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INTRODUCTION

A common situation in practice that confronts an experimenter is
the necessity of making decisions regarding k given populations (cate-
gories, varieties, processes, candidates etc.). Suppose 91,02,...,9k
are the characteristics of the populations in which the experimenter is
interested. These may be, for example, the means of the populations.
The classical tests of homogeneity, i.e. the test for the hypothesis of
equality of the parameters never answered the question of what next if
the null hypothesis was rejected. Attempts were made to overcome the in-
adequacy of the tests of homogeneity by formulating the problem in a more
meaningful and realistic way. A partial answer was provided by Mosteller
[60] who tested homogeneity against slippage alternatives. Contributions
to the theory of slippage tests have been made by many authors, notably
Doornbos and Prius [21,22,23], Kartin and Truax (497, Kudo T547, Paulson
f6L4], and Pfanzagl 7687, to mention a few. A fuller answer came in the
form of selection and ranking procedures, otherwise known as multiple de-
cision procedures. Bahadur [3] and Paulson L4971 are among the earliest
authors to make contribution in this area. Since then many‘authors have
contributed to various aspects and modifications of the basic problenm.
References could be made to Bechhofer F97, Bechhofer, Kiefer and Sobel
F147, Gupta 327, Gupta and Panchapakesan [37] and Lehmann [567.

Generally, problems of selection and ranking have been formulated in

two ways. Suppose nl,...,nk are k populations with distributions



Patterson (611, and Rizvi and Sobel [71]. Trawinski and David {7971 dis-
cuss the problem of selecting the best treatment by paired-comparisons.,
Selection procedures for restricted families of probability distributions
where the distributions are partially ordered in some sense with respect
to a known distribution G have been studied by Barlow and Gupta [47,
and Barlow, Gupta, and Panchapakesan [5]. A decision theoretic approach
to subset selection has been made by Deely and Gupta [19], and Studden
[78].

A usual modification in the selection problems is to select the
populations better than a control or standard population. Contributions
to this aspect have been made by Dunnett T2l1, Gupta and Sobel [L0],
Krishnaiah [517, Krishnaiah and Rizvi [53], and Paulson [63,65].

Multiple decision procedures have also been examined from a Bayesian
point of view. Deely and Gupta [19], Dumnett [25], and Guttman and Tias
46] have studied the problem by assuming a prior distribution on the
parameter space. A more meaningful situation in practice is the one
where only the existence of the a priori distribution is known, but not
the specific form of that distribution. Deely [181 studies the selection
procedures in this case using the empirical Bayes technique of Robbins
r72].

Recently, Sobel [767 has made an attempt in combining the fixed
subset size approach with indifference zone and the (random) subset
selection approach. His goal is to select from k populations of which
t are considered best a subset of size s(s < k-t) so as to include any
one of the t best populations with a minimum probability P¥ under an

indifference zone set-up.



The present thesis relates to the subset selection approach of
Gupta. Suppose ﬂl,...,ﬂk are k populations with absolutely continu-
ous distributions Fk ) Aie A, an interval on the real line. The ki

i

are unknown and K[l] < ... < k[k“ are the ordered \'s. Chapter I
4

defines a class of selection procedures Rh for selecting the population
associated with k[k]' This class of procedures Rh is in a way a
natural generalization of the class of procedures considered by Gupta
[34]. Under the assumption of stochastic ordering of the populations,
the infimum of the probability of a correct selection (PCS) over the

parameter space Q = {A:\'= (ll,...,lk), Aje A} is attained when

kl= cee = kk= A, say. A result of Lehmann has been generalized (Theorem
1.4.2) and this is used to obtain a sufficient condition for the proba-
bility of a correct selection waen the parameters are equal to A to be
hon-decreasing (non-increasing) in \. This result provides the infimum
of the PCS over Q. The properties of procedure Rh are also studied.

A sufficient condition is obtained in order o guarantee that the supremum
of the expected size of the subset selected and the supremum of the ex-
pected number of non-best populations selected are attained when the
parameters are equal. It turns out that this sufficient condition in-
cludes the condition which guarantees the monotonicity of the PCS in .

For the problem of selecting the population associated with h[l]’ a

class of procedures RH is defined and the properties of RH are

briefly discussed. More specific results are obtained in the case where

A is a location or scale pParameter and in the case where
«©

fh(x) =S w(d,j) gj(x), where w(X,j) are non-negative weights adding
J=0



up to unity and gj(x), j=0,1,..., 1is a sequence of density functions.
Chapter II considers the selection of multivariate normal popula-

tions in terms of multiple correlation coefficient. The so~called 'condi-

tional' and 'unconditional' cases are both considered using procedures

tased cn sample multiple correlation coefficients. Some asymptotic re-

sults are obtained. The investigations in these cases illustrate the

applications of the general results in Chapter I. Tables of éonstants

are given for many of the procedures for selected values of known -

constants and probability levels. This chapter also includes selection

of p-variate normal populations in terms of I222— £oy Zii lel where

le,le,Zél and Zée are partitions of the covariance of matrix
corresponding to a partition of the p wvariables into two sets of 9y

and 9, variables, ql+ 9 = P. The criterion of.ranking then repre-
sents the conditional generalized variance of the 9, set when 9 set
is held fixed.

Chapter IITI deals with selection procedures for restricted families
of distributions. In these problems we assume that there exists a popula-
tion among the k given populations which is stochastically larger than
any other. But we do not know the form of the distributions. We assume.
that these distributions are partially ordered in some sense with respect
to a specified distribtion G. A general partial ordering called h-
ordering is defined on the space of distributions. Tt is shown that
star-ordering and tail-ordering are particular cases of h-ordering. A
general selection problem is considered with h-ordering. Some implica-

tions of tail-ordering for certain chocies of G are studied. The
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selection problem in terms of the medians is considered for families of
distributions tail-ordered with respect to G. Formulae are obtained
for computing the constant defining the procedure wvhen G is logistic.

Chapter IV embodies a brief discussion on the problem of selecting
a subset containing at least one of the t(t < k) best populations.

A change in the usual probability requirement is also considered. Some

other possible procedures are indicated.



CHAPTER I

A CIASS OF SELECTION RULES AND ITS PROPERTIES

1.1. Introduction and Summary

In this chapter we define a class of selection procedures which is
a natural generalization of a class of procedures defined by Gupta [34].
Let ﬂl,ﬂ2,...,ﬂk be k continudus populations. Let A be an interval
on the real line. Associated with - ™ is the real valued random vari-

able Xi with an absolutely continuous distributions Fi = FX s Xie A
i

fx . It is assumed that the functional
i
forms of F are known, but not the values of Ai. Let

A
i

and density function fi

X[l} < xr2} <... < kaT be the ordered )\'s. The correct pairing of

the'ordered and the unordered \'s is unknown. It is also assumed that
F, is differentiable in X and that {Fx} AeA is a stochastically

increasing family of distributions which means that for A < X' Fx

and FX' are distinct and

(1.1.1) , Fk(x) > FX,(x) for all x.
Let xl,xz,...,xk be observations on Xl’x2"?f’xk’ respectively.

Based on these observations, we are interested in selecting a non~-empty

subset of the k populations such that the probability is at least P*



that the gest population, i.e., the population associated with
A[k](krlj) is included in the selected subsetf For the problem to-

be meaningful we should have % < P* < 1. If there are more than one
populations with A= x[kj(ki= lrl})’ then one of them will be assumed
to have been tagged as the best population. If we let CS stand for a
correct selection, i.e. the selection of a subset which includes the
best population and P(CS|R) denote the probability of a correct

selection using the procedure R, then the probability requirement

stated above can be written as

(1.1.2) inf P(CS|R) > Px |
Q ..

where Q is the space of all k-tuples (Fl’F2""’Fk)' This require-
ment (1.1.2) will be referred to hereafter as the basic probability
requirement or P* - condition.

| In the nexf section a procedure Rh is defined using a function
h = hc,d defined on the real line for the selection of the population
associated with X[k? and the probability of a correct selection is
obtained. The procedure Rh is a natural generalization of a class of
procedures considered by Gupta [347. Section 1.3 discusses the infimum
of P(CS[Rh) and a relevant lemma. A theorem which is more general
than a result of Lehmann 557 and its application for obtaining a
sufficient condition for the monotonicity of a probability integral
leading to the evaluation of igf P(CSIRh) form the contents of Section

1.b, The succeeding section spells out more specific results concerning
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the infimum of P(CSth) when fk(x) is a convex mixture of a sequence
of density functions. It is shown that certain results of Guptaland
Panchapakesan 381, and Gupte and Studden TU45] follow as particular
cases, The properties of the procedure Rh are investigated in Section

1.6. A procedure RH using a function H = H defined on the real

c,d
line is defined in the following section for the selection of the popula-
tion associated with k[lj. This section briefly discusses the infimum

of P(CS]RH) and the properties of RH. The chapter ends with a short

section which reviews the essential results concerning the procedures

Rh and RH.

1.2. Definition of the Procedure RLl and the

Expression for the Probability of a Correct Selection

Let h = h, 4 cefl,»), de[0,2) be a class of functions defined
bl

on the real line such that for every x belonging to the support of Fh?
(‘

i >
(1) n, 4 () 2x
(i) hl,O (x) = x
(1.2.1) ¢ (iii) h, d(x) is contimious in ¢ and d
H

(iv) h (x) 1t © as d= o and/or
c,d

hc,d(x) te® as c~ o, x3$0 .

.

The procedure Rh is defined as follows.

Rh: Include ni in the selected subset iff
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(1,2.2) - h(x) > max x.

lark
This procedure will obviously select a non-empty subset in view of (1.2.1).
(i). Letting X( ) denote that rendom variable among X5 2, Xy

(x) denote the cdf,

which is associated with k[r1 ard Frr}(x) = Flrrﬂ

we have

(1.2.3) P(CS|Rh) = P(h(X(k) > x(r), r=l,...,k=1)

J{ n pr 1(h(x))} f[k](X) dx,

where f[rj(r=l,.,.,k) denvtes the density corresponding to Ffr1(x)
and the integral is takzn over the (common ) support of the distributions.
Because of the assumpiion (1.1.1) regarding the stochastic ordering of

the distributions,

(1.2.4) p(cs|r,) > [ ¥ (3 (8()) £y (%) @x.

Hence

(1.2.5) it B(es|R,) = inf [ B (n(x)) £ (x) ax,
Q AeA

wvhere Q= (AIA' = (xlfxz,..,,xk), Aeh, 1=1,2,... k). Let

(1.2.6) §(hsc,d,541) = JF; (B(x)) £, (x) ax.



Because of (1.2.1) - (i) and (ii), we get

(1.2.7) ¥(hje,d k) > %
and
(1.2.8) 1:;(};1,0,1{) ='1]z- .

The properties (1.1.3) - (iii) and (iv) yield

(1.2.9) lim ¢(njc,d,k) = 1
G-

and/or

(1.2.10) lim {¢(rjc,d,k) = 1,
Cc—*co

If (1.2.9) holds, then for a given set of AsC,k and P¥ we can choose
* . ’ .

d such that the P - condition is satisifed. If (1.2.10) holds but

not (1.2.9), then for a given set of Aydyk and P¥* we can find o

*
subject to the P -condition.

1.3 Infimum of the Probability of a Correct Selection

We see from the last section that the constants of the procedure

must be evaluated satisfying the consition

(1.3.1) inf y(\jc,d,k) > p* ,
A

Hence our attention in this and several Subsequent sections is focussed
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on the question of evaluating the infimum of ¢(Ajc,d,k) for AeA.
Presently we will consider a lemma concerning the infimum of {¢(\;c,d,k)
which is analogous to a lemma of Gupta [34].

Lemma 1.3.1. Let ¢(A;c,d,t+l) be defined as in (1.2.6), Suppose °

there exists a density f(x) with cdf F(x) such that for a and b real,
(1.3.2) h(ag, (x) + b) > ag, (b(x)) + b,

where gk(x) is defined by

(1.3.3) Fh(agk(x) +b) = F(x) for all x.

Then, for any t > 0,

(1.3.1) ¥0se,a,t41) > [ Fo(n(x)) £(x) ax,

where the integral extends over the range of x.

Proof. IF (h(x)) f)\(x) dx

> ot

= jF: (h(agx(z) + b)) dFk(agl(z) + b), setting x=agh(z)+b

= ~F; (h(agl(z) + b)) dF(z), because of (1.3.3)
> :F: (agl(h(z)) + b) dF(z), because of (1,3,2)
= :Ft(z) dF(z), wusing (1,3,3) again.

Though we obtained Lemma 1.3.1 in a form analogous to that of Gupta

(341, we can prove a more general result, which throws more light on the
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nature of-the result we are after., The importance of this general lemma
stated below will become more clear when we discuss the selection problems
for restricted families of probability distributions in Chaptef III.

Lemma 1.3.2. Let X and Y be random variables having densities fh(x)
and f(y) and cdf's Fk(x) and F(y) respectively. Let h(x) be a

function such that

(1.3.5) h(p(x)) > @(a(x)),
where ¢ = F;l F. Then, for any t > 0,
(1.3.6) 7 06 1,60 ax > [rPa) 2(x) ax.

Proof. X is stochastically equal (;t) to o(Y), since P(p(Y) < x)

= P(F(Y) Fx(x)) = Fl(x) because F(Y) is uniformly distributed in

IA

dJ

(0,1). Hence  [E (n(x)) daF, (x)
= [B) (a(x)) ar(gH(x))

= :Ft (h(p(y))) aF(y),  setting x = ¢(y)

tv
o]

Y (o(n(y))) dF(y),  because of (1.3.5)

= |F” (h(y)) aF(y) .

If we assume that t is a positive integer as is the case in our
selection problems, Lemma 1.3.2 can be proved in a more elegant way

using probability arguments.
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Alternative Proof of Lemma 1.3.2.

Let ¥),Y,5.05Y,,,

(i.i.d.) random variables with cdf F(x). Let

be independent and identically distributed

(1.3.7) X, = o(Y,), i=1,2,...,t+1.

Then  X., i=1,...,t+1 are i.i.d. with cdf Fx(x) and (1.3.6) is
same as

(1.3.8) P(h(X  ,) > max X ) > P(h(Y,,.) >mex Y ).
: t+1/ =~ lar<t r/ - t+1 ‘lftft

To prove this, suppose h(Y, .) > max Y.. Since ¢(x) is an in-

N

creasing function,

(1.3.9) o(n(y,,,)) > ¢(¥2;§t Y) = L;i?i o(Y.) .

Then (1.3.5) and (1.3.9) imply that

(1.3.10) h(e(¥y,1)) > max oy ),
I<r<t

which is same as

(1.3.11) h(X, .) > max X
t+1 Lar<t
Thus h(Y,,,) > max Y. @ b(X ;) 2max X, which yields (1.3.8).

Larst IS r<
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Remark 1.3.1. It is readily seen that Lemma 1.3.1 is a particular

case of Lemma 1.3.2 by setting ¢(x) = a gx(x) + t which gives

F(x) = Fk(a gk(x) + b), the assumption (1.3.3).

Examples of Application of Lemma 1.3.2 to Selection Problems.

(1) Let Fy (x) = F(x - Xi) and A = (-w,®), i.e. A, are location
i
parameters. Suppose we use the procedure Rh with h(x) = x+d. For

any fixed i, let ¢ = F;l Fo» where Fo(x) = F(x). Then, o(x) =

1

F;i Fo(x) = Flr(x) + ;= x*+A,. Hence h(p(x) = xtho+ d = oh(x))

and the lemma spplies. Thus, for i=l,2,...,k,
® k-1

¢(li;c,d,k) > §(03c,d,k) = I F© "(x+d) dF(x). Hence
-Cd .

(1.3.12) inf §(X;e,d,k) = §(03c,d,k),
A

i.e. the infimum is attained for A=O.

(2) 1Let Fk (x) = F(%—), x>0 and A = (0,®), i.e. \; are scale
i i
parameters. If we use the procedure Rh with h(x) = cx. For a given

i, let o= F;lFl, where F,(x) = F(x). Then, o(x) = F;lF(x) =
i i
xiF_lF(x) = hix. Hence h(g(x)) = cA;x = @(h(x)) and the lemma applies.
<o
Thus, for i=1,2,...,k, ?(li;c,d,k)_z ¥ (1l3c,d,k) = j Fk-l(cx)f(x)dx.
0]

Hence

(1.3.13) inf ¢(A; c,d,k) = ¥(13c,d,k),
A

i.e. the infimum is attained for )\=1.
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1.k, sufficient Condition for the Monotonicity of #(Ajc,d,k)

A, Some Preliminary Results
We start with a result in Lehmann [55, p.112], which we state below
as a lemma without proof.
Lemma 1.4.1, Let FO and Fl be two cdf's on the real line such that
F, is stochastically larger than Fo» i.e. Fl(x) < Fo(x) for all x.

Then Eow(x)_f El¢(X) for any non-decreasing function ¢. As an immedi-

ate consequence of the above lemma, we obtain the following theorem.

Theorem 1.4.1. Let {Fl} be a family of distribution functions on the
real line which are stochastically increasing in A, i.e. for ka > Xl’

F, and F,  are distinct and Fy (x) > Fh (x) for all x. Then

1l 2 1 2

Ekw(X) is non-decreasing in \ for any non-decreasing function V.

A lemma in Lehmann [55, p.7h4] establishes the same result under a
stronger hypothesis that {FK} is a family of distribution functions
having the property of monotone likelihood ratio (MIR), which implies
the stochastic ordering.

As our next step, we obtain a more general result, which gives a
sufficient condition for Ek¢(x,x) to be non-decreasing in .

Theorem 1.4.2 Let {Fk}’ AeA, be a family of absolutely continuous

distributions on the real line and {(x,A) be a differentiable function

of x and \. Then Ex¢(X,l) is non-decreasing in A provided that

(1.4,1)

=

>0,

where
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SERE Ty

SR &)

and the derivative of FX w.r.t. A 1s assumed to exist. Further
EX¢(X,X) is strictly increasing in A if (1.4.1) holds with strict
inequality on a set of positive Lebesgue measure.

To facilitate the proof of this theorem, we need some'more notation

and lemmas. Let

(1.4.3) A0 = [ ¥ aF, (o) = By (x),
I

where I 1is the support of Fk' Let us consider kl,kze AN such that

A £, and define

2
2
(1.4.4) A, (AN = j Oy(x,\,) dF,(x), i=1,2
1 r=1
r%i
and
2
N
(l-h-5) B(xl:le) = LJ Ai(xl,Xz),
' i=1

where Fi(x) =T, (x), i=1,2, We note that when M= A= A
i

(1.4.6) B(\,\) = 2a()) .



Lemma 1.4.2, B(kl,he) is non-decreasing in ;> when \, 1is kept

fixed, provided that, for Xl < xz,

(1.4.7) ax #lxn,) £ 2(x) ey 5 B (x) = ¥(x,0,) > 0.

Proof. Integrating by parts, we obtain

(1.4.8) Al(xl,xa) = Fl(x) ¢(x,x2) - IFl(x) d@(x,la),

19

where the asterisk in the first term indicates that it has to be evalu-

ated between proper limits. However, we note that this term will be

independent of \,. Using (1.4.8) in (1.4.5), we obtain

(1.4.9) B(A,5A,) = a term independent of )\, +
1772 1

[ty £,60 - P L) 1 (x)) ax,
where W'(x,ke) = %; v(x,xz). Hence,

(1.8.20) 52 30.0,) = s 1) 150 - By Pl ¥ (xg)] ax

and this is non-negative if
) )
—_— - — >
(1.4.11) oW w(x,xl) f2(x) By Fl(x) w'(x,xz) 0 for all x e I.

Since our selection of Kl and A

5 in A 1is subject only to the
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condition that ; <\, and is otherwise arbitrary, (1.4.11) is satis-

fied if (1.4.7) holds. This completes the proof of Lemma 1.k4.2.

Lemma 1.4.3. If Ay= A,= X, then B(X,A) is non-decreasing in \ pro-
vided that (1.4.7) is satisfied.
Proof, We note the following properties of B(xl,kz) which can be

easily verified.

2 ‘
d =)
(1.4.12) x B(k,l)-—}i 5?; B(kl,kg) .
S i=l .
' ll— 12— N
(1.4.13) 2 B(A,A,) = o B(x Ay) = = B(X,5\,)
= axz 1’72 axz 2°71 Bkl 1’72 ’
kl - 12
where kl \od 12 indicates that after differentiation Al and k2 are
interchanged in the final expression. Hence |
2
(1.4.14) }i S B(A.,\.) 2 <2 B(x.,0.)
= SI; 1°%2 ax, Tt :
i=1 -y . =3 =
Xl- xa- A ll— Xz- A

d 9
s > i f o > $
Thus an B(\,\) > 0 if Bkl B(xl,xz) 0 for ll < k2. This completes

the proof of Lemma 1.4.3,

Now we give the proof of Theorem 1.4.2.
Proof. By Lemma 1.4.3, B(As)) = 2A(A) is non-decreasing in \ if
(1.4.7) is satisfied. In the theorem we are concerned only with the

monotonicity of A(N). For the purpose of this theorem choosing
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ll,hae A is only an artifical device.Obviously, for A(A) to be non-

decreasing in \, we only need the condition (1.4.7) with A= A= A

Hence the sufficient condition needed is
e )
SRICHVENORE S NOR-STCRVETS

vhich is same as (1.4,1). The strict inequality part is now obvious.

Remark 1.4.1, 1In the proof of Lemma 1.4.2 we have made use of the

assumﬁtion that Fk,keA, have all fhe same support I. vBut the result
is true even if the support changes with \. If (al’bl) and (a2’b2) are

the supports of F, and F, , (1.4.8) will be

M A

by
(L535)  mOghy) = ¥by,) - [ B () y(x,) ax

a 1l

1
and this yields
(1.4.16) 2 (A,5N,) = 2 b (b. s\, ) EE& - Jbl Sy (¥ (x,\,) dx
ah 3N, 1Mt/ T Fps YiPsho) oy ™. A 282
1 1 1 Yay MM
db, o

T 5o V(b))
A, 3 1°%2

it
$
C
=

o)
—— F. (x) ¥'(x,)\,) dx.
all kl %2

Hence,
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b

2
d d
(1.4.17) <= B(A,,\,) = = y(x,1)f, (x) dx
A, 172 jaz oy 17,
jbla ()4 (x,1,)
- = F (x)¥'(x,\,) dx
ay oy Ay 2

and it can be seen that (1.4.7) is sufficient to make 5%+B(xl,x2) > 0.
1

Lemma 1.4.3 also holds and hence Theorem 1.4.2 is true when the supports

_are not same.

Corollary 1.4.1. If §(x,A) = ¢(x) for all X e A, i.e. Y(x,\) is

independent of A, then Exw(x) is non-decreasing in A\ if

(1.1.18) 3 B S yx) <o.

The proof is omitted, since it is immediate from Theorem 1.k4.2.

Remark 1.4.2. We see that, if we assume in Corollary 1.k4.1 that {FX}’

A e A is a stochastically increasing family in A, then (1.4.18) is

3 .
equivalent to = y(x) > 0, which means that {(x) is non-decreasing in

X. Thus we obtain Theorem 1.4.1 as a particular case.

Corollary 1.4.2. Let [Fx] and {(x,\) be as in the hypothesis of
Theorem 1.4.2 with the additional condition that U (x,\) 2 0. Then, for
any positive integer t, Elwt(X,l) is non~decreasing in A provided
that (1.4.1) holds and is strictly increasing in \ if strict inequality

in (1.4.1) holds on a set of positive measure.
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Define

: k
(1.4.21) Ai(xl,...,xk) = j 1 W(x,xi) dFi(x), i=l,...,k
1

r=
rti

where Fi(x) = in(x),
k

(1.4.22) B(xl,...,xk) = }; Ai(xl,...,xk).
i=

"and

(1.4.23) A(\,k) = J wk'l(x,x) de(x).

Then

(1.4.24) | B(A,...,A) = k A(\,k).

Integrating Al(xl,...,xk) by parts and using it in (1.%4.22) and

then differentiating w.r.t. xl we get

d
(1.4.25) PV B(xl,...,xk) =

1

1k

o=2 I‘+Q/

w<x,xr>_(g§—l ¥0xan)) £ (x)- -a{’: P, (x) ¢ (x, ) Yax.
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Hence, similar to Lemma 1.4.2 we will get the following result.

Lemma 1.4.4, B(ll,...,hk) is non-decreasing in Ays when xz,...,xk

are kept fixed, provided that y(x,A) >0 for A ¢ A and (1.4.7) holds.

If kl= see = A= )<\ < A

m ME Mgy S e SN 1<m<k, thenbya

reasoning similar to the one employed in the proof of Lemma 1.4.3, we

can see that

d - d
(loh026) a B(l,u--,k,xm_i_l,-co,kk) =nm BT‘B(Al,oao,)\k) _ .
1 A =eoa=h_ =X
1 m
Hence we can state the following lemma,

Lemma 1.4.5. If M= ...=)r=1i< M1 S ve- SN 1< m <k, then

B(Ayeuoshsd ,kk) is non-decreasing in )\ when Apeyse ool are

m+l’o-c

kept fixed, provided that ¢(x,A) is nonnegative and (1.4.7) nolds.

As a consequence of Lemma 1.4.5, we can state the following theorem.

Theorem 1.4.3 Let B(xl,...,xx) be defined by (1.4.21) and (1.4.22).

Then the supremum of B(xl,...,xk) over kl,...,kke A subject to the

condition Xl < xe < .. < Ak takes place for kl= x2= ees = Xk pro-

vided §(x,\) is non-negative and (1.14.7) holds.
B. Monotonicity of y(Ajc,d,k)

Theorem 1.4.4. For the procuedure R~ defined in Section 1.2,

¥(A;c,d,k) is non-decreasing in A provided that

E—Fx(h(x)) £, (x) = n'(x) fx(h(x)) %T Fx(x) >0,

(1.k.27) 5
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where h'(x) = g; h(x) and ¢(rjc,d,k) is strictly increasing in \ if

strict inequality holds in (1.4.27) on a set of positive Lebesgue measure.
Proof. The proof is immediate from Corollary 1.k.2 with ¢(x,x)=Fx(h(x)).

Remark 1.4.4.  From Remark 1.L4.3, we see that ¥(A3c,d,k) is non-

increasing if the inequality is reversed in (1.4.27) and consequently
equality in (1.4.27) implies that ¢(\;c,d,k) is independent of .
Now we discuss some special cases of interest.

Case (1): If X\ 1is a location parameter and h(x) = x+td, d > 0,

F,(x) = F(x-A) and %I Fy (x) = -£(x-1) = -fy (x). Also h'(x) = 1 and

hence the left hand side of (1.4.27) vanishes. Thus ¢(A;c,d,k) is

independent of A. Thus {(A;c,d,k) = ¢(0;c,d,k). Hence inf Y(r;c,d,k)
A

= ¥(0;¢,d,k), a fact established in Section 1.3.
Case (2): If A is a scale parameter and h(x) =cx, c>1,

FX(X) = F(%) and %X Fx(x) =-f§ f(§)= - % fx(x). Also h'(x) =c

and hence the left hand side of (1.4.27) vanishes. Thus ¢(\jc,d,k) is
independent of . Thus {(Aj;c,d,k) = A(1;c,d,k), yielding

inf y(A;c,d,k) = ¥(13c,d,k), which is again a fact established in
A

Section 1.3.

We are also interested in another case where fk(x) is a convex
mixture of a sequence of known density functions and )\ is involved
in the weights. Some selection procedures for distributions of this
form are discussed in Chapter II. So we discuss this case in some de-

tail in the next section.
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' 1.5, Selection Procedures .for Distributions

which are Convex Mixtures

A. Preliminary Discussions and Main Theorems
We are presently concerned with the procedure Rh for selecting

the population with the largest xi, where

o0

(1.5.1) fR(X) =2 W(?\’j)sj(x)s
j=0

where gj(x), J=0,1,... 1is a sequence of density functions and w(\,j)

o]
are non-negative weight functions such that % w(A,j) = 1. We recall
Jj=0

that the first stage in obtaining the infimum of P(CS[Rh), namely

(1.2.5), is based on the assumption of the stochastic ordering of Fk s
i

i=l,...,k. We state below a lemma which gives a set of sufficient
conditions on w(\,j) and gj(x) which will guarantee the stochastic

ordering of F, with respect to A. In fact it guarantees more.

A
Lemma 1.5.1. Let fx(x) be a density function given by (1.5.1). Then

fi(x) is totally positive of order 2 (TP2), i.e., for A < xe and -
fkl(xl) fxl<x2)
Xy <%y, > 0 provided that gj(x) and w(\,j)
f. (x,) . (x.)
kz 1 ‘X2 2
are TPé.

Proof, The proof is a straightforward consequence of the basic compo-
sition formula of Polya and Szegd (see Karlin (481,p. 17), which in the

Iresent case is
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|

£ (x) £ (x) () &, G |w0,5) win,s)
(1.5.2) N LRy *5 _ z: gjl * ng Ko /| Wik 20y7 Wik,
sz(xl) fxe(xg) 1< 3, ng(xl) gjz(xz) wiry537) w(n,,d,)

for xl < x2 and kl < k2.

Remark 1.5.1. If the density function fx(x) of “a random variable

X is TPé,

distribution of X is stochastically increasing in 1.

then equivalently it has MIR in x and consequently the

From now on we assume that

a.kj _
(15.3)  w(h3) = g5y3r s A0) 20, A >o.

Because of the non-negativity of w(A,j), a > 0. Since the weights

_ J
add up to unity,

J

=T 8.

(1.5.1) a0 =) e

g;r\/1s

J

The weight distribution considered here isg the general power series

distribution. Let us define

(1.5.5) r, (x) = A(r) £, (x)

and

(1.5.6) Rk(x) A(\) Fx(x) .
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Using (1.5.5) and (1.5.6), (1.4.27) can be rewritten as

(1.5.7) Q (1(x)) 7, (x) - n'(x) Q (x) r, (a(x)) >0,
vwhere
(1.5.8) 9 (x) = 40) 52 R (x) - 4 () R, () ,

the prime over A()) denoting the derivative with respect to A. Now

by series multiplication (they are all absolutely convergent series)

we obtain
o
- )\c"
(1-5-9) Q;\(x) = /. 'J!" Ba(x).s
=0
where

o
(15.20)  B,0) =) () aye, 10(G, L (0) - 6,(x)
j=0

Using (1.5.9) in (1.5.7) and simplifying we get

(1.5.11) z ooz
1=0

where
i s
(L5.32) ¢ =) (Dl B (h()g; 000 (x)a g (a(x)) B,__(x)] ..
=0
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Thus (1;5.11) holds and consequently (1.4,27) holds if C; 20, i.e.

for every integer i>0,

i
(15.13) ) Dlay B, 00, ()b (x)a g (h(x))5,__(x)] > o.
0=0

The above discussions could be summarized as follows.

Theorem 1.5.1. For the procedure R, when fl(x) is given by (1.5.1)

with weight functions given by (1.5.3), ¢(rjc,d,k) is non-decreasing
in )\ provided that for>every integer i >0, (1.5.13) holds and
W(k;c,d,k) is strictly increasing in A if strict inequality holds
in (1.5.13) for some 1.

What is of more interest to us is the case where the aj are

governed by the relation

(1.5.1k) L (q+jp)aj, j=0,1,...; p,q > 0.

This on successive applications yield

(1.5.15) 25,1 = 35a(a*2p) ... (atjp), §=0,1,... .
c .
Hence, A(x) = E; 37 80a(a*2p) ... (q+jp)
j=0 -

= ao(l-lp)fq/p, provided that ) <.% .



Further;
) - sgem) Vo) T A (g T ¢y(x)]
Q) = a5 (1-2p [’pA:'(:T-TFaJJ"'qz_OF:‘*‘a'j"'
j:l j:

But the expression inside the last brackets

- w -
J d
A N . A
3T aj+lGj+l(x) - Z;(Q*JP) 37 GJGJ(X) -q aOGO(x)
J=1

]
Li~Ts

o «© .
J - 44

A A

3t aj+lGj+l(x) - E; v aj+1 Gj(x)
j=0

1}
L8

2
3T 2541 AGj(x),

1
gl§v1 8

where

(1.5.25) ch(x) = Gj+l(X) - Gj(x).

Hence, (1.5.7) holds if

'>

j c L
(1.5.26)  ( N :

it aj+l AGJ(h(X))) ( ‘.—!‘ ajgj(x)) -
j=0

L8
[ )

w0 () e, 86,600 e gm0 2 0.
3=0 3=0

This can be simplified and rewritten using (1.5.1L4) as

31
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(L.5.27) .) a8 . Td(x)‘z 0

1
(¢4 o 1~

z;F\/1a
=
™~

=

where

(1.5.28) Ta(x) =

(grap)g;_ (x) A, (h(x))-h' (x) (a+ (i-a)p)g (n(x)) G, (x).

Obviously, for (1.5.7) to hold, it is sufficient that, for every
integer i >0,

i
(1.5.29) Y G aa, T (x) > 0.
=0

Before we summarize our results, we will obtain a condition which
is more stringent than (1.5.29) but which - is verified to hold in

several cases. Grouping the terms corresponding to o and i-a, (1.5.29)

becomes _
(3]
(1.5.30) Z (i) a.2; T, (x) + 1. (x)) >0,
' a=0

where [s! denotes the largest integer <s. Thus (1.5.29) holds,

. i . .
if TC[(x) + Ti_a(x) >0 for a=0,l,..., [Ej’ i.e., if
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(1.5.31)  (arep)le_o(x) 80, (h(x))-h (x)g,__(h(x)) bC_(x)] +

(a+(1-2)0) g, (x) 8G;_,((x))-1’ (x)e,(n(x)) 86,_(x)] > o.

Summarizing all our results, we have the following theorem.

Theorem 1.5.2. For the procedire Rh’ when fh(x) is given by

(1.5.1) with weight functions given by (1.5.3) and (1.5.14), ¥(r3c,d,k)
is non-decreasing in A provided that for every integer i > O,
(1.5.29) is satisfied or more strongly (1.5.31) is satisified for

or=0,...,[él-f! and ¢¥(\;c,d,k) is strictly increasing in A if strict

inequality holdé in (1.5.29) or (1.5.31) for some 1i.
B. Some Special Cases
We are interested in some special choices of p and q in (1.5.1h),
These special cases arise in the next chapter when we consider selection
procedures for multivariate normal populations in terms of multiple
correlation coefficient. |
. Case (1): gq=1, ay= 1, p=0.

In this case we have A()A) = 1lim (l-kp)-l/p = e s > 0,
e"MJ 7o
w(h,3) = r and 3= 1 for all j. Thus the densities gj(x)

are weighted by Poisson weights. Familiar examples of fk(x) in this

case are the densities of a non-central chi-square of F variable with
non-centrality parameter \. The sufficient condition (1.5.29) be-

comes

(1.5.32) z (Ciy)rgi_a(x) 86, (h(x))-h' (x)g (n(x)) a6, (x)] 2 o,
=0 '
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which ié same as the condition obtained by Gupta and Studden [h5? in
whose proéedure h(x) =cx, ¢ > 1. Also falling in this category'is
the distribution of R2, the square of the sample multiple correlation
coefficient in the so-called conditional case.

Case (2): p=l1 and a.=1.

0
This gives a;= q(q+l),..(qrj-1) and AQA) = (1-A)"%, 0 <A < 1.

Yy d
Then w(),j) = XCLADLY (1-1)%, i.e. the weights in this case are
T(a) j: |

2 in the 'unconditional!'

negative binomial weights. The density of R
case is of this form and comes up in the selection problems discussed
in the next chapter. The sufficient condition (1.5.29) becomes
%. :
i
(1.5.33) ) (d)(q)a(q)i_a[(q+d)gi_d(X) G (n(x)) -
=0

b (x) (a+ie)g, (n(x)) 86,_(x)] > O,

where

(1.5.34) ' (a), = a(atl) ... (g+e-1).

Case (3): Binomial Weights
Suppose we have

N
(1.5.35) £0x) =) w(hide;(x),
3=0

where
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(1.5.36)  w(n,g) = () M @-0™, ge0,..,m 0 <2 <1,

Let u = A/(1-)). Then

. -1). .. (N-j+1) u Joa
(1.5.37)  w(n,3) = 2 -k
’ 5 ()9 ok
where

f' -

l s J:O

(1.5.38) ay = < N(N-1)..,(W-j+1) , j=1,...,N

&o s j=N+l,-.-

- N

and A(p) = (1) .

Thus, the density in this case becomes

N .
(1.5.39) £ =) B phs g ().
3=0

Letting ¢(psc,d,k) = §(p/(1+p); c,d,k) and noting that u is
an increasing function of A, it can be seen that {(\jc,d,k) is
non-decreasing (increasing) in A\ iff ¢(p;c,d,k) is non-decreasing

(increasing) in wp. In our present case
' o

N-j s j=o,l,...,N

0 ,  j=N+l,...
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We can ﬁrite-it in the fornm

a. g+jp s J=0,1,...,N
+1
(1.5.40) -t o

a >

J
0 » J=N+1,...

vwhere q=N and p= ~l. 1In Theorem 1.5.2, we assumed that p and g
are non-negative. This was in view of the infinite mixture. When we
have a finite mixture as is the case now, all we need is that g+jp

be non-negative for all j. Then corresponding to (1.5.26) we will

have
. N-1 - . N
5.5 O Eaoae,m) O L ag )
" L 3T 2541 865100, Gy asey(x)) -
§=0 §=0
Nl N
' Now B
h'(x) () ¥ra, 8c,0)() % e (a(x)) 2o,
§=0 §=0
We can rewrite (1.5.41) as follows:
oN-1 |
Y 1
(1.5.42) L. E >o,
1. 1 -
i=0
where -
i
Y ) M (x) , i=0,1,...,N-1
_ =0
(1.5.43) E, = <

N
z (;) M (x) , i=N, N1,...,2N-1

o=i+l=N
\ense
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and

(L.5.50) M (x) = aa; o Te,(x) 86, (a(x))-n' (x)e (n(x)) 86, _(x)].

We can rewrite (1.5.43) as
min(i,N)

(1.5.15) B =) () M (x).
o=max(0,i+1-N)

Thus the sufficient condition for {¥(\jc,d,k) to be non-decreasing in

X becomes
min(i,N)

(1.5.46) 3 (3) My(x) >0 for i=0,.,...,2N-1.
a=max (0,i+1=N)

A very special case which may be of interest is where N=1,i,e.,
fl(x) = (1-2) go(x) + hgl(x). We have this type of situation when
we have systems whose life distributions are mixtures of two distri-
butions and the preference for a system is interms of the proportion
in which the two distributions are mixed. The condition (1.5.46) re-

duces in this case to

(L.5.47) g (x) 8G,(x) - b (x)g (n(x)) 8G,(x) > 0, a=0,1.

C. An Alternative Proof of Theorem 1.5.2.
We give below another way of obtaining the sufficient condition
(1.5.29) which assures that Y(A;e,d,k) is non-decreasing in A\ under

the hypothesis of Theorem 1.5.2., This method is the one which was
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employed.by Gupta and Studden [h5] for the case of Poisson weights and
later used by Gupta and Panchapakesan (387 for the case of negative
binomial weights. This proof is direct but does not bring out the
general result. We avoid unnecessary details and give only the main
trend of the results.

Following our earlier notations

(1.5.48) y(r;c,d,k)

| 1 o ) kel o A9

= [) = a.6.(h(x))] [) = a.g.(x)] ax
ra()1 IJZOJ' J P
fA(l)]k qu o o

where

k-1 :
§o,lo,2 o) L1 2.5 (2] 2, g, () ax,

where P (@) denotes the set of all partitions (al,aé,...,ak) of «
k

such that ai,i=1,...,k are non-negative integers and I o= o, and
i=1l

( o

a,Q, @ ) = x
12 "*° "k

ail .o ak!

A(A) = (l-Ap)-Q/p. Hence

+ Because of (1.5.14), we know that

ak/p o o
(1.5.50) ¥(Aze,d,k) = (l-xg) 2 A

o) o=0
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Lemma 1.5.2. ¢(A;c,d,k) is non-decreasing in A\ provided that

(1.5.51) Coul ™ (ak+par) ¢,>0 for o=0,1,...., and
v(A3c,d,k) is strictly increasing in A if strict inequality holds in
(1.5.51) for some a.

Proof': g—}\ y(rsc,d,k) >0 if

' > o=1 il o
- A A
(1:5.52) () ) e Y- ek ) o, A zo.
a=1 a=0 :

The left hand side of the above inequality

’18

H g

; (qk+p0f)c
o

!
Ql>‘

i
<3

; R
= Z legerm (ak + pe) e 1 2
=0
Hence (1.5.51) implies (1.5.52). This completes the proof. The strict
inequality part is obvious.
Lemma 1.5.3. For each set of integers al,;{.,ak we have

k-1

Jn g o, (00 g 4 ()2 = jlr_lle (86 g, ()ax

4 k-1 _
- [ & [0 €y (GG, 4y (-6, (x))ax.
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This lemma is substially Lemma 3.3 of Gupta and Studden [ 45] and hence
the proof is omitted.

Lemma 1.5.4, For a=0,1,2,...,

_ k=l
eqe-laepde, =) (o %)) [ {Wa 6, G M, (x) ax,
« A 5 B U %52%

(o A 0 SRPUPINY o '}
172 k

where

D%B;ai(X) = adj+ladkgak(X) AGaj(h(x))'h'(x) aasaak+lgaj(h(x))AGak(x).

Proof., Using the fact that

a+l o o o
(¥ = )+ ( M e+ ,
aiaé‘..ak ai-l Qé"'ak aiaé'l"‘dk @iaé"'dk-l
we obtain
%5} k-1
. o4 .
Cotl™ E (v ), J{EI 2y G, (1(x))]ay, |12, gdk(x)Ga s (B0x))ax
k .-, i=1 71 i J k J

k-1
+ | {izlaaiGai(h(x))}a 118 1 (X)ax].

%

Hence
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(h(x)) -

d +l o+l
J

Corn™ (@000 =) (o % >c2ﬁna G, (20N
Pla) 1 2 J=1 ila

(a+po Jay 6, (n(x))}a, NOLE i nla ., (h(x))}
J J i=1 % % :
5

{aak+1gak+1(x) - (wpo e, g, (x))ex]

k-1 ,
=) (o )[ Zj{ T a G, (h(x))}a 1%, B (x)86_ (n(x))ax
P(a) 172 -1 i=l 1 ' k J

itj

jflgla G, (B0, 41 (8, 4 ()=, ())ax]

Using Lemma 1.5.3, we get

€ 1" (qk+pa) Cy

k-1
=) ( )[ { H a, G, (h(X))} a, 118, &, (¥) 86, (n(x))ax
PZ;) %:- Eij i=1 % & ogtl oy "oy %

i)

k-1
- % [ n Go, (BN 13y Jag 4y 86, ()ax
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k-1
= 31(0 o Vﬂf{ n a, G (h(x))}aa +12 Ba (x) 86, (h(x))ax
Lo oy T L o o
P(o) j=1 1*3
k-1 '
-y j{ n %, O (BODY 1 () 2, 2, 418, (R(xD)0G, (x)ax]
el k ’5 k
= 1+J
k=1
T G CL o 2 0000, o)
P(a) 3=1 i;a E

Now we proceed to the alternative proof of Theorem 1.5.2. By
Lemmas 1.5.2 and 1.5.%, ¥{(Ajc,d,k) is non-decreasing in 1\ if for

@=0,1,2,...,

(1:5.53) ) Go?. o) [2 [ {n 20,0, (FEDW, (N1 2 0,
- a, -
P(Q’) 14:3

In (1.5.53) interchanging the summation, fixing @, ,1=1,2,...,k=1;
itj, and summing over o and o with o+ oy = 4, we find that

(1.5.53) holds if, for every interger £ > 0,

L

(1.5.54) ) (Dlag 8, gy o006 (8GD)-5" (x)aa, 16 (h(x)ac, ()12 o.
o=0

which is same as (1.5.29). This completes the proof of Theorem 1.5.2.



1.6. Properties of the Procedure R

In this section we will examine some of the important properties

of the procedure Rh-

A.v Monotonicity of Rh :

The procedure Rh defined in Section 1.2 was meant for selecting

a subset including the one associated with 2 Hence a desirable

(k]
property is that the larger the A\ value of a population the higher
the probability of including it in the selected subset. To put it

mathematically, for 1 <i<j<k,

P[n(i) is included } < P{n(j) is included}, where
ﬂ(r)(r=l,2,...,k) is the population associated with hrr]' This is

known as the monotonicity property. It implies unbiasedness which
means that P{"(k) is included} > P{n(j) is included) for
J.=l,2, o0 ,k"ln

Theorem 1.6.1. The procedure R has monotonicity, if h(x) is

non-decreasing in x.
Proof. Let p_ = P{"(r) is included}, r=1,2,...,k. Then for
l1<i<j<k,
k
By = | LI RG] By (a)) £ (edae

r%i,j

k
> j [rElF[r](h(x))} T, (a(x)) ;49 ()ax, for & > Ay

r%i,j

L3



since Fh is stochastically increasing in \. Now by Theorem 1.4.1,

the last integral is non-decreasing in K[j]' Hence

- k
(1.6.1) By 2 [UT Fp (6] B () 7,9 (ex.

ri,j

Since (1.6.1) is true for any A > kri]’ we get

k
(1.6.2)  »p, > j;_rglp[r}(mx))} Frs7((x)) £p34(x)ax = p,.

r+i,j
This completes the proof of Theorem 1.6.1.

B. Expected Subset Size and Related Concepts

In the subset selection formulation any procedure passes as a
candidate if it satisfies the P* condition. So we do need a criterion
to compare prospective procedures. The very spirit of the subset
selection approach makes it desirable that the expected size of the
subset selected be as small as possible. Thus we are led to the
following considerations. Let S be the size of the subset selected.
S 1is a random variable with possible values 1,2,...,k. As before
we let P, stand for the probability that ﬂ%r)is included. Then
it is easy to see that E(S) = E(Sth), the expected sﬁbset size

using the procedure Rh is given by

(1.6.3) E(S) = Pyt Pyt ... + D

Lk
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Of course, E(S) depends upon the configuration of the A's and when-
ever it is necessary to emphasize it we will write EK(S)' To compare

two procedures Rl and R2 we would like to compare the suprema of
E(S!Rl) and E(Sle) over all possible configurations of the para-
meters. Thus our first concern is to evaluate the sup E(S\Rh).

We know that

k
(1.6.1) p, = j nl Fr,y(8(x) dFpyp(x), 11,2,k
r=

r+i

We can see that in the notations of section 1.4

—
F[i](h(X)) = "J(x:h[i]) ’

(1.6.5) < Py = Ai("rlj""”‘[k])’ i=l,...,k,
E(ish) = B“[l}""”‘[k])' :

The condition (1.4.7) becomes in this case

(16.6) 5B (GG () - n () 3y Ty 05, (B00) 20, 2,8 e

Hence we can state the following theorem which is a consequence of

Lemma 1.4.5 and Theorem 1.4.3 in the present case.-

Theorem 1.6.2, If )‘[l]= oo = )‘[mf A< )‘[m+l] Lo £ l[k]’ then
E(S|R )  is non-decreasing in A, when l[m+l}""’x[k} are kept

fixed, provided that (1.6.6) holds. Also, consequently, the supremum
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of E(S|R) is attained for A= 2A= ... =\ if (1.6.6) holds.

2 k

Remark 1.6.1. We note that the condition (1.6.6) implies (1.4.27)

which assures that {(\,c,d,k) is non-decreasing in X. Thus (1.6.6)
simplifies the evaluation of the supremum of E(S).

Special Cases.

Case (1): fx(x) = f(x-A), A=(-®,0) and h(x) = x+d, d > 0. In this

case, (1.6.6) becomes

(1.6.7) | f}\a(x+d) f)\l(x) - f)\a(x) £, (x+d) >0, A <A,

1

and this is equivalent to saying that, for )‘l < xz and Xy < X5s

(1.6.8) fxe(xe) f}\l(xl) - f"e(xl) £, (x,) >0,

1

which is the condition for fh to have the MIR property.

Case (2): fx(x) = % f(%), x>0, A= (0,) and h(x) = cx, ¢ > 1.

Then (1.6.6) becomes

(1.6.9) . f)\ (cx) fll(x) - fl (x) f)\

(Cx) 20,
2 1l :

2

vhich 'is equivalent to (1.6.8), the condition for fk to have the
MLR property.
Case (3): fx(x) given by (1.5.1) with weights defined by (1.5.3) and

(1.5.14),



‘Following the notations of Section 1.5, the condition (1.6.6) is

equivalent to
(1.6.10) rle(x)[A(ll)Ril(h(x))-A'(Al)Rkl(h(x))] -
h' (x)rk2 (h(x))[A(xl)R;\l(x)-A' Ql)R’fl(x)] 20

where the primes over R and A denote derivatives w.r.t. kl. We

know that in our special case A(xl) = ao(J.-xlp)"’/p and
soT M
(1-6:11) A0,) B} (-4 0y)R, (x) = 2g(1-;) }:—. 86, (x).

Using this, (1.6.10) holds if

J
) 86, (8(x)))( 2 F age,(x) -
J':O J"‘ .

(1.6.12) (

2 2\ Al
h(x) () 3F 2,00 (x))(j 37 a;8;(8(x))) 2 0.
=0

Since (1.6.12) should hold for Ay £)\ys we can set A, = b, 5

b > 1 and write in the equivalent form

A9

© j .
L6.33) Q) Fregy 06,0600 @ A e vde () -

§=0 §=0

h' (x) (Z k. a3,y 86;(x)) <Z % aple (a(x))) 2 o,
j=0

L7
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We note that (1.6.13) is similar to (1.5.26), the only difference being

ngj(-) in the place of gj(~). Hence, following the same line of

reasoning as before, we can say that (1.6.13) holds if, for b > 1 and

every integer i > 0,

i .
(1.6.18) ) (Dlay,.0, p1™%, (e (8(x) -
=0

h'(x) ai_a+laap“éd(h(x)) A, (x)] > o.

Because of the relation among aj's, (1.6.1%) can be thrown in the

form

(1.6.15) ) (Daja, [o*X(qrpea,_(x) 86, (n(x)) -
o=0

h' (x)b%(q+p(i-a), (n(x)) 4G, (x)] > o.

A stronger condition which will imply (1.6.15) will be that for

@=0,1,2,... ,[%]’

(1.6.16) b'"%(q+pa) [g_o(x) 4G, (h(x))-0' (x)g,_,(h(x)) 86 (x)] +

b%(g#p(i-a)) [g,(x) 8¢;_ (n(x))-n' (x)g_(n(x)) a6, (x)] > o.

Remark 1.6.2. A sufficient condition for {(X;c,d,k) to be non-
increasing in A is either (1.6.15) or (1.6.16) with b=l which is
implied by (1.6.15) or (1.6.16), respectively.

For the case when h(x) = ex, (1.6.16) becomes
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(1.617)  6¥"%(grpe) g, (x) 16 (ox) = og_(ex) 00 (x)] +

b%(arp(i-)) (g (x) oG, (cx) - cg,(cx) 86, (x)] > o.

Though we will be dealing with distributions and procedures- falling

under this special case in the next chapter, we wi_ll consider at this
time an example where (1.6.17) is satisfied. Gupta and Studden [45]
consider selection of non-central chi-square populations in terms of

-\, J
their non~-centrality parameters. In this case w()\,j) = -?—-5-),‘—, >0

-X_u+j-1 :
e X ‘
= > . == =
and &; (x) Ty M O. We know that q=1 and p=0 for the
Poisson weights. It is known. in this case that AGJ. (x) = -gj_'_l(x).

Thus (1.6.17) reduces to

(1.6.18) v [c gi;_a(cX) Bor1 (%) = 85 (%) gy, (ex)] +

p® Lo gylex) g;_ o (x) - g (x) g;_,;(cx)] >0,

Let Q(e) = c g;_ (cx) g, (x) - g;_,(x) g, (cx). Then

e-(c+l)x x2;L+i-lcp. iea o
o) = Tice) Tree) — (¢ - ¢)

>0, since ¢ >1 and i- >a. Hence (1.6.18) holds.

The above example shows that for the procedure of Gupta and

Studden [45] for non-central chi-square populations the sup E(S) =
' Q

sup k §{\;c,d,k).
N
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Associated with E(S), we can define another criterion for the
efficiency of a procedure. Let S' be the number of non-best popula-
tions included in the selected subset. Then S' is an integer-valued
random variable taking on values O through k-%. Cbviously S-S' is
a random variable taking values O and 1 with probabilities l-pk and
respectively. IHence

Py

(1.6.19) E(S) = E(s') + P, -

k-1 apk

since p, = jrgl F[r](h(x)) dF[kI(x)’ we see that < 0, Thus

Ay T
Py is non-increasing in X[l]’ vhen other \'s are kept fixed. Con-

sequently we have the following result.

Lemma 1.6.1. E(S') is non-decreasing in X[l1, the other \'s kept
fixed, provided that (1.6.6) is satisfied.
Proof. Since E(S') = E(S) - P,»> the result follows immediately be-

cause E(S) is non-decreasing in k[l] by Theorem 1.6.2 and Py is

non-increasing in k[l]'

Lemma 1.6.2. When )‘[1];— cee = }\[m]= A SNy S oo 2 My

1 <m < k-1, E(s'|R ) is non-decreasing in 1\, provided that (1.6.6)

is satisfied.

Proof. From the proofs of Lemmas 1l.4.k and 1.,4.5, it can be easily
k-1

seen that E(S') Eizl Ai(K[l]""’x[k]) can be shown to be non-de-

creasing in X if (1.6.6) holds. The details of the proof are omitted.



Theorem 1.6.3. For the procedure Ry EA(S') attains its supremum
for A= A,= ... =\, Dprovided the density fx(x), Ael satisfies,
the condition (1.6.6), which reduces to the condition for f\(x) to

have the MLR properfy in the cases of location and scale paiameters
with h(x) = x+d and h(x) =.cx respectively.
Proof. The conclusions of the theorem follow from successive applica-
tions of Lemma 1.6.2.

Another property of EA(S') which is true without any furﬁher

condition beyond the stochastic ordering of Fx, heA 1s as follows.

Theorem 1.6.4, For the procedure R EA(S') is non-increasing in

l[k]’ when other \'s are kept fixed.

op,
Proof. From (1.6.4) we see that axl <0 for i=l,.,.,k-1, since
Tk}
o ¥ (h(x)) < 0. Hence the conclusion of the theorem follows
k-1
since, E(S) =¢ P, -
i=1

C. Invariance and Minimax Properties
We define below an invariance or symmetry property used by Gupta
and Studden [Lk4],

Definition 1.6.1. Let Xl,...,Xk be a set of observations from k

populations Myseeest,

probability ¢i(X ,...,Xk). Then the procedure R is said to be in-

and R be a procedure which selects m with

variant or symmetric if

(1.6.18) (pi(Xl,...,Xi,...,Xj,...,Xk) = cpj(xl,...,xj,...,xi,...,xk)

51
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for all i and j.
If LO is the point Q where xl= x2= cee = Xk= xo, il.e.
A= (xo,,xo,...,ko), then Gupta and Studden [ 44] have shown that, for

any invariant procedure R,

(1.6.19) . E, (s|R) = k P (cs|R).
£0 =0

The invariance property defined by (1.6.18) says that if the ith and
Jth observations are interchanged, then we select the Jjth population
with probability equal to that of selecting m before the interchanging.
Suppose we consider the class of invariant rules satisfying the basic

P* condition and R is a rule of the class for which

(1.6.20) inf PX(CSIR) =P (cs|R) = p*
o A X
and
(1.6.21) sup EK(SIR) = E, (s|R).
Q = =0

Then it has been shown by Gupta and Studden that R is minimax in the
class of invariant rules in the sense that for any other procedure R'

in the class

(1.6.22) sup EX(S]R') > sup EX(SIR).
0 = Q 2

As one can see from their proof, this minimax property of R which satis-
fies (1.6.20) and (1.6.21) can be shown for any class of rules for which,

under the equal parameter configuration, the expected subset is k times
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the probability of a correct selection. The procedure Rh is invari-

ant and if P, (CS|R,) is independent of ). then (1.6.20) and
Ay h ') .

(1.6.21) are satisfied in the case of Rh. Hence under these conditions

Rh is minimax in the class of invariant procedures.

l.7. Selection of the Population Associated with xll]

A. The Procedure RH and Probability of & Correct Selection

The case where the best population is defined to be the one associ-
ated with x[l] is analogous to the case of k[k]' We need of course to
make certain modifications. We will briefly mention them and state the
results without proofs wherever they are exactly similar to those in
the case of Xlk]'

let H=H PH cell,m), delo,m) be a function defined on the real

c,

dine such that for every x belonging to the support of Fx,

(1) Hc,d(x) <x
(i1) Hl’o(x) = x
(1.7.1) (iii) H, d(x) is continuous in ¢ and d
2
(iv) H (x) 1 - as 4= and/or
c,d
Hc’d(x) } 0 as ¢ - o,
A class of procedures RH for selecting a subset containing the best

is defined as follows.

RH: Include ni in the selected subset iff

(1.7.2) H(xi) Sx

n)
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where x . = min X .
min

This procedure obviously selects a non-empty subset in view of (1.7.1)-

(i). The probability of a correct selection is given by

k-1 _
(1.7.3) Rleslry )= [ 0B () ax (),
c, r=

where f&(x) = l-FX(x). Because of the assumption

(1.1.1) regarding the stochastic ordering of the distributions,

(1.7.4) P(cisH d) Zf Fﬁ% (8(x)) aF 47(x).
<,

Hence we have

1.7. inf P = i gt .
(1.7.5) tof P(es|R ) - ot J R ) am (0
Iet
(1.7.6) o(r;e,d,k) = j fi'l(n(x)) de(x).

Because of (1.7.1)-(i) and (ii),

and

w=

(1.7.7) o(rse,d,k) >

(la7-8) m(X;l,O,k) = RJ; .

Properties (1.7.1)-(iii) and (iv)
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(1.7.9) lim o(r; c,d,k) =1  and/or

| G0

(1.7.10) lim (r; e,d,k) = ll-Fh(O)]k-l.
co .

If (1.7.9) holds, then for every x,‘c and k, we can choose d such that
the basic probability requirement is satisfied. If (1.7.10) alone holds,
then for every A\, d and k, we can choose c¢ in order to satisfy the
basic probability requirement provided that [l-F)V(O)]k-l > P¥ for all
admissible )\ and P¥. Since P* can be as close to 1 as we desire,
this means that we should have Fk(o) = 0. Hence, if (1.7.10) holds but
not (1.7.9), then to evaluate the constants of the procedure whatever
P*, we must have non-negative random variables. Corresponding fo Lem-

_ ma‘1.3.2 we have the following lemma.

Lemma 1.7.1. Iet X and Y be random variables having densities f(x)
and g(y) and cdf's F(x) and G(y) respectively. ILet H(x) be a function

such that

(1.7.11) H(p(x)) < o(H(x)),

where ¢ = G-l F. Then, for any t >0,

| (1.7.22) f FU(H(x)) £(x)ax SJ G (H(x)) g(x)dx.

The proof runs on similar lines and so is omitted. A sufficient condi-
tion for the monotonicity of ¢(i;c,d,k) is given in the following =i
theorem.

Theorem l.7.1l. For the procedure RH, ¢(r;c,d,k) is non-decreasing in

A provided that
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(1.7.13) H'(x) 1, (H(x)) 3 F, (x)-2, (x) £ F, (H(x)) 20,

where H'(x) = é% H(x) and @(rjc,d,k) is strictly increasing in A if
strict inequality holds in (1.7.13) on a set of positive Lebesgue meas-
ure.

The proof is immediate by using Corollary 1.4.2 with ¥(x,))=
fi (H(x)).

Now we state other results without proofs, since they are all

analogous to the case of Rh'

Theorem 1.7.2. For the procedure Ry, when fk(x) is given by (1.5.1)
with weight function given by (1.5.3), ¢(r;c,d,k) is non-decreasing in

L provided that for every non-negative integer i,

i
(1.7.1%) Ej (i)lH'(x)aaga(H(x))Bi_a(x)-
=0

g (x)Ba(H(x))] >0

a, .
l-a 1~

where Ba(x) is given by (1.5.10).

Theorem 1.7.3. For the procedure RH’ when fx(x) is given by (1.5.1)
with weights defined by (1.5.3) and (1.5.14), o¢(Xjc,d,k) is non-decreas-

ing in A provided that for every integer i > 0,

i
(1.7.15) Z (i)aaai_a[ H'(x)(ati-a p)g (H(x))aG; _ (x) (a+ap)e, _ (x)
=0

AGQ(H(x))] > o.

Strict inequality in {1.7.15) for some i implies that w(x;c,d,k) is

strictly increasing in .
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Remark 1.7.1. Suppose we use the procedure R, with H(x) = § (in the

case of non-negative r.v.'s) or H(x) = x-d. Then (1.7.13) reduces to

(1.7.16) % £ (%) g% F, (x)-£, (x) §% F(B 2o
or

(1.7.17) £ (x-a) £ F, (x)-£, (x) §% F, (x-4) > o.
Setting § =y or x-d4 =y, we get

(1.7.18) £,(v) 3 Fylev)-cf, (ey) &7 (¥) 20
or

(1.7.19) £ (y) gi— F, (y+d)-£, (y+d) gai F, (¥) > o.

(1.7.18) and (1.7.19) are sufficient conditions for ¥(r;c,d,k) to be
non-decreasing in A in the case of the procedure Rh with h(x) = cx and
h(x) = x+d respectively. Hence, we see that the sufficient condition

has to be verified only once.

B. Properties of the Procedure RH

In this case

k _
(1.7.20) p; = f{ gl iiz& (H(x))} fli](x)dx, i=1,404,k.

r+i

We first state a modification of Theorem l.4.1.
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Lemma 1.7.2. Let {FK} be a family of distribution functions on the
real line which are stochastically increasing in A. Then EXY(X) is
non-increasing in A for any non-increasing function Y(x). Using the
above lemma, we obtain the following result.

Theorem 1.7.4. The procedure RH has monotonicity, if H(x) is non-

decreasing in x.
Further, using the same method of proof as in the case of Rh’ we
obtain the following results concerning the'expected size of the se-

lected subset.

Theorem 1l.7.5. For the procedure RH’ Ex(s) is non-decreasing in x[l]

when other \'s are kept fixed provided that, for Ay < kg,
(1.7.21) H'(x)fk (H(x)) S%‘ F, (x)-fk (x) 5%— R (H(x)) > 0.
2 1 1 2 1 "1

Theorem 1.7.6. Ex(s) attains its supremum at a point in Q where )\ has

equal components provided that (1.7.21) holds.

Remark 1.7.2. 1In the cases of location and scale parameters with

H(x) = x-d and H(x) = % respectively, (1.7.21) is the condition that
fx(x) has the MLR property.Also a remark similar to Remark 1.7.1 ap-
plies to the condition (1.7.21).

For the procedure RH’

(1.7.22) E(8") = Pytesst Dy = E(8) - Py

From the proofs of Theorems 1.7.5 and 1.7.6, it ‘will be easy to see
that E(S') is non-decreasing in xlg] and increases in X\ where

Mﬂfﬁg*“=ﬂﬂ=kfﬁmm5'“fﬁﬂ for 2 <m <k provided
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that (1.7.21) holds. Hence, if (1.7.21) holds, we have

(1.7.22) sup E (5') = sup E, (5'),

q X o X
Q' = {letl]s H;2]=...= xlk]}. Because of the stochastic ordering P;»
i=2,«+e,k and hence EX(S') is non-decreasing in Xll] when other \'s

are kept fixed. Hence we obtain the following result.

Theorem 1.7.7. For the procedure RH, E(S') attains its supremum at a

point in Q where ) has all its components equal if (1.7.21) holds.

1.8. A Review
In this section, we want to collect some essential results and pre-

sent them together in a summary form. Let My st eee T be k contin-

uous popwlations with distributions FX » 1=1,2,...,k; xie A, an inter-
1

val on the real line. We assume that {Fx} is a stochastically increas-

]

ing family. Let h(x) hc d(x) be a non-decreasing function in x satis-
2

fying the properties in (1.2.1). Assume that, for A< Ay (1.6.6) holds.

That is,
s )
£, (x) 5= F, (b(x))-n'(x) £ (n(x)) 5= F (x) > o0.
A’Q(x ah’l )‘l x‘ x A.e X a)\l Xlx ,

Then, for selecting a subset of the k populations including the popula-
tion associated with x[k] subject to the basic P¥* condition (1.1.2),
we propose the rule Rh which includes m, in the selected subset iff

h(x, ) 2> max X_, where xl,...,xk are a set of observations from
1< rLk

Thysees,m respectively. For this rule,
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(5)

(6)

(7)
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1gf'P&(CS|Rh) = 1if PX(CSIRh), where PX(CS]Rh) denotes the proba-
bility of a correct selection when A= (Ashyeee,));

PK(CSIRh) is non-decreasing in \;

Prob{n(i) is included} < P{n(j) is included} for 1 <i < j <k,
where n(r) is the population associated with X[r]’ r=l,...,k;

EL(S) is non-decreasing in A, where Maj=eee= M= A M) S oo
lek],forlSmSk; |

EX(S) attains its supremum at a point of Q where A has all its

components equal and hence sup E (S) = k sup P (CSIRh);
o X o

EX(S') attains its supremum at a point of 0 where A has all its

components equal and hence sup E (S') = (k-1) sup P (CSth)-
o & x

In the class of invariant rules (see (1.6.32)) satisfying the ba-

sic P¥ condition, the rule Rh is minimax in the sense that, for

any other rule R' in the class, sup EX(S,R') > sup Ex(SIRh)’ pro-
Q = Q =

vided that P(cish) is independent of \eA.
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CHAPTER II
SOME SELECTION PROCEDURES FOR MULTIVARTATE

NORMAL POPUIATIONS

2.1 Introduction

Most of the earlier work in the area of selection and ranking
problems pertained to univariate populations. During the last few
years some work has been done on selection and ranking problems for
multivariafe normal populations. Selection in terms of Mahalanobis
distance function has been considered by Alam and Rizvi [l], Qupta
[34] and Gupta and Stuaden [45]. Krismnaiah [51] and Krishnaioh and
Rizvi [53] have investigated procedures for selection in terms of lin-
ear combinations of components of the mean vector and elements of the
covariance matrix. Gnanadesikan [26] and Gnanadesikan and Gupta [27]
have studied selection in terms of the generalized variance. Some
other problems such as selection with respect to the means of correla-
ted normal populations have also been considered by Gnanadesikan [26].
Selection in terms of the cell probabilities in a multinomial distri-
bution has been discussed by Bechhofer, Elmaghraby and Morse 113],
Cacoullﬁs and Sobel [16] » and Gupta and Nagel [36] » In many of the
multivariate problems of selection and ranking, certain probability
integrals arise; these and other related topics are discussed in Gupta
{30, 31l.

Although the procedures are for multivariate populations, the

ranking of the populations is in terms of a scalar function of the
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parameters and the statistic used in any procedure is one which has a
univariate distribution involving the parameiers through that scalar
function. So these procedures are also useful in the situations where
the observations come from the respective univariate distributions.

Most of the present chapter is devoted to the selection problem
for multivariate normal populations in terms of multiple correlation
coefficient. The multiple correlation coefficient is a measure of the
dependence of one variable on the‘remaining and is used in studies con-
nected with behavioral sciences. Formulae have been obtained for com-
puting the constants used in the procedures. Tables have been construct-
ed in certain cases.

The last section deals with k p-variate normal populations in
which the interest is in selection in terms of lzl/lzlll=1222-2212£i212|,
where Ell’ 212, 221 and 222 are the covariance matrices corresponding
to a partition of the p variables into two sets of a3 and q2 variables,

ql+ 9, = P- Then the criterion represents the conditional generalized

variance of the g, set when the q. set is held fixed. See Anderson
2 1

[2]).

2.2. Celection in Terms of Multiple Correlation Coefficient

A. The Set-up and the Notations

Let X! = (xil,xiQ,...,xip), i=1,2,...,k be random vectors with

p-variate normal distributions with unknown mean vectors By and unknown

positive definite covariance matrices Zi. The multiple correlation co-

(i) -

efficient between, say, Xil and xie""’xip denoted by pl.2..-p= Py

is defined by
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o |2, |

(2-2.1) l’p. = 3
T e

where %11 is the leading element of Zi and Zi is the matrix ob-

(11)
tained from Zi by deleting the first row and the first column. This
Py (taken to be the positive square root of pf) is the maximum of the
correlation between X.. and a linear combination of X, _,...,X.
il i2 ip
all possible linear combinations. We assume that pi< 1l for i=1,2,...,k.

over

1 (i) =
Let 0 < °l1]5 ple]S 0o p[k]< 1l be the ordered p's. Rl.2...p_ Ri, the

sample multiple correlation coefficient between Xil and xia"'f’xip is
defined analogous to Py by replacing Zi by the sample covariance matrix
Si' Two cases arise: (1) the case when xi2""’xip are fixed, called
the 'conditional case' (2) the case when Xig,...,Xié are random, called
the 'unconditional case'. (See Kendall and Stuart [50]). Under each
case we will discuss subset selection for the population associated

with plk] as well as pll]' Other general notations are carried over

from Chapter 1I.

B. Selection for the Population Associated with plk]

8. A Procedure Based on R2 (Unconditional Case). Based on Rf ob-

tained from a sample of size n > p from o i=1,2,...,k, we propose the
following procedure.

,: Select m, iff cR? > max R2,

1 T T <k
where ¢ = c(k,P¥,p,n) > 1 is chosen so that the P¥-condition is satis-

fied. Then, letting xi= pf, i=1,...,k,
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_ 1 k-1
(2.2.2) P(cslf-zl) =f il

o] aF x)}
0 r=1 xlr]( ) (

Ml

where FX[ is the distribution function of R?i)’ i=1,2,...,k. The den-
i

sity fx(x) of B® in the unconditional case is given by

<

(2.2.3) £, (x) = ZW(q,m;x,J) b(x;q+j,m), 0 <x <1,
J=0
where
’/
. bl . op
q. - 2 s m = 2
(2.2.8) v(xats,m) = g BT (8L (™l o <x <
. . » r'{q+m+j q+m xj
w(g,m;,j) = wx, i) = HEr) (1-1) T, 0sa<1
~—

Lemma 2.2.1. The density fx(x) given by (2.2.3) has MIR in x and
consequently the distribution of R2 is stochastically increasing in a.
Proof. For kl< X2 and jl< 32’ it can be easily verified that
w(kl,Jl) w(xe,Jg)—w(AQ,jl) w(kl,Je) >0 and for j;< J, and x,< X
b(xy5a+d ,m) x50+, m)~b(x)5q+j,,m) b(x,3q+J;,m) > 0. Hence by

increasing in .

Lemma 2.2.2. For every integer i >0 and ¢ =‘O,l,...x[%J,
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bi-a(q+mﬁa)lgi_a(x)AGa(cx)-cgi_d(cx)asa(x)] +

(2.2.5)
ba(q+m+i-a)lga(x)AGi_d(cx)-cga(cx)AGi_a(x)] >0

where b >1 and gj(x) = b(x;q+j,m).
Proof. Obviously, (2.2.5) holds if cx > 1. 8o we assume cx < 1., For

0<y<1, let Iy(u,v) denote the incomplete beta function defined by

y
(2.2.6) Iy(u,v) = fo b(t;u,v) dt.
Then
264(y) = Iy(q+J+l,m)-Iy(q+J,m)

(2.2.7)

_ _ _I{(q+j+m) qQtj g, m

= Mg r@ ¥ ()
Hence

(2.2.8) gi_a(x)AGa(cx)-cgi_a(cx)AGa(x)

- [(a+a+m) P(gfi-a+m)cq02q+i-l(l-g)m‘l Lo ®(1-x)-c¥(2-cx)].
Matatl) T(gti-o) {r(m)]

Using (2.2.8) on the left hand side of (2.2.5) and taking the common

factors out, we see that (2.2.5) holds if

bi-a(q+m+a)(q+i~a)lci-a(l-x)-ca(l-cx)] +

(2.2.9) _
b¥(gtmHi~o) (qta)l ¢¥(1-x)-c* "¥(1-cx)] > 0.
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Regrouping the terms on the lefthand side of (2.2.9) we have
(l-x)[ caba( a+ar) (q+m+i -o) +e” Tt -a( qtmty) (q-!-i -Q)] - (l-cx )l cabl -a( qHotey)
(q+i-a)+cl-abq(q+m+i-a)(q+a)]. To show that this 1s > 0, we note that

l-cx < 1-x, since ¢ > 1. So it is sufficient if we show that
b (atar) (gmti-a)+e’ T gira) (gHi-a) >
<%t " qrmra) (g o) el B grmri-o) (aka)

which is same as

(2.2.20)  v¥(qte) (qtmti-e)c¥-ct ") > b1 qimig) (qti-g) (c¥-ci ™),

o

Since ¢ < i-o and ¢ > 1, c¢%-c*"%< 0. Hence (2.2.10) holds if

(2.2.11) v¥(g+a) (gtmi-o) < bE"¥(gtura) (gHi-a).

Now (a*m+a)(a+i-o)-(a+e)(gtmHi-a)= m(i-2¢) > 0. Thus
(q+e) (g+m+i-o) < (gtmte)(q+i-a) and also bd¥ S'bl—a. These two imply

(2.2.11). This completes the proof of Lemma 2.2.2.

Theorem 2.2.1. Let Q represent the space of p = (pl’pe""’pk)' Then

. 1
(2.2.12) inf P(CS nl) = f Fk-l(cx) ar(x),
0 o)

where F(x) = Fo(x) is the cdf of R® when p2= 0 and the corresponding

density is given by

(2.2.13) £(x) = F?g%g%%%T x3 L (1.0t o <x<1, qm>0.
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k-1

1
Proof. P(CS|f,) > f F
1 o )‘[ k]

(cx)de (x) by Lemma 2.2.1. Hence
- Ml

1
Y\ _ o -1
(2.2.14) igf P(CSlnl) = 1§f f; F§ (ex) dFk(x),

By Lemma 2.2.2 and Remark 1.6.2 and noting that p=1 and q is to be
replaced by g+m in (1.6.17) for the given weights, the integral on
the right hand side of (2.2.1&) is non-decreasing in \. Hence the in-

fimum takes place for A = Q. This completes the proof of Theorem 2.2.1.

Corollary 2.2.1. The constant c¢ defining the procedure ﬁl is given by

1
(2.2.15) f Fk'l(cx) ar(x) = P*,
(o]

b. A Procedure Based on R° (Conditional Case). In this case the

density of R2 is given by

(2.2.16) h (x) = Zw(x,.i) b(x;q+j,m), 0<x <1,
J=0

where b(x;q+j,m) is as defined in (232.1), A= p2 and

_ J
(2.2.17} w(h,§) = e i?%l- .

_ Let: Hx(x) denote the corresponding cdf. Then we use the procedure

Rt Select m. Iff ¢'RC >max R,
1< r<k
where ¢' = ¢'(k,P¥,p,n) >1 is chosen so as to satisy the P¥-condition.

The procedure R2 is of the same type as R,, but called differently in
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order to'differentiate the conditional and the unconditional cases.
As we will see the constants used in the two cases turn out to be the
same.

Lemma 2.2.3. The density hk(x) given by (2.2.16) has m.l.r. in x.
Proof. It is easily verified that gj(x) = b(x;q+j,m) and w(i,j) are
TP_.. Hence, by Lemma 1.5.1, hk(x) has m.l.r. in x.

2
Lemma. 2.2.4. For every integer i >0 and o= O,l,...,[%],

(2.2.18) bi"“lgi_a(x)asa(cx)-cgi_a(cx)asa(x)] +

v ga(x)AGi_a(cx)-cga(cx)AGi_a(cx)] >0

where b > 1.
Proof. Obviously (2.2.18) holds if cx > 1. So we consider cx < 1.

Using (2.2.8), we can see that (2.2.18) holds if

(2.2.19) bi_a(qﬁ-(x)[ Ci-a(l-—X)-cc"(l-cx)] +
b¥( g+l ca(l-x)-ci—a(l-cx)] > 0.

Regrouping the terms on the left hand side of (2.2.19) we have
(1-x)l cc"ba(q+q)+cl-abl-°'(q+i-q)] -(1-cx)l ca'bl-a(q+i-a)+cl-°'b°!(q+q)] > 0.

Since l-cx < 1-x, it is sufficient if we show that

(2.2.20) cM¥(gta)+et ¥ T (qHima) > %Y gHi-a) et B (gl
which is same as

(2.2.21) 2¥(q+a)(c%-ct ) Z'bi-a(q+i-a)(c“-ci-a?.



69
Since ¢®c™¥ <0, (2.2.21) holds if
(2.2.22) ¥ (qta) < b ¥(qHi-0).

Now, since o < i-o, (q+a) < (q+i-a). Further, b¥ < bi-a, since b > 1.

These two together imply (2.2.22). This completes the proof of lLemma

2.2.h.,

Theorem 2.2.2. For Procedure ﬂ2,

(2.2.23) inf P(CS|R2) = f Hk'l(c'x) ax(x),
Q o

2

where H(x) = Ho(x) is the cdf of R® in the conditional case when p©= 0

and the corresponding density is given by

(2.2.24) h(x) = F(Ic;) ;mm) X3 (1mL <x<1.
o) 1 k-1 (
Proof. p(cs|e.) = I d
=2 ( 2 J‘o r=1 Hx[r] *) Hi[k](X)

1
> -1 a by L 2.2.3.
2 fo Hi[k](cx) Hilk](X) y Lemma
Hence
(2.2.25) (cs|a,) jl B (ex) a, (x)
2.2.2 inf P(CS|R.) = inf d .
5 13 o . . cx HX X

By Lemma 2.2.4 and Remark 1.6.2 and noting that g=1 and p=0 in (1.6.17)
for the case of Poisson weights, we see that the integral on the right

hapd side of (2.2.25) is non-decreasing in A. Hence the infimum takes
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place for A = O. This completes the proof of the theorem.

Corollary 2.2.2. The constant c! defining the procedure ?2 satisfies

the equation
* -1

(2.2.26) f H* (c'x) dH(x) = p*.
o]

Remark 2.2.1. The distribution of R2 when p2 = 0 1is the same in the

conditional as well as the unconditional case. Thus the equations

(2.2.15) and (2.2.26) are the same and c' = c.

¢. Formulae for Evaluating the Constant Defining Rl and 22. The

equation (2.2.15) can be rewritten as

-1
(¢4
(2.2.27) | ‘IO Ii;l (g,m) b(x;q,m) dx+l'Ic-l (q,m) = P*.

When q and m are integers, (2.2.27) can be written in the form

(2.2.28) 1-Px = T _l(q,m) -
[}

-1 gq+m-1

© ' +m-1 t +m-1-t.k-1 '(q+ -1 -1
jo {.JZ (¢ ? Y(ex)” (L-ex)¥™ } F?é%?%%T x4 (1-x)™ ax.
=q

Let A(q,m,k,c) denote the integral on the right hand side of (2.2.28).

Then, setting £ = k~1 and y = l-xcO where .= c-l,
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(2.2.29) " A(q,m,k,c)

q+m-1

1 c.y m-1
_ _TI'(gm Qr,_. yo-1 g+tm-1, gim-l-t w1814/ a1 0
= @) Iy Soti-cy) fol Z (*'y v (1-y)"1*(1-y) [l+—-—-l_co]dy
t=q
1 £(q+m-1) c.y m-1
= ¢ blc; m)f'. Z c(r,259+m-1,q)y"] (1-y) T H 1+ -2 Jgq
0 O}Q: o 245Q sq y l_co Y

r=0

where C(r,z;n,j) is the coefficient of yr in the expansion of

n :
[ = (:)(l—y)tyn-t]ﬂ. The coefficients C(r,g;n,j) are given by the follow-
t=

ing recursive relations:

~
1 r=0
(2.2.30) c(r,1;n,3) =] 0 1<r<n-j
n-j
B ) DT n-j+l <r<n
£=0 '
and for 2 > 1
.
1 r=20
(2.2.31) ¢(r,25n,5) =X 0 1<r<n-j
C(r,z-l;n,j)ll- e(r-nz+n-l)] n-j+l <r <ng
min(r,n)
+ Z C(tJl:'nJ-j) C(I‘"t,f,-l,'n,j)
t=max(n-j+l,r-ng+n)




T2

wvhere €(x) =1 if x>0 if x < 0. Now (2.2.29) can be written as

A(‘l;m’kyc)
2(q+m-1) m-1 o 1
o degiam) ) Y (N () ol srarmet, )] 2210 g
O 0
r=0 a=0

1
Since j (1 5)8 L 4, o Lletr+d) T(a)

. F(a+r+l+q) s we get
£(g+m-1) m-1
m-
(2.2.32) VA(Q:m:k:c) = Cg(l'co) Z Z (l -¢,
r=0 o=0

r(q#m)M (ortr+1)C(r; 25 atm-1,)
T{a+1)M(m-o )l (otr+l+q)

Thus, if q and m are integers, ¢ is given by
(2.2.33) 1-p* = I (g,m) - A(g,m,k,c)

where A(q,m,k,c) is given by (2.2.32) and cy= L,

d. Asymptotic Results., When p is fixed and m - o (i.e. n-~ o),

the asymptotic distribution of nR2 is the non-central chi-square with
(p-l) degrees of freedom and non-centrality parameter np2 both in the
conditional and unconditional cases. Then, for the procedure £ (which
stands for Rl or I

1t Select m, iff cR? > max R2, we get
KLk

2), namely,
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' < k-] :
(2.2.34) P(CS[R):J 6 , . (cx)ac 5 (x),
o r=1 nplj],p-l nplk],p-l

where Gp,v(x) is the cdf of the non-central chi-square with ‘v d.f.
and non-centrality parameter u. In this case the infimum of P(CS|R)
takes place when pi»: pg Tene= pﬁ = 0. A detailed discussion of this
is given in Gupta ahd Studden [45]. For sélected values of k,p and P¥*,

the c-values are tabulated by Gupta [29].

e. A Procedure Based on a Transform of R2 (Unconditional Case).

2
The transform of 32, which we are concerned with here, is R 5 = R*2

1-R

(say). The exact distribution of R*2 in the unconditional case has the

density
(2-2‘35) u),(x) = ZW(X,J) gj(x),
J=0
where
-~
4= pé—l : m=22, A= o2
j a+j-1
(2.2.36) é gj(x) _ _I(g+j+m) x >0

T(q*3) T(m) (qnahm =

. J
_ [(g+m+j) (l_x)q+m %T , 0<A<1l.

W(l,j) T{q+m)

.

Then, for selecting the population with plk]’ we propose the procedure

R*E S R*
. 2> max s 9
3 11 1< 1<k J

f.: Select "i iff ¢

where c,= c,(k,P¥,q,m) > 1 is chosen to satisfy the P*-condition. Then,
1 1
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*2
denoting -—iﬂl—-by R? ) (R( ) corresponds to the population with A 3 ]),

1- R(J
we have
*2 *5 .
(2.2.37) P(CS|R3) = P(clR(k) > R(j), J=1,2,00.,k=1)
f@ k-1 : (
= nu c.x) du x)
or=l Mgl t MKl

where Ux(x) is the cdf corresponding to ux(x).

Lemma 2.2.5. The density ux(x) given by (2.2.36) has MIR in x.

Proof. The proof is by simple and direct verification of the éonditions
of Lemma l1l.5.1. and hence is omitted.

ILemma 2.2.6. For every integer i >0 and o = O,l,...,[%ﬂ,

(2.2.38) bi-a(q+m+a)[gi_a(x)AGa(clx)-clgi_a(clx)AGa(x)] +
ba(q+m+i-a)lga(x)AGi_a(clx)-clga(clx)aci_a(x)] >0

where b > 1 and gj(x) is given by (2.2.36).

Proof. It can be easily seen by integration by parts that

r(qtm+]) &
Flatd+l) Tlm) (o, atm+d

(2.2.39) 265(x) = -

Using (2.2.39), we obtain
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(2.2.4%0)° gi_a(x)AGa(clx)-clgi_a(clx)Aga(x)‘

F(q+m+a)r(q+m+i-a)C§ xPaHi-1

Pt (at-o) (r(m) 12(14x) P 2sc ) 0

i-o o
1 €1

(l+x)a(l+clx)i-a (1+clx)a(l+x)i—a

C

Using (2.2.40) on the left hand side of (2.2.38) and taking the common

factors out, we see that (2.2.38) holds if

gtmty | i-g ci-a cg
(2.2.41) =2 T - T
P (l+x)a(l+clx) o (l+clx)a(l+x) o
i-g i-o
. c c
+ g}f;i-a Y i.-l - 1 - >0
- (24)™ "% (14e,x)® (L¥eyx)"¥(14x)®

The left hand side of (2.2.41)

i £g+m+a)bi-a cl(l+x) i-o cl(l+x) o

(q+a)(l+x)i ltc x - { lte x b1+
e (1+x) ¢ e, (1+x) i_°}

§g+m+i - )ba
(q+i-a)(1+x)i

-{
l+clx l+clx

i-o o
} ity pioo gimti-g o 1

= —_"—_} - ry rgi}
l4c,x 1+e,x qty q+l-o (1+x)*

cl(l+x) cl(l+x)
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c., (1+x)
" since ¢, > 1, —%————-
e, X

1
above expression is non-negative. In the second factor, bt > ¥ and

>1 and @ <i-o. Hence the first factor in the

q+mty q+m+, -

: > .
Qo = gti-g

Thus (2.2.%1) holds and so does (2.2.38).

for ¢ <i-o. Hence the second factor is non-negative.

(x)

(=]
-_l
XX H = h
Theorem 2.2.3 Igf P(CS!Q3) IOF;q,gm(clx)ngq’gm(x), where Fy o

is the cdf of the central F random variable with 2q and 2m degrees of
freedom.

Proof ., P(CS,23) > f gt (clx)dU (x) by Lemma 2.2.5. Hence
o

Mkl

M k]

(==}
(2.2.42) inf P(CS[2.) = inf f e, x)au, (x).
3 A 1 A
Q A Yo
By Lemma 2.2.6 and Remark 1.6.2 and noting that p=1 and q is to be re-
placed by g+m in (1.6.17) for the weights in the present case, the in-
tegral on the right hand side of (2.2.42) is non-decreasing in .. Hence
the infimum takes place when A = O. Ux(x) for » = 0 is the cdf of a
constant multiple of a F variable with 2q and 2m 4.f. This completes

the proof of Theorem 2.2.3.

Corollary 2.2.3. The constant c defining Qj is given by
® k-1
(2.2.43) foFeq,em (clx) dFeq,zm(x) = P¥,

f. A Procedure Based on the Transform of R2 (Conditional Case).

In the conditional case the density of R*2 is given by

«®

(2'2'1”4’) vx(x) = Z W(X}J) gj(X)’
J=0
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A

where w(X,j) = = j§ and gj(x) is as defined in (2.2.36). Then, we
propose the following procedure.

P £ *2 *2
Rh' Select m1 T c2Ri 2 max R.»

1< r<k
where c2= cz(k,P*,q,m) > 1 1is chosen so as to satisfy the P*-condition.
 Lemma 2.2.7. The density vx(x) given by (2.2.44) has MIR in x.
This is a known result. Further a simple proof can be given by
verifying the conditions of Lemma 1.5.1.

Lemma 2.2.8. For every integer i > 0 and ¢ = o,l,...,l%J,

(2.2.45) bi-Q[gi_a(x)AGa(cex)-cegi_a(c2x)éﬂa(x)] +
b? [ga(x)AGi-a(cax)-c2ga(c2x)AGi_a(x)] >0

where b >1 and gj(x) is given by (2.2.36).

Proof. Using (2.2.40), we see that (2.2.45) holds if

. -y o
i- c c
pl-o

(2.2.46) — { 2 — - 2 —
Prer (l+x)a(l+c2x)l @ (l+c2x)°'(l+x)l @

Ca Cc o

b% 2 .

a+l-o (1+x)i'a(1+c2x)a (l+c2x

> 0.

~— I

i"a'(l-kx)c"

From the earlier results, we see that the left hand side of (2.2.46)

. 1-@ o .
) {02(l+x) _ {Ce(l+x) bl o i b ) 1
- T+c,X l+e X qQtor gti-o0 (l4+x)i °

It is easy to see that the above is non-negative. This completes the

proof of the lemma.
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O

' -1
h e Calte 3 = \[
Theorem 2.2.k Igf P(CSIQh) ong,em (x)’dFeq,em(x), where Feq,am(x)
is the cdf of central F with 2q and 2m d.f.
o k-1

Proof. P(cslﬁh) = f nv

o r=1 >~[_I.](¢2x) delk](X), where Vx[ ;s the cdf

T
*2
of R(I‘)
® k-1
2 fo Vilk] (e %) dVX[k](x), by Lemma 2.2.7.
Hence
. o [ k-1
(2.2.47) int p(csl,) = 1;f JO vi (%) av. (x).

Noting that for the Poisson weights g=1 and p=0 in (1.6.17) and using
Lemma 2.2.8 and Remark 1.6.3, we see that the integral on the right
hand side of (2.2.47) is non-decreasing in A. Hence the infimimum is
attained at )»=O.. Also Vx(x) for A=0 is the same as Uk(x) for A=0.
This completes the proof of Theorem 2.2.k. '

Corollary 2.2.4. The constant 5 defining the procedure R1+ is given by

(2.2.48) fm Fk_lZm (c2x) ar = P¥,

o 24, 2q,2n*)

Remark 2.2.2. It can be seen from (2.2.43) and (2.2.48) that ¢3= Cps
i.e. the constants defining the procedures R3 and ”le are the same.
g. Formulae for Evaluating the Constants Defining 5’13 and '.'-‘.h. It

we assume that g and m are integers, i.e., p and n are odd, we can write

(2.2.43) as
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= ) (@), .. k-1
(2.2.49) P* = [ L(1-t)%1+ (ll thea ot -__anm £
(o]

r(atm)e, (20)Y(em)™(e,2) 97!

dz
F(q)F(m)(2m+2qciz)m+q

1

-1 .
1= ¢ and (a)s= q(g+l)...(a+s-1). By

where t = s m' = m-1, c

mtqz

changing the variable of integration from z to t, werget after some

simplifications

-1 k- '
1 r(am)t™ (1-1)% ICT (a); (@ g kol
(2'2‘50) P* = j m+q l+ l' t+oo."'—F t } dt-
, ) F(q)r(m){l+(cl-l)t} )
(a); (@), r r(m-1) ;
If we expand [ 1+ 77 thee ot —3 } in powers of t as = a(r,j)t,
Jj=0
the coefficients a(r,j) are given by the following recursive relations:
g
1 J=20
(2.2.51) a(1,3) = ¢
(a)
T 1< is
L
and for r > 1 i~
1 j=0
(2.2.52) a(r,j) =
min(m', )
z; a(l,s)a(r-1),j-s) 1<j<rm'

S=max(j-(r-1)m',0)

S

Using the above expansion and also the binomial expansion of (l—t)qx'l

in (2.2.50), setting (cl-l)t = £ and integrating term by term, we obtain
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m  gk-1 (k-1)m'

I'{q+m) ¢ }
(2.2.53) P¥ = 1 Ej Y DM Nak-1,9)
r{(q)r(m)(e,-1)" o
1 a=0 j=0
K(cl:m)Q:Q’:j)
(cl-l)°’+j
where
~
Cmtety)M(a-gm)) (mtarts, qmarm3) > ot
F(m"'q_) l_c-l advd,q~a~d), q J
m+g~1 -4
Ej(m+%'l)(-l)ﬂ il:%—-l + log ¢, q=o+J
. £=1
(2'2'51") K(c,m,q,a,j):}
mtotj-1
markj=1y, o4 {1-c¥TI74"Y
Z ( 2 )(-1) L-a-j+q
L=
Lats-q
+ §m§$§§;l)(-1)°+3'q log c,  q<atj.
N—

h. Properties of the Procedures f. through ﬂh’ These procedures

1

come under the class of procedures Rh discussed in Chapter I. The
function h(x) chosen in each case is of the form h(x) = cx and so in-
creasing in X. So by Theorem 1.6.1 they are all unbiased.

The Lemmas 2.2.2, 2.2.4, 2.2.6 and 2.2.8 show that in each case

the condition (1.6.6) is satisfied and hence by Theorem 1.6.2,

(2.2.55) sup E(S]|2.) = k sup P.(CS|R,), i = 1,e..,h
0 bR 2\ A 1

when )\ - 1, PX(CSIRi) =~ 1. Thus in all the cases
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(2.2.56) sup E(SlRi) =k , i=1,...,k.
o)

By Theorem 1.6.3, for the procedures g i=1,40.,4,

(2.2.57) sup E(S"Ri) = k-1.
)

C. BSelection for the Population Associated with pll]

a. The Procedures. Herg also we have four procedures to consider
corresponding to Rl through Rh' But in the light of our results in
Chapter I and Section B of the present chapter we can state these re-
sults,

| In the case of procedures based on R2, we propose in the uncondi-

tional case the procedure

R : Select m iff ¥ K- <min R

5 d i 1< r< k r

and in the conditional case the procedure

36: Select m, iff L R? < min R2

1
i d 1< r< k r
where d=d(k,P*,n,p) > 1 and d' = 4'(k,P*,n,p) > 1 are to be chosen so

as to satisfy the P* condition.
2
In the case of procedures based on the transform R¥2 = R 5» We
1-R

propose in the unconditional case the procedure

R Select m, iff 2~ K2 Smin  R'2
* 1 1< r<k

and in the conditional case the procedure
2 %2

Rg: Select m iff K <min R,
2 1< r< k
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where d,= dl(k,P*,n,p) > 1 and d,= dz(k,P*,n,p) are to be chosen so

‘that the P¥-condition is satisfied.
In order to write explicitly the expression for the probability

of & correct selection, we state it in the case of 2_.

5

1 k-1 ’
I F (x/d) dr (x),

(2.2.58) p(csleg) = JO r=1 Myl M x]

where Fx(x) = l-FX(x). w
In view of Theorem 1l.7.l, Remark 1.7.1l and lemmas 2.2.1 through

2.2.8, we can see with no difficulty that the constants d,d’,dl and d2

defining the procedures 35 through R8 respectively are given by
o el |
fo I (x/a)(ma) b(x;qm) ax = P

P*

[} 1
="
~

(e N

T~

8

[{o]

g
o'

—
b

-

[{e]

-

B
jo N
~
i

(2.2.59) ,

oo
ml—‘
=]
=
~
[o]]
)
H
n
no
-~
L
[aN)
£
|

_P*

CO

-1
O_qu,gm (x/dg) fgq,Zm(x) dx = P*.

—

It is clear from the above equations that d = d' and dl= d2.

b. Formulae for Evaluating the Constants for the Procedures 25

and ﬂ6' If g9 and m are integers, d is given by

» i |
(2.2.60) PX = F%&%%%%J‘f | E:(q+?-l)(§)t(l_ g)q+m-l-t]k-lxq-l(l_x)m-ldx.
© t=0

Setting y = 1- X ana ££= k-1, we obtain

d
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| s ) (14t
I'{g+m) ,q+m+l C'(r,£;q+m-1,q)y 1 (1l-y
(202.61) P* = d J\ [ Z . dadd ’
r(a)r(m _
1-a7t roo

fy-(1-a™H) ™t ay

where C'(r,4,n,j) is the coefficient of yr in the expansion of

3-1 n t _n-t p
> (t)(l-y) y ] and is given by the following recursive relations:
t=0

~

O K} O<r<n",j

(2.2.62) c'(r,13m,3) = S

Jj-l-n+r

k n -r+k .
}Z (-1) (n-r+k)(n k) s n-d#l<r<n
k=0

-
and for g > 1 (~

o » 0 rg(n-j+1)g-1

(2.2.63) C'(r,;5n,3) -

min(n,r-(2-1)(n-j+1) _
c'(s,1;n,J) C'(r-s,4-15n,3),(n-3+1)4< r< ng.

i s=max(n-j+1,r-n(2-1))
.

}m-l

Expanding {y-(l-d-l) in powers of y and integrating term by term,

(2.2.61) yields

g(§+m-l) m-1
_ _I'(g+m q-+m+l yo-l-gem=1,,. .-lim-l-¢
(2.2.64) P* = Oty & }Z EZ( 1) ( a )(1-a77)
r=0 a=0

) T(g)r(r+otl)

C'(r)oe’.q.+m-l’q ﬂq.'_r.i_a.'_l)

I _l(q,r+a+l).
d
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¢c. Formulae for Evaluating the Constants Defining R and ﬂ8. The

T

constant dl is given by

(2.2.65) f Fg;}em (x/dl) fgq,2m(x) = P*,

(0]

It is easy to see that
(2.2.66) l-qu,2m(x/dl) = F2m,2q(dl/x) and

2
(2.2.67) f2q’2m(l/x) = X f2m’2q(x).

Using (2.2.66) and (2.2.67), (2.2.65) becomes

CO

(2.2.68) P = fo Fg;fzq(dl/x) fzm’zq(l/x)x-E ax

O

k-1
- jo F2m,2q (ydl) f2m,2q(y) dy-

Thus for a given set of q,m,k and P¥, the constant dl of the procedures
Q7 and 98 is the same as the constant 4@ of the procedures R3 and ?u

with g and m interchanged.

d. An Asymptotic Result. When p is fixed and m — ©, then for

the procedure 7' (which stands for R_ or R6) which selects s iff

RZ 2
?% < min Ri, we have corresponding to (2.2.3k4),
I< <k
© k-1 _
(2.2.69) p(csiat) :if n G , (x/d4) dac o (x)

o r=1 np[j],p-l np[k],p-l
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~and the infimum of the right hand side of (2.2.69) takes place when

pi Seee= pi= O. Hence d is given by

® x-1
(2.2.70) ) G .1 (x/a) de_l(x) = P¥,

where Gv(x) is the cdf of the central chi-square with v d.f. For
selected values of k,p and P¥*,the reciprocals of the d-values are tabu-
lated in Gupta and Sobel [h3].

e. Some Remarks on the Procedures Rl throughlﬁ8. The constants

of these procedures are the constants we need for similar procedures
for selection for non-central beta or non-central F distributions in
terms of their non-centrality parameters. They are also the percentage

points or reciprocals of percentage points of the distributions of

Y Y Y Y Y Y
Z,= ma.x(,?-:L s §2 seees i—l) and 22 = min(ii s ig ,...,—%li) where
k k k k k 'k
Yl’Yz""’Yk are k independent random variables identically distri-

buted as beta or F with 2q and 2m 4.f.

D. Tables of the Constants for the Procedures
As we remarked elsewhere in this chapter the constants are the
same for the unconditional and the conditional cases. Further the con-

stants for the procedure 27 are related to the constants for the proce-

dure 2.
€3
Table 1 gives the reciprocals of cl and dl' The table ranges over
k=2(1)5 and P* = .75, .90, .95 and .99. The reciprocals of c. are di-

1
rectly readable for specified q = Eél and m = ESB + The reciprocals

of dl are read from the table after interchanging q and m. For the
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computational purposes, equation (2.2.53) has been used to solve for

! -1
cl=cl .
Table 2 gives the values of co= c-l. This table ranges over
k = 2(1)5 and P* = .75,.90,.95 and .99. The constant ¢y is used in
procedures ﬁl and ie. For computational purposes, equation (2.2.33)
was used to solve for o= c-l.
! -
As we pointed out earlier, c, = cll tabulated in Table 1 is the
Y Y
100 P* percentage point of the distribution of Z,= max §l ,-..,—%-i)
k k

where Yi""’Yk are i.i.d. central F variables with 2q and 2m d.f.

t
The constant c, for a given pair of q and m, is also the 100(1-P¥*)

1
Yl Yk-l
percentage point of the distribution of ZE= min(?~ gesey —§—~), where
k

the Yi are i.i.d. central F with 2m and 2q d.f. Also the con-

stant % of Table 2 is the 100 P* percentage point of Z. when Yi's

1
are i.i.d. beta variables with parameters g and m. These tables are
also useful in testing of hypotheses because the percentage points of
the statistics Zl and 22 are obtained under the assumption that the

non-centrality parameter is zero.

2.3« Belection in Terms of the Conditional CGeneralized Variance

Let LATLPYEREFL N be p-variate normal populations, where m is
Np(gi,zi), i=1,2,...,k. We consider a partition of the p variables
into two sets of 9 and e components respectively, where ql+q2= P

The corresponding partition of Zi is denoted by

(1) (1)
%11 le

(2.3.1) I, = s 1=1,2,.404,ke.
5(1) (1)

21 22



Footnote for Table 1

The four entries in each cell refer to P¥ = .99, .95, .90, .75 from top

to bottom.

The number in the parentheses refers to the power of 10"l by which each

entry should be multiplied to get the reciprocal of appropriate constant.
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It is assumed that z z(i),z(l (i=1,2,+..,k) are all positive definite.

We are interested in selecting a subset containing the population

5. 50, ﬁ) (1))

In other words, if we consider for each population the conditional dis-

n

vassociated with the smallest lzi/lz(l)l =0, , say.
tribution of the a9, set when the 94 set 1s fixed, then our criterion
of ranking is the conditional generalized variance. This provides a
Justification for the choice of the criterion. If the observationsvare
taken on the variables of the 9 set, holding the variables of the 9
set fixed, then the problem reduces to selecting in terms of the gen-
eralized variance for the (conditional) normal distributions with di-
mensionality 4o This problem has already been solved by Gnanadesikan
and Gupta [27]. A situation may arise where we want to select in terms
of the conditional generalized variance, but in practice the observa-
tions come when all the p variables are random. This section deals
with a selection procedure for that case.

Iet Si be the sample covariance matrix from m. based on n ob-

i
servations, i=1,2,...,k. Further let the partition of Si be denoted

by
(1) (1)
Sll Sl2
(2.3.2) S; = ;1 =1,2,.4.,k.
(1) (1)
\S S22
Also let S, IS I/S(l)l = IS(l) éi) 51) (l)l Then, we propose
the following procedure
s,
R: Select m, iff 5}- < min S.» where C = C(k,P*,n,q;,q,) >1 is
K<k :



9k

chosen so.as to satisfy the basic P*¥-condition.

Theorem 2.3.1. Let ) be the space of the covariance matrices

21,22,...,Zk of k p-variate normal populations. Then

)
(2.3.3) inf P(CS[R) = f [1-a(x/c yEL ac(x),
Q o}
where G(x) is the cdf of a random variable which is the product of a,
independent chi-square variables with d.f. n-ql-l,n-ql-z,}..,n-ql-q2
respectively.

Proof. Denoting the jth largest of the oy by o[j] and the sj associated

with it by s(j), we have

pP(cs|a) = P(s(l)< CS( yp T = 2y ee0,k)
= —i—l > C ii—)- T = 2,0..,k)
°[ r] Q1 °
2= o 15) _
> P , = 25400,k
SRR E WL IR
= P(Ar > %.Al, = 2,404,k),

s
where Ar= _Lﬁl y r=l,e..,k. It is known that S(l) (1)8(1) (l

% 1] 22 2l 11 12
the Wishart gistribution w_ (n-1- Z(i) (1) (l)-l (l)) and hence A
1, U250 201 2y r

is distributed as the product of q2 independent chi-square variables
with d.f. n-ql-l,...,n—ql—q2 respectively. Thus Ar’ r=1,...,k, are
independent and identically distributed with cdf G(x). Hence (2.3.3)

follows.
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Corollary-2.3.l. The constant C defining the procedure £ is given

by

(2.3.4) fm[ 1-G(x/c)]k'l dg(x) = p*.

The constant C satisfying (2.3.&) is the reciprocal of the

100(1-P¥) percentage point of the distribution of

1 i
b e . .
i in" mln(ﬁz seees ﬁ;), where NyseeesMy are i.i.d. with cdf G(x). The

exgct distribution of ni is not known for q2 > 2. When q2 > 2, an ap-
proximation suggested by Hoel [MY] can be used. A detailed discussion
of this approximation has been given in Gnanadesikan and Gupta [27].
For q,= 2, 2ni/2 is distributed as a chi-squaré with 2(n-ql-2) d.f.

and hence in this case Cl/2 is the reciprocal of the lower 100(1-P*)

xi 2 xi k 2
percentage point of F . = min(—EL— seeny —54—), where X, r=1,...,k,
x x
\)’l \),l

are independent chi-square variables each with v=2(n-ql-2) d.f, Thus
we have

Theorem 2.3.2. When q2= 2, k>1,

. aloy 1
(2.3.5) 1gf P(cs|a) = P(Fmin > CWE)'

As remarked by Gnanadesikan and Gupta [27], the constant C is
related to the constant of the procedure discussed by Gupta and Sobel
[AQ], which has been tabulated by Gupta and Sobel [43] and Krishnaiah

and Armitage [52].
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Remark 2.3.1. Though we did not state it earlier explicitly the fact
that the distribution of s is stochastically increasing in g, it is

easily verified as follows. If sl and 32 have the associated 01,02

such that oy < 0y then

P(s, <x) = P(a, < =)

1 1-

X
p(a, <)

(2.3.6) 1

P(a, <)

v

= P(32 <x) .

Consequently, using Theorem 1.6.1, the procedure O is unbiased.
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CHAPTER III

SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF DISTRIBUTIONS

3<1. Introduction -

Barlow and Gupta [h] were the first to consider the problem of se-
lectioh for restricted families of probability distributions. Let ™
"2""’nk be k populations with associated continuous distribution
functions Fi’ i=l,...,k. The restriction of the distributions con-
sidered to a particular class is in the sense that these distributions
are ordered in certain sense with respect to a specified continuous
distribution G. The distributions Fi are, otherwise, unspecified.
The order relations considered by Barlow and Gupta [4] are partial or-
dering relations on the space of distributions. The purpose of this
ordering relation is to provide a lower bound for the probability of
a correct selection over the space Q of the k~tuples (Fl""’Fk)’
Thus &e are enabled to define distribution-free procedures in the
sense that the constant defining the procedure depends on the know-
ledge of G and not on the specific forms of Fi. In this chapter
we are concerned with selection procedures for such distributions
which are partially ordered with respect to G. We define a general
partial ordering of which some of the order relations considered are
special cases. It is shown that some of the results obtained by Bar-
low and Gupta can be obtained under this general ordering. We also
study the implications of some of the orderings for special choices

of G.
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3+2. Some Preliminary Results
We start with a few definitions.

Definition 3.2.1. A real valued function o defined on [O,m) is said

to be star-shaped if o(ox) < ap(x) for x >0 and 0 <o < 1.

Definition 3.2.2. A real valued function ¢ defined on an interval I

is said to be an r-function if, for xeI and oxel and O fo<l,

m(O’X) < Q’Qﬂ(x) ) xel ﬂ(O,m),
olox) > on(x) ,  xeI N(-=,0) and

«(0) 0, if OeI

Definition 3:2.3. A real valued function ¢ defined on an interval I

is said to be a t-function if @(x+b) > @(x)+b whenever xeI, x+bel and
b > 0.
From the above definitions the following results follow immediate-
ly. We state them as lemmas.
Lemma 3.2.1. A real valued function ¢ defined on [O,m) is star-shaped
iff |
(1} w(x)/x is non-decreasing in x > 0 and
(11) ¢(0) < 0.
lemma 3.2.2. A real valued function ¢ defined on an interval I is
an r-function iff |
(1) o(x)/x is non-decreasing in x > 0, xeI
(ii) o(x)/x is non-increasing in x < 0, xeI and
(iii) o(0) = 0, if OeI.
Lemme 3.2.3. A real-valued function ¢ defined on an interval I is

a t-function iff o(x)-x is non-decreasing in xeI.
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As an easy consequence of Lemma 3.2.3 we obtain the following
lemma.
Lemma 3.2.4. If ¢ is an r-function defined on an interval I and
differentiable on I, (i) x®'(x) > ¢(x) for x >0, xeI and (ii)

x¢'(x) < o(x) for x < 0, xel where @'(x) = é% o(x).

Lemma 3.2.5. If ¢ 1is an r-function defined on an interval I pos-
sessing the derivative at every point of I, then ¢'(x) > w'(O) for
all xeI. |

Proof. Ve assume that the origin is an internal point of I. Suppose,

for any erIﬂ(O;m), we have @'(xo) < o"(0). Then

P(xg) < x5 ¢'(x,), by lemma 3.2.4

<x, 9 (o)

x. lim  o(x)/x.
0 v ot

This implies that there exists an Xy < X, such that

(3.2.1) o(xy) < x ®(x;)/x;.

Letting o = xl/xo <1, (3.2.1) becones a@(xo) < Q(axd), which is a con-
tradiction of the hypothesis that ¢ is an r-function. Hence m'(x) >
.@'(O) for erﬂ(O,m). By a similar argument, it can be shown that

o'(x) > ©'(0) for xeIN(-»,0). This completes the proof of Lemma 3.2.5.

Theorem 3.2.1. If ¢ is an r-function on an interval I containing

the origin and @‘(O) > 1, then (« is a t-function on T.

Proof. Since ¢ is an r-function, by Lemma 3.2.5, ¢'(x) > ¢'(0) for
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all xeI. Hence »'(0) >1 implies that o'(x) > 1 for xeI, which in
turn implies that m(x)-x is non-decreasing in xel. Thus, by Lemma 3.2.3,
© is a t-function on I.

Remark 3.2.1. The converse of Theorem 3.2.1 is not true. If v is

a t-function on I, then @'(O) > 1 necessarily, but © need not be an r-
function. The following example illustrates the fact.

Example. Let

(3.2.2) (%) x“/h-2x3/3+x2/2+x s x>0

il

-xh/h+2x3/3—x2/2+x, x < 0.

Differentiating w.r.t. x,

H

(3.2.3) o' (x) x3-2x% 4541 s x>0

3

-X +2x2-x+l 5 x < 0.

i}

We can write (3.2.3) as
(3.2.4) o' (x) = Ix](x-l)2+l for all x.

Thus w'(x) > 1 and hence ¢ is a t-function. To see that ¢ is not an
r-function, set x=1 and « = %. Then o(ax) = 107/192 and wo(x)=104/192.
Hence o9(x) < o(ax), which violates the definition of an r-function.

Remark 3.2.2. Incidentally, we note that o'(x) > ©'(0) is only a neces-

sary condition for © to be an r-function. In the above example we
see that o©'(x) > 1 = ©'(0), but © is not an r-function.

Now we define a more general function.
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Definition 3.2.4. Iet h = ha p? @21, b >0, be a real valued func-
J

tion defined on the real line. A real valued function ¢ defined on
an interval I is said to be an h-function if @(h(x)) > h(w(x)) for

xeI and h(x)eI for all a >1, b>0.

Corollary 3.2.1. Iet ha,b(x) = aXx, a > 1 and ¢ be a real valued func-
tion defined on [O,m)._ Then, if ¢ 1is an h-function, it is star-shaped.
Ezggﬁ. Since @ is an h-function with h(x) = ax, ¢(ax) > ap(x), x > 0.
Setting o = 2™t ana ax=y, we have p(ay) < ap(y) for y > 0 and o<ao<l.
Hence (, is star-shaped. | |

Corollary 3.2.2. Let h, b(x) = x+b,b >0 and ¢ be a real valued
, :

function on an interval I, Then, if ¢ is an h-fﬁnction, it is a t-
function.
Proof. By the hypothesis, we have q(x+b) > o(x)+b, which means that ©
is a t-function.

Now we rephrase our results in terms of order relations betwéen
distributions. Consider two absolutely continuous distributions F and
G Iet I denote the support of the distribution F. Also let ¢ = ¢ 1p.

Definition 3.2.5. F 1is said to be star-shped with respect to G

(written F g G) iff F(0) = G(0) = 0 and. ¢ is starshped on I.

Definition 3.2.6. F is said to be r-ordered with respect to G

(written F < G) iff F(0) = G(0) =@, 0 <o <1 and © 1is an r-function
I

on I.

Definition 3.2,7. F is tail-ordered with respect to G (written F E G)
iff F(0) = 6(0) =@, 0 <o <1l and ¢ is a t-function on I.

Definition 3.,2.8. 1Iet h b(x), a>1l, b>0, be a real valued func-
2

tion defined on the real line. Then F is said to be h-ordered with
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respect to G (written F ﬁvG) iff F(0) = G(0) and ¢ is an h-function on TI.

Remark 3.2.3. 1In Definitions 3.2.6 and 3.2.7 we have imposed the con-

dition that F(0) = G(0) which gives ®(0) = 0. Tt is not crucial to our
discussions what that equal value of F(O) and G(0) is. The usual defi-

nition of r-ordering states that F(0)

c¢(0) = % (see Barlow and Gupta
[4]). ve take F(0) = ¢(0) = a, where 0 < o < 1.

Assuming that the distributions F and G have densities T and
g respectively, we note that ¢'(x) = é% G-lF(x) = f(x)/g(G-lF(x)).
Hence o'(0) = £(0)/g(0), if it exists. Now we state many of our ear-

lier results in the context of the orderings defined as corollaries.

Corollary 3.2.3. ILet F < G. Then f(x)/g(G'lF(x) > £(0)/ g(0).
r

Corollary 3.2.k. If F <G and f£(0) > g(0), then F g G.
r

Remark 3.2.k. F E G does not necessarily imply F < G.
T

Corollary 3.2.5. If b b(x) = ax,a > 1 and F(0) = G(0) = 0, then
>

F<G=F<aG.
h t

Definition 3.2.9. A relation < on the space of distributions is a

partial ordering if

(1) F<F for all distributions F and

(i1) F <G and G <Himply F < H

Remark 3.2.5.F < Gand G < F do not necessarily imply F = G.

It is known that o and ; are partial Qrderings. It can be shown
easily in the cases of ? and ﬁ the conditions of partial ordering are
satisfied. We will verify below the condition (ii) in the case 6f h-
ordering. We need show that if G'lF(h(x)) > h(G'lF(x)) and H-lG(h(x))z

h(H'lG(x)) then H'lF(h(x)) > h(H'lF(x)). Now,
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1 F(n(x)) = 5 Y66 IR (n(x))

lGh(G-lF(x)), since H-lG is an increasing

>H
function
> n(aYee r(x))

h(H‘lF(x)).

i

Remark 3.2.6. If X has distribution F and Y has distribution G,

then G_lF(X) Q%Y} whereé% indicates stochastic equality. If F < G, then

G'lF(h(x)) > h(G'lF(x)) for all x on the support of F, i.e., G'lF(h(X)) >
: st

h(G-lF(X)) which is same as G-lF(h(X)) > h(Y).
st

Lemma 3.2.6. If G'lF(h(x)) < h(G'lF(x)), then G ST
Proof. Since G-lF(h(x)) < h(G-lF(x)) for all x, setting x = F-lG(y),

we get

(3.2.5) G'lF(hF'lG(y)) < h(y) for all y.
Since G-lF is an increasing function, (3.2.5) yields

(3.2.6) n(Fo(y)) < Fle(n(y)),

which means G g F.
In the light of the above lemma, we restate Lemma 1.3.2.

Lemma 3.2.7. If F ﬁ G, then, for any positive integer t,

(3.2.7) J Ft(h(x)) ar(x) z'f Gt(h(x)) dc(x).

1 k

are i.i.d. with distribution G and F ; G, then (3.2.7) is equivalent to

Remark 3.2.7. If Xl,...,Xk are i.i.d. with distribution F and Y 50-0,Y



. 1ok
(3.2.8) P(h(xk) 2 X, r=1,...,k-1) _>_P('h(Yk) 2 Y., r=l,.00,k-1).

3.3+ A General Selection Problem

Let nl’"g""’"k be k populations. The random variable Xi as-
sociated with "y has a continuous distribution Fi’ i=l,eee,k. Ve as-
sume that there exists one among the k populations which is stochastic-
ally larger than any other. Iet us denote the distribution of that

population by « Then the assumption can be expressed as
k]

(3.3.1) Fi(x) > F[k](x) for i=1,...,k and all x.
We also assume that there exists a continuous distribution G such that
(3.3.2) Fi(x) <G for i =1,...,k,

where‘5 denotesvany partial ordering on the space of distributians.
If X = (xil’xi2""’xin) 1s the observed sample from m., then we con-
fine ourselves to the class of statistics T, = T(K&) that preserve both

the ordering relations (3.3.1) and (3.3.2), i.e., we have

(3.3.3) Pp (T(x) <x) > Py (T(X) <x) for i=l,...,k
i Lkl
and all x
and
(3.3.4) FT(Ki) < GT(I), i=1,...,k,

where F repr t h ' . )
T(Ki) presents the cdf of T(zﬁ) under F, and GT(Z) is the cdf

of T(Y) under G, _1_'_=(Yl,-..,Yn) being a random sample from G.
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Now, let us assume that the partial ordering in (3.3.2) is h-
ordering, where h = hc a © 21, 4 > 0 possesses the properties (1.1.3).
J
Then, for selecting a subset containing the population associated with

Flk]’ we propose the rule

(3.3.5) R: Select m, iff h(Ti) > max T,
* 1< r< k

For convenience, let T(k)denote the Ti associated with Flk] and T(r)’

r=l,...,k~1 denote the Ti associated with the other populations. Then

(3.3.6) P(cs|R)

P(h(T(k))'z 1< r< k-lT(r))

® k-l
n F h(x)) 4F )
o rel T(r)( o)) T(k)(x

-

Fp (n(x)) aFp  (x), by (3.3.3).
(k) (k)

|

Now, by (3.3.k4), T(k) ; GT(X) and hence, using Lemma 3.2.7, we obtain

()

(3.3-7) p(os|R) 2 [ ap™ (n(x)) agy(x),

-0

where GT = m(y)* The constants ¢ and d are found satisfying the con-

dition

(3.3.8) j Gé-l (n(x)) dGT(x) = P*,
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lemma 3.3.1. If F ; G, then Fj < Gj’ where Fj and Gj are the distribu-
h .

tions of the jth order statistic in a sample of size n from F and G.

Proof. It is known that Fj(X) = Bj,n(F(x)) = Bj,nF(x) and Gj(x)

B, G(x) where B, (x) = j(7) rx uJ-l(l-u)n-Jdu. Hence GTlF.(x)
J.n J.n J ‘o ' Jd J
lBj nG}'lBj nF(x) = G'lF(x), which gives the desired result.
3 2

Remark 3.3.1. If F, <G in (3.3.2), then we take h(x) = cx, ¢ >1

and the constant c of the procedure is given by

O

(3.3.9) f G?"l (cx) dGT(#) = P¥,

(o]

Remark 3.3.2. If F. E G in (3.3.2), then we use the procedure with

h(x) = x+td, d > 0 and the constant d is found so as to satisfy

o
(3.3.10) f G;-l(x+d) dGT(x) = P*,
-

Barlow and Gupta [u]‘have considenaipfocedures for selecting the
population with the largest quantile of a specified order when the
populations Fi are star-shaped with respect to G. Lemma 3.3.1 and
Remark 3.3.1 show that their results follow from our general result.
They also discuss a procedure for selecting the population with the
largest median when the distributions centered at their medians are
r-ordered with respect to G(G(0) = £) with the additional condition

2

that ©'(0) > 1 where ¢ G-IFIk](x+A[k]), 4] denoting the median of

n

Flk]' From Remark 3.3.2 and Corollary 3.2.4, we can see that the se-
lection problem considered by Barlow and Gupta can be accomplished for

a larger family of distributions.
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3.4. Some Special Cases of Tail Ordering

In this section we will study the properties of F when F tf G for

some special choices of G.

(a) Logistic Distribution, G(x) = — > XeR.
l+e

In this case, G-l(y) = log(y|(1-y)), 0 <y <1 and (p(X)=G-lF(X)

log (F(x)/(1-F(x)). Since «'(x) > 1, we get £(x) > F(x)F(x), where

F(x) = i-F(x).

(b} Double Exponential, G'(x) = % 'lxl, xeR.
v 1l -x
Here G(x) = 1- 5€ » x>0
= % e, x < 0.
-1 1
Hence G ~(y) = -log 2(1-y), y 25
= log 2y , y < %.
Thus o(x) = -log 2(1-F(x)), x > 0
= 1ogv2F(x), x < 0.

This gives ¢'(x) = £(x)/F(x), x >0

1l

(x)/F(x), x <O.
Hence F 1? ¢ = £(x) > F(x) for x > 0 and £(x) > F(x) for x < 0.

(¢) Rectangular, G(x) = %

We see that 'G-l(b’) = 2y-1, 0 £y £1. Hence o(x) = 2F(x)-1 on

3 -l X lo

IA
A

the support of F and o'(x) = 2f(x). Hence F 3 G = f(x) > %—

Definition 3.4.1. The distribﬁtion F is said to belong to the family

gz iff F(0) = % and the density f(x) satisfies the inequality

(3.4.1) , £(x) > F(x) F(x) for all x on the support of F.
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Definition 3.4.2. The distribution F is said to belong to the family

?e iff F(0) = % and the density f(x) satisfies the inegualities

(f(X)?_F(x), x>0 and
(3.4.2)
f(x) >F(x), =x.<o.
.

The following obvious statements can now be made.

(1) F <G, where G(x) = l_ @Feﬂfz
t l+e X

ju

(i1) F ; G, where G'(x) = = - x| & Fe %e.

N

Temma 3.4.1. PFe ﬁe = Fe ?z.

vgzggg. Since 0 < F(x), F(x) <1, (3.4.2) implies (3.4.1). Hence the
lemma.

Lemma 3.4.2. If F is the standard normal distribution, then Fe ?z.
Proof. Let ¥(x) = f(x)-F('x)i"(x), where f(x):(en)'l/2 exp(-x2/2),

=@ <x <®. It can be seen that f'(x) = -xf(x) and hence ¥'(x) =

f(x)(2F(x)-x-1). For x > 0,

2
2F(x)-x-1 = (5)1/2 jx et /2 dt-x
)

2,1/2

< (= -
(n) X-X
< 0.

Hence ¥(x) strictly decreases in x > 0. Also ¥(0) > 0 and 1im ¥(x)=0.

X0

Thus ¥(x) >0 for any x > 0. Since ¥(-x) = ¥(x), ¥(x) > 0 for x < O.

This completes the proof of the lemma.
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Since the double exponential belongs to F,» from Iemma 3.hk.1, we
see that double exponential : logistic. It can also be verified that
double exponential and normal are not tail ordered.

If we consider the logistic distribution F given by

5]

1

———:;75 ; XeR, 8 >0
l+e

(3.4.3) Fo(x)

il

F(x/8),

where F(x) is the logistic distribution with @ = 1. For 91,62 > 0,

(3.&.&) pl Fg (x) = 8, FL F(x/0)

® "8

eex/el.

Thus F, < F, iff 6. > @.. Hence we say that the logistic distribu-
Gt £ 62 2 1

tions t-succeed each other as © increasses. It follows immediately

that Fee 32 for & <1

Suppose we consider the double exponential distribution Ge given

by
(3.4.5) Gy(x) = 2—:; e-lxl/e; xeR, 6 > 0.
Then
Gy(x) = 1- 1 -x/e > 0
= % ex/e