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1. Introduction. Ogawa [4] obtained the asymptotically minimum

variance linear asymptotically unbiased estimator (ABILUE) for location
or scale from a chosen set of sample quantiles. It was soon observed
(Tischendorf [7]) that the asymptotic variance of Ogawa's estimator is
essentially the reciprocal of a Riemann sum for the information integral
for the parameter being estimated. Thus under mild regularity conditions
the ABLUE approaches asymptotic efficiency as larger sets of more closely
spaced quantiles are chosen for use.

In [3] the author examined several analogs of Ogawa's estimators
for multivariate location parameters. The basic idea was to use the
ABLUE from chosen sets of sample quantiles in each direction and from
the observed cell frequencies in the random partition generated by these

quantiles. These classes of estimators are asymptotically nearly efficient

(ANE) in the sense that for every ¢ > 0 there is an estimator in the
class with asymptotic efficiency > 1 - ¢ . Here efficiency is measured
by a comparison of the asymptotic covariance matrix to the inverse of the
information matrix.

In section 2 of the present paper we present another class of ANE
estimators for bivariate location parameters. This is the class of
ABIUE's from a chosen set of marginal sample gquantiles in one coordinate
direction and from conditional sample guantiles in the other direction

(a precise description is given in section 2). The resulting estimators



are somevhat simpler than those of [3] , and are perhaps a more natural
generalization of Ogawa's work.

Common estimators of multivariate location parameters have the
property that each component of the parameter is estimated using only
the corresponding component of the observations. Except in special cases
(which, however, include the normal case) such estimators cannot approach
asymptotic efficiency, since they use only the information contained in
the marginel distributions. The present estimators and those of [3] allow
efficiency arbitrarily near 1 to be attained for any smooth location
parameter family, but at the cost of computational complexity and probable
loss of robustness.

There is a close connection between estimation and testing in location
parameter families. Common tests for mulbtivariate location also fail
to use information beyond that contained in the marginal distributions.
See Bickel [1] and Sen and Puri [6] for typicel tests. In section 3
we show how ANE estimators can be used to obtain ANE tests for location.
These have the same advantages and disadvantages relative to more common

tests as do the corresponding estimators.

2. Estimation. Let F(x - 6, ¥ - 62) be a bivariate location

parameter family with continuous density f£(x - 8, ¥ - 8,) - Choose

5)
O=0a <a <. ..< o < Qg = 1

0 1

and let x? be the population a&-quantile in the x~direction, with the



convention that xg = -» and x§+l =@ . Foreach 1i=131,.0., N+1

choose

o=s.0<e.'<...<s. <P 1

il iv, i, v, +1L
i i

and let yij be the conditional population Bij-quantile, i.e.,

Pe[ng*{j ‘x"{_l<x_<_x*{} =B

13 J=150e0, \’iv

= - = - * e -
and y?o ® yi’ “i+l ® The x¥ and yiJ depend on the parameter
0 = (Bl, 62) as follows: if X, and yij are the corresponding quantiles

= i * = + = .
vhen © =0, then x¥ =x; Gl and y§j s + 92

3
Let §l,.s., §N éenote the sample ai—quantiles from the x-components
of a random sample of size n on the population. For each 1 = 1,..ey N + 1
let gil""’ giv. be the sample ﬁij-quantiles from the y-components
of those observations (x, y) with gi_l <x < §i « We will find the
ABLUE of 61 and 92 in terms of the gi and gij and show that the
resulting class of estimators is ANE . The method of proof is that of
Ogawa: we find the joint asymptotic distribution of the §i and gij
and hence the least squares estimators of (el, 92) from the asymptotic
distribution. By standard least squares theory these are the ABLUE's.
The only mathematical difficulty is to find the joint asymptotic distribution
needed., We hand}e this by observing that the distribution of the gij
condltional on the §i is multinomial.
The lines x =x% and y = yij partition the plane into Z?Ii (vi + 1)
cells. The probabilify of an obseévation on 'F(x - Gl, ¥ - 92) falling

into the cell with "northeast corner" (x?, yij) is independent of ©



and is given by

)

p_ .= F(xi, yij) - F(xi, Yi’j_l) - F(xi_l

4+
ij yij) F(Xi--l, y

i, j-1

3

il

(o - oy 1) (Byy -8y 5y)

Setting pij = AijF defines difference operators Aij which we will

later apply to other functions. Note that our conventions imply that

X

cdf in the x-direction. If Fl and F2 are the first partial derivatives

F(xi, yio) =0 and F(xi, yi,vi+l) = FX(xi), where F_ is the marginal

of F with respect to x and y, respectively, then Fl(xo, y) =
= F(x, yio) = 0, Fl(x’ yﬁ.,vi+l ) = ﬁx(x) and Fl(xN+l, y) = 0; similar

results hold for F2- Define the 2x2 information matrices I and I¥ with

entries

» @ f(x, ¥) £(x y)
[ ] )

I = dx 4
st e fix, v) Y
N+1 s +1 AL F * AF
™ = % V% ij s ijt
St a = Pij

for s, t =1, 2.
Then we will consider the linear estimator 6¥ of 6 given by

-1 '
0¥ = (I¥) — Q, where Q'= (Ql, Q2) (prime denotes transpose) and



N N+_]_ Vi
= - + -
Q= T m; (8 - x;) I Z By (gij yij)
i= i=1 J=
N N+L vy
Q.= = m,, (E.-x.)+ £ £ n,,.(C..-¥..)
2 =1 2i *°i i i=1  j= 213 ij ij
vi+l Ai'Fs
Mgy = % 5 - Iy, vy - Filxy, yi,j—l)]}
J=1 i
Vi+l+l A'+l . FS
- = P (xy, v ) - Fxys Vi s 0T
j=1 'Pi+l,j 1717 Vi, 1YY Ji+l, 5.1
oo (oils . fan ey g ) - Fo(x )]
sij = ‘P P oV Vi oV Yig/d e

ij i, j+1

The estimator ©* 1is translation-invariant, as follows easily from the

relations
N
= T%
Zomyy = Iy
l=
N
= T%
Eomyy = I
i=
N+l vy
$ £ h,,,=I¥
T e S
N+1 vy
= T¥%
b Zhgij o, -

i=1 J=



The coefficients of 6% are pather complicated, but are straight
forward to compute if F, Fl and F2 can be expressed in closed form.
In that case it is simple to program a computer to produce the wvarious

difference operators required and hence the coefficients of 6% .

Theorenm. Let F(x - Gl, vy - 92) be a location parameter family

with continuous density f(x - Gl, y - 62) « Then the components of 6%

are the ABIUE's for el and 02 in terms of the §i and gij . When

6 is true, Vn (8% - ©) converges in law to the bivariate normal dis-

tribution with means O and covariance matrix (I*)—l . I¥ ig the

information matrix for © from the asymptotic distribution of

{/n(gi - x’{), ,,/n(gi‘j - y’{j) : all i and j} .

If the integrals Ist are finite and the derivatives fl and f2

are continuous, each Igt can be made as close as desired to Ist by

apprbpriately choosing N, Vi ai and gij « The class of estimators

0% is therefore ANE .

Proof. We first compute the asymptotic distribution of the

_ . L) .
/h(gij yij) conditional on the /h(gi Xi) Let

Py = Bplvnlcy; - *:}ea') Svygi el 1 oend gWn(E; - xd) = uy

.:l=l,.l.’ N] .
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Partition the plane by the lines x = xi + ui//h and y = y§j+ vij//h, and
denote by Nij the number of observations faliing in the cell with "northeast
corner" (x?, yij). Then if we understand the sample -quantile from n

observations to be the [no] + 1 order statistic, events involving the gi
and gij can be described in terms of the Nij' In what follows we will

neglect the difference between [no] and no. It may be easily verified
that the asymptotic results are not affected, and ignoring the greatest integer
notation will greatly simplify our notation. With this understanding, we

have

8,..0n: i=1,...,0+1; k=l,...,vi‘

.+1
Vi

z Ni,j = n(&'i- r:!i_l): i=1,...,N].
=1

The key to the proof is the observation that under the stated conditions,

the sets of r.v.'s {N,

E j=l,...vi+l} for i=1,...,N+1 have independent

multinomial distributions. Specifically, for each i=l,...,N+1 1let

- -= - 3 ] ' = v- —
{nij' J l,...,vi+l} be multinomial r.v.'s based on ny n(czi di-l) observa

v.+1l

tions with cell probabilities p-. / T.t

i3 =1 where

n
pij’



n
= + -
Pij F(xi uiﬂ/h, yis* vij//h) F(xi+ ui//h, ¥i,5-1" vi’j_lﬁ/h)

- Flx,_;+ ui_l//h, ¥yt vijA/n) - F(x,_q+ ui_lﬁ/h, y;,5-1" vi,j_lﬁfh?.

Then

N+l

k

= . ‘ = 1 =

Pn 'EI]_ P[z nij 2n, 8,5 K 1oeeesvy] 'H P,
- =1 i=1

Clearly p?j do not depend on 8 and p?j - pij as n = o,

We now find the limit of P, =~ for each fixed i. Set p? = p?j /

Vi+l n
Ej=l Pij and define

;]
il

n .
J-n q/ﬂi(nij/ni-Pj) J - l’.l"\)..

. n_’ - = n 1 e q=
Since p pia./(czi ai—l) n the r.v.'s fan. J l,...,vi} are

P
iJ '-i,J"l

asymptotically N(O,Vi), where V. has entries

Vs‘t ="(§3j_s- Gi,S-l)(Bit- Bi:t'l) ® +t

= {1 - - A .
Veg = (gm0 (8547 %5 )



This follows from the usual characteristic function proof of asymptotic
normality for multinomial r.v.'s, which is not affected by convergent
sequences of cell probabilities.

In terms of the Q. .,
Jn

d
i

k k
=Pz Q, >v/n, (B,, - T p,7) : k=21,.0., v.]
in =1 Jn i ik 3=1 J i

k

k
v S By . g =

J=1

where pj = pij/(ai - ai_l). Applying Taylor's theorem to the difference

pj - pjn gives, after some arithmetic,
k L
= > - - T2 v +
Fin P[jfl Un Z (g =ay 3072 (g Vip P oy vy

- a ui_l) +0(1) : kK =1,00., Vi]

where

o
!

e = Folxyr v - Fplxy gy wgy)

[¢]
|

sk = Falxg ) - By Ty (%)

Gy = Fplegpo Tipd - By T Oy )

with the conventions
c =0 for all Kk;

0; d,,=0 for all k.
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Finally, replacing an by -an (which does not clrange the asymptotic

distribution),

1 1 kK
- - - 2 -
P[bik {(ai ai-l) {jil Zj Cipe Uy d

< Vi s K=1,e0a, vi]

where the zj have the N(O, vi) joint distribution.
It is now routine to compute that the r.v.'s {Z§=l Zj tk=1,..., Vi}
are N(O, Vi), where Vi has entries

VSt s<t,

=By (1 - 854)

and that the joint asymptotic distribution of the /n (Qij - yij)
conditional on /n (Ei - x?) =u; is N(Au, £). Here u’ = (ul,..., uN)

_ ) .
(prime denotes transpose) and A is the (Z?zi vi) X N matrix with all

entries O except

t-1

= = = + 3 j
st = "%t/ Puy ° Zo Vit tEds ettt sl d

=4y j+l/bt, 5417

+
(recall that Vo T 0). Setting r = Z§=i vi’ % is the rXr matrix with
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all entries O except for vy X 2 submatrices Zi(i = 1,000, N+ 1)
arranged in order of increasing i down the diagonal. Ei is trivially
related to Vi and has entries
B. (1 -8..)
is it 6 <t

st = (4 m o) ’ ="
is it

=

The asymptotic distribution of the Vn (§i - xi), i=1,e0e, N

is well known to be N(O, C), where

as(l - at)

o _ s<t.
- * *
st fX(xs)fXﬂxt)

From this it follows routinely that the asymptotic distribution of the

N +r random variables

Vo (g - x¥), 1 =1,..., N3 /n (gij - ¥k =L, WG =1, Vi}

is N(0, %), where

. C-l + A’ Z—l A oA’ Z-l
2 e = . .
szt a £t
T is easily calculated; its entries are O except for vy X Vi blocks

Z;l along the diagonal. 2;1 in turn has all entries O except

(z,

1, .2 )
iy = by (L/pgy * l/pi’ pap)s = Lieees vy

(zll) = (571 =-b,. b

t,t-1 1 /-1t Uit B =25eeey vy

i,4=1 /P4 i
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i * = = + .
Setting X7 = x; + Gl and yﬁj vs 92, we see that asymptotically

the (N + r)-dimensional r.v.

2= (8 =Xy e By X, Oy A RERBEELS S IR IR

N+1 N+l)

»

is N(B6, nt £.), where 8~ = (61, 62) and B is the (N +r) x 2

matrix with

le = l S=l,¢.-,N

= 0 s =N +1,.e0, N+71
B, = 0 8 =1,0e., N

= l S=N+l,.-.,N+I‘ .

By least squares theory the ABLUE for 0 is

-1 B’ Z—l

W/

e* = (B” z;l B)
and /n (8% - 8) has asymptotic distribution N(0, V(6%)), where

v(e*) = (B° 5T B)T

It is now straight forward (although quite tedious) to verify that 6%

is as given in the statement of the theorem and that B’ Z;l B = TI¥% ._ The
form of B quickly yields that (B* Z;l B)ll is the sum of the entries
of ¢t sarygd A, (B’ Z;l B)12 is the sum of the entries of -A° Z-l,
and so on. Similarly, the entries of the 2 x (N + r) matrix B’ Z;l are

sums of the columns of the 4 submatrices comprising 2;1 + VWe omift the

details of the computations.
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If f has continuous derivatives, we may represent F, F. and F2

1

as integrals of their derivatives and observe that each ulgt is essentially

a Riemann sum for Ist . REach I:t can be made arbitrarily close to Ist

and Bil sufficiently near 0O, w

by choosing o N and Bivi sufficientlyv

1
near 1, and the remaining ai and Bij gso that the norm of the partition
formed by the lines x = Xi’ y = yij is sufficiently small. The routine

details of the proof will be omitted. A similar proof is given in detail

in [3] .
3. Testing. There is a close connection between sstimation and testing

in multivariate location parameter problems. Suppose that en(x) is an

estimator for the k-variate location parameter 6' = (el,...,ek) such that
L2{/n én(x) | o = 0} - N(0,n).

Here we have used a standard notation for convergence in distribution and
X' = (Xl,...,Xn) is a random sample, Then we can test the hypothesis

H .

o* 8 = 0 by using the critical region
n o s'l o' > ¢
n n =
or
~ "_l A
n en Bn en_z c,

~

where Sn-is a consistent estimator of the asymptotic covariance matrix f.

Clearly



1k

-1 2

_ ~ .n. n' - -
£{n 8 27" 87 | & = 0} g2
the chi~sguare distribution with k degrees of freedom.

it en-if translation-invariant, we can find the asymptotic relative
Pitman efficiency (ARE) of two such tests by an elegant standard argument.

Considering the sequence of alternatives 6 = §//n (& a k-vector), we have

2{/n ©_(X) | 0=8//n} = 2{/n 0_(X+8//n) | o = 0}

~

since X has location parameter 0. Translation-invariance of On implies that

(2.1) £{/n C_(X+8//n) | & = 0} = n(6,0).
therefore, if T =n o 7 T o',
n n n
) 2 , . -1
(2.2) K{Tn‘e = §//n} = X (88 8)s

where aqflé is the non~centrality parameter. It is well known ([2]) that
the ARE of two test statistics which are asymptotically non-central chi-square
under Pitman alternatives is the ratio of their non-centrality parameters.
Most test statistics for multivariate location, in particular those of [1}
and [6], satisfy (2.2)

We have already remarked that our estimators 9* are translation invariant;
they therefore satisfy (2.1) and (2.2) with g'l =1, TIf T satisfies

n
*
(2.2), the ARE of the test based on 6 +to that based on T, is therefore
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* -
§'1 6/6'3 6.

This of course depends on the direction of approach to the

*
null hypothesis. But I  can be made arbitrarily close to the information
matrix I, and it is well known (Satz 1.13 on p. 356 of [57], for example) that

for any regular unbiased estimator with covariance matrix §
§'I6 > 8'3 6  for all b.

The quantity 6'I8 therefore plays a role in the theory of ARE for tests
based on estimators analogous to that of the Cramer-Rao lower bound in the
theory of ARE for estimators. We can say that tests based on the ANE class
of estimators 0 form an ANE class of tests among tests satisfying (2.2).
The remarks of this section apply also to the three classes of ANE
estimators discussed in [3]. The first two classes, which are ABLUE's from
sample quantiles and cell frequencies in certain random partitions of k-space,
can be seen on inspection to be translation~invariant. The third class,
based on RBAN estimators for multinomial problems, need not be invariamt.

In this case (2.1) can be shown to hold by direct computation.
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