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l. We consider Ramsey's Theorem [3], as it pertains to partitions
of pairs of elements of a finite set into disjoint classes denoted by
Al’ A2,..., Ac *

Definition 1: A partition of the pairs of elements of a finite set

S will be called an (nl, Doseees nc) partition if n, is larger than the

i

largest number of elements of S all of whose pairg are in the class Ai

fori = l, 2,...’ Coe

- Definition 2: R(nl, n2,...,nc) is the greatest integer such that
an (nl, Doseves nc) partion exists on a set of R(nl, Doy ese, nc)
elements. (According to Ramsey's Theorem such a finite integer exists.)

Definition 3: If a set H €S is specified then for each e€S

the J support of e in H 1is the set of elements of H whose pairs

with e are in the class A, .

J

Definition k: An i element of J support with respect to H is

- an element whose J support in H is an. i subset of H.

2. Ve consider now an (nl, Dyyeess nc) partition of the pairs
of elemer;ts, of a set S. Without loss of generality we consider a subset
H €S all of whose pairs of elements are in the 'class Aj and for which
H| = ng-1 . ’

With respect to this set H the elements of S-H are partitioned
into classes according to their J support in H. We will let Py

denote the number of i elements of support with respect to H.



Thus we have that
n.-1
sl = ) » - (1)
i=0

Our purpose here will be to give bounds for certain linear combinations

of the Pi .

Proposition l: Let P;s i1 =0, 1,.... be the number of i points

of J support with respect to H.
Then

nj-l

n.,-1
2 pv (k'n\."i'l"\)) 5R(nl,"" n,j-l, k+l) n,j+l,..., nc) ( i]{ ) (2)
\:mj-iﬂ J

for all k > nj-i—l .

Proof: ILet S admit an (nl, Dyyeeey nc) partition P and let
Hcs, |H] = nj—l > such that all pairs of elements of H are in the
class AJ. .

For each KcH, |K| =k, we consider all elements whose J support
in H is an nj-—i set or larger and whose support contaihs H-K call

this set S(X). The partition P when restricted to the elements of

| S-H forms a (nl, Dpyeees By 95 k+1, CRTEPLIRY nc) partition of the pairs
of elements of S(K) otherwise when P is restricted to the elements of
H-K those elements, toéether with S(X), woﬁld contain a set of nJ. or more
elements all of whose pairs are in the restriction of the class Aj to

the subset (H-K) U S(X) .



Thus If one considers all k-subsets of H and observes that each

v
n,+l+y
J

there ‘can be at most R(nl,a;.,nj_l, k+1, I PREEY nc) elements, the

v element will be counted (k— ) times and that on each k-subset

bound (2) results.

Proposition 2: With the numbers p, as in proposition 1; the

following inequality is satisfied
n,~1
J

’ n.-1l
) (v=(n,-2-x)) RSN b ) Ragyeen,ng 0%, npg,eeen,) (3)
v=n,~l<k
3

for all k .

22992" Proceeding as in proposition 1 we now will count the number
of pairs of elements in class AJ for which one element of the pair
is an element of H.

Specifically, for any subset K CH, |K| =k there are at most
R(nl,..., nj-l’k’ Dypyseses nc) elements of S-H whose J support
contains H-X and whose pairs with a fixed element of K are in the
class Aj » Each v element of S-H of J support in H will have
pairs in the class AJ, with v-(nj-l—k) elements of H.

Combining the two facts above, we see that each KcH, |K| =k
- vill allow at most k R(nl,..., nj-l’k’ CIPILY nc) such pairs.

The inequality (3) then results from the consideration of all k-
subsets of H to obtain the term on the right hand side and from adding
up the number of such péirs for each ‘v element of Jj support in H

to obtain the left hand side. The proposition is thus proved.



Invthe special case of a partition into two classes we can obtain
another inequality analogous to (3) but for which the right hand side

differs.

Proposition 3: For a partition of a set S into two classes to

obtain an (nl, n2) partition we have

n.-1

2 n.=-1

jz (na-l-v) (v-(nerl-k)) pv.f k R(nl-l, k+1) ( 2k ) . (4)
\)=n2-k .

Proof: To see the truth of (4) we again consider an (n2-1)-subset
HcS for which all pairs of elements of H are in A2 « Then for each
v element of S-H with 2 support in H for which that support contains
a set H-K for some k-subset K cH there are at most ng-l-v elements

of K whose pairs with that v element are in class A But for each

l.

element of K there can be at most R(n,-1, k+l) such elements of S-H

1
vhose support contains H-K .« Thus if we now impose this restriction for

all k subsets of H the inequality (L) is obtained as stated.

3. Applications of the inequalities to R(nl, N), np<N.
In our application we assume without loss of generality the existence
of a set S(nl), for each n,, which adnmits an (nl+l; N+1) partition
of the pairs of its elepents and which contains an N set H(nl) all
of whose pairs are in the second class. We will denote the number of
i elements of 1 support in H(nl) by P, (please note that this

number in section 2 was denoted by p, .) . P, is simply the number of
N-1 i



elements of S-H which have i pairs with elements of H in the first
partition class.
With this change in our notation the inequality (&) is

K
N-V N
)V () By < KR(ny, x01) () (5)
v=1l
and for K=N becomes simply

N
) VB < N R(n,, W) . (6)
V=1
The pair of inequalities (5) and (6) in the variables Pos Pysesss Py
N
. will next be used to find max ¢ Dy subject to the constraints imposed
V=0
by those inequalities and Py 20 for V=0, 1, 2,ees, N,

We will now formulate the dual to this linear programming problem.

The dual problem is to find the minimum of

N '
+ + +
N R(nl, N+1) X, +X (K) R(nl, K+1) X,
subject to the conditions that the variables Xl’ Xé satisfy‘the inequalities

. . (N-1
1xl+1(K_i) X, 21 for 1 =1,.e., N. (1)

If one considers the geometry of the first problem it is natural to
N
conjecture that the max I PV for the variables pb,..., Ih constrained
V=0 :
to the given convex region will occur at the extreme point in the coordinate

plane of PV’ pb+l where v is that value of V for which inequality



(5) places a greater restriction on p, than (6) and inequality (6)
places a'greater restriction on pv+1 than (5). v 1is easily found
by minimizing p, subject to (5) over all values of K and taking the
- largest value of V for which that minimum is achieved by a value of
K<N.

To carry out that procedure one must use a value of R(nl, K+1)

which is known to be an upper bound. For that purpose we appeal to
K+nl-l

nl-l
With this bound we find that Py is minimized by (5) when

[1] and observe that ( ) will be an upper bound for all n, K.

: nl(V—l)
K = integer Gﬂ;fﬁr—) (8)
1

and this will be less than N if

nl(N+l)

+
N nl

V< (9)
Thus we define v {0 be the largest integer satisfying (9). We now

apply this preceding information to show that

Theorem 1. .
el K R(ny, K+1)(}(N-v) . L) (W-K)- (8-
v(v+l)(N-K)(§:3) v(v+1}(N-K)

Mex % p; < W1 R(n;, ¥41) (10)

x

where D,, Py, +++, Py satisfy the inequalities (5) and (6) .



Proof: We will establish (10) by observing that with p;=0, i v, vtl
and solving (5) and (6) as equations in B, and P4 yields the value
given on the r. h. s. of (lO). That establishes the max ¥ pi to be
at least as large as the asserted value.

Next for the dual problem if we let

X = (v+1)(N-K)-(N-v) and X = N-v
1 v(v+1)(N-K) 2 v(vﬂ)(N—K)(g_ v
-V

we find that
N
[xl N R(nl, N+1) + X, K(K) R(nl, K+1)]

is the same value as that given in (10) and hence the minimum for the dual

s X, satisfy conditions (7).

Thus if we demonstrate that we have a feasible solution to the dual problem

problem is at most this value provided X

we can appeal to the duality theorem for linear programming which would

then assert that (10) gives the max T p; -

2
holds. lLet N, v, K be fixed and denote the left hand side of (7) by

To verify that X0 X, is a feasible solution we must show that (7)

ai . Then the first differences

+ -K)-(N- - . i -1 -V
1)(N-X)-( V)) + (g—;)(l _an)(x ))(N )

v(v*1)(N-K) N-1 “VYu(v+1) (N-K)

- KV
8- 8,4, =-1 ( (N
K-v

i i



and the second differences

(aj -2j)-(ay4 = a;0)=(N-K)(i(N-1)-2(i+1)) > O

hence the first differences_are decreasing in i, i.e., ay - aj4 > 2441 - 844p

but it is easily verified that av - av+l = 0 and that av = av+l =1 .

Therefore, the terms a; 2 1 for all i . This concludes the proof of

the theoremn.

4.  Upper bounds for R(nl+l, N+l) extrapolated from R(3, K).
We will consider (10) and the bound for R(nl, N+1) given by
f(nl, N) (N+21:i) vhere f(3, N) = A loglog N/log N, see 2, p., 1547 .
1
Thus, we must consider the ratio
K+ny-1y/N
CLh )()
_._l;______
N- N+
(V) (e,
1

(11)

in estimating the bound for R(nl+1, N+1) given by the bound for R(nl, N+1)
and (R(nl, K+1) . Exparding the binomial coefficients in (11) it follows

immediately that a useful upper bound for this ratio is

C \)( N—K) ny

ny
N+n rl +

- | (12)

: 1
for which if K = N/2 ‘and n < JU/(1ogll)2

. we can write (12) as

ny Clunl
N+n1 [l * N ] (13)




10

where Cl is an absolute constant which is independent of N and n, -

) Y
For values of n, > /N/(logl)2 we let N-K = N loglogN/(v+l) and
in this case the ratio (11) can be written as

n, N-K (v-n ) (k+5) + v(n;-2)

mo (1 + o, +3 ) (K~y+i
Ky 0 (Ktn, +5) (K-v+j)

c
and the product is bounded by (1 + —ﬁi) (14)

with C3 being a constant independent of ny and N.

Lemma, 1.
Let R(n., I+1) < £(n., L)Xl
1 - 1 nl-l

where
| L
f(nl, N/2)/f(nl, N) <1+ Ch/logN » ny < /N/(1logl)? ,

then

C

N+ny 5
R(n +1, N41) < £(n,, W) ( y 1+ SToal

Proof: Using K = N/2 and the bound obtained in (13) whenever

i
n, < /N/(1ogN)2 , Theorem 1 asserts



11

N+n
f(a,, N)(O 1) Nn c C.vn ,
L np © 1 4 1V
Flog ™ B0 S ey om {0z @+ AP ) on-a(n}
c C,vn c c
e(n., m)(T) {1 L1, ?l_‘ggﬁ (1 + —l'Iv—'l') 1'&:'1\1(1 +15§N)}
S nl, n N . V

1

_<_f(n

C
N+n 5
1> I nll){l + VlogN}

where C is independent of n., and N.

> 1

Lemma 2.

Let R(n., L+1) < £(n., L)(F™Y)  ihere
1 =ty 0 -1

C 6loglogN

+
f(nl, K)/f(nl, N) <1 NP

) and v as defined in section 3, then

_ w(vl-loglogh
for K = N( e}

C8 )
vliogh / °*

R(n,+1, M+1) < #(a., N)(F1)(1 +
1 - 1 nl



1
Proof: From Theorem 1 and the bound (14) with n) JN/(1ogN)2

and N-K = N loglogl/(v+l) we have

Knl(N-v) c3 Cgloglogh
K+n (1 + 1+
N +nl { 1 N \)lOgN
+ +
R(nl 1, Nfl1) < f(nl, N)( n, ) v N loglogN
n
L2 [NloglogN - (N-y)] } .
N+nl v N loglogN
an

R X £ . .
.eplac1ng the factor (G:ijrﬁqﬁzj by 1 and collecting terms this

expression simplifies to

R(n,*1, ¥41) < 2(n,, N)(N:nl) {1 + % . £v+lélog_10gN)(N-v)C'(loglogN}
1 v N logN loglogN

C8 )
viogh

< (n, N)(N:il)(l +

We now use lemmas 1 and 2 to prove

Theorem 2.

‘ » loglogN  N+ny
R(ny*1, W41) < 0% =504 0, )

where C¥ is independent of N and ni <N .
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Proof: From lemmas 1 and 2 we see that the bound

R(3, N+l) < i$%%§? (Ne)

obtained in [2, p. 1547 can be extrapolated using Theorem 1 to give us

' N+n Cr
R(n,+1, N+1) < £(ny, N)( nl1)(1 + vlogN)

for some C' independent of N and ny providedlwe can show that

f(nl, K)/f(nl, N) satisfies the hypothesis of the lemmas for each n,

If we take

A loglogN
f(3) N) = _—_;)_%g—l\lg-_

then

n
_ A loglogh 1 C!
f(nl’ N) = logl m(1 J logN )

and the ratio

. ) n
N log2 l 1052 _J log2

log2 ) C! log 2
+
<Q1 log(N/2 ) jzh (1 + J logN log(N/2) )
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and with ny < /N this product is bounded by

T

* Tog(v/2) 5

*
hence if 2__%952 + 1 < ¢¥* this bound can be iterated and we will

*
perpetuate the bound 1 + lggN for the ratio. Note that c¢* is independnet

of n; and N for n, < /N .

This gives us

n
A logloglN ,N+nj 1 + <X
R(ny*1, N41) < =700 ( By ) JT.—T.:L L+ 550ew)

1
for all n, < /N/(logh)2 .

Similarly, from Lemma 2, the function f(nl+l, L) satisfies the same

+1-
bound on the ratio and for K = N(¥ 2 iillo N) this ratio is decreasing

with increasing values of n, so there is a constant c¢* independent

of n and N so that

1

A loglogN ,N+n,y P11, o
+ __.._g_.___ 1 +
R(n +1, N+1) < Togh ( oy ) 321 (1 T Toa )

for all n, < N .
on o |
Since 7 (1 + - ) is uniformly bounded in N for all n. < N
5=1 J logN 1l-

the conclusion of the theorem follows with

N
C* =Asup m (1 +
N j=1

¥
J logN

)
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Conjecture: 1In [2, section 37 a rather sharp bound was obtained for
the numbér of pairs that an element must share in class 1 with elements
of a maximal set all of whose pairs are in class 2 but only in the case
n1 =3 . Comparison with the results of section 3 of this paper indicates
that the order of magnitude of R(nl, N) for n, = b, 5,..., N is much
smaller than is indicated by any wofk to date. One should be able to extend
the sharper bounds of [2] for larger values of nl to obtain asymptotic
bounds of smaller order of magnitude than we have obtained here however

I have not been able to do so.
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