -2 y} dEL(p’ )dg(n,r) ’
0 ¥y |
where
-fpn _ _Zr(p+n) fpn. 2y )7t
(3.3) 0, = C(em) R - 2 {em®r &r @} .

In integrating a, (i=1, ..., 7), Y, Q or L, we only
consider the non-central linear case, i.e. when the rank of the mean

matrix M is one, because the general problem is extremely difficult.

~

For r =1, we get the same result as given by Khatri and

Pillai [20].

For r =2, 1let

er=(£’:&_»2’£2) ’

where '&l and &2 ére the first two columns of L , corresponding

to the two largest ordered ch. roots )‘1 and )\, of .)95" having

2

random elements and the others }2 depend on these random elements.
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Then (3.2) becomes

n-p, 2 2.y 2 't 12 .
(3.4) Czl°‘1°‘2l (o] - o) |ofT ~ ¥¥'|o T - vy'|
o, O 'az 0
1 1
-1 0 -1 2 2
. exp {trz‘: I A L-3tr £°LI0 o y}
o X o
. d’:El'(p’Z)dg(n,Z) s
where
1 1 -
_ -5n ~% tr L TMM!
c, = cllgl e =,

Integrating (3.4) with respect to Q , we obtain

(o]
-1
n-p, 2 2 Z{, 5{} (p,2)
C2\aiaél (al a2) k! 2)1 dL fk(ai’ aé’,E)
k=0

(3.5)
or

1 2 -1
(3.5") cz(hlxz)f(n‘l"l)(xl- a) )k @) d,g(P’z)fk(kl, Ay L)

k=0

where



(3.6)

where

or

(3.7)

where

(3.8)

£, A5 L) =

\
A O
-1 2 -1
IIAI-YY'l'l)\I-YY'l-{tr[%Z L0 A L'S MM]}
o
fr 0

| 2

-exP{'%tr§ L0 y}afg ,
\ g X

9 =9 {Y such that ML - XX' is a positive definite]

f(G, )\l’ 7\2: I—j) = Z

@

k

k=0

= Iégl')\l"{‘ - Z\Y,".I.AQE - X\Y,'!

€xp {'% >\l

L1 D £

A2

0
w7 T (g5 Ay L)
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Let H € O(p-2) such that J di = 1
0(p-2)

Making transformation Y= HY , and notice that

V) USGL a e, (wr) (ko (D)
k=0 K

and put

(3.9) w, =34
Then (3.7) can be written
(3.7") £(8, A5 Ays L) =

WA - WA, =
e T RN NV (DAL (kg (@t B (ohy) s
=0 K

where

B (s 2p) = JQlXLE -l L - o () ax

Using Lemma 2.2, and since o =1 , then for q > (p-2) + 1,

all coefficients in (2.7) vanish, so that the function reduces to a
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polynomial of degree p - 2 . Hence

1 -1
(3.10) B (A A,) = 2(p-2) (n-2) Fp_z(ggg) {Fp_a(gig-l)}

= l) n-2
2 2 Z Q. gK .0 Ca(i)(—z_)s
=01 8§

-1
. {(p+n—l) } Ap-qr2 A%n(p-2)+q+k
2 7% 1 2

At this stage, we integrate

=W A= WA

(hlke)%(n-p-l)(hl_ Xz) o L1 T2 xf'q'z xén(p-2)+q+k
e WG () ) e T e~
with respect to Al and X2 s where
€ = 3(ptn-5) , ¢ = 3(pn-n-p-1) .
First, integrating
hf'q hg+q+k (1)) e ~Wphg

with respect to ha from 0 +to hl and using formula

(2=}
a _ i b+i
b~1 -cx _ _=-ca ¢ a T'(b)
j‘ % © dx = e z I(b+1+1)

i=0
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we obtain
A -W. A
1,8-q,C+qtk - 22
j AOTAS (hy=25) e drp
it A
ji .{ P(v) . D(w1)Y i \S+i-1 “Wohq
T{v+l+i) T(vrari)) Y2 M N
where
(3.11) v=L+q+k+l, s=§+[+k+3
-(w,+ w, )
Next, integrating hs+l - e i e with respect to ll
from 0 to o , and notice that
(1+i)T(v) A Wy 1
32 F v+2+1 I (s+3) (w + W )
1 2
I'(v)['(s W
= rl .‘),+2 ) F(Z’ S, V+2; wl+ (1)2 ) 2

where F(a, B, y; x) is hypergeometric function defined as in [16].

Therefore,

~-®, Ay =W A

o _\
1 .E-q .,Cl+g+k _ 171 272
f f AL CAS (xl xg) e dh,dhy

= T(v) T(s) {(w+ w))® F(w2)} ™! F(2, 5, vi2; —
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Substituting (3.10) into (3.7') we get (O, Ao Moo ’E) and
the coefficient of Gk/kt from f£(9, Ao Mg L) gives fk(kl, k2’-£) .
Then using this value in (3.5'), we get the joint density function of
zhf ﬁé’ hl’ and kz . Integrating kl and hz we obtain the joint
density function of ﬁl and &2 . Hence we have the following theorem:
Theorem. Let the matrix X(p x n) be distributed as (3.1), and
ll > k2 > 0 be the two largest ordered ch. roots of %&' and let
’E = (&l’ L5 22) where £, and 4, are the two columns of L,
corresponding to the two largest ordered ch. roots hl and hg of
zzf, having random elements and the others 52 depend on these

random elements. Let the rank of M be one. Then the joint density

function of £l and 22 is given by

RS I, -1
|z ot I Ve @ a®? ¢

k=0

where fk(L) satisfying

[
18
[
P?‘H:
P
[l
S

£(0,L)

¢3 ), ), (- ¢ 31y A L) fxt o (DI

k=0 K
p-2
cL YL Ly ey C(DER) MINGs)
g=0 M &

-1
o d g1 (Rin-1 8 } .2
{Q.- ( ) )6((”1"' we) I(v+2) F(2339V+29 ‘”1'“”2) ",



TL

where

-1
2 ptly f Zpn +n-1\_ Dy~ (D
(3.12) 0y =T _,(55=) {22 rp_ecgjg—-)Peﬁi)xzég)}

and v and s, A and w, are defined by (3.11), (3.8) and (3.9).
Note that the explicit expression will be obtained by evaluating

the coefficient of ek/k: from f(e, L) .

4. Remarks
-1 2
(I). If M=0, then A=3" and Q and (A =o)X, L)

are independently distributed and their respective density functions

are given by

deJl(nJr)
and
-4n ¥ &(n-p-1)
(4.1) c.{z]7" @Azt InI-yel 0(h-al)
1i~ j=1 * i~ ~~ i< i J
kl 0\
exp {-%—tr Z-%E T 1 L'} dL(p’r)
h ~ o~
r
0 Zz'

where C, is defined by (3.3).

For r =1, integrating (4.1) with respect to 2 (=hl) and Y ,
we get the same density function of L as given by Sugiyama [30] and

Khatri and Pillai [20].
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For r =2 , we obtain the joint density function of &} and ‘é

is given by

(+.2) ¢ [z[ z Z( 1)k 27 cK( L 5t I L) (k! c (D1t

k=0 K

p-
YL LD e G (ER), rvr(s)
=0 M 8

) {qf (EiE:-) (0, w,) P(v+2)} F(g, s, vi2; -2 —2_) dL(p’e)
l 2

where C3 is defined by (3.12). (4.2) is a special case of the Theorem.
(II). Put r =p , integrating (4.1) with respect to L , we

get the same distribution of ch. roots A\

17 o hp of XX' as

given by James [16].
(III). If n<p, then in the all adequate formulas change

the roles of p and n.
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Chapter VI

MONOTONICITY OF THE POWER FUNCTIONS OF
SOME‘TESTS OF HYPOTHESES CONCERNING

MULTIVARTATE COMPLEX NORMAL DISTRIBUTIONS

1. Summary
Consider the test procedures invariant under certain
groups of transformations [21];(i) for testing the hypothesis

Zl = 22 against one-sided alternatives, [5], [21], which is invariant

under the transformation Xj -> BXj + bj’ J=1,2, where Xj are distributed

~ o~ ~

as miltivariate normal, and B is any nonsingular matrix and bl and b2

~ ~

are any vectors; (ii) for testing the general multivariate linear

hypothesis, [10], [21], which is invariant under the transformation
(Kl(pXS), }2(pX(n-r)), 3<3(pX(r-S)) > (?}1}?., 133€2~F2> 132(333’3 + ~G) where
B is nonsingular and F ,F2 and ¥, are orthogonal matrices; and (iii)

for testing independence between two sets of normally distributed

variates, [41, P1], which is invariant under the transformation

X\ ZBl o\/x F where Bl’BQ are nonsingular matrices of order
~ '] A oA ~ s ~y o~
AR TR

p and q respectively, and F is orthogonal. In the real case, sufficient
conditions on the proéedure for the power function to be a monotonically
increasing function of each of the parameters, for (i) are obtained by
Anderson and Das Gupta [ 5]1; for (ii), by Das Gupta, Anderson and
Mudholkar [10]; and for (iii) by Anderson and Das Gupta [ 4 ]. Furthermore,
for (ii) and (iii) Mudholkar [ 24 has shown that the power functions

of the members of a class of invariant tests based on statistics, which

are symmetric guage functions of increasing convex functions of the
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maximal invariants, are monotone increasing functions of the
relevant noncentrality parameters. The monotonicity of the power
function of Roy's test has been shown by Roy and Mikhail [231], [29].
Further, Pillai and Jayachandran, [26], [27], have carried out exact
power function comparisons for these tests based on four criteria
for the two-roots case.

In Section 2, we derive some distributions in the complex
case and in Section 3, prove a lemma, which helps to extend to
the complex case, some results on convex sets in the real case. 1In
Sections 4, 5 and 6 are briefly stated the theorems which can be
proved from the real case with necessary changes, and finally,in
Section 7 follows a discussian of special cases of tests: the
likelihood-ratio test; Roy's maximum root test; and Hotelling's

trace test for (i), (ii) and (iii).

2., Introduction and Notations

Matrices will be denoted by bold face capital letters and their
dimensions will be indicated parenthetically. The pxp identity matrix
will be denoted by ;p and zero matrix by 9, The complex conjugate
of a matrix A will be denoted by 5} the transpose of % by %‘, and the
conjugate transpose by é*. The notation dé denotes the volume
element associated with A. g(pxn) will dénote a semi-unitary matrix,

*
where UE = Ip for p- <n or UXU = I for n<yp, and U(axn) is unitary

2~

matrix if UU¥ = U0 = I - The characteristic (ch.) roots of A will

~ o~

be denoted by chlAl and chj[A] denotes the jth ordered characteristic

root of A if A has real roots.



75

Let f’ = (Zl,...,Zp) be a p-variate complex normal random

variable such that the vector of real and imaginary parts

1l

n (Xl,Yl,...,XP,YP) is 2p-variate normal distributed, where

Zj Xj + 1 Yj J=1,...,P. Then the distribution of § was

found by Wooding [311 and Goodman [13) and is given by

* .1
(2.1) mﬁ=p@)=fpurlg@f2)2(i~ﬂ
where V = E[ﬁ] and I = I (pxp) is a positive definite Hermitian
matrix,
Now let %(pxn) be a complex random matrix whose columns are
independently distributed, each distributed as (2.1). Then the

distribution of z, is given by, [13], [16],

-1
(2.2) p(2;5,n) = o PR |g| "B tr BT (Z-w)(Z-u)¥

where W = E [Z] is a matrix of pn complex parameters. In the
more general case, Z(pxn) can be assumed to be distributed as

1 (Z-uA) (Z-up)*

~ A ~ e

(2.3)  p(zsZ,n) = WP R T

where A is a known mxn matrix of rank r. [ assume r. <min(m,n-p)]
and ¥ is a pxm matrix of unknown parameters. If u = 0, (2.2)

and (2.3) reduce to
-pn n -tr 17t ggk
(2.4) p(2;L,n) = =780 [X[TH T 1 &

For later use, we use the same techniques as those in Roy's [28]

to derive some distributions. Transform
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A(mxn) <’~2 ql(rxn)

where &l(rxr) is nonsingular, T, is (m-r)xr matrix, and U, is a

semi-unitary, i.e. Ul }=1,. Let U2((n—r)xn) be the completion

of U Then make the unitary transformation = Z(U ) (¢ Zg)

~ o~ o

J1
say i.e. Z=1¢ U

~

is px(n-r) matrix.

where ¢ is pxr and 22

~2.2

Making unitary transormation again 4, = C(ViVé) = (ZlZ3)

~

say, where v, is sxr, v3 is (r-s)xr, Z, is pxs and 23 is px(r-s)
Y . -
matrix respectively, and(\)§> is unitary, then

= Z + Zy .
ST 533 -\
A Tll
Similarly put My (pxs) = u /Nl’ u3(px(r -8)) = ) V33 then

we have

_ =pn,_,-n -1
(2.5) p(2,,25,%5)= = |z " expp-tr I 7y (20 ~uy) (Zy=py )% + Z,25 +

(237u3) (Z3-u3) "1

AV
% .§.l * K ~l"'3 “'l“'2
= = - *

where §; ((p-)xt), §,(txt), §5((p-t)x(p-t)), and g (tx(p-t));3

and 8§ and §4 are nonsingular; and §5 denotes the diagonal matrix

¥ o

with ch. roots el een et of Mk pX L as its diagonal elements,

and t = min (p,s).

l\
7 “1( i N
Put My t“ (2)\— ; I%e¢ (txs) where ¢ is determined by
1 1 Ij N | ’~
- -1 - % *
$=D. §, ]Jl<2) and ¢¢ = I, and complete ¢ (sxt) into a
~ e ~ ~ ~ ~ ~

unitary matrix f*’(sxs). Finally, let

76
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From (2.5) we obtain

(2.6) p(V,W) = n-p(n-r+s) exp { =tr(WW*+VV* - 2Re VWJG + We)}

~ o~ ~ ~

D o PI 0]
where y (pxp) =| © and ¥y, = 8 - and O, is (s-t)x(p-t)
N 0 o o o] -

zero matrix.

IfV = (vjk) j=l,...,p; k=1,...,8, then (2.6) can be rewritten

t 1
~-p(n-r+s) —% .\ = %
. W) = -trWW - L= B ) (VL= pS) -
(2.7) p(V,W) =n exp {-trWw ) (VJJ SJ)( 33 93)
J=1
Y Y 5
T v..viji % v v, v. }
Jd jk jk
j=t+l j=1 k=1
J#k

3. Tests of Muyltivariate Linear Hypothesis.

Let random complex matrix Z(pxn) have density (2.3) and we
wish to test the hypothesis HO: u g = 9(pxs) where g is a known mxs
matrix of rank s(_fr) such that uC is estimable, against all
alternatives. By Section 2, this problem can be transformed into

the canonical form

2 s (2y(pxs), Zy(px(a-r), Z5(px(r-5))), s <r, <n-p

with expectations.

E[Z] =y (pxs), E[Z,] = o(px(n=1)), E[Z;] = yg(px(r-s)).



78

The hypothesis HO is equivalent to the hypothesis El = O(pxs).
‘The matrices of sums of products due to hypotehsis and due to error

* *
are given by §h = ;151 and §e = 22Z respectively. The problem is

invariant under the transformation

(Z

~l,~ze,~z3) +~ (BZ,F.,BZ §g3F + @)

B2 FsBZF B, + G

where B is nonsingular and F.,F,. and F, are unitary matrices.

~1°22
These invariant test procedures depend on Cl 2 ... 1_Cp, the ch.
roots of Shsgl, and it is known [16] that the power function of
any such test depends on the parameters el,...,ﬁ where 913_...39t

are the possible nonzero ch. roots of ulWE 2™ ana t=min(p-s).

Lemma 3.1. Let §' = (Zl,...,Zp) and N = (Xl,Y X ,Y)

1700k

where Zj = X, + in J=l,...,p, and et T be a one-one transformation
between § and N such that T[§] = I\ with the following properties:
(1) T 5.+ 5,1 =T 5] + T[ 5] ana

(2) T [a?] = aT[§ 1 where a is a real number.

Let w be a subset of §'s in p-dimensional comples sample space

Cp; and £ be its corresponding subset of ™Ws in the 2p-dimensional

real sample space REP. If  is convex in c® and symmetric ing .

~

Then f is convex in R2P and symmetric in Nand conversely.

Proof: ILet > TpeR then T-l [n] for some

=§k

§k€w > k=1,2. Since ¥ is convex in ¥, hence “El+ (1-%)8€w

A

O <o <1, and T[a§ 1 + (l—u)§ 2]39 ife'aj]l + (l-a)I\Z
e . This shows @ is convex in Rgp.
Leto ~ be the set of all - such that reQ. If any - neQt
-1 N ” )
then peqand T [n] =8 for some §ew. Since w is symmetric in

§, hence W =w , where w is a set of all $ for which§ew , implies



79

-Sew , and then T [- §]ef, i.e. -n eN. Therefore Q € Q . Using

~

the same argument, we can show @ D Q and hence Q = Q.
Similarly for the converse.
Theorem 3.1. Let the random complex vectors §j (3=1,...,s) and the

complex matrix ¢ be mutually independent, the distribution of §j

~

being N(z.v.,{j) J=l,...,8. If a set  in the sample space is
convex and symmetric in each §j given the other §h's and ¢ .
Then Pr(w) decreases with respect to each gj(z 0).

Proof: Let §j = (Z .,Z .) and rb = (X,.,Y XL LY L)

13777773 1327137 7 g Tpd
where ij=ij + i ij k=1,...,p; Jj=1,...,8 and let ¢ be the

corresponding set of w in the sample space R2p. Then by Lemma 3.1
we know that @ is convex and symmetric in eachr1j. Denote
Q= @{gj |§h, h#j, h=1l,...,s; 9} and

D= qin l‘h h#j, h=1,...,8; X,Y}

~ s -~ o~

where ¢ = X + 1 Y, Since the § j's and ¢ are mutually independent,
hence the rh's and X and Y are mutually independent (but X and Y

are not independent). Define PjG]j) to be the density of N(O,Zj)

~ -~

at TB' Then by Theorem 1 of [10] , we have
0

O
Sp.{n+ £.,8,)dn > An + 2.8 .)dn . where O <, .
PNyt &y8dm > fp Pyl 35 5080 =ty SR

vy = (vlj""’vpj)’ Vg = Oyt 1 Bkj and gj = (a lj’B 1577

o . . k=1,... ; j=1,...,s8. But (s8.+ g2.v.)ds.= .
PJ,BPJ) > sPs J s s ;ng(aJ JYJ) %J fD PJ(Pj-hQ’jEj)dIB

o) o
and s p.(s.+g2 .v .)d§.= fD PjG1j+2 j §.)dn L

>

S R R B Rt 2307
hence
(3'1) § + . O
, RGP 2.v.)ds, . + 9. v.)ds..
£ py(8; + ayv)ds; > {gpa(ﬁJ by vy)ds;



Multiplying both sides of inequality (3.1) by the joint
density of the temporarily fixed variables and integrating with
respect to them we obtain Pr{w| Lys--- ,Q,J_,. S S Pr{y| gqs--->
9.3.),..., % } for O 523"—(23 and any g, 's (h#3).

Theorem 3.2. If the acceptance region of an invariant test is
convex in the space of each column vector of V for each set of
fixed values of W (see equation, (2.6)) and of the other column
vectors of V, then the power of the test increases monotonically
in each ej .

The proof of the above theorem is as straight forward as [lO] .

Corollary 3.1. If the acceptance region of an invariant test is

convex in V for each fixed W, then the power of the test increases
monotonically in each © iE

Lemma 3.2. For any Hermitian matrix H(nxn) the region

8 = {A(nxs) | ch [AA¥H] < A}

~ o~ o~

is convex in i&‘

Proof: Since the Cauchy-Schwarz inequality is also valid for
complex vectors, hence the proof is as straight forward as Lemma 1
of [101
Corolllary 3.2. The maximum root test of Roy, the acceptance

region of which is given by

chy [ (V%) (Vi‘/_f*')'l] <A

3

has a power function which is monotonically increasing in each ej.
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The proof of the above corollary follows from Corollary 3.1

and Lemma 3.2.

=]
Let ¢y > ... > ¢, be the ch. roots of (VV*)(WW ) ~, and
a, = l+cj (§=1,...,p). Let Q be the sum of all different products
of dl,...,dp taken k (k=1,...,p) at a time. Consider a complex

matrix y(pxn)=(¥l,...,¥h) where M, 's are the column vectors Of.ﬁ'
Define Qk(y) as the sum of all k-rowed principal minors of MM¥ + ;p’
or equivalently as the sum of all different products of ch. roots
of yy% + ;p taken k at a time. o
Theorem 3.3. An invariant test having acceptance region kzlaka < A
( ak's = 0) has a power function which is monotonically—incfeésing
in each ej.
The proof of Theorem 3.3 is analogous to that of Theorem 4 in [10].
In the real case, Das Gupta, Anderson and Mudholkar [10] have
given another sufficient condition on the acceptance region. The
same is true for the complex case, we only state the corresponding
theorem, because the proof is quite similar in [10] with minor
changes.

Theorem 3.4. For each j (j=1,...,8) and for each set of fixed

values of V, 's (k#£j) and W, suppose there exists a unitary transforma-

k
. o o o .
tion: V., > UV, =7V, = (V,.,...,V_.)' such that the region
~J o ~d ] 13 pJ
mj (Vj) is transformed into the region wg(Vi) which has the following

property: Any section of wg(vg) for fixed values of V;j (2#k) is
a region symmetric about Vij = 0. Then the power function of the
test, having the acceptance region g , monotonically increases in

each 0,.
dJd
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4. Tests of Independence Between Two Sets of Variates.

Consider a (p+q)x(n+l) complex random matrix Z, (p < dq, p+q < n+l)

whose column vectors Z.'c (j=1,...,n+l) are independently distributed

as a (p+q)-variate complex normal distribution N(y,r) where

~ -~

Z((pra)x(p+q)) is positive definite Hermitian and be partitioned

as follows:

L1 Ipp
Z = X 2
Lo o
where 31’ 212 and 222 are pxp, pxq and gxq matrices.

Consider the problem of testing the hypothesis

Hyt I;,=0 (pxq)

-~

against all alternatives. Let the sample covariance matrix be S

-~

which is similarly partitioned as

S S

- 11 J12
S =
~ *
%12 %22
% o_o¥% o) o+l
where n S = 22"~ (n+l) Z°Z° and Z° = g Zj / (n+l). This problem
- -~ -~ - j=1 -
is invariant under transformations
B 9
Z - ZU Zj > Zj + b Jj=1l,...,n+l,
© F:‘J

where Bl and B, are nonsingular matrices of order p and q respectively,

-2

and‘g is unitary. A test procedure which is invariant under these

transformations depends only on the ch. roots ri > el > rp of



-1 -1 % - . -
§ll ?12 ?22 §l2' For convenience let us denote e, rT (j=1,..

-5P) -
The power function of such a test depends only on the ch. roots
2 2 -1 -1 _* .
>
0l = *vv ipp of le §12 )522 5:12 which are the squares of the

possible nonzero population canonical correlation coefficients [161.

-1 -1 _* .
The distribution of the ch | %ll ~12 %22 %lel is the same as the
*. *
distribution of the ch [(§8 ) (§ g )(g.g ) l(g & )] where the
density of the matrices § (pxn) = (§ ) and (gxn) = (gjk)
can be given in the form
- p 2 _
n (P+q)n I (1-p.) "
=1
., P 2.-1 2 — - —
- eXp 'PFi(l—oj) L [ £k ng (% . ik ijRe (Ejk Ejk)]
i=1 k=1
g n
- 3z [0
jop+l k=1 Gl
or
P
(h.1) o BHOR g 2)en
=t J
h

p 2. - z
exp { -jfl(l'pj) kgi(gak Jng)(ng 3 ng) —1 k=1 Jkg b

and HO holds if and only if pl= e = pp = O.

From (4.1) we find that givenZ, the column vectors §.'s

~

of § are independently distributed each according to a p-variate

complex normal distribution with covariance matrix D which is a

83
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i,...,l-p;. The marginal

diagonal matrix with diagonal elements 1-p
distribution of ¢ does not depend on pj's. Moreover, the conditional
expectation of § given [ is EL§|QJ = AT where Al(pxq) = (4 0) and

A is the diagonal matrix with diagonal elements pl,...,pp.

) * *. =1 *
Define Sh (s8¢ )(cc ) ( z§ )

w0
1]

* * -1
(55 ) = ( sz )( ¢o*) (g5 %).
. . -1 -1
If e, is the jth largest root of (5§ *) ~(sz *)(gr *) (

then eJ.(l—eJ.)_l is the jth largest root of ShSe-l. Thus the class of

;8 *):

~ o~

test procedures based on the chf ( §§*)—l(§; *) (g *)_l(c§ *¥)] is

the same as the class of test procedures based on the ch [ShSe_l].

Let

\{(pxq) = B§F, W(px(n-q)) = B§G

-~ ~

where B(pxp) is nonsingular, and F(nxq) and G(nx(n-g)) are such

~ -

that -1
GG* = In - C*( gg*) z.

-~ ~ -~

Then the roots of Shse-l are the same as the roots of (VV*)(WW*)-l.

The matrices B,F and G can be found to use the methods in Section 2,

~ o~ ~

such that the conditional density of V=(ij) and W = (ij) given ¢

is
(%.2) 17P% exp { -tr(ww*) - g (v..-t )(v.. - ¢.) - g g- v'k;'k}’
k#3
2 2 -1
where T, > ... > T_are the ch. roots of Ag (Ag )* D .
P ~l ol -



Theorem 4.1, An invariant test for which the acceptance region is

convex in each column vector of V for each fixed W and fixed values

of the other column vectors of V has a power function which is
monotonically increasing in each Pj.

The proof of the above theorem is similar to that of Anderson
and Das Gupta [4] with necessary changes.

Let e, > ... > % be the roots of (Vv¥) (ww*)-l. Then
c. = e.(l-ej)—lﬂ Thus the relation ej < ) 1is equivalent to the

=1
relation c; < A(L-"T" = a° (say). Let dj = l+cj (3=1ls...,p)

and let Qk te the sum of all different products of dl,...,dp
taken k at a time (k=1,...,p). In particular,
D p
=T g, = T (1-e)7t
Q, ; (1-e,)
j=1 j=1
The Iollecwing theoren is obtaired from Section 3 and Theorem 4.1.
b
Theorem M.g. A test having the acceptance region 5 anj <A
J=1

(a.'s >0) has & powar function which is monotonically increasing
5 82

in each D,

¢t

5. PBymmetric Gavge Funclions and Convex Functions of Matrices

A real wvaluz¢ function

on the p-dimensional space of p-tuples of real numbers is said to

be a gauge function if

85
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(1) v (a1,...,ap) > 0 with equality if and only if a, = ... = a, = 0.

(2) v (cal,...,cap) =] cl¥ (al,...,ap) for any real number c.
(3) ¥ (al + bl,...,ap +.bp) <y (al,...,ap) + ¥ (bl,...,bp).

¥ (@) is said to be a symmetric gauge function if, in addition
to (1), (2) and (3), it also satisfies

PPN =Y oo = + 3
(L") Y (Elajl, s ) (al, ,ap) Wheresj + 1 for all J

€ a,
P Jp
and jl"""’jp is a permutation of 1,...,p.

Let A(prr), p < n be a complex matrix, then AA* is Hermitian and
all its ch. roots are non-negative. Let dl > ... z_ap be its
ordered roots. For any increasing convex function f on the positive

half of the real line and any symmetric gauge function Vvof p

variables, define

)).

oL

Taily o = ve( a%i),...,f(a

is a convex function of A.

Theorem 5.1. Il a !Lyf
-~ Ed

The proof iz analogous to Theorem 4 of [ 24] with minor changes.
Let c; > ... i_cp be the ch. roots of ShS;l in Section 3 and

let 8 =§g(cl,}..jcn) be a region in the space of c

l""’cp'

Theorem 5.2. The power function of an invariant test, which accepts
' 1 1
the generel multivariate linear hypothesis over § : y (f(ci),...,f(c;))_g_k,
where y,T and i are, respecvively a symmetric gauge function of
p variables, an increasing convex function on the positive half of
the real line and 2 constant determined by the significance level

of the test, is a monotonically increasing function in each ej.

The proof follows that of Theorem 5 of [EM] with necessary changes.
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Now let e, > ... > e, be the ch. roots of (ss *)-l(gc *)

e
)

* ( CC*)_l( £§%) in Section 5, and let Cj = ej(l—e. J=1l,...,p.

J
Then we have, in view of Theorem k.1, the following:
Theorem 5.3. The power of an invariant test which accepts the

independence hypothesis over § , increases monotonically in each

population canonical correlation coefficient pj (§=1,...,p).

6. Tests of the Equality of Two Covariance Matrices

Samples of size N, and N, are drawn from N(Yl’gl) and N(Y2’§2)

respectively, where N(vj,zj) j=1,2 are (2.1). On the basis of

-~ Al

these data we wish to test the null hypothesis:

Since the null hypothesis is invariant under the transforma-
tions

. ~ Bg. + b, j=1,2
fa 2T Y I=5s

wheregj are distributed as (2.1) and B is any non-singular matrix

~

and b, and b, are any vectors. As in the real case, it is known

1

2

[16] that the power of any invariant test depends on the parameters

only through the ch. roots'yl > ... nyp of IiZs l. The null

hypothesis can then be restated as

In this chapter we consider the following alternatives

P

Ho: y.>1 j=l,;..,p I vy .. >D
g j=1 9
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or

I 01

Consider only the problem of testing Ho against Hl (for Ho
against H2, we consider the test procedures having the above acceptance
regions as rejection regions, then the power of such a test will

decrease as each ordered root of zlzél increase.)

Theorem 6.1. Let Z(pxn), p.< n, be a complex random matrix having

density (2.4) and let Cp 2 -er 2 cp be the ch. roots of ZZ¥ and

LR such that when a point (cl,...,c )

w be a set in the space of c D

12" -
s s . . 0 o) o} .

is in w so is every point (cl,...,cp) for DR (3=1,...,p).
Then the probability of the set w depends on © only through ch [r]
and is a monotonically decreasing function of each of the ch.

roots of I.

Theorem 6.2. Let Z, and Z_ are independently distributed as (2.k)

i.e. p(?l,§l, nl) and p(?2;§2’n2) respectively, and let w be a

* K\ -
set in the space of ch. roots of (lel) (ZQZQ) 1 [ here also called

the cj‘s ] satisfying the condition stated in Theorem 6.1. Then

21
the probability of w depends on I, and % only through ch {Z;%, ]

1 2

and is a monotonically decreasing function of each of
-1
the ch. roots of §l§2 .
The proof of the above two theorems are analogous to those of

Theorem 1 and 2 in [5] with necessary changes.

Corollary 6.1. If an invariant test has an acceptance region such

that if (cl,...,cp) is in the region, so is (c°

l,...,c;) for
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cO <c (j:l,..'.,p)9 then the power of the test is a monotonically

i =53
increasing function of eachy i

Corollary 6.2. If g(c

l,...,cp) is monotonically increasing in each

of the arguments, a test with acceptance region _g(cl,...jcp) <A

has a monotonically increasing power function in each 'yj.
7. Remarks

The following discussion of special cases of tests generalizes
to the complex case, the results of previous authors in the real
case.

(I) The likelihood-ratio test for (ii) and (iii) has the acceptance

regions of the form

g

1+c. ) <Av.
| (e oy

it

J
The power function of such test is monotonically increasing in
each of the parameters, for (ii) guaranteed by Theorem 3.3, and
for (iii).by Theorem 4.2, However, for test (i), it is very difficult
to investigate tests with reasonable power against all altermatives,

because the acceptance region of such a test is

n-+n
172
l+c,
: P ( J)
g(cl,.."cp) = I i}\g
J=1 ny '
c.
J
and g(cl,...,cp) is an increasing function of cl,...,cP or not,

depending on the values of degrees of freedom ny and n2.



(II)For Roy's maximum root test, the acceptance regions for (i)

to (iii) are of the form

1 = A3
The power function of such test is monotonically increasing in each
of the parameters, for (i) guaranteed by Corollary 6.2; for (ii)
and (iii) by Corollary 3.2.
{III)For Hotelling's trace test, the acceptance regions for (i)

to (iii) are of the form

The power function of such test is monotonically increasing in
each of the parameters, for (i) guarantesd by Corollary 6.2;

for (ii) by Theorem 3.3 and for (iii) by Theorem L.2.
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CHAPTER VII

SUMMARY AND CONCLUSION

1. Summary

In the first four chapters, the distribution problems considered
are generally those of (1) characteristic roots of a single sample
covariance matrix, (2) a matrix from two-sample case, and (3) both
(1) and (2) in the complex situation. The primary objective has been
to give an asymptotic expansion of the distribution of the characteristic
roots in the two-sample case, from which the one-sample expansion is
obtained as a limiting case. The distribution of characteristic roots
of one or two-sample case each depends on a definite integral over the
group of orthogonal (or unitary) matrices. This integral defines &
function of the characteristic roots of both the population covariance
matrix and the sample covariance matrix. To approximate this integral,
two different cases are considered. 1In Chapter I, all population roots
are assumed to be distinct and in Chapter II, not all population roots
are distinct. Chapters III and IV deal with the same problem in the
complex situation, but we omit the case of not all population roots
to be distinct, since it is easy to derive it from the real case. The
main idea used here is to localize a whole integral in the neighborhood
of the identity elements of the orthogonal (or unitary) group and then
map them into the Euclidean space. The mappings H=exp 5 and

U = exp (iH) are well known and their properties allow us to develop
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the integral as a power series in increasing powers of n-l, where
n for one-sample case is sample size less one, for two-sample case
is the sum of two-sample sizes less two, and then evaluate it asymp-~
totically.

In Chapter V, we have considered some Jacobian problems, and the
distribution of the characteristic vectors corresponding to the two
largest roots of a matrix for the non-central linear case.

In Chapter VI is discussed the monotonicity property of the power
functions of three tests based on some criteria, and also some special

cases.

2. Suggestions for Further Research

Several problems which are closely related to this dissertation
which still remain to be solved are listed below.

(i) The third or succeeding terms (for all population roots are
distinct) and the second or succeeding terms (for not all population
roots are distinct) in the asymptotic expansion need to be investi-
gated so that the effect of neglecting terms in the asymptotic approx-
imetion can be measured.

(ii) Any subset of adjacent roots of p population roots in
the two-sample case discussed in Chapter II can be equal, for instance:

= ..l< = =.‘. = L4 1
a ak < ak+l < ak+t ak+t+l ap In this case

l= . 08
the theorems proved in Chapter II do not apply and a new method should
be formulated.

(iii) The approach developed in the first four chapters could

be used to find an asymptotic expansion for other distribution problems
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for example, MANOVA and canonical correlation, which involve a
definite integral. |

(iv) Estimation problems based on the asymptotic expansions
obtained in the two-sample case need to be investigated.

(v) Extend the distribution of the characteristic vectors cor-
responding to the first k largest roots of a matrix for the non-

central case.
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