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CHAPTER I

GENERAL INTRODUCTION

In the following chapters four problems of estimation and distribu-
tion have been treated. Chapter II studies “Window-Estimators® for the
location and the size of the discontinuity for a class of density func-
tions with a single, simple discontinuity. Chapter III treats special
distribution problems. Estimation of the location of the discontinuity
is a known problem,but not the size of the jump.

The basic idea of a "Window-Estimator” originates from "Spectral
Analysis™. This was first noticed by Parzen [6]. He used it to develop
estimators for the density function at a point and for the mode of a
density function. Chernoff (l) treated the case in which some of the
regularity conditions, assumed by Parzen (6), were not satisfied. Parzen,
while reviewing this paper in Mathematical Review, praised the techniques
used by him in these words -~ "Using impressive stochastic process tech-
niques the consistency and asymptotic distribution are obtained”. In
these papers, the conditions on the "weight-functions” are quite gener-
al, but the density function is still assumed to be continuous. By im~
posing more conditions on the weight function, whose choice is always
up to the statistician, it then appears that the class of the density
functions can be enlarged.

In posing the problem ¢f estimating the size and the discontinuity,



we have already relaxed the condition of continuity. As one may expect,
the window-estimator for the size of the discontinuity is less efficient
if it is to be compared with the windown—estimator of the density function
at that point. But these two are not comparable. As far as the author
knows ,there is no other estimator suggested in the literature for the
size of the discontinuity; so the merits or demerits of the window-
estimator cannot be discussed. On the other hand, if the window-
estimator for the location of a discontinuity is to have any appeal, it
will héve to compete with the estimator, treated by Chernoff and Rubin
(2]. It has been shown that they stand on the same ievel on the basis
of the order of the biases of the estimators. In fact, it is shown that
the vindow-estimator has, asymptotically, similar representation as does
the estimator of Chernoff and Rubin.

Chapter III treats a similar problem. We are interested in making
inferences about a non--stationarity point of a stochastic process instead
of a discontuity of a density function. The estimation of the location
of a single non-stationarity point was posed by Rubin (9). He showed in
the paper that, under suitable conditions, for the estimation problem
of discontinuities in multivariate densities, there do exist hyper-
efficient estimators, among them the maximum likelihood estimator. He
further showed that the estimation problem is asymptotically equivalent
to that for a non-stationary process, with possibly multidimensional
“time" and unknown center of non-stationarity. At the end of the paper,
he compared the efficiency of the maximum likelihood estimator of the
non-stationarity point of one dimensional pure Gaussian case with the
best estimate with quadratic loss function. This paper, therefore, intro-

duced some problems about distributions of well-known statistics. A *

'



Bayesian philosopher will start by assuming a particular a-priori distri-
bution on the leeation of the nonstationarity point and a particular
form for the loss function. There are quite well known theorems, which
give conditions under which the mean or the median of the a posteriori
distribution is the best invariant estimator of the location parameter.
Hence all these facts demand a further study on the distribution of the
mean and the median.

Here we shall treat a Gaussian process whose likelihood ratio::has
a typical representation (1) of Chapter III. For justification of (1),
we refer to a paper of Rao and Rubin (7),which gives a necessary and
sufficient céndition for a Gaussian process to be tﬁe log-likelihood
ratio frocess of Gaussian process. Another reason can also be given
that the logarithm of a likelihood ratio for the location of a dis-
continuity approaches a Wiener-process as the size of the discontinuity
tends to zero. Normally one would believe that the distribution
of the mean would be easier to obtain than that of the median, for any
distribution. Here, on the contrary, the distribution of the median,
at least as a computable expression, has been obtained. The distribu-
tion of the meén is quite an open problem. We have given some results
obtained on this problem in 3.4. We have also outlined a possible way

of solving the problem in the same section.



CHAPTER 1T

ESTIMATION OF THE SIZE AND THE LOCATION OF THE DISCONTINUITY

2.1 Introduction

The problem of estimating quantities related to the density func-
tion are quite delicate in nature. Several papers dealing with such
problems assume the density function to be continuous and sometimes even
uniformly continuous to prove special properties of the estimator. The
problem would become more involved or the results less efficient if omne
modifies such assumptions. Chernoff and Rubin (2) studied the maximum
likelihood estimator of the location of the discontinuity of a density
function. They suggested an estimator which is close to the maximum
likelihood estimator by the magnitude of the order Op(n_l). They
showed, asymptotically, the distribution of their estimator was related
to a certain random walk problem. Breakwell and Chernoff, in an unpub-
lished memorandum, derived the asymptotic distribution of this estimator.
These approaches need more rigorous techniques than the earlier studies
estimating the quantities related to the continuous density function.

In what follows we will give a Window-Estimator for the size and loca-
tion of the discontinuity of a density function. The treatment is simi-
lar to that of Rosenblatt [8}, Parzen [6) or Chernoff (1). It has been

proved that the bias in the estimator of the size of the discontinuity

0p (n—l/3);

is The asymptotic normality and the consistency are also



proved following Parzen's techniques (6). For the sakce of complotencss,
we shall rustate o theorem in the preliminaries which had beun a basis
for the Window-Estimators. This theorem would.be applicable 2t cvery
continuity point of the density function.
Section 3 treats a new estimator for the location of the discontin-
_uity for a class of density function. It is shown that the order of the
bias of this new -estimator, viz, , window-estimator is same as that of the

ul).

maximum likelihood estimator which is Op(n We will also obtain the

distribution of the estimator.

2.2 Preliminaries and Earlier Results

Let X be a random variable with absolutely continuous distribution
function F(x). Let f(x) be the denisty function with © as a location
of the discontinuity. In what follows, we shall assume 0 to be the simple
discontinuity of f(x), i.e.,

lim f(x) = A > 1im f(x)
x¥0 x40

[}
od

where A and B are finite.
We wish to estimate g(@) = A ~ B as well as O by the class of func-

tions defined by
(1) gn(e) = fwn(y - 0) aF (y) 4=

where (i) x 5% are independent observations on X,

1°°
(ii) Wn(.) is a suitable weight function.
Before we discuss the earlier work on the estimation of the density func-

tion at a point or the estimation of the mode, we shall restate a theorem

This theorem had been a basis for spectral analysis as well as in the



estimation of the density function, mode of the density function, treated
by number of authors.

Theorem 1: Let W(y) be a Borel function satisfying the following condi-

tions

(2) sup |W(y)| < =
(é) u/ W(y) dy < =
(4) lim |yw(y)| =0

y—)oo

Further, let h(n) be a sequence of constants, depending on n, such

that
(5) 1im  h(n) = 0 .
pseo
If
(6) g0 = [ udy vy v a s
then
g (x) - f(x)‘jp w(y) dy

at every continuity point x of f(x).

From this theorem and from the definition of gn(e) in (1), one can
easily impose conditions on Wn(=) so as to get a good estimator of the
density function at a point ©. If the problem is of estimation of the
mode of a density function, the intuition will suggest the estimator as
the location of sgp gn(O) with proper conditions on Wn(-). For a
class of density function for which g th order bounded derivatives exist,
it has been shown that the bias of the estimators in the class (1) is of

.q/2q+l ) )

the order Op(n For the estimation of the mode or the density

the weight function had been taken to be symmetric at zero. Since we



are interested in the estimation of the location or the size of the dis-
continuity of a density function, we will restrict ourselves to the class
of weight functions which will eventually make the estimator zero every-
where except at the discontinuity. For this to happen., we will need to
restrict ourselves to the class of density functions, with one simple
discontinuity, which are well behaved otherwise. Also we will consider
the class of weight functions which are antisymmetric at zero.

We need one more theorem»to obtain the distribution of the statistic
studied. This result was proved by Breakwell and Chernoff in an unpub--
lished memorandum.

Theorem 2: Let én be the estimator of the location of the density func-
tion, studied by Chernoff and Rubin (2)3 Let OO be the true location.

Then the “"asymptotic moment generating function" of n(On -~ 0) is given by

A

(1) E {exp - c vn(e - )}
s(v,wl) Wy = Wy s(vjw )
= (1 -w){ -
v =W, Hy
vy, - W +we - v
~w_ W
(1 - e 2 »l)(w -w, +v + s(-v W))
+ 2 1 Nk
+ - - -+ —_
(1 _. =W W = -5 v,wl) S L s ( v,wl)
2 1 1
+ s(»v W ))
where s(vgwl) is that solution of the equation s - vy -Vt woe S =0
i.e.,
2 3
W.V w, (1+2w, )v
S(V’Wl) -1 Y w, : 3 ¢ ” - ”l 5t O(vh)
1 2(1 ~ wy) 6(1 - w.)

> 0 as v-+0



while w, and v, are yo/co and BO/cO (for other notations refer to (2)).

2.3 Estimation of the Size of the Discontinuity

Tf the location of the discontinuity is known, it is then logi--
cal to think of an estimator which is the difference of the estimators
of the density function from the right and from the left of O- the loca-
tion of discontinuity. Hence one would expect that such an estimator
should tend to zero at every continuity point of the density function
and to the size of the discontinuity at 6. We shall first formally in-
troduce our estimator.

Let Wn(o) be a weight function satisfying

; S 3
(8) (1) Wn(y) = h(n) W( h(n)) .
where h(n) satisfies (5).
(ii) W(:) is anti-symmetric at the origin, i.e.,

Wiy)=-wly) y>0

o©
(iidi) / Wy) dy = 1
o
(iv) W(-) is a Borel function.

Hence (1) gives

n
_ T 1 X, - 0
(9) gn(@)— Zl nh(n) W( ;(n) )
i=1
n
N1
= .Z ;1' ni(e) » Say
= x, - 0
By (8 -iv), vni(e) = (1/n(n)) w( _ﬁfﬁj_') , i=1,2,...,n, are independent,

identically distributed as a random variable

g to) = (1/n(m)) W E50) .

Clearly



while L and v, are Yo/cO and Bo/cO (for other notations refer to (p)),

2.3 Estimation of the Size of the Discontinuity

If the location of the discontinuity is known, it is then logi-
cal to think of an estimator which is the difference of the estimators
of the density function from the right and from the left of O- the loca-
tion of discontinuity. Hence one would expect that such an estimator
should tend to zero at every continuity point of the density function
and to the size of the discontinuity at 9. We shall first formally in-
troduce our estimator.

Let,Wn(°) be a weight function satisfying

(8) (1) W) =y Oy

where h{n) satisfies (5).

(ii) W(-) is anti-symmetric at the origin, i.e.,

Wiy)=-Wwy) y>0

[v0]
(iidi) /W(y) dy = 1
o
(iv) w(-) is a Borel function.

Hence (1) gives

n
o x, - 0
(9) 8 = ) mar YCwe)
i=1
n
1
=) 2w , sey
. x, -0

; - i SR .
By (8-iv), Vni(e) = (1/n(n)) W( e ) , i=1,2,...,n, are independent,
identically distributed as a random variable

g 10) = (1/n(n)) W Giy)

Clearly



X

(o) (i) E gn(O) = ET-T'M/\ w(. ) ) f(x) dx ;

(ii)  Var. gn(e) = »———--*{ u/\w

(iii) Cov°(gn(e),gn(e + §8))

) fx)dx - i 8, e):}

B nh(ir {f W(y)- W(h( y +¥) £(n(n)y - o)ay

- Eg(0) Bg (0+ s)}

for § > O
By using anti--symmetry of the weight function, it can be easily

shown that

o)

(11) (1) E g (0) ~glo) + (£'(e+) + f'(e-))h(n)u/\ yW(y)ay + 0(n%(n))

\

)
where g(0) = f£(o+) - £(0-)
.. 1 2
(ii) Var. gn(O) ’\J;ﬁl‘(n—) (f(@"‘) + f(@")) fw (yv)ay .

0
For (11-i) to be valid we need the assumption of the existence of f'(x)

at 0 from left and right, otherwise we will have

E g, (0) vig(e) + o(n(n))

From (115 we can get the osymptotic expression for the mean square error ,
i.e.,
2 . 2
E (g (0) - g(e) )< = Var g,(0) + (Bias)

Now let us assume that h(n) = k 0%, o > 0. Then, in order that

the variance and the square of bias of gn(O) are comparsble, we must have

2/3

= 1/3 and then the mean square error is of the order n Hence

it is evident that the estimator gn(@) of the size of the discontinuity,
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if the location is known, is consistent in the quadratic mean, i.e.,

(12) E |g (o) - g@)[?>0 asnow
At this point we stop for a moment to make an observation.
If f(x) is twice differentiable from the right as Weli as from the left,
we can do better. We can use a '‘negative-~windov" to make gw v W(y)dy=0,= &,
which appears in the E gn(e) and in this case, we can get the mean square

u/5.

error to the order n~ In general if one can assume the g th order

bounded derivatives of f(x) exist from the left and from the right at ©
- +

then the bias of the estimator can be made of the order Op(n a/2q l).

Also if O is the location of the discontinuity
1 ' $ _
(13) Cov (g (0), g (0 + 8)) ~ w(my | YOGy * vfam)y-olay

Since |W(y)| » 0 as |y| + »; for any given € > 0, we can fina yo(e) such
that {W(y)| > e for |y| > yo(e). Then we can choose n so large that ..ithsr

either |y| > yo(s) or |y + 57371 > yo(e). Hence

1

Cov (n%h%(n) g,(0), n%hé(n) g (o + §)) » o0
as n >« for § 2 0. Similarly we can have a result for 6 £ 0~

Now we can prove the normality of the estimator, when 0 is 'nens
known, following Parzen's techniques (6]. If we use the representation

in vni(o) for gn(G) of (9), then gn(o) is asymptotically normal if and

only if

g, (0) - Eg (0)] L
(14) nP >egn? >0 asn->w

o(z, () - =

{See Loéve (5), p. 316).

A sufficient condition for (1k) to hold is, for some 6 > O,
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|£_(0) ~ Ee_()]7*°

(15) E 22 +0 asn-> o
L8 2+6
n® =g (0))
Now o
B g (0)[%*8 v ——"(r(0%) + £(0-) U/\ W (y)ay
h™ " (n) 0

Using (11-ii), we have
o]

Var £_(0) v mﬁ%aj-(f(e+)+f(e»))0;]\ W (y)ay

. © W2+6 . .
Under the assumption that o£ (y).dy < =,the quantity in (15) tends

e v g [T

R

tb zero as n - * and hence the normality of gn(o), Before we summarize
the results of this section, for the case of known @, note that we can
do better, from the order point of view of the bias if we restrict to
the class of the density functions for which f'(6+) = - f'(@n).v This

is/ ebvious from (11-ii).

Theorem 3: Let Wh(y) satisfy the conditions (8) with further restric-

tions

co

(1) J/ Ww(y) ay < o

o)
o0
(ii)J yW(y) dy < =
0
Let f(x) possess bounded right and left derivatives at ©. Let

n(n) = k n~t/3

where k is some constant. Let gn(e) be defined by (9)
with above h(n) and W(y). Then

(a) the mean square error of the estimator gn(e) is of the
order nh2/3.

(b) the estimator gn(O) is consistent estimator of g(o)

in the quadratic mean,



12

(e) (nh(n))l/2 (gn(e) - Egn(e))m}s asymptotically normal with
zero mean and variance, [f(@+)+f(®-){\/’ Wz(y) dy .

(a) (nh(n))l/2 g,(0) and (nh(n))l’2 g (0+8); & 20
are asymptotically uncorrolated.

In the case of unknown ©, the results (a)—(c)\will be still true

if © is replaced by an estimator én of g which is equal to
o+ Op(nnl), A > 1/3. This follows because of the following heuristic
argument. If én satisfies the above condition then the rate of con-
vergence of én to O is faster than that of gn(e) to g(@). Hence gn(én)
will start behaving like gn(G) and the results (a)-(c) will then hold
for gn(én) as well. A natural question then arises is whetber there
exists any such estimator én =0 + Op(n_x), A > 1/3. There exist
-many estimpators of @ with A=1l, to mention one is the maximum likeli-
hood estimator of 0, studied by Chernoff and Rubin (2]. The proof of
existence of such estimators was given by Rubin (9). In the next

section we have suggested an estimator of @ and studied its behavior.

2.4 "Window-Estimator” for the Location of the Discontinuity

Here we have suggested an estimator for the location of the dis-

continuity of a density function by the location of sup gn(o),
~00< Q<

where gn(e) is defined by (9). For the estimation of the location of
the discontinuity, we will need different sets of conditions on the
weight function Wﬁ(y). But if the aim is to estimate the location as
well as the size of the discontinuity, earlier conditions on Wh(y)
will have to be retained, < From the defini€ion ‘of én(e),*ftﬁgé’éasi-

to see.thut o oL



13

sup g,(6) = max gn(x(i)+) >
©w>0 < 1<i<n ’
where x(i), i=1,2,...,n, are the ordered observations on X.

In section 2.3 we have proved that if 6 is the true location of
the discontinuity, then gn(e) and gn(9+ 8), for n > no(a), are asymp-
totically independent. Hence the study of the limiting érocess would
be complete if we determine the distribution of gn(e+5) - gn(e), for
>0 and 8 < 0. We shall treat the case for 8> 0;8 <0 can be
treated similarly. For convenience, let us assume that the true loca-
tion of the discontinuity is the origin.

We assume all previous conditions on the weight function W(y),
together with that W'(y) is absolutely integrable and continuous. We

also assume that f(x) is bounded.

82(0) = 8,(®) = [ [W,(0) - W (x-8)] P (o)

5

- o) <0
LSS Tl - ol
Lan ] o} o}

= 2u(on) [F(®) - F(O]-J

where

3= [ [wae - ween)] B o

= J[ :w'n(x) - w'n(x-ﬁ)] F(x) dx

+ f :w'n(x) - w'n(x-é)] [Fn(X) - F(X)] dx

Now, under the assumptions made about the density function and the



1k

weight function, it can be shown that the second integral on the right
hand side of J is Op(d).

First integral on the right hand side of J

[Ce)

= [ W) () - RGees)) ax

[}Z§+ }£O+ 6/fo ] W (x) (P(x) - F(x+8)) ax

0,(8) + & W (0+) (£(o+) - r(0-) + o(1))

Hence, we get

(21) g (0) - g (8) ~ 2w (0+) (F (8) - F_(0))
= oW (0+) (£(0+) - £(0-) + o(1) )

Note, for sufficiently large n, n (Fn(é) - Fn(O)) is approximately
distributed as a Poisson random variable with parameter (F(G)-F(O)J;
From (21) we can, therefore, conclude that the window estimator
of the location of the discontinuity is the location of the maximum of

f(ao+) - f(ao—)
(F (o) - F (o)) - 5 (¢ - a))

This estimator is very similar to the maximum likelihood estimator
studied by Chernoff and Rubin (2], the only difference being that, in-

stead of %(f(ao+) - f(uo—);). they have a coefficient

(f(uo+)-— f(ao—)) / 1log f(ao+) - log f(ao—). We will summarize the
above results.

Theorem 4: Let Wh(y) be a weight function satisfying the following con-
ditions, in addition to conditions of Theorem 3.

(i) wW'(y) is absolutely integrable.
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(1i) WwW'(y) is continuous.
Then, for the class of bounded density functions, we have,

(a) the bias of the window estimator for the location of the

discontinuity is Op(n_l)°

(b) the "-asymptotic moment generating function of n(en—e),

where 6 is the true location and en is the window estimator, is given
by Theorem 2 with c, = %{f(e+) - £(e-)).

(c) the window estimator, gn(en), for the size of the discon-

tinuity, possesses the properties (a)-(c) of Theorem 3.
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CHAPTER III

SPECIAL CASE OF THE DISTRIBUTIONS OF THE MEDIAN AND THE MEAN

3.1 Introduction

The problem of this chapter originated from the following considera-
tion. Let us consider the problem of estimating the location of the
discontinuity of a density function. It is then natural to expect that
the asymptotic study of such a problem, under suitable regularity con-
ditions, would lead to a stochastic process which behaves nicely on both
sides of the true location of the discontinuity. This was first noticed
by Rubin {9). He then studied the maximum likelihood estimator of the
non-stationarity point of a stochastic process. The study of section L,
Chapter II, also leads to a Gaussian process with independent increments
and with a non-stationarity point. While concluding the above paper
the author passed a remark that if one is interested in inference with
an invariant loss function, there will exist an optimal invariant pro-
cedure which consists of assuming a uniform a-priori distribution on the
parameter. For clarity, let X(t), - » < t < =, be a stochastic process
with t - as a non-stationarity point, i.e., the behavior of X{t) for t
t < to and t > to are identical and the process X(t) is stationary in any
interval contained in (—w,to) or (to,w). Let the origin, for simplicity,
be the true non-stationarity point of X{t). Let L(t) be the likeli-

hood ratio of the process at t against t=0. Assume the Lebsgue measure
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on the real line as a-priori distribution on the non-stationarity point.
Then L(t) is proportional to the a posteriori distribution of t-the non-
stationarity poeint.

Recently, Rao and Rubin (7) gave a necessary and sufficient condi-
tion for a Gaussian process to be the log-likelihood process of Gaussian
process. We are going to consider a special case of it. We assume that
X(t), -~ @<t <vis a Gaussian process such that the likelihood ratio

L(t) of it has following special form

1
(1) L(t) = exp (W(t) - E-]t|), — <t < o,
where W(t) is a Gaussian process with independent increments and with,
(2) (i) w(o) =0

(ii) EwW(t) =0, - o <t < o,

(iii) COV,(w(tl),w(t2)) = 6(tl,t2) min(ltlls t2|)9

1 if t.t, >0

where S(tlstg) 18 2

i

0 otherwise ;

i.e., W(t) is a standard Wiener process. In the light of Rubin's com-
ment, we consider in section 3.3, the invariant ioss function - the
absolute error and in section 3.4, the squared error loss function.
Then for the stochastic process (1), the classical theorem will give
the median and the mean of the distribution, which is proportional to
(1), as the best invariant estimator of the parameter t. In (3.3), a
computable expression for the distribution of the median of the distri-
bution which is proportional to (1), is obtained. The distribution of
the mean of the distribution, which is proportional to (1), has not
been obtained yet. Section (3.4) includes some results on this problem

which might lead to the solution of the problem.
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3.2 Preliminaries-

3.2.1 DNotation
We introduce further notations in terms of L(t), where L(t) is de-

fined by (1) and (2).
| 9
(3) (1) x =J L(t) dt

(11) x =zx= [ L(t) at
J
(iii) v = J[ L(t) dt

(iv) 2z = J/ L(t) at
T

It then clearly follows that,

(L) P (median 3_T)

[+9]

= Jf P(X" +Y <2 | wT) - %T = u)

-0

T : -———j;——;,exp —[5%-(u + %T)2]du.
(2n7) c

Let,

(5) P (x"+Y<z|wT - %T =u ) = g(T,u)

In 3.3 ve shall derive a computable expression for g(T,u).

3.2.2 Some Well-known Properties of W(t)
We shall quote some well known properties of W(t), defined by
(1) and (2), which are used in the derivation.
(6) Extrapolation Property:

= f
W(tl+t2) w(tl) + W (t2), for t,t, >0,

where W(t.) and W' (t

1 2) are independent Wiener processes with the same



19

structure as W(t).
(7) Interpolation Property:
The conditional density of W(t), t, <t < by, t,t, 2 0, given

W(t.) = A and W(tz) = B, is a normal density with mean

1

(1) a+ =8 (¢ -t
b=ty

and the variance
B (tz—t)(t—tl)
(ii)

(6t

We shall now prove a lemma which is not well known. Rubin (lO]
proved a related result with a different approach and Fox and Rubin (3)
proved the same result for general stochastic processes. .
Lemma 1: Let X be as defined in (3-ii). Then, the distribution of 1/X

is an exponential distribution with scale factor two, that is, the

Laplace transform of 1/X is given by

(8) Laplace transform of 1/X E{exp - (A /x))

2/(x +2) , A>0,
where "E" stands for "Expectation" symbol.

Proof: Let € > O, then write

o

€ ©0
1 EY
X = &/ JME) =gy U/‘ M) =ty
o €

€

. ! 2~ -3
- u/‘ ML) =3t L/ JHtre) - 3(tre) 0
0

0]

= b/E M) =gy, We) - 5€u/‘ B - gy oy (6),

° 0

where W(e) and W'(t) are independent.

Hence
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(9) Xnve+ Lie) X7,

~ i
eW(e) 2%and X,X' are independent.

where L{e) =

If (1) = B (exp - (A/X)) , ¢, and ¢,, are the first

and the second derivatives of ¢(A) with respect to A, then by substitu-
ting the expression (9) in ¢(A), by expanding the terms under the expecw: -
tation sign without exp ~(\/X'), by taking the expectation and omitting

all the terms of order equal or greater than €23 it can be shown that

¢(1) satisfies the following differential equation

(20) I(+2) ¢, + Ae, = O
with the obvioua boundary conditions such as

(i) ¢(0) =1

(ii) ¢()) is a non-negative, non-incfeasing function of A,
which tends to zero as X approaches infinity.

Now, it can be easily verified that (8) is the required solution

of (10), satisfying above conditions.
Remark: Rubin (10) showed that %/(X~ + X) is uniformly distributed over
(O,l) by considering moment-relations. This result will follow immedi-
ately from the above lemma and the following well-known fact about ex-~
ponential random variables, which we shall quote as a result.
Result 1: If X and Y are independent exponential random variables, then
X/(X + Y)(or Y/(X + Y)) is uniformly distributed over (0,1) and is in-
dependent of X + Y (The independence of X/(X + X ) from X+%X is not true
for general processes.).

With these preliminaries we proceed to find g(T,u) as defined by

(5).
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3.3 Distribution of the Median

Let us start by looking back to the definitions of the random vari-
ables Y and Z. Note, we could replace W(t) - %—t = V(t), where V(t) is
~a Wiener process with mean - %—t, t > 0 and same variance-covariance

structure as W(t). Then
T

Y=f eV (8 gy
(o]

Z =f ev(t)dt
T

(1) g - by (6),

where V(T) and Z' are independent.
Now, by using the interpolation property (7), we have,

t u
T >

0

(11) E V(t)

iA

t <T;

Var V(t) (T—t)% , 0<t<T.

Let us introduce some notation.

P(Y<a |T,v(T)=u) , a>0,

(12) F(a,T,u)

2
f(a,T,u) = Evy F(a,T,u).

Lemma 2: F(a,T,u), defined by (12), satisfies the following forward
pertial differential equation,

u 1 u
(13)  (A-gerga)l Fy - Fp-gf+

roljco
n
+
®
rxi
+
hell o
e ]
[i]
[e]

aa au
where the subscripts stand for the corresponding partial differentials
of F(a,T,u).

Proof: The techniques used here are the same as used in Lemma 1. We

write,
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eV(e) V*

%
where V(e) and V are independent.

. % _
. . F(a,T,u) vEP (V < ae vie) _ ¢ |T-e, w(T-e) = u - V(e))
This leads to equation (13).
Leﬁma 3: F(a,T,u) also satisfies the following backward partial -.*
differential equation.
u 1 _
(1k) - euFa -Fp-5F +5F =0.
Proof: Here the only difference in the proof is, that we write
T-¢ T
Y =b/‘ eV(t)dt + \/ﬁ eV(t)dt
0 T-¢

and proceed as before to get (1h).

If (1k4) is subtracted from (13) we get the following corollory;

Corollory 1: F(a,T,u) satisfies the following partial differential
equation

u u 1 1 2
P - — +_ — =
(15) (e 1 T a 5 a) Fa + > a Faa + a Fau 0.

The above equation can be written in f(a,T,u).

(16) (-1 -2 a+tayr+ly £ +af =0,

T 2 2
Lemma E} The general solution of the partial differential equation
(16) is
1
2 beosh = u 1
lu 1 2 -0
. = =l S = emee—— S 4y
(17) f(a,T,u) = exp (2 T 5 U - Y(ae ))
a e
-

where ¥ depends on a and u only through ae
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L
Proof: The factor, exp (¢ (ae au)), corresponds to the general solu-
tion of the homogeneous equation of (16). The remaining factors of (17)
correspond to a particular solution of (16) which could be obtained by

inspection as follows:

(a) exp (%-%— - u) is the factor in the solution which corre-

a + l-a) in the coefficient of f£(a,T,u) in (16).

sponds to the term (- 5

Bl N

s
2]
O
wn
[apy
,\él.-'..

(b) exp {:;——325——— ] is included in the particular solution to
-2
a_e

correspond to (e - 1) f(a,T,u). To obtain this, one makes the follow-

K(
a

ing simple observation: exp ( u))i¢an correspond to (e - 1) £(a,T,u),

if XK(u) is a solution of the ordinary differential equation

(e - 1) +K'(u) - 2 K(u) =0,

where K'(u) stands for the differential of K{(u).

= is a soluticn of the above equation.

This completes the proof.

Corollery 2: The density function, f(a,T,u), is given by (1T7), where

3
y is a function of ae 2" only (possibly depending of T) such that

0]

. 2 1 A
(18) / exp(%-%——%u—h—c—"%u—z&+ Y(ae™™)) da = 1.
(o) a e 2
*su, -1

Corollery 3: It Yl = e Y 7, then the Laplace transform of Yl, viz.,

E (exp - AYl) = ¢(1), is given by

2
E%J exp - %‘T_l (arc coshg(cosh l-u + %-))°

(19) ¢(1) = exp ( 5

N

We are now in a position to find g(T,u) as defined by (5).
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Lemma 5:
S 1 1 21 1
[ u
(20) g(T,u) = k —k/ exp (§.T exp - 55-(arc cosh™ Zu + 3 c)
o
1 1
. {1 4 L+ _arc cosh(cozh % gy+ % ¢) ] da
{(coshbsu+isc ) - 112
SR uf;z*;m:ﬁ Lo Ja oA
g = + =
where k = 1/(1+e ) , ¢ = T3
Proof: Note we can write g(T,u) as

g(T,u) =P (X +Y<ez'| v(2) =u) ,

where X and Z' are identically distributed.
For the notational convenience, we shall omit the condition V(T)=u

and the prime of Z in the above definition of g(T,u).

Let
w=%+l—-

-
A=X/(z+X),

then, from the result 1 and Lemma 1, we know that A is a uniform randem
variable on (o,l), W is a Gamma random variable with parameter two and

W,A are independent.

d 1 1 1 -
co.og(tu) =Py < ™Mz - M xT)
1 1
S ~Jsu
-p(E et £
Y, =& —a’

where Yl is defined in Corollory 3.

S 1 -
h _r W g e °
g(T,u) _\/r P [Yl — - =) a ,

e e

where the range of integration is such that
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k
.B. g(T,u) = J[ P[g—-i_c) da
. 1

where k is as defined above and

1 1

Tu ~3su

.= e* e=*
a l-a

K o
k - Jf JF P( W 3_cyl) f(u) dy; da,
Q e}

where f(yl) is the density function of the
random varidable Yl, whose Laplace transform is
given by (19).

Now, using

—2cyl
(1) P( W z_cyl) = (1 + 2cyl) e

and
(i1)  (19) ,
one can arrive to (20).

We now summarize the results.

Theorem 1: Let t be the translation parameter of a Gaussian process
X(t), - ©» < t < », with Lebsgue measure on the real line as the a-priori
distribution for t. Let the process X(t) be such that the likelihood

ratio L(t), at t against t=0, of it admits the following representation

(21) L(t) = exp (W(t) - %»|t|] , =—®<t <o,
where W(t) is a standard Wiener process. Then the distribution of the
median of the a posteriori distribution, which is proportional to (21),

is given by
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P (median 3_T)

2 2
- 1
2 e T/8\/p e 24 /T sech.%—u du
O

oo k
- e T/8 f e >3 j exp -
S (o]

N

1 2 1 1
T (arc cosh” (cosh Zu + 50))

[1 4 ¢ arc cosh (cosh %u + %c) ] da du
]7 5
eT {{coshisu + %0)2 - 1}*

1/(1 + e ™)

it

where k

1 1
/ll —-//u
_e” e °

a 1-a

3.4 Some Results Connected with the Distribution of the Mean

In this section we shall give a few results connected with the dis-
tribution of the mean of the distribution, which is proportional to (1).
We shall start with the definition of L(t) given by (1). We further

introduce some notation. Let,

o)

‘e !
Y = f tL(t) dt ,
0]

0

fltl L(t) at ,

-0

=<
i

=
H

P

I
b

i

@]

g
<+
jon
c-l..

o]
X—=l L(t) at ,
S A S
X+ X

Y has a similar representation as given in (9).
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(22) Y a (X' +Y') L(€)

One can easily sec the difficulty in obtaining the distribution of

Y, which is the presence of X' on the right hand side of (22).

3.4.1. Various Moment Relations
We start with the representations (9) and (22) for X and Y, respec-

tively. Let,

=E

L]
W%

o-B(c) -
L € ' 1 rO=1 €
“O,B E _—XT {Y + eX' Y } (1 - ﬁ;x' ),

X

which leads to

v (E LO&B{Q)} (u

+ ~Be .
K ap T g1 g1 PHay )

b

Yk(k-1)¢

Then, using E-Lk(e) = e , we can get

(23) 3o =B )(a- B= Vg + O 151 -Bogyy = O-

B
=E-)—(C—x,then

If 0, <0, i.e., i
a < 8 i.e., if uaB "

(23) will become

1
(24) (- aB- a- D“aa T Mg gl + 3“043-1 =0 .

It is necessary to remark here that “CB exists if and only if

a- Bp<l.

3.4.2 Some Partial Differential Equations Associated with the Problem
We have obtained the distribution of 1/X in Lemma 1 of this chapter.
In the following, we have given a few partial differential equations
whichécould be derived by the same techniques as used in Lemma 1 of this
chaptér. The derivations have been omitted to avoid repetitions.

Let ¢ (s,t) = E exp - (% -+ ;X) , then ¢ (s,t) satisfies the
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following partial differential equation (p.d.e.)

1 -
(25) 5 s(s+2) dog T SO, T O =L,
82
Whar@~?ssw= ~=F , etc.
9s

Here we know by Lemma 1 that ¢(s,0) = 2/(s+2).
This equation can be solved theoretically. Let

Y

Ve )
(26) ¢(s,t) =KZO o (s) %T' with yo(s) = 2/(s+2) .

Using (26) in (25), we get

-

s(s+2) ¥r'(s) + (s+k) 9! (s) = k ¥ (s)

with the standard notaticn.

This equation can be rewritten in the following form by multiplying
the requisite integrating factor.

a k

K
S f _ S
(@27) 3 (s42)5-2 b (s) = 2k (se2)E1 Vg (8)

Since wk(s) >0 as s >, we have

bt k-2 u

{28) wk(s> = - u/ LEii%——— u/ 2k tk'l(t+2)'k+l\¢k_l

S (o}

(t) at du .

Since we know wo(s), theoretically we should be able to evaluate
all wk(s). But unfortunately this cannot be done in closed form.

Even for wl(s), one gets the following complicated formula

2

(29)  yy(s)=-2 L= l(s/se)
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log(1+st)

(cont) =4 f W“'E_ dt

With tedious evaluations of integrals one can get the following

expression for wg(s)

s +

0(s) = by, (5)( 1+ 222 10g (2/s42)

8 —25 107 (2/s+2) + —2 (3)
(s+2) (s+2)
: 2
(s+2) log (i+st)
-2 s t(t+2) at

\7

where z(3) = 2J -—%%
n=1 ©

To obtain the rest of wk(s) 's is very difficult. But it is
possible to evaluate wl(O) R wz(o) and w3(0) with treméndous amount
of evaluations of integrals which run for ten to twelwe pages. Also,
we get, then, with less efforts, the quantities-ﬁi(o) . wé(o) . wé(o).

These are, with interpretations, as follows:

(30) (i) () =pl- L
3 o-hlo)=Ey=
2
(i1) ¥,(0) = E ;§-= 16 z(3)
. as S NG ﬂn 2
(iii) —¢3(O) = R (i) = 16 —§-+ W8 - 8x
and
(31) (i) wi(0) = E §§-= 1
oy 2 %2
(ii) —¢2(O) =Ex=2-3
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3
(111)  y3(0) = E-}%L,— = §§(3)

4
(1v) -4 = B = St eay o
X

One can obtain additional moments by using the moment relation (22).
But the p.d.e. (25), otherwise, does not seem to be of any help.

It is possible to combine the moment relations (22)-(24) and the
moments in (30) and (31) to obtain some more moments which were not
otherwise obtainable.

o
In (23) put o =P8 - 1 , multiply by iéﬁ%~ and sum for & =1, 2,.

This will lead to the following equation.

Y .
(32) Bl e X -5 |
'S T x
Y Y
1 -t = 1 1 X -tz 1 X
=E[—e X -E—]+—[E- e x-tE—-E-]
T Y t 2 Y 2
Let t = o in (32) . This gives
(33) 5y = 3B 5= % .
Now put o =8 =1, 2 in (23), then
2
BEg = E fg = i,
X Xy 3
E 2 = E (Y) .
_ . 1 X
Now put 8 =0, o =1 in (23) to get EZ = E ;2 .

Therefore, combining all these results we get
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1

5(X)3

L
Y L

= E 55- = E
Y

Another interesting fact is - if ofu) is any differential function

(34) E

==

of u, it can be shown that

(35) E a'(u) e—OL(u) = | % ot (u) e-d(u)

X

where u = %-.

From this we can deduce

(36°) = e—tY/X = E_X__e—tY/X
2
X
Also
(36") e Yo gl Y
X2

(36") gives an additional moment, viz.,

(37) E(X/Y) =B YT = %-.

Another possible p.d.e. is for ¢(s,t) = E e—s/X -t X/Y’

+ t¢ =0 .

1
(38) 5 s(s¥2) ¢ + sd, - t¢ ot

‘st
So again, if we write ¢(s,t) in the series form of (25), the re-

currence relation for wk(s) is

(39)  Zs(s+2) ¥ils) + (s-k) yils) = k(k#1) v (s)

k+1

Therefore, theoretically, if ¢l(s) = E (X/Y) e-S/X is known, the
solution of (38) is known; and note that this (39) would be easier to
handle than (27). Unfortunately ¢l(s) is as difficult to find as the

sélution of (25).
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3.4.3 Another Possible Approach

The following approach may work. Introduce
o)

(%0) 7(x) = JF exp( W(t) - (5 + A)t) at , A

o]

| v
o

with W(t) as defined earlier.
Then Z(0) = X and Z'(0) = Y
Clearly

(i) Z(Al) 5_z(A2), for Al > A s

(i1) 2(X) is = - differentiable with respect to A.
Hence,

Z(O)A— Z(x) < a)

(41) P (z'(0) <a} = 1lim (P
A= O
Therefore, it is sufficient to know the Joint probability distri-
bution of Z(0) and Z{)A). It can be easily proved that 2/Z(\) is a gamma

\

random variable with parameter (2A+1). Hence, if 0, T

- S t N .
a(s,t) = E exp - ( A Zfij-) , we obtain

1 -
(42) 5 (s(s+2)ass + t(t+2)a,  + ZStast] + sa_+ (+t) a, = 0.

The advantage of this equation over (25) seems to be the knowledge

2A+1 22+
2P (g )M

of a(0,t) = 2+t , Whereas we have no idea about Y(0,t) in::

(25). Again this p.d.e. is solved if E—= exp( -s/2(0)) is known.

z())
Similay moment relations and other p.d.e. can be obtained for

various combinations of Z(0) and Z(A). But the problem recmains as

difficult as earlier.
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3.4.4 General Outline of a Possible Method of Solving the Problem
Tn all the previous subsections (3.4.1)-(3.L.3), the aim was to
find the joint characteristic function of Y and X, directly or indirectly.
811 the while the idea had been to use the gquite overloocked formula for
the distribution of the ratio of random variables, when the joint charac-
teristic function is known. This formula was proved by Gurland (h).

We shall first gquote his formula. Let X "Xn have the Jjoint distri-~

100"

bution function F(xl,.,.,xn) with the characteristic function

7.
tp(tl,,..,tn)° Let us consider a new random variable Y = % aiXi[
i=1
n
b b.X, . If P(z b X, >0 ) =1, and if G(x) denotes the distribu-
n=1 i=1
tion function of Y, then

(t(a,-b,x),...,t(a_-b_x))
()-l-3) G(X+) + G(X-—) =1 = ;\-.3_: j( o 11 - n n at

.= We are-interested..dn the distribution of

Y, -Y
1772

p= —— , X. >0, X, >0
X, ¥, >

vhere (Xl,Yl) and (X Y2) are independent, identically distributed.

29
So, if ¢(s,t) is the joint characteristic function of (Xl,Yl), the
characteristic function of (Xj}Yl,Xg,Yo) is ¢2. Then by (43) we can

write down the distribution of u. Let G stand for the required dis-

tribution, then

(44) 1 - G(x) = 2ii kj{<1>(—‘G,xt)<‘£>(—t,—xt) at

T

This should solve the problem.
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