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ON SOME CLASSES OF SELECTION
PROCEDURES BASED ON RANKST

SHANTI S. GUPTA AND GARY C. MCDONALD

1 INTRODUCTION AND SUMMARY

The shortcomings of the classical tests of homogeneity, i.e. testing the
hypothesis of equality of paramcters, have long been known. Given k&
populations and from cach population a fixed number of observations
whose distribution depends on a parameter 0;, concluding that all 0; are
not equal may not be suflicient. Often the experimenter is interested in
ascertaining which population is associated with the largest (or smallest)
6, which populations possess the ¢ largest (or smallest) 0, ete. Suppose the
experimenter is interested in identifying which one of the L populations
possesses the largest 0, the so-called ‘best’ population. The parameter 0
may be, for example, the mean, the variance, some quantile, or some
function of these quantities. Basically, there have been two approaches
to ranking and selection problems, the ‘indifference zone’ approach and
the ‘subset selection’ approach. In the first a single population is chosen
and is guaranteed to be the best with probability P* whenever a certain
indifference zone condition holds. For example, in case the populations
have normal distributions with a common known variance and unknown
means the experimenter may be interested in guaranteeing this prob-
ability to be at least P* whenever the two largest means are scparated by
a distance greater than d*. This formulation is due to Bechhofer [5]. The
second approach requires no specifications of the parameter space.
However, a single population is not necessarily chosen; rather a subset
of the given k populations is sclected which is guaranteed to contain the
best population with probability P*, the basic probability requirement
in these procedures. In this sense the number of populations in the
scleeted subset is a random variable. This formulation is due to Gupta
PR TUR

luthe past ten years many papers have appesred on borh formulations
of the selection problem. As can be expected, most of this research has
been devoted to rules which assume a specific distributional form of the
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underlying observations;e.g. normal, binomial, multinomial, ete. Barlow
and Gupta[2] and Parlow, Gupta and Panchapakesan [3] have con-
sidered the problem of sclecting a subsct containing the largest (smallest)
quantile of a given order and a subset containing the largest (smallest)
mean. They assume the observations from cach population have a distri-
bution which belongs to cortain restricted families, ¢.g. IFR (Increasing
Tailure Rate) distributions, IFRA distributions, ebc. Distribution-free
sclection procedures, most of which are based on joint ranks of the
obscrvations, have been studied by Lehmann [13]; Patterson [18];
Dudewicz [6]; Rizvi and Sobel [22]; Bartlett and G_ovindara-julu {43;
Puri and Puri [20, 21]; and McDonald [15].

The present paper deals with three classes of nonrandomized distribu-
tion-free ranking and sclection procedures under the subset sclection
formulation. The main problem is to select a subset of k given populations
which contains the ‘best’ population with probability of ab least P*.
The random variables associated with a fixed population are assumed to
be independent identically distributed with a continuous distribution
function depending on a scalar parameter. This parameter is assumed to
stochastically order the k distribution functions, and the * best’ popula- ..
tion is the stochastically largest (smallest) population. The procedures :
presented depend on the individual observations of a given population
.only through their ranks in the combined sample. In other words, one is
not required to have at hand the actual observations from each popula-
tion; it suffices to have these ranks, which in some preference-type tests
or lost data problems may be the only information available to an
experimenter. :

Tn §2 the problem is formally stated and the three classes of rules are
defined. In § 3 the probability of malking a correct selection, i.e. selecting -
the population with the largest parameter, using these rules is investi-
gated. For all these classes this probability is shown to be a nondecreasing -
function in the largest parameter. For one of the classes this probability
is further shown to be nonincreasing in all parameters but the largest.
For the other two classes of rules, §4 provides bounds on the probability
of correct selection, which in turn provides conservative bounds on the }
constants needed for the actual implementation of these rules. Section 5 .
presents exact expressions for the means, variances and covariances of *
the statistics upon which our selection rules are based. In §6 some distri-
bution theory is presented which arises from consideration of one selec-
tion procedure based on the rank sums of each population. Section 7
discusses some properties of these selection rules, e.g. local optimality
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SELECTION PROCEDURES BASED ON RANKS 493
and monotonicity, and makes some comparison between rules of the
three classes in terms of the expected number of populations included in

the selected subset.

2 FORMULATION OF THE PROBLEM AND THREE CLASSES
OF RULES ‘
Let ..., be k(> 2) independent populations. The associated

crandom variables X ;5,7 = 1,..., 73 i = 1,..., k, arc assumed independent

and to have a continuous distribution F(x), where 0; belong to some
interval © on the real line. Suppose Fy(z) is a stochastically increasing
(SI) family of distributions, i.e.if 0, is less than 0,, then I (x) and F, ()
are distinct and Fy(x) < Lp, (%) for all z. Examples of such families of
distributions are: (1) any location parameter family,i.e. Fy(z)= F(z-0);

(2) any scale parameter family, i.e. Fy(z) = F(z[0),z > 0,0 > 0; (3) any '
family of distribution functions whose densities possess the monotone
Jikelihood ratio (or T'5,) property. Let I2;; denote the rank of the obser-
vation 2;; in the combined sample; i.e. if there are cxactly r observations
less than z;; then Ry; = 7+ 1. Theseranks are well-defined with probability
one, since the random variables are assumed to have a continuous distri-
bution. Let Z(1) < Z(2) € ... < Z(N) denote an ordered sample of size

k
N = 3 =, from any continuous distribution G, such that
i=1
—ow < alr)= EB[Z@)|G] <o (r=1,..,N).

With each of the random variables Xij associate the number a(£,;) and

define -
'H‘l: = n;l Z a(RiJ) (i = ]., veey k). (2.1)
i=1

Using the quantities H;, we wish to define procedures for selecting a
subset of the k& populations. Letting 8, denote the ¢th smallest unknown
parameter, we have

IP(i[l](x) Z FB[,](Q:) R -E][k](x) (Vx) - (2-2)

The population whose associated random variables have the distribu-
tion Fy, (x) will be called the best population. In case several populations
possess the largest parameter value 0y, one of them is tagged at random
and called the best. A ‘Correct Selection’ (CS) is said to occur if and only
if the best population is included in the selected subset. In the usual
subset selection problem one wishes to select a subset such that the
probability is at least equal to a preassigned constant P*¥ (1/k < P* < 1)
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that the sclected subset includes the best population. Mathematically,
for a given selection rule R,

inf P(CS|R) > P*, (2.3)
0

where Q={0=(0,...,0,):0,€0,i=1,2, ..., k}. (2.4)

The following three classes of selection procedures, which choose &
subset of the L given populations, and which depend on the given
distribution G, will be considered:

0(G): select miff I > max Hy—d (i =1,...,kd > 0), (2.5)
1<i<k :

Ry(@): select m iff H; > ¢! max H (G=1..,kc>1), (2.6)
1<k .

By(G):select miff H; > D (i=1,...,k ~0 <D < co). (2.7)

It should be noted that rules R,(G), R,(®), and Ry(Q) are equivalent if
k = 2. The proccdures B, (G) (and their randomized analogs) have been
suggested by Bartlett and Govindarajulu [4] for continuous distributions
differing by a location parameter. The procedure L2,(¢) will be studied in
this paper only for the case where 1f; > 0 for all i. The constants d and ¢
arc usually chosen to be as small as possible, D as large as possible, while
satisfying the probability requirement (2.3). The number of populations
included in the selected subset is a random variable which tales values 1
to k inclusive for rules R (G) and R,(@). The subset chosen by rule R4(&),
however, could possibly be empty.

Another class of selection rules which includes Bi(@) and R, (G) as
special cases, and depends on an index ¢ (1 < ¢ < o), can be defined as
follows when H; are nonnegative:

1k AL )
L,—_I_LIH,-) —~d, (i=1,..,kd, > 0). (2.8)
=
i

R(Q): select 7 iff H, > (

For ¢t = 1, this rule reduces to a rule of the form R4(@) since the sum of all
the H;is constant, and for ¢ = oo, B(Q) reduces to a rule of the type B (G).

Let 7(;) be the population associated with 6, the sth smallest ;. Then
the probability of making a correct selection using the procedures B (G),
v = 1,2,38, is given, respectively, by

P(Il(k) Z max I{(j)f— d) (7: = 1),
. 1<k

P(CS|R(®) = { P(H > ' max Hy) (i = 2), (2.9)
X 1<k

=

P(Hyy > D) (= 3).
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The corresponding rules for choosing a subset of the & populations
which contains the population with the smallest parameter, 7, are:

Ry(@): select m;iff If; € min H;+d" (F=1,...,k;d" > 0), (2.10)

1<i<k

R(G): select w; iff I < ¢’ min I} t=1,...,kc 21), (2.11)
1<j<k

Ry(G): select m;iff H; < D' (i =1,...,k; —o00 < D" <c0).

(2.12)

The constants d’, ¢’ and D’ are obtained as before. No more consideration
will be given to these three rules; results and methods developed for
R,(G), Ry(G) and Ry(G) will have an obvious analog for B (), B4(G) and
R3(G), respectively.

3 THE INFIMUM OF THE PROBABILITY OF A CORRECT
SELECTION

We start with a lemma, which is essentially the same as Lemma 4.2 in

Muhamunulu[14] and Lemma 2.1 in Alam and Rizvi[1] both being a

gencralization of a result of Lehmann {12, p. 112, no. 11] for more than

one dimension. We state our version without proof.

Lemma 3.1. Let X = (Xy, o0y gy eees Xpgs ooer Xm,,) be a vector valued

3 1n,?
l.

random variable of 21 n > 1) independent components with X ;; having the

distribution Fy(x),5 = 1,..., ;¢ = 1,..., k. Suppose Fy(z) is a SI family of
distributions. Let V' be a function of @11, «.., Typyy vvs Tpas <« o5 Tin,, Which, for
any fixed %, is @ nondecreasing (nonincreasing) function of x,, ..., Ty, when
the other components of x are held fized. Then Iqo[Y(X)] 15 a nondecreasing
(nonincreasing) function of 0.

Theorem 3.1. For rules R, (@), 1+ =1,2,3,p(R,(Q)), the probability of
including the population myy in the selected subset is nondecreasing in Oy

and, hence, infp,(Ry(G) = infpy(R(G)) (s=1..k) . (1)

whkere Qs = {eE.Q.: 0[31 = 6[8_1]} (3.2)
and Oy, is the least admissible value of 6.
Proof. We will prove it for the rule B (G). Let

1 ifHy> maxH(,-)-—d,}
J#s

%mw{ (3.3)

0 otherwise.
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Let B); be the rank of Xy;,7 = 1, ..., 1), and consider an observation
2y, for some fixed 1, 1 < I < nyy. As 2y, increases and the other observa-

tions remain fixed, cither:
(1) 2y, surpasscs first an @,y;, m + s, s0 Ly, increases by 1 and Ry,
decreases by 1; or
(2) w, surpasses firsb an a);, § # I, so By, increases by 1 and Ry,;
decereases by 1; or
(3) ayy, does not surpass any other observation, so all ranks remain the
same.

In all three cases, [y is nondecreasing and Hi;, j + s, is nonincreasing
and hence so is max 7 ;5. Therefore, V' ,(x) is a nondecreasing function of
i+s .
Ty J=1,...,n. By Lemma 3.1, F,[¥(X)] = p,(R)(G)) is a non-
decreasing function of 0. A similar argument proves the result for B,(G)
and 1,(G).
In particular, for s = k, Equation (3.1) can be written as

inf P(CS|R(@)) = inf P(CS|R,(&)). (3.4)
0 Qp
Remark. If I, in (2.1) is redefined to be
Hf = n3t % Z(Ry;)
i=1

and rules Bf(@), Ri(G) and R} (Q) are defined by (2.5), (2.6) and (2.7)
with H; replaced by Hf, ¢ = 1, ..., k, then Theorem 3.1 holds with R,(G)
replaced by 1§ (G). Thus, Theorem 3.1 is valid for randomized, as well as
nonrandomized, selection procedures.

In the case of By(G) we can say more on the infimum of the probability
of a correct selection.

Theorem 3.2. For the procedure Ry(@),

inf P(CS|By(G)) = inf P(CS|R,(®)), (3.5)
0 Q2 .
where Qy={0eQ: 0y = ... = Oy} (3'.6)‘ '
' 1 ifHy>D
Proof. Let ¥(X) =
_ 0 otherwise.

By an argument similar to the one employed in the proof of Theorem 3.1,
we have that Zg[¥'(X)] is a nondecreasing function of 6, and a non-
increasing function of 6z, j = 1, ..., k~ 1. This completes the proof.
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Tor 0 € Q, the quantity B(CS|E,(¢)), ¢ = 1,2, 3 is independent of the
common underlying distribution, Ij(x). In other words, the distribution
of the statistics max [[;— H; or II;, or any other statistics involving H;

1<k
does not depend on Fy(x). It is in this sense that the procedures of this
paper arc distribution-free.

From Theorem 3.1, if k = 2, the probability of a correet sclection using
either rule R,(@) or Ly(¢) is minimized when the two populations are
identically distributed. The same result is trucina slippage configuration,
i.c. if Oy = ... = Oy_y then the probability of a correct selection is
minimized when Oy = O = ... = O '

It should be pointed out that a thcorem similar to Theorem 3.2
involving B(G) does not hold in general. This fact is established -
by means of a counterexample constructed by Rizvi and Wood-
worth [23] using distributions having two finite disjoint intervals for
their supports and lacking the MLR property. McDonald [15] uscs the
same type of distributions to show that for k& = 3, P(CS|R,(G')) nced not
be monotonic in ). The main difficulty arises out of the fact that the
statistics [, are not independent.

We will next obtain bounds on P(CS|Ry(G)), s = 1,2, before investi-
gating further the rule By(G).

4 BOUNDS ON P(CS|R/(@)),:= 1,2
We will assume thatn; = n,7 = 1, ..., k. First considerrule B,(G). We ha,ve

H =233 a(Ry) (=10 k) (4.1)°
i=1
It is easy to see that
k—1 N
(k— 1)_1 Z II(’-) < max H(j) < n1 ) E a(r). (42)
i=1 1<i<k~1 r=N-n+l

Using the inequalities (4.2) in the relation

P(CSIR]_(G)) = P(H(k) Z max H(]-)—d),
- 1 j

<jgk—1
we obtain

P (HW a3 a(r)—-d) < P(CS|By(@))

r=N-—-n+l

k—1
< P(I{(k) P (k—— 1)_1 2 I‘I(j)_d) . (43)
j=1 -
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N k
Letting X a(r) = 4, it follows that ¥ H; = 4/n, a constant. Using
r=1 j=1

this relation in (4.3), and defining
u(d, k,n) = [4 —ud(k—1)]/nk, (4.4)
N
v(d,k,n)y =071 3 alr)-d, (4.5)
r=N-n+1l
wo have P(Hyy > v) < P(CS|R(Q)) < P(Hyy > u), (4.6)
and hence
inf P(Hy, > v) < inf P(CS|R(G)) < inf P(Hy > u). (4.7)
0 o Q

For the rule By(G), we get a corresponding expression

inf P(Hyy > ') < inf P(CS|Ry(®)) < inf P(Hyy > w'),  (4.8)
0 0 n

where w'(d, k,n) = n 141+ c(k—1)]1 (4.9)
N .
and v(d, k) = (ne)t 3 a(r). (£.10)
r=N—n-t1

JFrom Theorem 3.2, we know that the infima over Q of expressions of
the form P(H;) > K) are attained when 0y = ... = 0.
For the particular case where a(r) = r, we have

nH; = % R, =T, say. (4.11)
j=1

The T} are the rank-sum statistics, and in this case we denote the selection
rules Z;(() by simply R,. The expressions given above take the form

A = N(N+1)/2, (4.12)
and g‘, a(r) =n(2N —n+1)/2. (4.13)
r=N-n+1 :
Thus, equations (4.4), (4.5), (4.9) and (4.10) reduce to
. wu(d, k,n) = (N +1)/2—d(k — 1)k,  (414)
v(d,k,n) = CN—-n+1)[/2—d, (4.15)
w'(d, kyn) = k(N + 1)/[2 + 26(k— 1)], (4.16)
v'(d, k, n) = (2N —n+1)/2c. (4.17)

In the special case a(r) = r a more useful form of the lower bound
appearing in (4.7) is given in the next theorem.
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Theorem 4.1. If U is the Mann—W hitney stalistic associaled with samples
of size n and (k—1)n laken from identically distributed populations, then
in the case where a{r) = 7,

inf P(CS|R,) > P(U < nd). (4.18)
Q

Proof. We first recall that the Mann-Whitney U statistic, calculated from
the samples zy, ..., %, and ¥y, .., Yy of sizes p and ¢ from two independent
populations, is the number of times an z; precedes a y;. If 7}, denotes the
ranl-sum of the &’s in the combined sample, then U and 1 arc related by

U+1T, = pg+pp+1)2. (4.19)
In our present case with samples from & populations, we need to evaluate
P(Hg, > v) when all the populations are identical. Considering whether
the observations came from the 7y, or any one of the rest, we have from
(4.7), (4.14) and (4.19) with p = nand ¢ = (k—1)n,
inf P(CS|R,) = P(T4) > nv)
Q
= P(U < n2(k—1)+n{n+1)/2—nv)
= P(U < nd). (4.20)
A similar theorem holds for rule B,(G). '
k
Since 3, H; = 4A/n, we see that
S
’ max II; > A/nk. (4.21)

1<i<k
Hence, a sufficient, but not necessary, condition for the selection rule
R4(G) to select a nonempty subset is that P* be sufficiently large so that

D < A[N. (4.22)

For large n, this sufficiency condition for rule Ry(@) is satisfied if P* > 3.
For rule Ry, i.e. when a(r) = 7, the condition (4.22) is D < (N +1)/2. As
an example, with & = 3, n = 5 the sufficient condition D < 8 is satisfied
for P* > 0-523 and for such values a nonempty subset will be selected.

The evaluation of the constants D = D(k, n, P*) for the rule R, can be
effected as follows:

P* < P(T, > Dn) = P(U < n2(k—3)—n(D—1})), (4.23)

using (4.19) and considering all populations identically distributed.
Hence, D is the largest integer satisfying the inequality (4.23). The
‘Mann—Whitney U-statistic has been well-tabulated by Milton [16] and
others.
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5 MOMENTS OF THE H;
T this scetion we will derive the means, variances and covariances of the
II; assuming the independent random variables X,; have the continuous
distribution Fy@), j =1, ..., ¢ = 1,..., k. Let p® . be the prob-
ability that the =, obsclva,tlons from the population #; have ranks
1 ++esJng int the combined sample. Then,

B(H) =n? X (@) e bt 6= L) (B)

cerdngd

where the summation is over all possible subsets of size n, in the set of
integers 1 through N. Alternatively,

E(H,) = ;1§1a(1)p§f> G=1,...k), (5.2)

where p{? is the probability that any one observation from 7, hasrank Zin

the combined sample.
Let pf? be the probability that any two of the observations from =,

lL,m
have ranks ! and m in the combined sample. Then,

EHY) =n3® X [a(gy) + - +a(f, ) ]2 P52 ot (5.3)
13 eaesdag
Alternatively, :
N . N N
E(H}) = n7? [ z(a@))o?+2% % a(l)a(m) rzn]. (5.4)
=1 I=1m={+1

Hence,

N
wvar () = 3 @OF20 23 5 ahatmpll— (3 00)

N . .
== (@) pf(1 - ”) +2 21 Zﬂa(l) a(m) (pfi — i"PR)-
(5.5)
In a similar manner one can show that for ¢ # 7,
;75 COV( H) = 21 L (l(l) a’(m) (p?n{) ”‘P}i)Pg)), (56)

l=1m=1

where p{%J) is the probability that one observation from population 7r; has
rank [ and one observation from 7r; has rank m. Note that p{i” = 0,
t£75,l=1,..,N.

As we see above the computation of these morments depends upon the
evaluation of p{?, p{%, and p{? To evaluate p{”, choose one of the obser-

vations from 7; to have rank . Ranks 1,2,...,I—1 aro then assumed by
- 1~ 1of the remaining N — 1 observations. These I — 1 observations consist
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of r; observations from 71,5 = 1,..., %, subject to the conditions

r; € ny—1,

0< _
B: {07 <ny, G=1,..,k 7% (6.7)

7

vyt b =1-1,

. —1 I . — —
Thus, 17?) _ %;ni (77@. )f{ 8 (777:1) F;;‘l,v;.j_rj} Fri rrri-1g F, (5.8)

T /I =1y
R

where F; = Ii{x), F]- = 1-Fx),j = 1,.... k. Taking the summation in-

sidc the integral yiclds

P = nifAS“(x)dFi(x) G=1,..,k1=1,..,N) (5.9)

. 1
where  AP(@) =3 ("
B 7;

1

— k . . -
) Fupriri-t { II (7:7) nglt’;”i—fj}. (5.10)

i=1 \7;
j*i

In o similar fashion we can obtain expressions for the probabilities
P, and pff,? in terms of the given distributions and sample sizes.
In the special cases where Iy(v) = F(x)andn; = n,1 =1, ..., k, wehave:

A

E(H) = N—ll)%'a(l) = AN, (5.11)
=1
nivar (H) = k23(k—-1) Izv‘, (a(1))?
=1

: N N
—ok-DEAN -1 Y all)a(m), (5.12)

] S l=1lm=I(+1

a2 cov (H;, Hj) ='k—1(N_1)—1§' S a)alm)— k24> (i +3). (5.13)
’ I1=1m=1
l+m

If, in addition, a{l) = 1,1 =1, ..., N,-then nH, = Ty, and, hence,

BE(T) = (N +1)[2, (5.14)
var (T}) = n¥(k— 1) (N +1)/12, (5.15)
cov(T,T) = —wN+D12 G+j),  (516)

which agree with the known expressions for this special case.
Asymptotic forms for the moments of H; have been given by Puri[19].
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6 THE EXACT AND ASYMPTOTIC DISTRIBUTION OF
max 7} —T; FOR IDENTICALLY DISTRIBUTED

1<5<k

POPULATIONS
In this scction the random variables Xyg=LL.,n5v=1,..,Fk aro
assunmced independent identically distributed with a continuous distribu-
tion JF(x). In this casc the [f; are exchangeable random variables if
n; =n,t = 1,...,k It should be noted that in a slippage-type configura-
tion (sce § 3), the constants required to implement rules £,(¢), ¢ = 1, 2, 3,
arodetermined from the basic probability requirement P(CS|R,({)) = P
calculated with identically distributed populations. But the exact distri-

butions of the relevant statistics, e.g. maxIi;— M, are not known for
1<igk

the general scores a(l;;). However, in the case a(R;) = &;; the pro-
cedures 2;(() reduce to the rank sum procedures R, ¢+ = 1,2,3. The

distribution of the statistic max7;—7), both exact and asymptotic,
1<k

is somewhat easier to obtain than the corresponding distribution of the

statistic max 7}/7;. For some results concerning the latter statistic,
1<k

seec McDonald [15]. Our concern here will be the former which is tanta-
mount to considering rule [2,. Corresponding to rule &2, is the statistic 77,
the distribution of which has been well-treated elsewhere.

For k = 2, the rules B;, B, and R, are all equivalent. The constants
required to implement these rules are obtained in a manner as described
at the end of § 4. Some of these values are given in Table 2 where they are
compared with asymptotic solutions.

Now supposc &k = 3 and that we have ﬁi obscrvations from the ith
population. The quantitics 7} can be obtained if each obscrvation in the
ordered sample is replaced by an ¢ if it came from the 7th population.
Now one has only to consider a sequence of length Xn; consisting of
n,1’s, 7,2’s, and 74 3’s. Since the random wariables are identically distri-
buted, each of the ( Zn

Ny, g, Tg
Hence, to find P[7] > 1m.abx T;—m], it suffices to count the number of
j <

) different sequences are equally likely.

=

sequences which possess the attribute [T,— 7} < m,T;— 1) < m]. The
recursion formula presented here is of the same type as that given by
Odeh [17] in tabulating the distribution of the maximum rank sum. Let

S =n,+n,+n,, - (6.1)
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and define
N (1, Mg, g| Mgy M)
— number of sequences in which Ty —T; < 7, and Ty— T, < my.  (6.2)
The following symmetry holds:
N(ny, ng, 15| ma, my) = N{1g, g 7| Mg, My)- (6.3)
Then, by conditioning on the parent population of thoe last clement in &
scquence, the following recursion formula is obtained:
N (1, g, g| g, M) = N (1~ 1,70y, ng|my + 8, My +S)
+ N(ny, ng— 1, 05|my — 8, m3) + N (g, 70, 05— 1|mg, my—8), (6.4)
with the boundary conditions: .
(1) If for any ¢ > 2, m; < [n(n;+ 1) —ny (L + 28 —n,)]/2, then
N(ny, g, 05| Mg, M5} = 0.

(2) If for every & > 2, m; > [n(1 428 —n;) —ny(ny + 1)}/2, then

S
N{(ny, 0y, nalmzw my) = ( )

Ty Ngy 3

(3) N(0,7y, 7| 1My, M) = number of sequences of 7, 2’s and ng 3’s such
that S(S +1)/2—my < Ty < My, 8O
(a) if S(S+1)[2—my > My, N(0, ng, ng| Mg, M3) = 0,
() if my < mafny+1)/2, N(0, 25, 7| Mg, M) = 0,
(c) if mg < ng(ng+ 1)/2, N(0, ng, 0|1, m3) = 0,
(d) if (@) through (¢) do not hold, the term can be evaluated from a
Mann-Whitney table.

(4) N(ny, 0, n5|mg, m3) = number of sequences of 7,1’s and 7ny3’s
such that 7, > max {—m,, L(S(S + 1)[4 —my/2)} = M, where L(x) is the
smallest integer not less than z, so

(@) if M > ny(ng+ 205+ 1)[2, N(n,, 0, n5|my, m3) = 0,

(b) lf Ju' < 77/1(”1‘*‘ 1)/2, N(nl, 0, n3|m2, ms) = (f) s
1

(¢) if () and (b) fail to hold, the term can be evaluated from a
Mann-Whitney table.
(5) N(ny,ng, 0lmy,my) = N(ny, 0, ng|my, M), 50 condition (4) applies.

It follows from (6.3) that at an ‘equal 7, equal m; stage’, equation
(6.4) can be written as

N(n,n, n[m, m) = N(n—-1,n, 'nlm+ 3n,m+ 3n)

+2N(n,n—1,n|m~—3n,m). (6.5)
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In order to get P[7} > max T;—m] for values of m > 0, onc uses the
1<<3
following relation:

S -1
P72 max Tj—m] = N(n;, ny, ny|m, m)( . (6.6)
1:5753 Ny, Mgy My
A recursion formula similar to (6.4) can be written for an arbitrary
number of populations. The quantity N(n,n,n|m,m) was computed for
n=223,40;, m=0,1,...,2r% Using (6.6), P[7} > 1I‘I<12:LX T;—m] was
‘ <7D

then obtained to five decimal places, the fifth being rounded. These
computations are given in Table 1.

Asymptotically, we have the following theorem as a spe01a1 case of a
more general result applying to the statistics H; with populations not
necessarily identically distributed. The proof follows directly from
Puri[19] and is omitted.

Theorem 6.1. Let X;;,5 = 1,. ;oe=1,...,k, be independent identically
distribuled random variables wzth a contmuous distribution function. Then

P[T, > max T;—m] = on (D@ +m[2) 1 d(z)dx (m>0), (6.7)

1<k

where Q(+) and ¢(- ) are the cumulative distribution function and density of
a standard normal random variable, respectively, and

z = z(n, k) = n[k(nk+1)/12]% (6.8)

Integrals of the type appearing on the right-hand side of equation (6.7)
have been considered by Gupta [8]. Table 1 in [8] gives & values satisfying
the equation © d

f _ [O+hy2)] g(z)de = P (6.9)

" for P¥ = 0-99, 0-975, 0-95, 0-90, 0-75 and k = 2(1)51. If 4% denotes the

value of m based on the normal approximation, then from (6.9) one
obtains i = hnfk(nk+1)/6]3, _ (6.10)
% being the entry of Table 1 of [8] corresponding to the given P* and k.

Eemarks. (1) By using (6.10) one can obtain an asymptotic value of i (and,
hence, d) inrule £, when a slippage configuration in Q exists (as shown in
§3) for k£ = 2(1)51 and for any common sample size n, = large. (2) In
general % will not be an integer. So for the solution the smallest integer
not less than 7, L(7i) should be taken. This method was used to calculate
an asymptotic value of m for k = 2, 3; n = 2(1)25 and P* = 0-99, 0-975,



Table 1. For @ given n, the left colwmn is the value N(n,n,n|m,m), i.c. the
number of sequences in which max T;—1; < m; the right column is the
1<5<3
quantity P(T, > max T;—m). The rank sums T.,i=1,2,3 are based
1<5<3
on random variables X5 =1,...,n5¢=1,2,3, which are independent

identically distribuled

n =2 n =3 n=4 n=25

r N N lonmn N — N

0 38 042222 600 035714 12,268  0-35405 262,686  0-31712
1 44  0-48889 702 0-417%6 13,500  0-38061 283,426  0-37453
2 54 0-60000 808  0-48005 14,958 0-43160 305,560 0-40378
3 2 0-G8889 a12  0-54286 16,322 047105 327,738  0-43308
4 70 0-777718 1,004 059762 17,734 0-51180 349,236 0-46149
b .76 0-84444 1,112 0-66190 19,162 0-55302 372,410 0-49211

6 84 0-93333 1,206 0-71786 20,588  0-59417 394,770 0-52166
ki 88 0-97778 1,204 0-77024¢ 21,884 0-63157 416,774 0-55074
8 90 1-00000 1,374 0-81786 23,274 0-67169 439,432 0-580068
9 1,438  0-85505 24,500 0-70707 461,534 0-60988
10 1,490 0-88690 25,708 0-74193 482,468 0-63765
11 1,544 0-91905 26,846 0-77478 504,104 0-66614
12 i 1,584 0-94286 27,956 0-80681 524,454 0-69303
13 1,618 0-96309 28,906 0-83423 543,924 0-71876
14 1,644 0-97857 29,842  0-86124 563,152 0-74417
16 1,664 0-99048 30,616 0-88338 581,280 G-76812
16 1,674 0-99643 31,336 0-90436 598,016 0-79024
17 1,678 0-99881L 31,952 0-92214 (14,640 0-81220
18 1,680 1-00000 32,496 0-93784 629,818 0-§3226
i9 32,936 0-95053 643,940  0-85092
20 33,338 0-96214 657,292  0-8GS837
21 33,644 0-97097 609,588 0-88481
22 33,912 0-97870 630,548  0-89929
23 34,126 0-98488 690,952 0-91304
24 34,296 0-98978 700,132  0-92520
26 34,424 0-99348 708,408 0-93611
26 ) 34,518 0-99619 715,862 0-94596
21 34,574 0-99781 722,454 0-95467
28 : . 34,614 -0-99896 725,098 0-96213
29 : 34,634 0-99954 733,120 0-96877
30 ‘ 34,644 0-99983 737,408 0-97443
31 34,648 0-99994 741,054 0-97925

2 34,650 1-00000 744,192 0-08339
33 i ‘ 746,538  0-95689
34 749,008 0-98976
35 750,826 © 0-99216
36 752,296  0-99411
37 753,464 0-99563
38 . 754,402  0-996S89
39 . 755,130  0-99785
40 ' 755,660 0-99855
41 756,048  0-99900
42 756,316 0-99942
43 756,496 0-99966
41 756,608 0-09980
45 . 756,650  0-00989
46 756,720  0-99995
47 756,740  0-99998
48 756,750  0-99999
49 756,764 0-99999

50 : 766,766 1-060000
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0-95, 0-90, 0-75. These results are presented in Table 2. Exact m values
arc given in parentheses where they are known. In most cases where tho
asymptotic valuc and exact value do not agree, the asymptotic valuc is
larger and, hence, a conservative constant for the rule ;. From the
values given in this table, it is scen that —1 < L{#)—m < 3 for & = 2,
and 0 € L(m)—m < 3 fork = 3.

7 REMARKS ON THE PROPERTIES OF THE SELECTION
RULES

Expected size of the selected subset

All the selection rules discussed in this paper select a subset of size S,
where § is an integer-valued random variable. Since R,() and B,(G)

Table 2. For given values of k, n, P¥*, this table gives the smallest integer m

based on asymptotic theory which salisfies P[T), > lnjgi T;—m] > P*. The
SISK

rank sums T;,1 = 1, ..., k, are based on random variables X 1,5 = 1,...,n;
1= 1,..., k, whick are independent identically distributed. Exact m values,
where known, are given in parentheses

P*
n 0-99 0975 0-95 0-90 0-75
k=2
2 7 6 5 4 22
31 - 9 8 (7) 6 (5) 1(3)
4 17 I (14) 12 (12 9 (8) 5(4)
5 23 (21) 19 (19) 16.(15) 13 (13) 747
6 30 (28) 2 (24) 21 (20) 17 (16) 9 (8)
7 37 (35) 3 (31) 26 (25) 21 (21) 11 (1)
8 45 (44) 38 (36) 32 (32) 25 (24) 13 (14)
9 53 (51) 45 (45) 38 (37) 30 (29) 16 {15)
10 62 (60) 52 (52) 44 (44) 34 (34) 18 (18)
11 71 {69) 60 (59) 51 (51) 40 (39) 21
12 - 81 (30) 68 (68) 57 (58) 45 (44) 24
13 91 (89) 77 (17) 65 (65) 50 (51) 27
14 102 (100) 86 (S4) 72 (12) 56 (56) 30
15 113 (111) 95 (95) 80 (79) 62 (63) 33
- 16 - 124 (122) 105 (104) 88 (88) 69 (68) 36
17 - 136 (133) 114 (113) 96 (95) 75 (15) 40
18 - 148 (146) 124 (124) 104 (104) 82 (82) 43
19 160 (157) 135 (133) - 113 (113) $8 (89) 47
20 172 (170) 145 (144) 122 (122) 95 (96) 50
21 185 156 131 102 b4
22 199 168 141 110 58
23 212 179 160 117 62
24 226 191 160 125 66

25 - 240 203 170 133 70
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Table 2 (cont.)

E=3
9 10 (8) 9 (7) & {7) 6 (6) 4 (4)
3 18 (15) 15 (14) 13 (13) L1 (1) 77
4 27 (25) 23 (22) 20 (19) 17 (16) 11 (11)
5 37 (30) 32 (31) 28 (27) 23 (23) 15 (16)
6 48 41 36 30 19
7 60 52 45 37 24
8 73 63 55 45 29
9 87 75 65 64 35
10 101 88 76 63 40
11 117 101 87 72 46
12 133 115 99 82 53
13 149 129 112 92 59
14 167 144 125 103 66
15 185 160 138 114 73
16 203 176 162 125 81
17 229 192 167 137 88
18 249 209 181 149 96
19 262 227 197 162 104
20 283 245 212 175 112
21 304 263 228 188 121
22 326 282 244 201 130
23 349 301 261 215 138
24 371 321 278 229 148
25 395 341 296 244 157

select non-empty subsets, S in these cases tales values 1 through £. As
pointed out in §4, RBy(G) under certain conditions will select a non-empty
subset; but generally for By(G), S takes values 0 through &. For all these
rules: "
E(8) = E(S|B(G)) = J_21}0,-(131-(6*’))

k-1
=IP(CS|R (@) + ;E'x (B (G)), (7.1)

where p;(R,(@)) is as defined in Theorem 3.1. In general, it is dlﬂicult to
obtain the exact expressions for E(S). But asymptotic expressions can be
obtained. We consider R, and R, Assuming n; = =, for large =, the
distribution of T/ = (T, ..., T},) is approximately a multivariate normal
distribution with mean vector g = (4;, .-, #;) and variance-covariance
matrix %, = (07;), where

p:=B(T), o2=var(Ty) and oy =cov(T,T)); 4,5=1 ...k t+].
Let ' W = AT, (7.2)




508 SHANTI S. GUPTA & GARY C. MCDONALD
where 4 is a (k1) x k matrix given by

1 0 0 ... 0 -1

A=70 1 0 ... 0 -1 . (7.3)
0 0 0 ... 1 -1
Thus W,=1,—-T, (G=1,....k=-1). (7.4)

Then, for large n, W' = (W, ...,WW,_;) is approximately distributed as
a multivariate normal random vector with mean vector given by
iy = 4 pp and the variance-covariance matrix X, = 4 S, 4",

Now, forv = 1, ..., k, we define

Wy =4 T, (7.5)

where 4, is the (k — 1) x I matrix obtained from matrix 4 defined in (7.3)

by moving column j to column j+1, j = v,v+1,...,k—1 and replacing
column v by column %. The matrix 4, is 4. Thus,

Wi=T,—T, (G=1,..,k<+v). (7.6)

The random vector W” is asymptotically distributed as a multivariate
normal random vector with mean vector u,= 4, w, and variance-
covariance matrix X, = 4,2, 4, Hence, we can state

Theorem 1.1. If X, is non-singular for v = 1, ..., k; then

k d d k
E(S|R,) = ,Zleyf_ L exp[—(w’— ) Z7H (W — p,)/2] I du,

T
(1.7)
where K, = [(2m)s2 | Z|1-%. For R,, we have
14
@S|~ % O —D)js). (7.8)

A similar result can be derived for rule R,.

Some Monte Carlo results

In order to compare the performance of selection rules &, and Rj, some
Monte Carlo studies were made. Normal and logistic distributions with
variance unity were studied for different configurations of their means.
Fork = 3and n = 2, 3, 4, these configurations were taken to be (0-1, 0, 0),
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(0-2,0,0), (0-5,0,0), (1-0,0, 0), (2:0,0,0), (0-1,0-1,0), (0-2,0-2,0),
(0-5,0-5,0), (1-0,1-0,0), (2-0,2:0,0). The number of simulations were

- 500 or 1000. The logistic distribution was choscn because equally spaced

scores such as ranks yicld locally most powerful tests for the location

parameter of this distribution. Since there are only a finitc number of

different possible d and D values for rules B and Iy, there are also only a

finite number of values for inf P(CS|R,) and inf P(CS|E,); therefore, in
Q o

general, it is not possible to determine d and D such that both infima
yicld the same P*. In such cases there is no definite way of comparing
these two rules. For our purposes d and D were determined such that they
viclded approximately the same P* in the case of identical distributions.
Then the ratio of LP(CS|R) and E(S|R) was computed for both rules B,
and R,. The bigger ratio for a rule indicates it to be better than the other.
For example, for k = 3,n = 2, then D = 2and d = 3 give the probability
14/15 for the identical case. Using the configuration (0-1,0,0), we find
that for the normal mecans the two ratios are 1-012 for R, and 1-005 for
R, so that R, seems slightly better than R;. Using the configuration
(0-5,0,0), it was found that R, was slightly better than R,; the ratios
being 1-045 for B, and 1-049 for Ii,.

Our Monte Carlo studies showed no significant uniform superiority of
cither of these procedures. However, By scemed to porform slightly better
than R, in the cases where the two highest parameters are equal. No
difference in the performance of B; and [; was noticeable when we
changed from logistic to normal populations. In all cases the frequency
of correct selections for B; was higher than the theoretical value exactly
calculated for the identical distributions. Thus, there was no indication
that the infimum of the probability of a correct selection does not take
place when all populations are identically distributed as normal or
logistic distributions under shift in location.

Local optimality and monotonicity of B,

If we use the scores which lead to locally most powerful rank tests of the
hypothesis & = (0,0, ...,0) against 8 = a(0;,0,,...,0;) (sece, Hajék and
Sidalk[11]), then rules of the type R, have the property that the prob-
ability of a corrcct sclection increases fastest among all rules based on
ranks in the neighborhood of 8 = (0,0, ..., 0). For example, the locally
most powerful rank test for shift in location of the logistic distribution is
based on rank sums 7% which for the two-sample case is the Wilcoxon or
Mann-Whitney statistic. Hence, the selection rule 2; based on rank sums




510 SHANTI S. GUPTA & GARY C. MCDONALD

is locally optimum in the above sense, provided the underlying distribu-
tions are logistic differing only in their location Pparameters. This result
has been shown by X. Nagel.

A sclection rule is called monotone if 0, > 0; implics that the popula-
tion with parameter 0; is selected with larger probability than that with
paramcter 0, It can be shown that L, is monotone if one uses non-
decreasing scores and if Fjy(x) is a stochastically Increasing family of
distributions.

Asymptotic relative efficiency (ARE) of the rules R, B, and R,

- relative to a normal means procedure R

We consider here the case of two populations, and so the rules B, B,and -
B, are equivalent. Hence, we will be concerned with £, and B here.
Suppose 7, and 7, are two independent normal populations with common
variance unity. Let the means of 7y and 7 be 0 and 0(> 0), respectively.,
A sample of size » is drawn from each population. Based on

Xipd=1,m (i=1,2),

let 7} and X be the rank sum and sample mean, respectively, from s,
¢ = 1,2. The procedures to be compared are:

R, : select 7, iff 7} > maxT;—nd (d > 0), (7.9)
j=12

B: select m;iff X; > max X;—b (b > 0). (7.10)
i=1,2

The constants d and b are chosen so that the probability of a correct
selection is bounded below by a given number P*, 3 < P¥ < 1, for all 0;

Le. 11)15 P(my is selected) > P*. (7.11)
Procedure R has been investigated by Gupta[i0]. Let S* denote the
number of nonbest populations in the selected subset. Since
| To+Tp=n(2n+1),
L(S*|R,) = P(Toy > Tiy—nd)
= P{o(Tly—p) > — o {p—n(2n+1-d)2]}
~ Qo u—n(2n+1—d)2]), (7.12)

t On subset selection rules with certain optimality properties. Department of
Statistics, Purdue University. Mimeograph Series No. 222 (1970).
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where &= E(Ty) = n(3n+ 1)/2 —n20(02-}), (7.13)

o = var (T)
= n? [(I)(O:Z“-i) +2(n— ].)fw Ox+0) p(x)dz— (2n—1) (1)2(02‘5)] .

(7.14)

These moments can be obtained from §5. For & = 2 moment expressions
are also given in Wilks [24, p. 460]. Now set the right-hand side of (7.12)
cqual to ¢ > 0 and obtain

p=nln+1-d)/2 = oc@e). (7.15)

From Theorera 3.1, the appropriate value of d is obtained from (7.11)

when 0 = 0. Equation (6.10) provides a large sample solution for d; _

namely, d ~ hynt, (7.16)

where %, is independent of z and 6. Actually 2, = h(2/3)}, where % is the
appropriate value obtained from Gupta [8]. Using (7.13), (7.14) and (7.16)
in (7.15) and simplifying yields -

n+hynt— 200 02-1)

= 201(c) [(p(az—é) +2(n— l)f“D Dz +0) p(z)dx— (2n— 1) ®2(02—5’)} %,

(7.17)

Or upon rearrangement,

21— 20(0271)) + byt = 20-1(e) (20 B2(0) + R(0))}, (7.18)

where B0) = fw Oz + 0) ¢(x) dx — D2(O2-E), (7.19)

R(0) = D(02-1)—2 f " 0%+ 0) Pla) d+ D02, (7.20)

Forlarge n, the R(0) term in (7.18) can be ignored and then that equation
simplifies to
nt & [28Q-1(c) B(6) — A,] [1 —20(02-)]-1. (7.21)

Thus, % = np (€) & [220-Y(e) BO) — k]2 [1 — 20 (62-1)]2. (7.22)
Now consider rule R:

E(8*|R) = P[Xy) > Xp—b] = O[(b—0) (n/2)}]. (7.23)
Again, b is obtained from (7.11) when 6 = 0 and is given by

b = hy(3/n)}. (7.24)

o
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Sctting the right-hand side of (7.23) equal to ¢ and using (7.24) yields

_ n = npe) = [(B4, — 28D -1(¢))/072. (7.25)
The asymptotic relative cfficiency of L, rclative to R is defined to be
ARE(R;, B; 0) = lima [ng(c)/ny (€)]. (7.26)
Ifrom cquations (7.22) and (7.25), e
ARLE(E,, E; 0) = {[20(02-4)— 1]/20B(0)}~ (7.27)
If 0 is allowed to decrease to 0, then
lim ARE(F,, 5 0) = 3/ = 0-9549. (7.28)

Asymptotic relative efficiency of R, relative to Gupta’s gamma
procedure R’
Let my, 77, be two independent exponential populations with independent
associated random variables X ;.5 = 1,...,m; ¢ = 1,2. The density fune-
tion of X ; is
(07 % (x> 0,i=1,2), ‘
filz) = 1 } (7.29)
0

(z <0),
where 1 = 0 < O = 6. »

Procedure R, is given by (2.6) with 7} in the place of H, and Procedure
R is given by

R': select m,iff X; > b1 mzlu; X; ®=1). - (7.80)
r=1i,

The constants ¢ and b are chosen so that
inf P(my, is selected) > P*. (7.31)
0>1

Procedure B has been studied by Gupta [9]. Computing = 1,(€) and n5.(€)
as before in the case of B, and R, we obtain

np,(€) % 4(0+1)2 (0— 1)2 [6~2Q1(P%)— B(0) dYe)]2  (7.32)
and np(€) = 2(log 6)2[D~1(e) — -1 P*)]2, (7.33)
where . -
BY0) = 1—2(1+0) 1+ (20+ 1)1+ 0(2+6)* — 26%(1 +0)-2. (7.34)
Hence, ‘ .
ARE(R,, R'; 0) = lifr; [np(e)/ng,(e)] = [(F—1)[4(0+1) B(ﬁ) log 672

(7.35)
Letting 6 decrease to 1 yields

lim ARE(R,, B'; 6) = 2. (7.36)
01
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