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CHAPTER I

INTRODUCTION

1. Formulation of the Optimal Design Problem

. The study of optimal design of experiments involving statistical

data reduces to the following setup. Iet £ ,fy,...,f ~denote contin-

uous functions defined on a compact space X. The points of X are

referred to as the possible levels of feasible experiments. For each
level xeX, some experiment may be performed, whose outcome is a random

variable y(x). It is assumed that the observation y(x) is of the form

n
(1.1) y(x) = ) 0, £,(x) + 0(x)
J=0

where 17(x) is a random variable such that

E(N(x)) = 0

: 1 X =x'

B(n(x) - n(x')) =
- 0 x $ x

and E denotes the expected value of the indicated random variable.

The functions fo,fl,...,fn, called the regression functions, are

knowd to the experimenter while the parameters, eo,el,...,en, called

the regression coefficlents are unknown. The experimenter is to esti-

mate the parameters eo,el,...,en, or some function of these parameters,



on the basis of N uncorrelated observations (1.1) allowing the pos-

8ibility that different observations may correspond to different levels.

An experimental design specifies a probability measure § concen-

trating mase PysPpre+sP, at the points yeresX, where the values

xl,x2

)

P1N=ni i=l,2,o¢,,r

dre integers. The associated experiment involves taking n, uncor-
related observations of the random variable y(xi); i=1,2,+s+,r, Once
a design is prescribed and the observations are made, a standard pro-
cedure is used for estimating the parameters eo,el,,.,,en. The problem
confronting the experimenter is to choose his design so that it will
possess certain optimel properties.

If the unknown parameter vector 6 = (eo,el,.,,,en) is estimated
by the mefhod of least squares, obtaining a best linear uﬁbiased esti-

~

mate say ©, then the covariance matrix of 6 is given by

(_1,2). | E(5 - '8)(e - e)i = %M’l (g)
where
(2.3) M) = (g (50, 4

m 5(8) = fx £,£5 §(ax)

and E assigns mass P;= ni/N to the points x.; i=1,2,.s.,T.

i
If the matrix [M(g)]-l is ''small'' in some sense, or [M(g)] is

!'1érge" then roughly speaking 5 is close to 6. Most criteria



for discerning optimality of an experimental design are based on maxi-
mizing some functional of the matrix M(E), which is commonly called

the information matrix of the design.

A linear form

n n
(l-,'l-) (C.,e) = Zciei; z C? >0
i=0 i=0

is called estimsble with respect to £ if ¢ = (co,cl,...,cn) is con-
tained in the range of the matrix M(g). The variance of the best linear

unbiased estimate of (c,8) is given by Nt V(c,€) where

c,d 2

V(C,g) = Sup d,M g)d

and the sup is teken over the set of vectors d such that the denomina-~
N

tor is nonzero. If ¢ 1is not estimable with respect to £, we define

V(e,E) = . An arbitrary design £ is called c-optimal if £ mini-

mizes nflv(c,g) or V(c,E). We are throughout concerned with the

characterization of cp-qptimal designs where

cp = (0,0, ....,0,1,0,.-.,0)

with 1 in the (p+l)St co-ordinaste position and zeros elsewhere i.e.

(cp,e) = 9p5 p = O,l’ool,no



2. Elfving's Theorem

The following theorem due to Elfving (1952) characterizes the

c-optimal design for an arbitrary vector c.

Theorem l.l

let

[
)
il

+ = {8(x) = (fo,fl,...,fn)|x e X}

=]
s

{-£(x)]x e X}

2
]

convex hull of R+ ] ﬁ_

A design g is c-optimal if and only if there exists a measurable

function $(x) with

[d(x})] =1 ¥xex
such that
(1) j d(x) £(x) g(ax) = pc  for some B
x .
. and
(11) gc is a boundary point of R.

Moreover Bc lies on the boundary of R if and only if

B-a = v;l where v, = inof V(c,£).

g



It is thus seen from the Elfving theorem that one has to ascer-
tain the boundary of R in the search for c-optimal design and the

following simple but useful lemma, due to Studden (1968), character-

izes the bouadary points of Rf.

3. Characterization of Boundary Points of f.

Every vector ¢ € @ can be put in the form

: k
(1.5) ¢ = Z e, p, f(x)
v=1
k
where €, = +1, P, >0 and Z Pv = 1., The integer k may always be
1

taken to be at most n+2 and at most n+l 1if ¢ 1s a boundary point

of R.
Iemma l.1
A vector ¢ of the form (1.5) lies on the boundary of R, if and

n

Zaf (x) such
VIRV

v=0

t:xat lu(x)] <1 for x e X; evu(xv)=l, v=1,2,...,k and

only if there exists a nontrivial ''polynomial'' u(x)=

Zagc = u(e) = 1.
v=0 ¥V

b, Review of Earlier Related Work

Hoel and Ievine (1964) showed that if fi(x)=xi, i=0,1,2,+00,n
x=10-1,1) and ¢ = f(xoj with [x | >1, then the c-optimal design is
supported on the Tchebycheff points sv = COS %E sy v =0,1,e00,n. These
are the points where lTn(x)l =1, Tn(x) being the nth Tchebycheff poly-

" nomial of the first kind.



Kiefer and Wolfowitz (1965) considered more general systems of
regression functions which form a Tchebycheff system and a related éet
of Tchebycheff points. Among other things they characterizé certain
sets of vectors c, for which the c-optimal design is supported on the
entire set of Tchebycheff points.

Studden (1968) gives a8 slight generalization of the characteriza-
tion of certain sets of vectors considered by Kiefer and Wolfowitz re-
ferred to above., Before stating the theorem of Studden we introduce
the following notation, and an important property of Tchebycheff sys-
tems which is frequently referred to subsequently.

_ If the system of regression functions {fi}g is a Tchebycheff sys-
tem on X = [a,b], then there exists a unique polyndmial (see Karlin and

n
Studden (1966a), Theorem II .10.1) W(x) = = a¥ fi(x) satisfying the

i=0
properties
(1) lw(x)] <1
(11) - There exist (n+l) points a <s<s;... <s =D such that

W(si) ('l)n-i, i-= O,l,ooo,nc

Moreover when U(x) = 1 is a polynomial,equality occurs in (1) only

for x = so,...,sn and so= a, and sn= b. For any vector c + 0,



fq(so) vees £(s 1) fé(év+l) cee £ (s)) e

. fl(so) cane fl(sv-l) fl(sv+l) ..q-fl(s;) cy
(lq6) DV(C) = )

fn(so) cons fn(sv-l) fn(sv+l) ces fn(sn) e

fo(so) fo(sl) fo(sn)

£,(s))  £(s)) eer 2y(s)

0 5L yeeesn
1.7) F o

fn(so) fn(sl) see fn(sn)

F(O ,.to,_\)'l, \),\)+l ,.ou,n )
S e y8 X,S .o 5
yeeey \)-l,', \)+l, * n

(1.8) L(x) = ;(

O)l yees N
8 48 ]
0’71’**'"’"n

so that

n=-y O 51 s5¢095n
-1 D(¢c)=L(c) F
(7 D6 = 3 fe) B 232710 )

For any vector c, and any polynomial u(x) = Z aifi(x), u(c) " stands
| i

for L a,c..
i ii

R denotes the class of vectors ¢, such that ¢ Dv(c) >0 for

v =0yl,s0s,n where € 1is fixed to be +1 or -1 for a given c



(i.e. the Dv(c), v =0,1,...,n all have the same sign in a weak sense).
S denotes the class of vectors c, for which e(-1)V Dv(c);s 0,
v = 0,1,,..,n.

With tids notation, the generalization of Kiefer and Wolfowitz
(1965) theorem due to Studden (1968) is given below. See also Karlin
and Studden (1966). '

Theorem 1.2

Suppose that {fi}g is a Tchebycheff system such that U(x) = 1

is a polynomial.

(a) For any design §

0
m
o

lW(c)]2

(109) V(ch) 2
' L[U(c)]2 ceS

(b) Equality occurs in (1.9) for §

§o concentrating mass

1z, (o) ID_(e)]
.= =
\Y n
|z, (e violb\,(c)l

‘§>b1u

at the points sv, v =0,1,e00,0 |

(c) The design go is the only design supported on s°<'sl...-< sn
attaining equality in (1.9). If ¢ ¢ R then § = 1is the only design
attaining equality in (2.9).

Fof & general systeﬁwawéﬁgétions {fi}g, satisfying the following
conditions

) (i) {fi]g for k = n-2,n-1,n are T-systems on X = [—l,l]



(ii)fo(g) =1
(111) figx) - (b2 (x) L=0,1,000m

(iv) for every subset i,,i,,..e5iy Of 0;1,...,n the systenm

£, (x), £, (x),400,f, (x) is a T-system on the half open

1 2 p"

. interval (0,1].
n
(v) every polynomial X aifi either has fewer than n changes
0

of direction on (-1,1) or else is & constant on (-1,1).
Studden (1968) showed that for n >1 p £ 0
(a) if n-p is even, ¢ € R i.es the unique cp-qptimal design
.is supported by the full set of Tchebycheff points so,sl,...,sn associ-
ated with the T-system {fi}g.‘
(b) for n-p odd the unique cpioptimal design is éupported by
the full set of Tchebycheff points to’tl""’tn associated with the

-1
, n~-1
T<system {fi}o .

5. Problem Investigated in the Thesis

Spline functions have received considerable attention from mathe-
maticians working in numerical analysis, interpolation and approxima-
tion theory (see Schoenberg, (1964) and Karlin, (1968) for further re=-
ferences): Studden and VanArman (1968) studied thé problem of charac-
terizing admissible désigns, when the regression function is a polynom-
isl spline with a finite number of fixed multiple knots. The problem
investigated in this thesgé ;;W££§t of characterizing optimal designs
of individual regression coefficients, when the regression function

is & Tchebycheffian Spline Function (TSF), a general class that in-

c¢ludes polynomial splines as a particular case.
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Chaptér II deals with the problem of explicit characterization
of optimal designs of individual regression coefficients with a poly-
nomiel spline regression function defined on the interval [-l,l] with
& single multiple knot at the center of the interval. The results ob-
tained in this case are similar to the results obtained by Studden
(1968) and referred to earlier. |

In Chapter III we consider the general class of Tchebycheffian

Spline Regression Functions (TSF) defined on an interval [a,b] and

show that the optimal design for each individual regression coefficient
is supported on the same set of points. This result led to the question
of seeking necessary and sufficient conditions on the set of regression
functions so as to ensure the optimal design of each individual regres-
sion coefficient to have its support on the same set of points. A suf-
ficient condition has been obtained.

Classical Tchebycheff polynomials of first kind are taken as re-
gfession functions in Chapter IV and the support of the optimal design
of each individual regression coefficient is explicitly given. When
the expgrimenter is interested in more than one parameter in the re-
gression model, and triés to obtain a design € that minimizes the maxi-
mum variance, he is looking fpr a minimax design with respect to single
parameters, a concept introduced by Elfving (1959). In Chapter V we
try to obtain this type of minimax design in the case of ordinary poly-

nomial regression and present a partial solution.



CHAPTER IT
POLYNOMIAL SPLINE REGRESSION WITH A SINGIE

MULTIPLE KNOT AT THE CENTER

- 1. Oscillatory Polynomials W and Wl

As regression functions we consider the (2n-k+2) linearly indepen-

n

k defined on [-l,l] where

dent and continuous functions {xl}ﬁ u {xi}

(X i x>0

1)

x+ = i = k,k+l,-oo,n
(_0 ifr x<0

and k is an integer < n.

A ‘*'polynomial'' is a linear combination of these (2n-k+2) func-
tions. We show the existence and uniqueness of two polynomials denoted
by W(x), and Wl(x) and study some of their properties.

Polynomial W{(x):

Iemma 2.1
There exists a unique polynomial W(x) satisfying
(1)  |w(x)| <1 |
(1i) The set B = {x:|Ww(x)| = 1} contains precisely (2n-k+2) points.
(11i) W(x) attains its supremum at each of the points of the set

. E with alternating signs and is of the form



%(n-l) -é-(n-k )

23 y k+2) _ k+2)
Z ayy X ¥ ak+2j(x 2x_ °") when n and k are both odd
J=0 n =

%(n-l) %( n-k-1)

2J+l k+2j . k+2]
z 8541 ¥ + ak+2j(x 2x, ) when n is odd and k is even
3=0 3=0

1 1
5B §(n-k-l)
23 zz - k+2)_, k+2j -
Z 8yy X OF ak+2j(x 2x_ ") when n is even and k is odd
3=0 3=0
1 1
E(n-e) §(n-k)

2j+l Z k+2) | k+2] co
Z 85541 X + ak+2,j(x -2x,_ "°) when n is even and k is even
3=0 3=0

and the coefficients ay are #0.
Proof: |

We will prove the lemma for the case where n and k are both
odd. The proof for the other cases is the same word for word.

Consider the function

£(x) = 2x§ -

clearly £(x) is an even function. Let V be the linear space spanned

by

in i
{x }o U {x+}1r:1+l
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Then g(x)eV implies g(-x)eV. Hence there exists a best approximation

of £(x), say h(x) with respect to V which is also even (see Meinardus

-(1967) pp. 26-67). Hence h(x) has the form

1 1 :
Eﬂn-l) 2(n-k)
_ 2j Z . k+2)  _k+2]
h(x) = zz ayy XTF ak+2j(2x+ x )e
3=0 j=1
We may thus consider only the space Vl spanned by
1 -1
Z(n-1) . . =(n-k)
{xaj}g u {2x§+2J-xk+23}§ + Each function in v, is clearly

an even function, and f 1is even. Therefore a best approximation of

£ with respect to V, 1is also a best approximation of xk with re-

: =(n-1) (n-k)
S AT e 5

is n- %{k—l). But on the

gpect to the space V2 spannéd by {x on the

interval [0,1], and the dimension of v,

interval [O,l] the spanning set of functions of the space V2 is a
Tchebycheff system with a unit element and hence best approximation

of £(x) with respect to V, is unique. -i.e. h(x) is unique and f-h
Possesses precisely n- %(k—3) extremal points including the end points
O and 1 and f-h attains its norm at these points with alternating
signs. (See Meinardus (1967) pp. 29). Thus best approximation of f
with réspect to Vl on the interval_[-l,l] is unique and has precisely
(2n-k+2) extremal points including -1, O and 1 at each of which

£(x)-h(x) attains its norm with alternating signs.

Let W(x) = L£(x)-n(x)] = ||£-n|| - where ||£-n|| = swp lf(x);h(x)l.
_ -1<x< 1

It is now easily seen that W(x) satisfies all the conditions of the
lemma. Note that the (2n-k+2) extreme points of W(x) are symmetric

about O and n- %(k—l) are in [-1,0), and n- %(k-l) are in (0,1].



&

1k

~ Polynomial Wy(x):

Lemms 2.2
There exi‘sts a unique polynomial Wl(x) satisfying
(1) Jwy(x)] <1
(11) The set E, = {x:|Wl(x)| = 1} consists of precisely (2n-k+1)

points.

(1i1) Wl(x) attains its supremum with alternating signs at each

of the points of the set El and is of the form
%(n-l) %‘-(n-k-a)
2J+1 Z K+23+1 | k+2j+1
Zbaj_l_lx o bk+2,j +l(x 2x, ) when n and k are
=0 - 90 both odd,
32—'(n-l) | %(n-k-l)
2j }E K+2j+1l__ k+2j+1 .
Z b2j x“Y+ bk+23+l(x 2x, ) when n is odd and k
=0 J=0 is even,
%‘(n-Q) , %(n-k-l)
2j+1 EE K23+l k+2j+l .
Z by X0 F bk+2,j+l(x 2x_ “*' ") when n is~even and
J=0 J=0 k is odd,
1 1,
s §(n k-2)

23 Z k42j+1 | k+2j+1 ; '
Z b,y X+ _ bk+2;]+l(x 2x ) when n is even and k

4=0 §=0 is even,-

and the coefflcients bj are $0. If k=n, the terms with

(xk+23+l_2xk+2j+l

" ) are omitted. The polynomial W, in this case is

1
';'n(x) N
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Proof':
If k=n, Wl(x) = Tn(x) and properties (i) to (iii) are well known.
The construction for the case k < n-1, is similar to that of W(x)

excépt that we take

' k+l k+1
fl(x) =2x - X

and consider its best approximation with respect to Vl, spanned by
i.n i.n .
{x }o U {x+}k,i+k+l and set Wl(x) = [fl(x)- l(x)] 1-||fl-h1|| where

h1 is the unique best approximation of f It is easy to verify that

1.

the Wl so constructed satisfies the conditions stated in the lemma.

2. Zeros of a Polynomial

We need the following theorem concerning the zeros of a polynomial
for subsequent use.

Theorem 2.1
n. i n 1 i
let S(nk;x) = Z d;x+ T4 x, withat least one of the d,'s=0

1=0 ¥ ik i

for some 1 > k-1; if S(n,k;x) has (2n-k+l) distinct zeros, and does

not vanish.identically in any interval containing two of these distinct
zeros, then S(n,k;x) = 0.

We first state and prove the following lemma.
Lemma 2.3 )

Theorem 2.1 is true for k=1.
Proof:

Since d;= O for some 1 >0 we consider two cases. (1) 4= o.
Then S can have at most (n-1) distinct zeros in [-1,0), and at most
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(n-1) distinct zeros in {0,1]. Thus it can bave at most (2n-1) dis-
tinet zeros, including O. Hence if it has 2n distinect zeros it is
clearly =0..(ii) If d_ 4 0 and ;=0 for some i >1 then S
can have at most (n-1) distinct zeros in [-1,0), and at most n in
(0,1}, and thus can have at most (n-1). Hence S =0, if it has 2n
distinct zeros. This completes the proof of the lemma.

Proof of Theorem 2.1:

Iet k >1. Since S has (2n-k+l) distinct zeros and does not
vanish identically in any interval containing two of these zeros, we
claim that its derivative S', by Rolle's theorem has (2n-k) distinct
zeros, and cannot vanish identically in between any two of these Z€ros.

Suppose it vanishes between two zeros say z4 and z.. Then S is a

2
constant on [zl,22] and has one of its distinct zeros in.its interior
' n ., .
and as such is =0 onlz ’Z l. ¢ 2 < O, then 5 = Z 4 x- and
12 2 jop T

can have at most only (n-k) distinct zeros, and does not vanish iden-
tically between them. As 2n-k+l > n-k, this implies S = 0, a contra-

diction. Similar argument gives a contradiction when z4 >0 or

o} e'[zl z2]. Differentiating S, (k-1) times we have,

n=k+1

n-k+1

(k-1) _ z voi
ST =g gt x v dtx + ) & x;
i=1

end since d,= O for some i > k-1 we also havéd @% = 0 for some j > k-1

and s¥°1

= S(N,1;x) where N-=-n-k+l and has by Rolle's theorem
(2n-k+1)-(k-1) = 2N distinct zeros and does not vanish identically in
any interval containing two of these zeros. So Sk-l(n,k;x) = 0.

Hence S(n,k;x) = 0.
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T3 "Minimizing Property of the Polyﬁbmialé'w_éha'Wiw'““

Lemma 2. )'"

J

Among all polynomials u(x), with coefficient of x equal to unity,

W(x)/aj minimizes

sup fu(x)|
1<x<1

for ,j 0,2-,)-l-,--..,k-l,' k,k'l"l,-oo,n (k Odd)

J = 1,3,5500e,k-1; k,k+1,...,n (k even).
W'l(x)/bj has the stated property for J = 1,3,5,...,k-2 (k 0dd);

J = 0,2,,4-,.-._.,,1{-2 (k even).

- Proof':

Consider the case where n and k are both odd.
Iet § be even and O £ Jj £ k-1, Consider the space V, spanned

by

(Ym0, 145 U BT

If g(x)ev,.then so does g(-x). Let f(x) = xJ; x el-1,1]. £(x) is

even and hence there exists a best approximstion I(x) of f with re-

‘spect to V which is also even.. If we consider the difference

W(x)/aj - ij - P(x)]

either it vanishes at one of the extremal points of W(x) or it has
(2n-k+l) distinct zeros in [-l,l],-and does not vanish identically in

any interval containing two of these zeros. In the first case
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[W()/2yl] = 1x3-2(x)] = ||=d2(x)]|

This implies that W(x)/a j minimizes
sup fu(x)]
-1<x<1

In the second case the difference is easily seen to be of the form

J Jj+2 n

2. . -2 -1 k  k
Rt BoX +ieut ﬁj-ex + EJ+2x toeet B X H ak(x -2x+) +toaat

n n
Bn(x '2x+) p)

and vanishes at n- %(k-l) points in [-1,0) and n-%(k-l) points in
(0,1]. But from Descartes' rule of signs, it can have at most n- 12‘-(k+l)
zeros in (O, 1). Hence the difference vanishes identj:cally and hence
the result. The proof of the case k even and J odd integer < k-1
is similarly treated. Consider now the case k < Jj < n; In this case

the difference W'(x)/aj-'[ xJ-P(x)], is of the form

n - n
i g
Z dix + Zdi x+
i=k

(o)

143

and will either vanish at one of the extreme points of W(x) or has

(2d-k+1) distinct zeros and does not vanish identically between any

two of these. Hence from Théorem 2.1 it must be identically equal to

zero and hence the result. The proofs for Wl are similar.

-Lemma 2.

k+23

Among all polynomials with coefficient of x + equal to unity .
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.w(x)/aak+23 minimizes

sup |u(x)]
» -1<x<1

for j = 0,1,2,¢00,4 where g = %{n-k) or %(n-k-l) according as (n-k)

is even or odd.

Lemma 2.6
. . . k+2j+1 .
Among all polynomials with coefficient of x, equal to unity
_Wl(x)/zbk+2j+l minimizes
sup [u(x)]
=1<x<1

for j = 0,1,2,s0.,m where m = %{n-k-2) or %(n-k-l) according as
n-k is even or odd. We omit the proofs of these two lemmas as they

are similar to that of lemma 2.4 which is treated in detail.

4. Optimal Designs of Individual Regression Coefficients

We now take as regression functions {fi}g U {g.}? where

J J=k
i
fi =X ; i-= 0,1’2,00-,11
=x) ik xn

defined on [-l,l] and denote the corresponding regression coefficients
'by

RV

and state the following theorem concerning the optimal designs of the

individual regression coefficients.
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Theorem 2.2
(i) Optimal design for estimating o, 1s unique.and is sup-
ported on x = O.
(i1) Por k > 2;
(a) If k is odd, the unique optimal designs for
6, (k <j <n); 8 (j even and < k-1); and e; (3 oad)
are supported on the full set E. The unique optimal
deéigns for ej (§ odd and < k-2) and 93 (j even) are
supported on the full set El'
(b) If k is even, the unique optimal designs for
8, (k<3 <n); e, (§oddand <k-1) and e; (j even)
are all supported on the full set E. The unique op-
timal designs for ej ( ev;; and 5.k-2).and e; (§ cad)
have for their support the full set El'

(iii) If k = 1, the unique optimal design for 6, is supported on

J
the full set of (n+l) points of the set E in [-1,0]; the

t
unique optimal design for ej (j odd) is supported on the

1

t
full set E and for ej (j even) the support is the set E,.

Aﬁ for the proof of Theorem 2.2 we note that the minimizing pro-
perties of W and Wl stated in section 3 and theilemma given below
due to Kiefer and Wolfowitz (see Kiefer and Wolfowitz (1959)), immedi-
ately establish the supports stated in the theorem and hence the only
part of the theorem to be proygqmrelates.to the statement that the re-

spective supports are full which is dealt with in the next section.

lemma 2.7

. Let {fi}z be continuous and linearly independent, defined on
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“'”'”“f?ISijﬁéhd‘he consider these as our regression functions, and {ei}g

are the respectiVe regression coefficients.

"

n _ 'n
p = sup |£.- zja.f | = min sup |£ .- z:B'f |
d<cx<1l 9 LT g cucyd 2T
<x= 120 = X2 1=0
4 1$J
- n
B=‘{x=|fj- Z ot ] = e} .
1=0

i=
i+n
*
Optimal design for estimating ej satisfies £ (B) = 1.

For a proof see Kiefer and Wolfowitz (1959).

5. Supports of the Optimal Designs

Iet n and k be odd. Consider ej J<k-l; 340 and j even.
From Theorem 2.2 we know that the optimal design for ©, in this case

J
has for its support the set E consisting of (2n-k+2) points. Let

}in"k'!‘l l, X

_ = = 0,
2n-k+1 n- %(k_l)

‘{xi be these points with x = -1, x

and the remaining sre symmetric about zero. Moreover X, < Xq eee <

X . Let {p }En-k+l be the probabilities associated with these
2n-k+1 i‘o

points by the optimal design. Then there exists a solution {eqpv},

by Elfving's Theorem, to the system of equations

en~k+1
BcJ = zz €, P, f(xv); where
v=0
-1 . . 3 .
B © = coefficient of x° in W(x).
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Suppose py= 0 where i > n- %(k-l). Then there exists a polynomial

n n
3 1
~ P(x) = Zdixl + Zdi X
1=0 ik

' .
such that (i) £ df +Z <5li2 >0, (i1) dj= 0, and (iii) P(xv) =0 for
v £ 1. Consider Q(x) =P(x)+P(-x), and note that, x_ll_-(-x)i = x" if
i is odd and xi-l-(-x)i =x" if 1 is even. Then
o1, 1
| é-(n-l) 5—(n-k)
- - _ 2v Z ! k+2\)-.l
Ux) = P(x)+p(-x) = ). 4, ¥ * Lespy-1 *
v=0 v=1
vti/2
1
E(n-k)

k2y _ k+2v)

t
+ Z R [2x+
v=0

and for x <0

1 1 1, .
E(k-l) E(n-k) E(n-k)
= ' 2v Z’ 2vtk-1 Z ! k+2y-1
(x) = Z Aoy X7 F Geroy-1 * + Gerpy-1 *
| v+v=7 v=1 v=1 '
J/2
1
E(n-k)
S k+2y
- Z dk+2v X
=0 ,

Therefore Q(x) can at most have n- ;—‘-(k+3) zeros in [-l,O). (Use Des-
cartes' rule of signs, and note also that d = 0; as P(0) = 0)s But
actually it has (n-1)- %(k-l) zeros in [ -1,0), and since (n-l)-%(k-l) >

n- %(k+3) we have
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1
d2\) = O,‘ vV = O,‘l,2,o.c, E(k-l)

' 1
gt * Gurpet” O v = L2senss Fa
! 1
d_k+2\) = 0,’ Vv = O,l,o-o, §(n‘k)o
But this implies that for x <0

i—‘(n-k) 32-'-(n-k)

P s ) g Tt ) G,

\)=l \)=0

x.k+2\)

and hence can have at most n-k zeros in [-1,0), but actually has

n- -]2=(k-l), which implies that
1
dk+2\) = O; v = O,l,o.o’ E(n-k)

1
d1§+2\)'l= 05 v = l,2)00., '2-(n'k)

i.e. " P(x) = 0, a contradiction.

-

The proof of the remaining cases is exactly similar to the one given
above and when k 1is even we consider P(x)-P(-x) and proceed as above.
It may be noted that thé above method is eﬁactly similar to the
one used by Studden (1968). For those 6's whose support is on the set
El’ the proof of P; + 0 1is reduced to the earlier situation, by drop-

ping the component corresponding to xﬁ, in the system of equations
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2n-k
Bey = Z e, P, £t ) ;
v=0
8™ is the coefficient of x° in Wy, and {t in-k are the

points of the set El'

\

6. Illustrations

Example 1
Iet n=2, k =1 and the regression equation be denoted by

6 +6.x+6x° +0.x +6 x3 xel-1,1]
o} 1 27 1+ 2 Ty € ’

Then the polynomials W(x) and wl(x) are

W(x) = 1 + 8% + 8x° - 16x,

2
2 X 2 .2, _ -
Wl(x)=-'€-:2-+:§x+,c—f2 1

The sets E and E are

1
1 1
E = {-1, - 3’ o, 27 1}

E = {"l, -C, C, l}

t

, are supported on the set

62, and ©

The optimal designs for Gl,

E, with_respeétive weights
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(18, 48 , 3/8 , 0 , o );
(%, 2/4 , /% , 0 , 0 ); and

( 1/16, 4/16 , 6/16 , 4/16 , 1/16).

, . |
The optimal design for 92 is supported on the set E. with

1
weights
2(1+c) 7 2(1+c) ? 2(1+c) ’ 2(1+c)’”
Example 2

let.n = 2, k = 2 and the regression equation be denoted by

. TN
/,\ 2 /{' 2\ -
9\+elx+92x +92x+, xel-l,l]

NG
The polynomial W(x) is the same as Wl(x) of the previous example,

and the set E 1is the same as El of the previous example. The op-

timal designs for el, 9 and e are supported on the full set

El = {-l, -c,c, l} with respective weights ,_,;,,u--"'\ """
\\ e s
a 02 1 1 c2
& ) ’ ’ ’
‘ 2(l+c2) 2(1+c?) 2(l+c2) 2(1+c?)
2 / — |
Vi 2(l+c) 2(1+c) 2(l+c) 2(1+c) 7L

- —————

. c 1 1 c L
y [ ey v Ty 0 3y ¢ ey

(¥a ]
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Example 3
Iet n=3, k =3 and the regression equation be denoted by

"

2 3.t 3. )
S *O X +8, X"+, X + 0, ©; xel-1,1l.

The polynomials W(x) and Fl(x) are

W(x) -1+ 27/2 %° + 27/2 x> - 27 xi

Wl(x) -3x + L e

The sets E and E

are
1

E = {‘l) ‘2/3: o , 2/3: l}

El = {-1, ‘1/2: 1/2 » 1}

.
s and 8

3 are supported on the set E

The optimal designs for 92, 93

with respective weights

{8/108, 27/108, ‘38/108, 27/108, 8/108}
{32/180, 63/180, 50/180, 27/180, 8/180} and
{4/36 , 9/36 , 10/36, 9/36, L4361} .

The optimal design for eiw is supported on E

{1/18, 8/18, 8/18, 1/18}.

1 with weights
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" CHAPTER IIT
OPTIMAL DESIGNS WITH A TCHEBYCHEFFIAN SPLINE

REGRES3ION FUNCTION (TSF)

l. Definition of a TSF

Starting with (n+l) functions WsWisees,w  which are strictly

pbsitive on [a,b] and such that w, is of continuity class Cn-k[a,b]

k
we form the system

u (x) = w;(X)
| ) =) [ w(ey) agy
(3.1) .
. 51 Sn-1
?n(x) = w_(x) Jx vy (§;) I; Wo(8s) oo J; (€ )E ... g

a

It is shown (see Karlin and Studden (1966a) pp. 379 Theorem 1.2) that

the functions U sUsese,u din (3.1) comprise an Extended Complete

Tchebycheff (ECT) system on [a,b] obeying the boundary conditions

' (3'2) ul({p) (a) = O; P = O,l,oo.,k"‘l; k = 1,2,000, Ne

A function s(x) is said to be a Tchebycheffian Spline Function (TSF)

on [a,b] of order (n+l) or degree n, with k knots'{ni}i ’
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no =a < nl < ﬂ2 < eee < nk <b = nk+l

provided (i) s{x) reduces to a u-polynomial in the ECT system {ui}g
in each of the intervals (ni, ni+l); i=0,l,ee.,k. (ii) s(x) has
n-1 continuous derivatives.

The class of TSF's of degree n with k prescribed knots {ﬂi}i
will be designated by Sn,k(nl’ﬂa""’nk)' Lemma 9.1 pp. 437 of Karlin

and Studden (1966a) shows that sn’k(nl,nz,...,nk) is precisely the set

of functions

n k
(3-3) a(x) = ) agu(x) + ) a b (1))
1=0 J=
‘where
w_(x) j: W () J'zlwe(gg)..- jin-lwn(gn) ag ... df;
(3.4) d(xsm) = | £ NSx <D
Lo‘ | if a<x<1

Notice that ¢ (x;a) = u (x).

2. Preliminary Theorems snd lemmas on Best

Approximation in the Uniform Norm by a TSF

In view of the representation (3.3) spline approximation problem
“with fixed knots {ni}i reduces to the standard linear approximation
problem of determining the best approximation of a given continuous

function, in the uniform norm, by a linear combination of (n+k+l)
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functions {ui}g U {(bn(x‘;nj)}]J‘. .

By the genéral linear theory (see Meinardus, G. (1967), pp. 1) |
we have the following theorem.
Theorem 3.1

let a <M <7, eees <D be fixed. Suppose £(x) e da,bl.
Then there exists a best approximation s*(x) € Sn,k(nl""’nk)' i.e.

*
s {x) satisfies

*
ls"-2]] = ||s-£]| = max |s(x)-£(x)]
a<x<b
for every s(x) € S_ (7 ,...,nk). The following two theorems are due
n,k*"'1
to Schumaker (1967a and 1967b).
Theorem 3.2
Let f e cla,bl. Then there exists an s(x) Sn,k(nl""’nk)

such that f-s alternates at least (n+k+l) times on [a,bl. i.e. there

n+k+2

1 points a < X, <X, «es <X = b, such that

exist {x;} 1 =% n+k+2

f(xi) - s(xi) = t-:(-l)i mixx<b|f(x) - s(x)]
a— —

where e =+ 1; for i = 1,2,+..,ntk+2,

Theorem 3.3 |
Suppose £ ¢ cla,b]l. Then s(x) € Sn,k(nl"":’nk) is the unique
best approximation of f 4if there eﬂst points a Stl < t2... <
L +2 <b with
by <My <t o5 121,200k
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£(t,)-s(t,) = (-1t ¢ A & = 3.,2,'.:_.;('n4k+2')‘“

Y

‘where

.
!
E.
5

H
[ ]

L

Zero Structure of TSF's
The following lemma on the simple zeros of a TSF is due to
Schumeker (1967b).
lemma 3.1
Suppose s(x) € Sn,k(nl""’nk) possesses the zeros x,< Xy eee <

xn4k and s(x) does not vanish identically on any interval containing

two of these zeros. Then

(3.5) , x; < My <% 1=1,2,..0,k
Moreover s ¢ Sn;k can have at most (n+k) distinct zeros provided s
&oes not vanish identically between any two of them.

.One of the perversities-of TSF'S is that it is possible for a non-
null TSF to vanish on an interval (simple examples already éxist in
the case of polynomial splines). We shall use the following conven-
tions when counting zeros of a TSF. (See Karlin and Schumaker (1967)
and Studden and VanArman (1968)).

(a) No zerés are counted on any open interval (ni, “3) if

s(x) = 0 there.
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”“"““”'“"”“"”“"(b)"'The'multiplicity of a zero z + "1 1i=1,2,e0e,k is 1r if

s(j)(z) =0 Jj= O,l,...,r;l; s(r)(z) o

(c) Ifs(x) =0 on (ni-l’ ni) and £0 on (ni, ni+l) the zero
at ni is counted as in (b) using the right had derivatives. Similar-
1y we use left had derivatives for s(x) £0 on (My.1» M) end =0

(a) 1 s(x) £0 on (m,

-1 ﬂi) or (T]i, 'ﬂi+l) and

0= S(j)('ﬂl-) = S(J)('ﬂi'*) J = .O:l:";:r'l
A= s(r)(ni-), s(r)(ni+) =B and

At B,
then
ni is a zero of order
(1) r if AB>o0
(i1) r#1 if AB <O

(ii1) r+1 if AB=0 and B-A >0

(iv) r+2 if AB=0 and B-A <O

We let Z(s) denote the number of zeros of 5 according to the
above conventions.
Temma 3.2

A non-trivial TSF s(x) € Sn,k(ﬂl,...,nk) has Z(s) < n+k.

For a proof see Studden and VanArman (1968) and Karlin and Schu~

meker (1967).
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~w3. Uniqueness and Existence of the Osciilatory Polynomial W(x)

Utilizing the theorems and lemmas stated above we now state and

kl

prove
Theorem 3.4
Iet n>2 and wo(x) in the system (3.1) be = 1. There exists

a unique W(x) e Sn,k(nl’ne""’nk) satisfying

(1) Wx) <1 vxela, vl

(11) The set of points {x:|w(x)| = 1}, consists of precisely

n+k+1l
1

(311) W(x,) = €(-1)" where e=+1 i =1,2,...,n+%+

(n+k+1) points {xi}

(1v) x40 <My <x,45

1 =1,2,...,ke
Proof

Consider f = ¢n(#;nk)'e cla, b]l. Theorem 3.2 assures the exis-
tence of an s%(x) € Sn,k-l(nl’nz""’nk-l) such that s is a best
approximation of f with respect to thg class Sn,k-l(nl’nE""’nk-l)’

*
and f-s alternates at least (n+k) times. Hence there exist (n+k+l)

n+k+1l

points {x, }; vhere & <X) <X, eee <x . .. <b and
* *
f(xi) -5 (xi) = e(-l)i max | £(x)-s (x|
- asx<b
i = l,2,v...o,n+k+l

Set

. * ’

W(x) = —2— Lle(x) - 5™ (x)]
[£-s"]] '
n’ _ k

% *
Z 8, 1_li(x) + Zan,,j 4>n(xs le)
i=0 j:l
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Hence (i) of Theorem 3.k is established. Also W(x) attains its norm

ntk+l

l -
t

(1i1) of Theorem 3.4 is proved. W (x)e Sn-l,k(nl’n2""’nk) and has

n+k
2

between any two of them. Hence from Lemma 3.1 we have

with alternating signs at each of (n+k+l) points {xi} Hence

at least (ntk-1) distinct zeros {xi} and does not vanish identically

(3.6) Xyep STy <x . 1=12..0k

Thus (iv) of Theorem 3.4 is established. If the set {x: [W(x)]| = 1}

' 1
has at least (n+k+2) points, then W (x) e § must vanish at every

n-l,k
interior such point so that W' will have at least (n+k) distinct zeros.

If W' does not vanish identically between any two of these zeros,
we have a contradiction, since W' cannot have more than (n+k-1) such
zeros. Hence W' may vanish identically in (xo, xl) if the addition-

el point x_ at which Iw(xo)l =1 is inla, xl) or in (xn+k+l’ xo)
if x  is in (xn 417 b] or in (xi, xo) if x is in (xi, xi+l)'

+k

In the first case we count X,

at least one according to our convention and together with the remain-

as a zero of W' with multiplicity

ing (n+k-1) distinct zeros between no two of which it vanishes,
z(W') > n+k which is a contradiction. Similarly in the second case
X Hetl will be a zero of W' with multiplicity at least one again

leading to a contradiction. In the third case we have

] - *
W'(x) =0 in (xi, xo) and

W'(x) £0 in (xo, x1+l)
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and W'(x) being continuous W’(xo+) = 0 and hence is a zero of mul-
tiplicity at least one, and hence we again have Z(W!') > ntk a con-
trediction. Hence the set {x: |W(x)|= 1 } consists of precisely

(n+k+l) points, {xi}ifk+l. Similar considerations establish

X, =8 ; and x be.

n+k+l

*
Finally (3.6) and Theorem 3.3 imply that s (x) is the unique best ap-
proximation of f with respect to Sn,k-l(nl"'°’nk-l)' This completes

the proof of Theorem 3.L.

4. Optimal Designs of Individual Regression Coefficients

with a TSF as Regression Function

Theorem 3.5
Iet n>2

n : k
E(ylx) = ) ey uw(x) + ) o b (5 m)
: =0 j=1

- where x e la, b] and {ui}g is the ECT-system (3.1) with wo(x) =1, —

Then the optimal design for estimating any ez(l <Z 5.n+ﬁ€§§/is unique
and is supported on the full set of extreme points of W(x) obtained in

Theorem 3.4, and the unique optimal design for estimating eo concen-

trates its entire mass at the point Xy = a.

Let

1

i
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o,l’.OO)n

ui(x) | i

| K(x, 1) =

4)11(}[} Si) i = n+l,...,n+k

where s .
n+j

n+k. Then (3.6) and Theorem 2.2 pp. 514 of Karlin (1968) imply that

= nJ 53 =1,2,000,k and let fi(x) =K(x; i); 1 = 0,15040

l, 2, seey n+k

P

are all different from zero and have the same sign, where Dv(cp) has

the same notation as in (1.6) with £

n+k+l
1

Theorem 3.4. Hence Sp €eR for p=1,2,...,ntk. Hence the design

4 3 -
i s as defined and si = X

is the set of points obtained in

i+l
i = O’l,.'-, n+k and {xi}

€= §o concentrating mass

-

. D (<)

v htk
LX)
v=0

at the points xv+l; v =0,1,see,ntk 1is the unique optimal design for

estimating o, (1 < j < n+k). Since ux) = 15 w(x) =0 1i=1,
eeen and ¢n(xl; nj) =03 J=1,2,0e0,k; it is easily seen that the

_ . .
unique optimal design for estimating eo concentrates ips entire mass

at xl = 8.
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5« Basic Splines
Definition:
Let a <rﬂl < n2 <i.iea < nnfk <b be fixed. The functions

Mi(i; MsMyygseeesMy) 1= 1,2,000k (ses Karlin (1968) pp. 522)

are called the Basic Spline Functions and are given by

. 0 (M) wm(n) e w (1) 6 (xsm)

U (M) 0y (Mygg)eees wyy (Myag) O(x5My,)

. uo(ni+n) ul(ni+n)"” un-l(ni+n) ¢n(x3 i+n)
(3:7) M (MM s ee sy )=l o0y W, (M) cerereerecraees G (M)

uo(ni+l) ul(ni+l)............... un(ni+l)

uo(ni+n) ul(ﬂi+n)............;.. un(ni+n)

where {ui}g and {¢n(x; M)} are as given in (3.1) and (3.h4).
If we take as the regression functions the basic spline functions

Mi; i=1,2,s..,k and consider the regression model
k _ .
E(ylx) = Zlei Mi(x;ni,ni_'_lJ"')ni_’.n)
i=1
we can also characterize the optimal design for estimating ei

i=1,2,...,k) as was done in the case of the Tchebycheffian spline
¥y

regression function. 1Indeed one can obtain the unique oscillating




37

polynomial W from Theorem 3.4, and using the strict total positivity
result for the basic splines given in Lemma 4.2 pp. 524 of Karlin
(1968), conclude that the optimal designs for estimating each ep,

P =1,2,00.,k have the same support.

6. A Sufficient Condition for the Optimal Designs of

Individual Regression Coefficients to have the

Same Support

We have seen in the case of a Tchebycheffian spline regression
function, that the optimal designs of each of the individual regres-
sion coefficients ﬁave the same support. The following theorem gives
& sufficient condition for the optimal designs of individual regres-

sion coefficients to have the same support.

Theorem 3.6

Iet the regression functions {fi}g satisfy
(i) Continuous and linearly independent on [a, b)

(i1) {fi}g-l is a Tchebycheff system on la, bl
n-1 n-1 5 n-l
}0 with g a; >0 3 § a; fi

<...<s =D be the (n+l) distinct points

(1i1) {a, 1

1

at which fn-h sttains its norm with alternating signs

(iv) a = s, <s

where h is the best gpproximation of fn with respect
to the space spanned by {fi}g-l

i, 4., eee, i
(v) F( T 2 By >o
B, 58. 5 evey B,
Jl do Jn

for every subset (il,ia,...,in) and (jl,je,.,,,jn) of

the set of integers (0,1,...,n)
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. 0, 1, ..o, n
(vi) ¥ )+ o0

8 5, 8.y eeey 8
o’ 71’ ? "n

1y

Then the gp-optimal design for estimating ep in the regression model

n
B(ylx) = o, T,
J=0
is unique and is supported on the full set of points {Sv}g for
P = 0,1,..4,n.
Proof :
(ii) and (1ii) guarantee the existence and uniqueness of an oscil-
latory polynomial

W(x) = f

*
8 13

o1m

with norm 1, attaining its norm at precisely (n+1) points {sv}g with
alternating signs with s,=a and S, = b

(vi) ensures that the polynomials

L\,(x)’. \)=O,l,.-., n

associated with the set {sng are well defined.
(v) ensures that Dv(cp) >0; v=0,1,e00,n for p = 0,1ysu.,n.
Hence each gp € R and an appeal to Theorem 1.2 completes the proof.
Remark: |
If {fi}z-l is a Tchebycheff system on (a,b] and s, = &, with
f(so) =Cy» then optimal design for eo is unique and concentrates

its entire mass at S Similarly_if [fi}z-l is a Tchebycheff system
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on (a,b) and s, =8, and s = b with f(so) = c_ and f(sn) = ¢, then
optimal designs for estimating _ec and en are unique and are supported
at the single points S, and S, respectively. As an example we

have

fi = (?) xl(l_x)n-lj i = O,l,.'o,n'

) xe[O,l]

where £(0) = c, (1) = c  and the kernel K(x, i) = fi(x) is
Extended Totally Positive for i = 0,1,2,...,n and 0 <x < 1l. See

Karlin (1968) pp. 287.



CHAPTER IV
- OPTIMAL DESIGNS WITH TCHEBYCHEFF POLYNOMIALS

OF THE FIRST KIND AS REGRESSION FUNCTIONS

1. Techebycheff Polynomials of the First Kind

We consider the interval [-l, al. Tchebycheff Polynomials of

the first kind denocted by Tn(x) are defined as

Tn(x),= cos (n arc cos x); n = 0,1,.00

The polynomial Tn(x) possesses n+l extremal points in [-l, 1] and
thé polynomial T;(x) vanishes at each of the n extremal points in
the interior of the interval.

The set of points at which Tn(x) attains its norm with slternat-

ing signs, known as the Tchebycheff points are

n
Exélicitly
[n/2]
Tn(x) = %- }j (-1)Y E%; (n;v)(zx)n-ev n=12,...
v=0
To(x) =1

Moreover
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T,(=x) = (-1)7 T (x)
and finally we have the differential equation
» 2 te s 2
(4.1) (1-x%) T, (x) - xT_ (x) +n Tn(x) =0

where n > 2.
The properties listed above are stated and proved in almost every

textbook on linear approximation (see Meinardus (1967) pp. 31-33).

2. Some Results on Best Approximation

with Tchebycheff Polynomials

Before proceeding to the problem of obtaining the optimal designs
of individual regression coefficients, when Tchebycheff.polynomials
are taken as regression functions, we state and p?ove a few results
on best approximation with these polynomials, which are needed.

- Let QJ be the regression coefficient associated with the regres-
sion function fj = Tj(x); 3 =0,1,.00,n; x € [-1,1}. The optimal de-

gsign for estimating ©, concentrates mass on the set of points

J

B = {x:|T,(x)-h(x)| = sup |7, (x)-h(x)|} where h(x) is a best
J -1<x<1 9

approximation of'Tj(x) with respect,to the linear space spanned by
fri(x)}g;o. Thus the problem reduces to finding the polynomial h(x),
the setiog points B, and the associated probabilities.

If j = n, then it is easily seen that h(x) is = O and the set.

B consists of the points

: n
[su = -cos pn/n}o
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and if pp denotes the probability associéted with sp, then it is
easily verified that p“ = é; for p=0 and n and pu = %- for

U + 0 and n. - Thus c, € R and the unique optimal design for esti-
¢, concentrates mass on the full set 6f the Tchebycheff points. Simi-
larly it is verified that c, € S and has the same full support as c e
As it belongs to the set S, from the Theorem of Studden (1968) (see
Theorem 1.2, Chapter I) it is noted that the optimal design is not
'un;que. It is 1nteresting however to note that the optimal design

for co having its support on {sp}, assigns the same mass to s“ as
does the unique optimal design for <, to su. Before obtaining the
optimal design for ej'(l < j € n-1) we state and prove the following
Theorems; |

Theorem L.l

2k-1
2r+l(x)}l . Then

Let V denote the linear space spanned by {T

the set
A= {x: ITl(x)-h(x)l = sup |7, (x)=h(x)|}
-1<x<1

where h(x) is a best approximation of Tl(x) with respect to V,
contains at least 2k points.
Proof':

If the set contains fewer than 2k points, then there exists an

hi €V such that
hl(xi) = Tl(xi) = h(xi)

for all the extremal points (points of A) X;+ But then




857sin @°sind = cos(2ke-)-cos(2ke+d)+cos (2kd-6)-cos (2kp+6)

since .
(2xe-) - (2xp-0) .
(2ke+h) + (2kp+6) = (2r+l) n
y §=0 for r=1,2,...,2k-1; k > 1.

Theorem 4.2
Iet B denote the set of 2k points {xv}i U {-xv}i where

% = cog L2v-L)m .

v L'-k'l'e 3 v = 1,2,...,1{.

There exists no function h e€¢ V such that either h(xv) >0 v=1,2,

ooc,k or h(xv) <0 vV = l,e,cot,k.

Proof':
2k-1 '
Iet h(x) = = o, T2r+l(x) € V Then
r=1
2k-1 ( .
- 2r+l)(2i-1)m .
h(xi) = Z ar cos hk+2 1l = 1,2,000’1{
r=1 '
consider
k
S2j-12n
A= Zh(xj) cos SE=5
j:.—
2k-1 k
- ' (er+1)(2j-L)nr (25=1)m
= Z Y 2 cos Lic+2 €08 Thkvp
r= J=1

0 (From Lemma 4.1)
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if h(xi) >0 for i =1,2,e00k" or <O clearly A + 0. This con-
tradiction proves the theorem.
Theorem 4.3

There cxists a unique h(x) € V such that

(1) T(x;) - Bx) = Ty (xg)-h(x;); 1=2,3,.005k

1 H
(ii) Tl(xi) -h (xi) =0; 1=1,2,.000k

where xv = Ccos Q‘ﬂ)ﬂ ;

= ).',.k+2 s v = l,2,'co,k.
Proof':

Any h(x) e V is of the form

2k-1
z r r'['.2r+l(x)
r=1
. . Pkl
and hence is determined by (2k-1) parameters {ar}l . Conditions (i)

and (ii) give (2k-1) linear equations in the (Zk-1) unknown parameters
{ar}ik-l and it is easily checked that the matrix of this system of
linear equations is non-singular and as such has a unique solution .
Theorem ll-.l;

The unique h(x) of Theorem 4.3 is the ‘t’Jest approximation of Tl(x)
with respect to V. |
Proof:

Let

b(x) =

!
=
[
”~
e
|~
o
o
P e
"
p

[}
e
1
>
R
H
n
3
=
Pan
ol



46

$(x) 1is an odd function and has the same value at each of the points

“ v = )+k+2 3 v = l,2,0'0,k0

' .
AlSO ¢ (xv) = O; vV = l,2,-oo,ko But

2k-1
4> (x) =1- Zar T2r+l(x)

r=1

2k-1

d ts
N 2 op T2r+l(x)
r=1

¢”(x)

Using the differential equation (k.1l) we get

l-x2

b (x) = E5 (' (x)-1] + 5 n (x)
1-x

where
. 2k-1
ho(x) = Zer T2r+l(x) eV;
r=1
B, = (2rt1)® 4 T =1,2,...,0k-1
T = Qs T drcyeee, .
Hence
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As ho € V, from Theorem 4.2 we see that hb(xv) <0 for some v

i.e. ¢"(xv) <0 for some v; 1 <v<k. Also ¢(xv) >0 v = 1,200,k
Thus at one of. the poih@s x ¢(x) has a local maximum §(x) being

a polynomial of degree L4k-1l, and an odd function ¢'(x) is an even
polynomial of degree Lk-2 and we already note its (2k-1) zeros in (0,1}
which a;e precisely the points {xv}i and {gv}i-l where §v ev(xv,xv+l).
If we consider the closed interval [xv,,xv+ll where #v is the point

at wvhich {(x) has a local maximum and as ¢'(x) vanishes at only one
point gv in the interior of [xv, xv+l] it is clear that ¢(x) attains

its supremum'on the interval [xv, x ] at the point xv and hence al-

vl

so at xv+l, and its minimum at gv. From this we conclude

Sup H)(x)l = M)(xv)l = N>('xv)l v = 1,200,k
i<x<1 |

Thus the set of 2k points {xv}i u {-xv}i are the extreme points
of ¢(x). As there exists no function in V which is positive at
all the points X3 v=12...,k it follows that h(x) is the best
approximation of Tl(x) with respect to V.
Remark:

h(x) is also a best approximation of Tl(x) with respect to the
space spanned by {Tj(x)}§=o where n = kk or Lk-1.

3f1

Theorem 4.5

Let C = {x ]k U {-x }k where x = cos wn/2k+2; v = 0,1,2,...,k

v’ O v'o v ‘ J bt Al >

The set C consisting of (2k+2) points is precisely the set of extre-

mal points of Tl(x)-h(x) where h(x) is a best approximation of Tl(x)
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with respect to the space spanned by {Tj(x)}?_o, where n = L4k+l or
31

4k+2, Proof of Theorem 4.5 is analogous to the proofs of Theorems

4,2 to k.4 and hence is omitted.

3. Optimal Design for el

With the establishment of the best approximation of Tl(x) and its
ext;eme points, we are now in a position to state formally the theorem
cohcerning the optimal design for estimﬁting el.
Theorem 4.6

Optimal design for estimating el concentrates mass on the set of

. k k
2k points {xv}l U {-xV]l, where

x = cog (2v-l)m
v

Lk+2

when n = 4k-1 or U4k and concentrates mass on the set of (2k+2)

k k
points {xv]o U {-xv}o where

if n = 4k+l or Lk+o.

4. Optimal Design for 6, (1<j<n)

Given a j such that 1 < j <n there exists a unique integer
P 20 such that either
(1) (4p-1) 3 <n < (4p+1)j or

(11) (4p+1)j < n < (4p+3)J.
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7T 77T Let the integer |, corresponding to ej be such that (i) holds.

op-1
Clearly p >0. Let h(x) = £ o T be the best approximation
r T2r+l
r=1
- '. ) " Ll.p-l .
of Tl(x) with respect to the space spanned by {Ti(x)}j.:O; sl1° Then
iy from Theorem 4.k the extreme points of Tl(x)-h(x) consists of 2p
- Py ofx P - cos {2vLm
points {xv}l u {xv}l where X, = cos ryrandl Since
- 2P"l 2P"l
sup |7, (x)- XQ' T (x)|= sup {r. (x)- Za T, ., (x)]
d<x<1 9 Z r “(2r+1)§ d<x<1 4 r “2r+l

the extreme points of

op-1
b(x) = 7y(x)- Z % T(orey) (%) |

Cr=l

are given by the set of 2jp points

0515000,]

1
cos E[N- Tpas V= 1,3,....,(2p-l) r

VIT

COS'JS'[I‘IT"‘EE} \’=l:3)°°-:(2P'l) r 1’2""’(3-1)

As we proved in the case of Tl(x), it can be shown that there
n
i=0’
14

‘exists no function belonging to the space  spanned by {Ti(x)}

which has the same signs as d)(x) on the set D. Hence by Kolmogoroff's

2p-1
. . eriterion rfl o, T(2r+l)j(x) is a best approximation of Tj(x) and

thus the optimal design for 6, has for its support the set D.

J
If the integer J is such that (4p+1)§ < n < (4p+3)j then either

P=0 or p>0 if p =0, i.e. Jd <n <3j then the best approximation
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W“W”“M""M”MNW—“Wafr_Tj(x) is the function which is identically zero and hence the sup-
port of the optimal design for ej consists of the (j+l) Tchebycheff
. WMy J
points {-cos T}0°
If p >0, it can be shown as in the case (i) that the support
of the optimal design for 9j is on the set of (2p+l) j+1 points

1 .
g'cos glm-ﬁé.]; v=0,l,...,P r=O,l,...,J

132)0")(3'1)

L
cos % [rn + = ]; v =0,1,e0.,p T
J 2p+e
Finally we prove that the optimal design for ej is supported
on the full set of points. Details of proof are given for the case
J=1 and n = hk-1; the proof for the general case is exactly the same.
. ' Theorem 4.6 and Elfving's Theorem guarantee the existence.of a

solution {ev Pv} for the system of equations

2k
Ez v Py f(xv) - Bcl
v=l
2k
where ¢ =+ 1; P, > 0; vfipv =1 and £(x) = (To’Tl""’Thk-l)' let

P, ‘be the weight associated with

v = l,2,.0.,k0

- x - cos‘z\)-l)ﬂ o
v

h hk+p ?

From symmetry, the system of equations reduces to
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p, cos el + p2 cos 92 + ces +»pk cos ek 8/2

]
o

pl cos 361+ p2 cos 392 + ves + Pk cos 39k

® & ° o e * & s ¢ s O e * s & 8 B e & & 6 e ® @ 4 o

li
(@)

P, cos(2k-l)elfp2 cos(2k-l)92 *eee + D cos(zk-l)ek

where Qv = igzzéln 5 v=212,s00,ke The coefficient matrix of the

hk+2
above system being a'Vandermonde type, it is easily seen that,pv + 0;

v =1,2,¢04,ke

We can thus summarize the result in the following theorem.
Theorem 4.7

It jl< n < 3j, then the optimal design for estimating ej hés
for its support the full set {-cos %?}g. |

If (4p-1) §J <n < (4p+l)j, optimal design for ej has for its
support the full set D.

;f (bp+1)j < n < (4p+3)j, optimal design for ej has for its

support the full set E.

9/7L
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CHAPTER V

MINIMAX DESIGNS

l. Introduction

In this chapter we will confine to polynomial regression on the
interval l-l, l], s0 that our regression functions are fi =X ;
1=0,1,ce.,n. Elfving (1959) defines a design £ +to be minimax
8.p. (with respect to the single parameters) when it minimizes

*
max v(ci,g). We obtain explicitly the design & when n < 12
0<i<n

(n $ 11). We are not able to obtain a general solution of this problem.
But the results obtained indicate the direction in which one.could look
for a possible general solution.

From the results obtained by Studden (1968) we see that the opti-
mal design for estimating ep (p # 0; n-p even), has for its support

the full set of points {-cos %?}2 with respective masses
n n
{Ip (e )|/ 2 |D (c )|} and when n-p is odd, the support is on the
v'p o VvV P70

full set of points {-cos i?i}z-l. Thus we know explicitly the optimal

'design for estimating any of the individual regression coefficients.

2. Characterization of the Minimax Design

The following simple theorem characterizes the minimax design.
Theorem 5.1
% ‘ .
‘The unique optimal design gk for estimating ek is minimax

S.p. if
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L . *
max V(ci,gk) = inf V(ck,g).
0< i< n g

Proof: R

max V(c.,g*) > inf max V(c,,§) > max inf V(c_,E) > inf V(c ,£)
1 i’k = £ i i - g i - £ k

Hence if the two end terms are equal, i.e. if

*
m.:.x V(Ci,gk) = i";f v(ck,g)

then we have

a *
iEf max V(e;,8) = V(cp,6,)

*
i.e. §k is minimax s.p.

3. Minimax Designs for n <12

When n=1, it is easily seen that

M H(gy) = M(8)) = 1,

* *
80 that max V(e,,§,) = 1 = inf V(c,,§). Hence £, is minimax S.D.
i i‘~1 £ 1 1

A direct computation yields -
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[Tl(xi)-h(xi)] n (x;) = l'.rl(xi)-h(xi)l2 >0

and by Kolmogoroff's criterion (see Meinardus (1967) pp. 15) h(x)

cannot be a best approximation. This contradiction proves the theorem.

Lemma 4.1
k
- (er+1)(2j-1)m , (i-Ln
S = Zcos iio cos k1o =0
J=1

for Ir = 1,2;100,21{"1; k _>_ l'

Proof':
k ' k
28 = Zcos (2j-1) & + Zcos (23-1) ¢
J=1 J=1
where
Jler2) | o o
® = ke T ™ 0=k
so that
- e
6=t bk+o °
But
-k
Zcos (2j-1) @ = sin 2k6/2 sin 6
J=1
k .
Zcoé (2i-1) ¢ = sin 2k{/2 sin §
J=1

Hence



max v(c.,g*) =4 = inf V(c_,E)
w i i’ "2 £ 2

/'I 3 0] 'll- 0

0 11. 0 =12 L//////
“1, % : ' ]Z:

o,

o
r
M= 2% e
W, e ]
| Vv

J /0 ,}v
. C>q/tﬁ
The above three cases indicate that in the search for minimax de-

o -1z 0 16

*
Hence §3 is minimax s.p.

sign one should look into the max inf V(ci,g) and consider the design
*
§c 1f this max is attained for i = k. However if we consider the

case n=4 we readily see that max inf V(ci,g) is attained for i=2 and

i g
* *
k. Thus neither §; mor £, will be minimax s.p. From what has been
*
stated earlier we see that §, concentrates mass on {-cos vn/h}g
with respective‘probabilities 1 4 6 4 and 1 and g* concen-
. 16’ 16’ 18’ 16 16’ 4

trates mass on the same set of points with respective probabilities

%3 %3 g) g; %-. The actual minimax s.p design in this case is

* *
;(52 + §h) which concentrates mass on the set {-cos %F}g with proba-

2 o

lities 3 B 10 &

bilities 3273273273235
The case n=11 is similar to the case n=4. max ian(ci,g) is at-
R ig,

tained for i=7 and 9. But it has not been possible to work out the
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minimax s.p. design in this case, as the computations involved becamé'
too tedious.

For values of n between 5 and 12, excluding n=1l, the mini-
max s.p. design was obtained bj inverting the matrix M(g) wusing a

computer and the solution obtained is presented below.

n=353 k=3
"% - . 2 .
§k is minimax s.p. concentrating mass on {-cos vn/5}o with res-

pective probabilities 0.060, 0.176, 0.264, 0.264, 0.176, and 0.060.

* . . ' 6 .

gk is minimax s.p. concentrating mass on {-cos vn/6}o with res-
pective probabilities 0.056, 0.139, 0.19%, 0.222, 0.19%, 0.139, and
0.056.

§k is minimax s.p. concentrating mass on {-cos V"/7}Z with res-
pective probabilities, 0.051, 0.11l7, 0.152, 0.180, 0.180, 0.152, 0.117,

and 0.051.°

* o . 0 8 .
§, 1s minimax s.p. concentrating mass on {-cos vn/8]o with res-
pective probabilities, 0.047, 0.103, 0.125, 0.147, 0.156, 0.147, 0.125,

0.103, 0.0h47.

* ' .
gk is minimax s.p. concentrating mass on {-cos vn/9}z with res~
pective probabilities, 0.0Lk4, 0.092, 0.106, 0.124, 0.13k4, 0.134, O.124,

0.106, 0.092, 0.04k.



n=10; k=28

* . 10 .,

gk is minimax s.p. concentrating mass on {-cos vn/lo}o with
respective probabilities, 0.040, 0,084, 0.094, 0.106, 0.116, 0.120,

0.116, 0.106, 0.09%, 0.084, 0.040.
n=12; k=8-
* . . 12 ... .
gk is minimax s.p. concentrating mass on {-cos un/l2}o with

respective probabilities, 0.028, 0.058, 0,066, 0.080, 0.096, 0.111,

0.117, 0.111, 0.096, 0.080, 0.066, 0.058 and 0.028.
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