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1. Introduction and Summary

Gupta (1966) defined a class of selection procedures and considered
some of its properties. Some additional results conéerning the properties
of this class of procedures were obtained by Gupta and Panchapakesan (1968b).
In the present paper we define a class of selection procedures, which is a
natural generalization of the class considered by Gupta (1966). Let "l"";"k
be k continuous populations. Let. A be an interval on the real line. As-

sociated with ni is the random varisble Xi with distribution function Fx ’
i
xi € Ay i=l,¢0.,ks It is assumed that the functional forms of Fk are known,
i
but the values of A; are unknown. Let M 1) < M o) L eee £ M ] be the or-

dered xi's. The correct pairing of the ordered and the unordered A's is not

known. Based on the observations xl

a class of procedures for selecting a non-empty subset of the k populations

'EERFE R from Myseee,m, we want to define

such that the probability is at least P*(%-< P* < 1) that the population as-
sociated with x{k](kil]) is included in the selected subset. If there are
more than one population with )= x[k](xi= x[l]), then it is assumed that

one of them is tagged as the 'best'. If we let CS stand for a correct selec-
tion, i.e., the selection of a subset which includes the best population and
P(CSIR) denote the probability of a.correct selection using the procedure R,

then the probability requirement stated above can be written

*
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(1.1) inf P(CS|R) > P¥,
Q

where Q is the space of all k-tupels (Fk seee,F. ). The requirement (1.1)

will be referred to as the basic probabili%y requiﬁement or the P¥-condition.
Section 2 defines a class of procedures Rh for selecting the population
assoclated with x{k] and deals with the expression for the probability of a
correct selection. Section 3 contains a theorem which is a generalization
of a result of Iehmann and uses it to obtain a sufficient condition for the
probability of a correct selection when Ll= see = xk= A to be nondecreasing
(increasing) in A. This result provides the infimum of the probability of a
correct selection over f. Also some special cases of interest are discussed.
Some properties of the procedure Rh are investigated in Section 4. A suffi-
cient condition is obtained for the supremum of the expected size of the sﬁb-
set selected to take plgce when hl= cee = kk and it is shown that this con-
dition implies the condition obtained in Section 3 for the monotonicity of
the probability of a correct selection when the A's are equal. Specific re-
sults are obtained in some special cases. Also shown is the fact that the
same sufficient condition assures that the supremum of the expected number
of non-best populations included in the selected subset takes place when the
parameters are equal. Section 5 defines a class of procedures RH for the
selection of the population associated with x[l] and briefly discusses the
infimum of the probability of a correct selection and the suprema of the ex-
pected size of the selected subset and the expected number of non-best popu-
lations in the selected subset. Section 6 is concerned with selection pro-
cedures for restricted families of distributions. On the space of probabil-

ity distributions a partial ordering (h-ordering) is defined. The star-

shaped and tail orderings are shown to be particular cases of this ordering.



The problem of selecting a subset containing the stochastically largest
(assumed to exist) among k populations Fi, i=l,...,k, is discussed when
the forms of the Fi are not kanown and each Fi is h-ordered with respect to
& known distribution G. It is shown that some of the procedures discussed

by Barlow and Gupta (1969) fall under this case for particular choices of h.

2. The Class of Procedures Rh and the Probebility of a Correct Selection

Iet h=h ce [1,2), @ e l0,o) be a function defined on the real
J
line satisfying the following properties: For every real X,
(1) hc’d(x) > x
(2.1) (1) By ox) = x
(iii) h, d(x) is continuous in c and 4
3

(iv) h (x) t ®as d=-= andfor xh (x)t > as c=-w, x £ 0.
c,d c,d

Some of the functions satisfying these properties that will be of intérest
to us are cx, x+d and cx+d.

Now we define a class of procedures Rh as follows.

R .

X Include m, in the selected subset iff

(2.2) h(xi) > max X ..
1<r<k

f

Because of (2.1)-(i), the procedure R, will select a non-empty subset.
Denoting the random variable associated with x[j] by X(j) and its cdf

by F[j] = Fx[j] (x), we have

(2.3) P(cish) P(h(X(k)) > X(p)s r=l,...,k-1)

o k-1

IR SICONLNIO!
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We now assume that the distributions are stochastically increasing in .

To put it more specifically, we assume that, for A < A', F. and F

) 1 are

distinct and

(2.4) Fh(x) > F)v,(x) for all x.
Then
® k-l

(2.5) P(cs|R,) 2‘[_& FE{k] (n(x)) aF ) (x).
Hence
(2.6) inf P(CS|R,) = inf ¥(A;c,d,k),

9} AeEA
where
(2.7) ¥(nse,ak) = [ B (a(x) aF, (x)

-0

and Q= {Alr'= (’“1""’)‘1:)’ Aj€h; i=1,...,k}. Because of (2.1)-(i) and (ii),

we get

(2.8) ¥(r;c,d,k) Z%

and

(2.9) ¥(A;1,0,k) = & .

Further (2.1)-(iii) and (iv) yield



(2.10) lim ¥(A; c,d,k) = 1
fo )

and/or

(2.11) lim ¥(r;c,d,k) = l-Fx(O).
Q0

If (2.10) holds, then for given A,c and k, we can choose d such that the
P¥-condition is satisfied, since % < P¥ < 1. If (2.11) holds, then for given

A, d and k we can find ¢ +to satisfy the P¥-condition provided that l-FX(O)EP*.
Since we can choose P¥ as close to 1 as we want, this would mean that we should
have FN(O) = 0, Hence if (2.11) holds but not (2.10), then the constants for
the procedure can be evaluated whatever P¥ e(%, 1) be only if the random

variables are non-negative.

3. A Sufficient Condition for the Monotonicity of ¥(\;c,d,k)

We.éfért with a result in Lehmann (1959, p. 112), which is stated below
without proof as
ILemma 3.1. Iet FO,Fl be two cumulative distribution functions on the real
line such that F, g FO(Fl is stochastically larger than FO), icee,
Fl(x) < Fo(x) for all x. Then EOY(X) < ElY(X) for any non-decreasing func-
tion Y. An immediate consequence of Lemma 3.1 is
Lemma 3.2. Let {Fh} be a family of distribution functions on the real line
which are stochastically increasing in X. Then ERY(X) is non-decreasing
in XA for any non-decreasing function VY.

In the following theorem, we want to obtain a more general result, which
gives a sufficient condition for EkY(x,x) to be non-decreasing in A.

Theorem 3.1l. Let {FX}’ AeA, be a family of continuous distributions on the

real line and Y(x,\) be a differentiable function in x and A, Then



EXY(X,X) is non-decreasing in A provided that

3(F, ¥
(3.1) 1SGa! 20
where
g% Fx(x) g% ¥(x,7)
3(F, ¥
(3‘2) a X,X)
3 2

and EX(Y(X,X)) is strictly increasing in A if strict inequality holds in
(3.1) on a set of positive measure.

Before we proceed with the proof of this theorem, we introduce some no-
tations and obtain some useful lemmas. Ve assume that F, for AeA has the

A
support I. Let

(3-3) A(M) = | ¥(x,n) aF, (x) = E (¥(X,0)).
T A A

Consider xl,xeeA such that xl < XE and define

2
(3.4) Ai(kl,xg) = II rglw(x,xr) dFXi(x), i=1,2
r#i
and
(3-5) B(rpsrg) = A (Mo2,) + A (M 500)e

Note that when xl = h2= As

(3.6) B(n,2) = 28(r).



Lemma 3.3. B(xl,x2) is non-decreasing in xl, when x2 is kept fixed, provided

that, for A, < A

1 2’

o) o) 0
(3.7) EXI Y(x,hl) fxg(x) - S Fxl(X) 3 Y(x,xz) >0 for all x

= L
where fx(x) = == Fx(x).

Proof. 1Integrating by parts, we obtain

' *
(3.8) Al(’“l”‘e) = F, (x) \y(x,xg)l_—f Fy (x) \f'(x,x2)dx
1 I "
where V¥'(x,\) = gax- ¥(x,\) and the asterisk in the first term indicates

that it is evaluated between the proper limits. However, we note that this

term will be independent of A Using (3.8) in (3.5), we obtain

lo

(3.9) B(xl,xe) = a term independent<xfXl+II{Y(x,xl)fX2(x)-Fkl(x)Y'(x,ke)}§X-
Hence
5} o) o)
(3.10) = B(As0,) = | [=— ¥(x,),) £, (%)= =—F  (x) ¥'(x,0,)} a&x
axl 1°%2 fI axl gt X2 okl Xl T2

and the partial derivative on the left side of (3.10) is non-negative if (3.7)

holds for any pair of hl,xgeA such that Xl <A This completes the proof of

2'
Temma 3.3.

Lemma 3.4. If M= My= A, then B(M\,A) is non-decreasing in ) if (3.7) holds.

Proof. We note the following properties of B(kl,xg) which can be verified

easily.



2

(3.11) iBux%=ziLMxx)

N ? O 1’72

1=l A= A= A
1 T2
and B(xl,xe) as a function of Xl and xg (ignoring the fact that Xl < xg)
remains unchanged when Xl and A, are interchanged (denoted by A o® kz).
o) 3 o)
(3.12) o B(hs2,) = oW B(Agshy) = B B(A M)
Xl - kg

Now, from (3.11) and (3.12), we get

d
2 == B(xl,xe)

o)
(3-13) 3 B0 Sy

. d
>0, if S B(sM,) 20,

which is ensured by lemma 3.3 if (3.7) holds. This completes the proof of
Lemma 3.k4.
Now we are ready for the

Proof of Theorem 3.l. By Lemma 3.4, B(A,\) = 24(\A) is non-decreasing in

A if (3.7) is satisfied. 1In the hypothesis of the theorem we have only FX’

considering A, < A, 1is only an artificial device to obtain the desirable

1 2

result. We are interested only in the pairs of A, ,A such that A= A= Ae

1772 1 2
Thus for A()A) to be non-decreasing in A, it is sufficient if (3.7) holds for
Xl': )\,2= X’ i-e-, if

(3-14) = ¥(x,0) 1, (1) 2, (x) £ ¥(x,0) >0,

Hence



which is the same as (3.1). The strict inequality part is now obvious.
Remark 3.1. In the proof of Lemms 3.3 we have made use of the assumption
that FK, reA have all the same support I. But the result is true even if

the support changes with A. If (al,bl) and (a2,b2) are the supports of F,
l,
and Fy (3.8) will be '

2
b
1
(3.15) AL (ory) = Yo a)- [ TF (%) ¥ (xn)ax
a 1
1
and this yields
b
db 1
- 1
(3.16) . " A (xl,x ) = w(bl,x T -f ai F, (x)y! (x,xg)dx
: l 1 a; 1
db
_1
"o Bbl ¥(by52,)
bl N
=-j ax F, (x)‘i’(x,x yax .
a l
1
Hence,
b b
3 2
(317) 3= B(aay) = [ 3 ¥(oa) £ (x)dxj Sy B, (5) (e
1 a2 a, l

and it can be seen that (3.7) is sufficient to make B(k ,x ) > 0. ILemma

ax
3.4 also holds. Hence Theorem 3.1 is true even when the supports are not the
same.

Corollary 3.1l. If V¥(x,n) = ¥(x) for \eA, i.e., ¥(x,\) is independent of

A, then ExY(X) is non-decreasing in A if
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(3.18) L r (x) L wx) <o.

If we assume in the above corollary that {Fk} is a family of distribu-
tions stochastically increasing in A, then (3.18) is equivalent to
d . . . . .
= ¥(x) > 0, since 5: F (x) < 0. Hence EX(Y(X)) is non-decreasing in ) if

Y(x) is non-decreasing in x. 8o we get ILemma 3.2 as a special case of our

Theoren.

Corollary 3.2. Let {Fx} and ¥(x,\) be as in the hypothesis of Theorem 3.l.
In addition let Y(x,\) > 0. Then, for any positive integer t, EX(Yt(X,X
is non-decreasing in A if (3.7) holds.

Proof. Let op(x,A) = Yt(x,x) play the role of ¥(x,\) in Theorem 3.1l. Then

o(F
3(x,2)

E (@(X,x)) is nondecreasing in A if > 0 which can be written as

ty

t- l (x,0) 'a AE,¥) > 0, which is equivalent to (3.7) since ¥{x,A) > O.

a(x,A) |~

Now we prove a theorem giving a sufficient condition for the monotoni-
city of Y(x;c,d,k) defined with reference to the procedure Rh.
Theorem 3.2. For the procedure Rh, ¥(n;c,d,k) is non-decreasing in A pro-

vided that

(3.19) (h(x)) £ (x h'(x)fx(h(x)) 'a'ai Fx(x) >0,

ax X

where h'(x) = é% h(x) and, ¥(\jc,d,k) is strictly increasing in X\ if strict
inequality holds in (3.19) on a set of positive measure.
Proof. The proof is immediate by letting Y(x,A) = Fx(h(x)) in Corollary 3.2.

Before proceeding to some special cases, we note that Y(X;c,d,k) is in-

dependent of A if

(3.20) ax )\‘(h(x) fx(x)-h'(x) fx( (x)) aax X(x) =0 for all x.
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Special Cases

(a) A 1is a location parameter and h(x) = x+d, d > O.

In this case, Fx(x) = F(x-\) and (x)= -f(x-))= -fx(x). This

3
AR
ensures (3.20) and ¥(\j;c,d,k) is independent of \.

(b) X >0 is a scale parameter and h(x) = cx, ¢ > 1.

1 X X
Here f)v(x) =3 f(x), x >0 and Fx(x) = F(x). Thus

2 - EpXy L X ; - xh!
Y Fx(x) = 3 f(x)— Y fx(x). Noting that h(x) = xh'(x), we see that

(3.20) holds and hence ¥(Ajc,d,k) is independent of .
(c) fx(x) is a convex mixture of a sequence of density functions .

In this case, we assume that

(3.21) £,(x) = ) W0,3) &0,
J=0

where gj(x), J=0,1,... is a sequence of density functions and W(\,J) are
(o]

non-negative weights such that = W(A,j) = 1. We restrict ourselves to
J=0

weight functions given by

a, A\’

(3.22) W, J) = K%)sz' , A(A) > 0.

Because of the non-negativity of W(k,j), we have either A > 0, aj >0 or

» <0, (-1)9 a; 2 0. Also, since the weights add up to unity,

(3.23) A(N) =

1 8
(@] M
b o
o
(o]

We will assume that )\ = 0 in what follows. Define
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(3.24) r)“(x) = A(\) fx(x)'
and
(3.25) R, (x) = A(x) F, (x).

Then (3.19) can be written as
(3.26) r, (0)l52 R (n(x))-2" (1) F, (n(x))] -
n'(x) r (h(x ) [ =R, (x)-a'(0) B (0] >0,
where A'(\) = S%.A(k). Using (3.25), we can rewrite (3.26) equivalently as
(3-27) r, () La) 52 R (8(x))-" (1) R, (n(x)] -

h'(x) =, (h(x)) lagn) =2 ax R (x)-A' (X)RX(X)] > 0.

Now A(x) R (x - A*()\) Rx(x)

f

(

[oe] xX
J J J
A )\. A
j.' ( Z J+l J+l Z js j+l)( 235 aJGJ(X))
J=0

J =0 J=0

8 o
g[\¢18

1l

"
Z&T Ba(x), where

=0
G.(x) is the cdf corresponding to gj(x) and

o

(3.28) B(x) = ) (e,
J=0

3 O,/ J+L ( - J+l( )"GJ(X))'
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Using the above result in (3.27) and expanding the products and rewriting

we obtain

]
(3.29) Y A >o,

i=0
where

i -
(3.30) ¢;= ) (la;_ g ()8 (1(x))-h'(x)a_g (n(x))B,_(x)].
=0

We see that (3.29) holds and consequently (3.19) holds if C; 20 for every

non-negative integer i, that is,
(3.31) }f( Lo, _ g ()8 (8(x))-h' (x)a g (n(x))B;__(x)] >0

for every integer i > O.

At this stage we consider a more special case where

(3.32) a,.. = {agtpdla, , J =0,1,.e05 Prq > 0.
J+1 J

Successive applications of (3.32) yield

(3-33) a;,= 8galate)(atep) ... (a+dp)y 3 = 0,1,....
Hence
(3-34) AQL) = Z 2 asa(@#p) oo (atip)

ao(l-xP)—q/P, provided that A <

heR I



1k

Then A()\) S% Rx(x)-A'(X)Rx(x)=ao(l-kp)—q/p QX(X)’ where

(3.35) Q (x) = (1-ap) Z o7 2305{x)-a Z 5T 258
J=1 J=0
© j @© XJ ‘
< T A 000 DA Garn g (0-an0o
j=0 J=1

Using this result, (3.27) holds and consequently (3.19) holds if
(3.36) Qx(h(x)) rx(x)-h'(x)Qx(x) rx(h(x)) > 0.
Letting AGj(x) = Gj+l(x)—Gj(x), (3.36) can be written as

(3.37)

[
I 8
OL\/'l

-

b=

.

v

O

Al

where

i
(3.38) E, = }j(i)[ai_aaa+lgi_a(x)AGa(h(x))-h'(x)ai_a+laaga(h(x))AGi_a(x)].
o=0

Hence a sufficient condition for (3.19) to hold is that, for every integer

120, B; 20, which in view of (3.32) can be written as
i .
(3.39) Ej(;) aaai_O}(q+ap)gi_a(X)AGa(h(X))-h’(X)(q+(i-a)p)ga(h(X))AGi_a(X)] 2 0
=0 2

Summarizing the above discussion, we state
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Theorem 3.3. For the procedure Rh’ when fx(x) is given by (3.21) with weight
functions defined in (3.22) where the ay are governed by the relation (3.32),
Y(c;c,d,k) is non-decreasing in )\ provided that, for every integer i > O,
(3.39) holds and Y(x;c,d,k) is strictly increasing in A\ if strict inequality
holds in (3.39) for some i.

If g=1, ay= 1 and p = 0, A()) = lim (l-xP)-l/p= e and ) > 0. Also
0
Ny

aj= 1l for all j and W(x,j) = ej'x . Thus, gj(x) are weighted by Poisson

weights. In this case (3.39) becomes

(3.50) Y () L, (1086 (n(x))-n (x)e_(n(x))ae;__(x)] > o.
o=0

This special case has been considered by Gupta and Studden (1965) who have
obtained the condition (3.40) with h(x) = cx.

If p=1 and a_ =1, aj=q(q+l)...(q+j-l) and A(M)=(1-2)"%, o S » < 1. Then

0
. C(g+j) Ad q X . . N
Wwn,3) = NCORER (1-\)*. The weights in this case are negative binomial

weights. In this case (3.39) becomes

i
(320 ) G)a) (@);_[(arele;_ (x)a6 (5(x))-n' (x)(a+i-a)
a=0

g (n(x))ag; _ (0] >0,

where

(3.42) ; (@), = alat1)...(a+e-1).

This special case has been considered by Gupta and Panchapakesan (1968a) who
have obtained (3.41) with h(x)=cx.

Both (3.40) and (3.41) were obtained by Gupta and Studden (1965) and
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Gupta and Panchapakesan (1968a) respectively by a different approach.
Before we proceed to the next section wherein we discuss the properties
of the procedure Rh we want to make a few remarks concerning the Lemmas 3.3

and 3.4. Suppose we consider A €A such that A < A < ...< )

1’ t+1 1— "o - Mt+1

and assume that the F>V have the same support. Define

Xe,-uo,x

t+1
(3.43) Ai(xl,...,xt+l) = f I w(x,x )dF (x), i=1,...,t+1
Ir=1 1 ]
rhi

and
t+1

(3'1")4') B(Xl""’)”‘tﬁl) = Z Ai(xl}"‘))\'t_l_l)‘
i=1

Then, as in the proof of Lemma 3.3, if we integrate Al(x ) by parts

l,..' ‘t+l
and use the result in (3.4k4), corresponding to (3.9) we will obtain

(3.45) B(Xl""’kt+l) = a term independent of A, +

JAI
Zz Jk To¥(xn ) He(on g, (x) -F, (x)w (x,2; )} ax.

i=2 rll

If we further assume that ¥(x,\.) >0 for all \ed, then —— BX B(xl,...,xt+l) >0
if
(3.46) ax w(x,x ) £ (x)- F (x w'(x,xi) >0 for i=2,...,t+l.

M

Since xl,...,xt+l are chosen arbitrarily in A subject only to the condition

that A, < MoS eeaS (3.46) is satisfied if (3.7) is satisfied. If we

t+1?

See o= = s l< < +
now get A A= A < Xm+ls < kt+l’ Sm<t+l, we note that
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m
) o)

(3-47) B(x,--.,x Mpag?® o2 hpay) = 5, B(Agseeeshy,q)

i=1

Xl—--zkm—x
and B(xl,..., t+l) as a function of xl,...,xt+l (ignoring the fact that
kl <...< t+l) is unaltered by interchanging any two of the A's. Hence
(3',4'8) — B()""":X:X +l’.“’>\'t+l)
-
- ax B(Xl"' )A'.t_l_l)
Moo= A= M

>0, if (3.7) is satisfied.

We summarize the above results in

Lemma 3.5. B(xl,...,x

t+l) as defined in (3.44) with ¥(x,A) > O for AeA, is

nondecreasing in A when xl=...= mex < Xm+l§...§ Aoy 1 Sm < t+l provided

t+1
that (3.7) holds.

As a consequence of Lemma 3.5, we can state
Lemma 3.6. The supremum of B(Xl,...,xt+l
=..-=Xt+l lf (3-7) hOldS-

) over the space of (xl,...,xt+l)

where A, <...< xt+l, takes place when )

1 1

Proof. The proof follows by successive applications of Lemma 3.6 with

m=l, .e -,t-

k., Properties of the Procedure Ry

Unbiasedness. A procedure defined for selecting a subset containing

the population associated with X[k] is said to be unbiased if, for 1< i< j<k,
the population associated with X[j] has at least as much probability of being

included in the selected subset as the population associated with x[i]. ir
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P r=l,..4,k, is the probability of including the population associated with
k[r]’ then the procedure is unbilased if pi_<_;p.J for 1 <1i <j<k.

Theorem 4.1. The procedure Rh is unbiased, if h(x) is non-decreasing in x.
We omit the proof, since it is the same as in the case of the procedure th
of Gupta (1966).

Expected Subset Size. Iet S denote the size of the subset selected

by the procedure Rh. We are interested in EX(SIRh)’ the expected size of

the selected subset using the procedure R, over Q= {LI&'=(L1,...,xk)}. It

is easy to see that

k
(4.1) E (S|R) = ) pj,
- i=1
where
k
(4.2) b =j Hl B g (a(x)) @B (%),  i=l,... k.
r=
rdi '
let
(4.3) Y(X,X[r]) = F[I‘] (n(x)), r-= 1ye005ke

Then, in the notations of Section 3,

(kok) D, = A (N q]reeeMy])r 1= 1lreeok
and
(4.5) EX(S'Rh) = B(x[l],...,x[k]).

Hence Lemmas 3.5 and 3.6 apply and we get
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Theorem 4.2. ELﬁSIRh) is non-decreasing in A, where x[l]=...=x[m]=x5 X[m+l]

<o v < xl 1B 1< m< k and consequently sup E (Sth) takes place at a point

where x[l]=...=x[k] provided that, for le xg,
) 0

(4.6) =— F (h(x)) £, (x)-h'(x) 53— F, (x) £, (h(x)) >o.
axl M XE axl Ay Xe

Remark 4.1. When X is a location parameter and h(x) = x+d or when \ is
a scale parameter and h(x) = cx, it is easy to see that (4.6) is equivalent

to the condition that, for Ll < X2 and x, <x

1 2’

(4.7) fkl(xl) £ (%) - fxl(XE) £, (x) 20,

2 2

which is the condition for fx(x) to have a monotone likelihood ratio.
Remark 4.2. It is to be noted that, if (L.6) is satisfied, then (3.19) is
satisfied. If we denote the probability of a correct selection when

A= (Ayeees)) DY PX(CSIRh), then (4.6) implies that
(4.8) Sgp EL(S]Rh) =k s:p PX(CS!Rh)

and that PX(CSth) is nondecreasing in A.
Remark 4.3. 1In the cases of location and scale parameters we saw that
Pk(CSth) is independent of \. Hence its infimum and supremum over A\ are

equal. Thus we get

(4.9) sgp EL(SIRh) = kP*.

Remark 4.h. 1In the cases of location and scale parameters discussed above,
if there is any other procedure R for which the basic P¥-condition is satisfied

and
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(k.10) EX(SIR) = kPX(CSIR),
then
(4.11) sgp EL(SIR) - sgp E&(SIRh)

> E, (S|R)-kP*, where A

0 is any point A

k(PXO(CSIR)-P*)

> 0, since R satisfies the P¥-condition.

Hence, in the cases of location and scale parameters, Rh with h(x)=x+d and
h(x)=cx respectively is minimax in the sense of (4.11) among the procedures
satisfying the condition (4.10) and the P¥-condition. Gupta and Studden
(1966) have defined an invariance property of a selection procedure and
showed that for an invariant procedure the condition (4.10) is satisfied
and that (4.11) follows as a conseguence.

Remark 4.5. For any procedure R, satisfying (4.6), if sup PX(CSIRh) =1,
A

then sup Ek<Sth) = k.
Q &

The expected size of the subset selected is a reasonable performance
characteristic of a procedure and serves a criterion to compare two proce-
dures both of which satisfy the P¥-condition. Associated with the subset
size is S', the number of non-best populations in the subset selected. Ob-

viously S-S' takes values O and 1 with probabilities l-pk and Py respectively.

Hence for Rh,

(4.12) E (S'|R,) = E(s|R) - p

where
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k-1
(%.13) | P, = J 1 F ) (n(x)) aFp,)(x).

From (4.13) we see that Py < 0 and consequently Py is non-increasing

9
M 1]
in x[l], when other A's are kept fixed. It is easily seen that the above
fact together with Theorem 4.2 give
Lemma 4.1. E(S'[Rh) is non-decreasing in M ] provided that (4.6) is satis-
fied.

On the lines similar to the proof of Theorem 4.2 we can show that

t s - . ; 3 ] Zaee= = coe
EL(S th) is non-decreasing in A, where M 1] Ml A< x[m+l]§ < Mk’
1< < k-1 provided that (4.6) is satisfied. Consequently we get

Theorem 4.3. sup EX(S'IRh) takes place at a point where )\ has all its com-
Q fA

ponents equal provided that (4.6) is satisfied.
Another property of EX(S'IRh) which is true with no further éssumption
beyond the stochastic ordering of Ek is stated below.

Theorem 4.4, EX(S'IRh) is non-increasing in Mx]? when other A's are kept

fixed.
Proof., It is easy to see that 9 p.<0 for i=1l,...,k-1. Hence
—_—— Bx[k] i-

EL(S'IRh) = Pl+'°'+Pk-l is non-increasing in X[k]'

The Case of fx(x) Being a Convex Mixture. We are interested here in

the case where fx(x) is given by (3.21) and (3.22) where the ay are governed
by (3.32). Following our earlier notations used in Section 3, (4.6) is

equivalent to

(4.1h) rxe(x}[A(xl) 5%; Rxl(h(x))-A'(xl)Rxl(h(x))]

n(x)r, (n(x)) [A(Mn) == R (x)-a' (A )R (x)] > o.
r 1 B By W
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We know that A(xl) = ao(l-xlp)-q/P and

3 , “afp T A
(529 AGy) = By (RO, () = 2 (ih) Q/P.EL Xea 00 (x).
J:
Using this we see that (4.14) holds if, for MS Mo
(4.16) (B(x)) r, (x)-n'(x) @ (x) h(x)) > 0.
Qxl X r)V2 x x Qxl x rxe( x

Setting k2= bkl, b > 1, we can rewrite (4.16) in the equivalent form

(4.17) q, (a(x)) =, (x)-n'(x) @ (x) r, (h(x)) > 0.

We note that (4.17) is same as (3.36) except that in the place of gj(-) we
have ngj('). Hence, following the same line of argument as before, we

can say that (4.17) holds if, for b > 1 and every integer i > O,

i
(.38) ) (Dla e, v'7%, (x)46 (0(x))-B' (x)a;

1% - aabaga(h(x))AGi_a(x)] > 0.

ortd
=0

Because of (3.32), (4.18) can be written as

i
(4.19) ) (Caa

a=0

[pi=2(q+ n(x))-h' (x)b¥(q+(i- h 1>0.
fmg) (atpe)e; _ (x)4G (B(x))-b' (x)p™(a+(i-a)p)e (x))ac, _ (x)I
Since (4.19) implies (4.6), we can state the following
Theorem 4.5. For the procedure R,» when fk(x) is given by (3.21) and (3.22)
where the a, are governed by (3.32), sup E. (S|R,) takes place for A,=...=A

3 il A 1 k
provided that, for b > 1 and every integer i > O, (4.19) is satisfied.

Now we let
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(4.20) Ta=bi-°’(q+poz)gi 086 (h(x))-n' (x)p¥(a+(i-a)p Je (h(x))ag, _ (x).

Then the left side of (4.19)

i
- 2(1)'& a, T
o [0 1~

=0

i-1

7]

Z ([) a8, (T 40, ), if i is odd
a=0

i

> -1

i i 2 R .
E: (d)aa?i-a(Ta+Ti-a)+(i/2) ai/2 Ti/z’ if i 4is even.
a=0

Hence (4.19) holds if Taf T g > 0 for a=0,l,...,[%], where [%] stands for

the largest integer < % . To put it explicitly, (4.19) holds if, for b >1

and every integer i > 0,

(h.21) B %(apalle;_ (x)66 (h(x))-b'(x)g;_ (h(x))ag_(h(x))]

+ ba(q+p(i-oz))[gQ(X)AGi_a(h(X))-h'(X)ga(h(X))AGi_a(X)] >0,

i
o = O,l,.nc,[E]'

Remark L4.6. As we have seen (4.21) is a stronger condition than (4.19),

both of them implying (4.6). But we have several cases where (4.21) is
satisfied. Gupta and Studden (1965) and Gupta and Panchapakesan (1968a)

have discussed selection procedures involving fk(x) as in Theorem 4.5. 1In

all these cases, the condition (4.21) is verified (not shown here) to be satis-

fied. Hence in all those cases Theorem L.5 applies.
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5. BSelection of the Population Associated with X[l]'

The case where the best population is defined to be the one associated

with ) is analogous to the case of )\ We need of course make certain
L1] L

k] *
modifications. We will briefly mention them and state the results without
proofs unless there be a need to the contrary.

Let H=H, 43 ce[l,w), del 0,0) be a function defined on the real line
J

satisfying the following conditions. For every real x

() Hc,d(x) <x
(ii) Hi)o(x) = x
(5.1) (iii) H, d(x) | is continuous in c and 4
J
(iv) H (x) ! - as d > and/or
c,d

ch’d(x) 10 as ¢ - =,

Of particular interest are the functions %, x-d and % -d,
A class of procedures RH for selecting a subset containing the best is
defined as follows.

RH: Include ni in the selected subset iff

(5.2) H(x,) < min X .
T 1<k

The procedure R, obviously selects a noh-empty subset because of (5.1)-(i).

The probability of a correct selection is given by

<O

k
(5.3) p(cs|®,) = | T4 () 2 (),

~-CO

where f&(x) = l-FX(x). Because of the assumption (2.4) about the stochastic

ordering-of the distributions,
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© k-1
(5.4) P@M%)EJ qﬂ(MM)@hﬂm.
Hence
k-1
(5.5) igf p(cS|Ry) = iif f_mﬁi (H(x))dFk(x)=i:f o(r;c,d,k), say.

Because of (5.1)-(i) and (ii),

(5.6) p(rje,d,k) > %
and
(5.7) p(A;1,0,k) = & .

Properties (5.1)-(iii) and (iv) yield

(5.8) lim @(A;c,d,k) = 1
o]
and/or
(5.9) lim g(r;e,d,k) = (1-F, (0))°7.
Q0

If (5.8) holds, then for every A, c¢ and k, we choose d such that the P¥*-
condition is satisfied. If (5.9) holds but not (5.8) then for-every A, d
and k, we can choose ¢ subject to the P¥-condition whatever P¥ is chosen be-
tween % and 1 provided that FX(O) = 0,

Corresponding to Theorem 3.2, we get

Theorem 5.1. For the procedure RH, @(x;c,d,k) is non-decreasing in A pro-

vided that

(5.10) H'(x)f, (0(x)) 52 F, (x)£, (x) 52 F, (K(x)) 20
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where H'(x) = é% H(x), and @(r;c,d,k) is strictly increasing in A if strict
inequality holds in (5.10) on a set of positive measure.
Proof. The proof is immediate by using Corollary 3.2 with ¥(x,A) = F&(H(x)).
Now we can state the following results analogous to the case of X[k]'
Theorem 5.2. For the procedure Ryps when fx(x) is given by (3.21) and (3.22)
where the ay are governed by (3.32), ¢(r;c,d,k) is non-decreasing in A pro-
vided that, for every integer i > O,
i .
(5.11) Z(i)aaai_a[H'(x)(q+(i-a)p)ga(H(x))AGi_a(x)-(q+ap)gi_a(x)AGa(H(x))] >0
=0
and strict inequality in (5.11) for some i implies that ¢(Aj;c,d,k) is strictly
increasing in A.

Remark 5.1. Suppose we use the procedure RH with H(x) = % (in the case of

nonnegative random variables) or H(x)=x-d. Then (5.10) reduces respectively

to
(5.12) £ (%) 2 F (x)-f (0 27 (%) >0
or

(5.13) f (x a) (x)-f (x 2y (x-d) > o.

ax X oA A

Setting % =y or x-d=y as the case may be, we get

(5.14) £, () 52 B (cy) - of, (cy) 52 F, (y) 2 0

BX X

or

(5.15) £ (y) (y+a)-£, (y+d) ax F, (y) > 0.

BX X
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We note that (5.14) and (5.15) are sufficient conditions for ¥(Aj;c,d,k) to
be non-decreasing in A\ in the case of the procedure Rh with h(x):cx and
h(x)=x+d respectively.
Remark 5.2. We also note that w(k;c,d,k) is independent of A if the left
side of (5.10) vanishes and this happens as we know in the cases of location
and scale parameters with H(x)=x-d and H(x)= % respectively.

Also, using the same method of proof as in the case of Rh’ we obtain

the following results concerning ELﬂSIRH) and ELKS’IRH).
Theorem 5.3. EX(SIRH) is non-decreasing in x[l]when other A's are kept fixed

provided that, for A, <A

1 2’

5.16) H'(x) £ (H(x)) 2 F )-f ) 2 F. (H(x)) > 0.
( () £, (8(x) 57, (01, (0) 5=, (H(x) 2

=003y if (5.16) holds.

Remark 5.3. In the cases of location and scale parameters with H(x)=x-d and

Theorem 5.h4. EX(S|RH) attains its supremum when A

H(x)= % respectively, (5.16) is the condition that fk(x) has a monotone like-

lihood ratio .

Also, a remark similar to Remark 5.1 can be made about (5.16). For

the procedure RH’

(5.17) B, (8'[Ry) = pyte-tpy = E, (8[Ry)-py

From the proof of Theorems 5.3 and 5.4, it is easy to see that Ex<S'IRH) is

- . . - . . < - .. _
non-decreasing in xle] and non-decreasing in A\ where l[l]— Xl2] X[nﬂ
AN q]S s eSS Ay for 2<m< k provided that (5.16) holds. Hence, if (5.16)

holds, we have

(5.18) sup EX(S') = sup EX(S')
Q = Q=

where Q'={&|x[l]§ x[2]=...=x[k]}. Because of the stochastic ordering of Fx,

. . . _ . . '
P> i=2,...,k and hence E&(S IRH) is non-decreasing in x[l] when other A\'s are

kept fixed. Hence we have
Theorem 5.5. sup E (S'|R,) takes place for A =...=\, if (5.16) holds.
Theorem 2.0+ s¥p 5,181y 1 K
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6. Selection Procedures for Restricted Families of Distributions

Selection procedures for restricted families of distributions were first
considered by Barlow and Gupta (1969). These selection procedures are dis-
tribution-free in the sense that we do not assume any knowledge about the
form of the distribution functions FX., i=1,...,k. However, we do assume
that these distributions are partiallylordered in some sense with respect to

a known distribution G. Though we assumed that the distributions Fh )
i

i=1,...,k are all stochastically ordered in our earlier discussions, it
is sufficient to assume that there exists one population which is stochas-
tically larger than any other and is the best. Then for selecting a subset
containing that population the infimum of P(CS!Rh) takes place when

Ay = e =X

1 When we do not know the form of the distribution F

et \o o e

neea further assumptions in order to evaluate the infimum of the probabil-
ity of a correct selection. The existence of a partial ordering of FK
with respect to a known G makes it possible to obtain the infimum which
can be evaluated with the knowledge of G.

For the sake of a self-contained discussion, we start with certain

known definitions.

Definition 6.1. A relation < on the space of probability distributions is

~

said to be a partial ordering if (i) F < F for all distributions F and
(ii) F <G and G j H together imply that F < H. We note that F <G
and G <*Fdo not necessarily imply F = G.

In what follows F and G denote continuous distributions and I
denote the support of F. Let o = a1r.

Definition 6.2. F 1is star-shaped with respect to G (written F < G) iff
*

F(0) = G(0) = 0 and o(ox) < oeo(x) whenever x ¢ I, ax ¢ I and 0< o< 1.

lP[«’\M\i.:\\f\ < ha Vv
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Definition 6.3. F is said to be r-ordered with respect to G (written

F;G) iff F(0) = G(0) =R8(0<B< 1), and for 0< o<1,

p(ax) < an(x) for x e I N(0,») and @lax) > cp(x) > ap(x) for
x ¢ I N(-=,0).
In the above definition we do not mean any specific 8 but 'some'

8 ¢ (0,1). Lawrence (1966) defines r-ordering with B = %,

but it is

not crucial for our discussions. Barlow and Gupta (1969) consider selection
procedures with respect to the medians of distributions which when centered

at their medians are r-ordered with respect to a known distribution G assum-
ing that (x) has a slope not less than unity at the origin. But from their
proof it can be seen that their result can still be obtained if we assume only
that G-lF(x + A) - x 1is non-decreasing in x ¢ I where A is the median

of F. In view of this we give -

Definition 6.4. F is said to be tail-ordered with respect to G (written

F ; G) iff o(x) - x 1is non-decreasing in x ¢ I. This definition has been
mentioned by Doksum (1969) in a different context.

The following lemma shows that the selection prbcedure of Barlow and
Gupta (1969) mentioned above applies to a wider family of distributions.
Lemma 6.1. If F <G and cir)‘ '(0) >1, then F 2 G. |

Proof. It is easy to see from the definition of r-ordering that mix) is

non-decreasing (non-increasing) in x > 0 (x < 0), x ¢ I. Hence

x o'(x) > (<) o(x) for x>0 (x<0), xe¢ I. Now suppose for any x,e I

0
Xy € I N(0,») we have m’(xo) < '(0). Then @(xo) < x0¢'(xo) < xO@'(O) =

Xq 1im Qiél . This implies that there exists an Xy < X such that
x {0
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*o
(6.1) olxg) < = olx)
1
*1
Letting o ===< 1, (6.1) becomes Q@(XO) < @(mxo), which is a contra-
0

diction. Hence o'(x) > ¢'(0) for x ¢ I N(O,»). A similar argument gives
the result for x e I N(-«,0). Since ¢'(0) > 1, we have o'(x)>1 for

all x ¢ I, which means F é G.

Remark 6.1. That the converse of Lemma 6.1 is not always true can be seen

by letting
L 3 2
%%-- 2%_ + %? +x x>0
(6.2) o(x) = Y 5 .
- %r + 2%_ - %T +x , x<O0

It can be verified that ¢'(x) > 1 for all x, which shows that F E G.

Setting x =1 and ¢ = % > We can show that ao(x) < w(ax), violating the
condition in the definition of r-ordering.

Now we define a more general ordering.
Definition 6.5. Let h = ha,b; a>1l,b>0, bea real-valued function de-

fined on the real line. F is said to be h-ordered with respect to G

(written F g G) iff o(h(x)) >h (0(x)) whenever x ¢ I, h(x) ¢ I,a>1
and b > 0,

Corollary 6.1. Let h(x)

aX, a > 1 and F(0) = G(0) = 0. Then h-ordering

becomes star ordering.

Corollary 6.2. Let h(x)

X+ b, b>0. Then h-ordering becomes tail

ordering.
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The proofs of the above corollaries are omitted.
Remark 6.2, The h-ordering defined above is a partial ordering. All we
need verify is that, if G P(h(x)) > h(¢"'F(x)) and H g(n(x)) > n(a la(x)),

then H-lF(h(x)) > h(H-lF(x)). Now,

1 m(x)) = B le ¢ F(n(x))

Tt g h(G_lF(x)), since H™'G 1is an t function

Iv

> h(E e ¢7iF(x))

]

h(H"lF(x))

Remark 6.3, If G P(h(x)) < h(G 1P(x)), then G <F

Lemma 6.2. If F E G, then for any positive integer t

(6.3) [ PP 0x)) ar(x) = [ ¢"(n())as(x)

where the integrals are over the range of x.

Proof. Let Xl""’ Xt+l

variables with cdf F(x). Let

be independent and identically distributed random

(6.4) Y, = @(xi), i=1,...,t+1 ,

where ¢ = G—lF. Then Yi, i=1,...,5+1L are independent and identically

distributed with cdf G(x) and (6.3) is same as

(6.5) P(h(X,_,.) > max Xr) > P(h(Y£+l) > max Y )

+
LT et 1<r<t+l

To prove this, we first let Vv = F ¢ and note that Y(Yi) =X, 1=1,...,

t+1 and h(¥(x)) > ¥(h(x)). DNow sup?ose
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(6.6) (Y, ..) > max Y
bl 1<r<t+1

Since V¥ is an increasing function,

(6.7) v(a(y, .)) >v( max Y )= max v(Y )
R ot T 1erctdl T

Hence
(6.8) h(y(Y, . )) > max (Y )
t+1 l<r<t+l r
which is same as
(6.9) n(x, . .)> max X
t+1 Lfr5ﬁ+l T

Hence (6.5) follows.

Remark 6.4. Gupta (1966) has a lemma concerning his procedure th, where

it can be seen that the conditions under which he obtains the inequality
(6.3) amount to having h-ordering with h = hy .

Now we discuss a general selection problem. Let Toseees Ty be k
populations. The random variable Xi associated with . has a continuous
distribution Fi’ i=1,..., ktl, We assume that there exists one among
the k populations which is stochastically larger than any other. Let us

denote the distribution of that population by FFkW’ Then the assumption

[Fhaia |

made above can be expressed as
(6.10) F.(x) >F. (x) for i=1,...,k and all x.
i =Tkl > >

We also assume that there exists a continuous distribution G such that
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(6.11) F. ;G for 1 =1,...,k ,

where h = h defined in (2.1). Let X, = (X xin) be the observed

c,d 11202

sample from m, and T, = T(gi) be a statistic that preserves both the

ordering relations (6.10) and (6.11), i.e.,

(6.12) P, (T(X) <x)>P (T(X < x)) for i=1,...,k and all x
=== Frk} -

and

(6.13) FT(?%) o GT(X) , i=1,...,k

where FT(X ) represents the cdf of T(zi) under Fi and G is the
—i

(%)
distribution of T(Y) wunder G, Y = (Y ,...,Yh) being a random sample
from G.

Now, for selecting a subset containing the population associated with

ka]’ we propose the rule

R: Include ﬂi in the selected subset iff

(6.1k) h(T.) > max T
* 1<r<k

Denoting by T(k) the Ti associated with F[ and by T(r)’

k]

r=1,..., k=1, the other T.'s, we have
i

35 Pl = Pa(ry) 2 mx )
= fn kﬁl F bid X
i o fT(r (h(x)) aFy . (x)
" x-l
X X 6. .
2 B (00) arg (), vy (612)
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Since Ty, g GT(Y)’ using Lemma 6.2 we obtain
[k] =
'CD k l
(6.16) P(esiR) > | ot (n(x) ag,(x)
where GT = GT(Y)' The constants of the procedure are determined to satisfy
‘,,CO
(6.17) J GIT“'l (h(x)) doh(x) = P

- CO

We now state a few facts by way of remarks.

Remark 6.5. If F <G, then F, <G,, where F. and G. are the distri-
h dnh J J J

butions of the jth order statistic in a sample of size n from ¥ and G

it

respectively. To see this, we note that Fj(x) = Bj n(F(x)) B, nF(x) where
2

Js

(6.18) B, () = j(?) ,jo Wt (1-w)?I au

. 611B. F(x) = ¢"'F(x), which gives the desired result.
TR R IR

Remark 6.6. If we take h(x) = cx, c¢ > 1, then F, <G and the constant

-1
Hence G. F.{x) =B
T =1

¢ of the procedure is obtained from

00
(6.19) | e ex) agg(x) = px
J T T
0
Remark 6.7. If h(x) = x+d, d > 0, then F, é G and the constant d

is chosen to satisfy

g

(6.20) jm G};'l (x+d) a6y (x)

-0
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The procedures of Barlow and Gupta (1969) in terms of the gquantiles of
distributions star-shaped with respect to G and in terms of the medians
of distributions which are contained in the family of distributions tail-
ordered with resrect to G are special cases of our general problem in

view of Remarks 6.5 through 6.7.
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