Inequalities and Asymptotic Bounds

for Ramsey Numbers *

by

James Yackel

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series No. 187

March 1969

^{*}This work was supported by National Science Foundation Grant GP7631.

The author wishes to acknowledge his indebtedness to Professor H. Rubin for a key suggestion in obtaining the results of Section 3.

1. We consider Ramsey's Theorem, [3], as it pertains to partitions of pairs of elements of a finite set into disjoint classes denoted by $^{A}_{1}$, $^{A}_{2}$,..., $^{A}_{c}$.

<u>Definition 1</u>: A partition of the pairs of elements of a finite set S will be called an (n_1, n_2, \dots, n_c) partition if n_i is larger than the largest number of elements of S all of whose pairs are in the class A_i for $i = 1, 2, \dots, c$.

<u>Definition 2</u>: $R(n_1, n_2, ..., n_c)$ is the greatest integer such that an $(n_1, n_2, ..., n_c)$ partion exists on a set of $R(n_1, n_2, ..., n_c)$ elements. (According to Ramsey's Theorem such a finite integer exists.)

<u>Definition 3</u>: If a set $H \subseteq S$ is specified then for each $e \in S$ the <u>i support of e in H</u> is the set of elements of H whose pairs with e are in the class A_i .

Definition 4: An i element of j support with respect to H is an element whose j support in H is an i subset of H.

2. We consider now an $(n_1, n_2, ..., n_c)$ partition of the pairs of elements of a set S. Without loss of generality we consider a subset $H \subseteq S$ all of whose pairs of elements are in the class A_j and for which $|H| = n_j - 1$.

With respect to this set H the elements of S-H are partitioned into classes according to their j support in H. We will let p_1 denote the number of i elements of j support with respect to H.

Thus we have that

$$|S| = \sum_{i=0}^{n_j-1} p_i . \tag{1}$$

Our purpose here will be to give bounds for certain linear combinations of the $\,p_{\mbox{\scriptsize i}}^{}\,$.

<u>Proposition 1</u>: Let p_i , i = 0, 1, ... be the number of i points of j support with respect to H.

Then

$$\sum_{v=n_{j}-i+1}^{n_{j}-1} p_{v} \binom{v}{k-n_{j}+1+v} \leq R(n_{1}, \dots, n_{j-1}, k+1, n_{j+1}, \dots, n_{c}) \binom{n_{j}-1}{k} (2)$$

for all $k \ge n_j$ -i-1.

<u>Proof</u>: Let S admit an $(n_1, n_2, ..., n_c)$ partition P and let $H \subseteq S$, $|H| = n_j - 1$, such that all pairs of elements of H are in the class A_j .

For each $K \subseteq H$, |K| = k, we consider all elements whose j support in H is an n_j -i set or larger and whose support contains H-K, call this set S(K). The partition P when restricted to the elements of S-H forms a $(n_1, n_2, \ldots, n_{j-1}, k+1, n_{j+1}, \ldots, n_c)$ partition of the pairs of elements of S(K) otherwise when P is restricted to the elements of H-K those elements, together with S(K), would contain a set of n_j or more elements all of whose pairs are in the restriction of the class A_j to the subset $(H-K) \cup S(K)$.

Thus if one considers all k-subsets of H and observes that each ν element will be counted $\binom{\nu}{k-n}$ times and that on each k-subset there can be at most $R(n_1, \dots, n_{j-1}, k+1, n_{j+1}, \dots, n_c)$ elements, the bound (2) results.

<u>Proposition 2</u>: With the numbers p_{v} as in proposition 1, the following inequality is satisfied

$$\sum_{v=n_{j}-1-k}^{n_{j}-1} (v-(n_{j}-1-k)) \binom{v}{n_{j}-1-k} p_{v} \le k \binom{n_{j}-1}{k} R(n_{1},...,n_{j-1},k, n_{j+1},...,n_{c})$$
 (3) for all k .

<u>Froof:</u> Proceeding as in proposition 1 we now will count the number of pairs of elements in class A_j for which one element of the pair is an element of H.

Specifically, for any subset $K \subseteq H$, |K| = k there are at most $R(n_1, \dots, n_{j-1}, k, n_{j+1}, \dots, n_c)$ elements of S-H whose j support contains H-K and whose pairs with a fixed element of K are in the class A_j . Each ν element of S-H of j support in H will have pairs in the class A_j with ν - (n_j-1-k) elements of H.

Combining the two facts above, we see that each $K \subseteq H$, |K| = k will allow at most $k R(n_1, \ldots, n_{j-1}, k, n_{j+1}, \ldots, n_c)$ such pairs.

The inequality (3) then results from the consideration of all k-subsets of H to obtain the term on the right hand side and from adding up the number of such pairs for each ν element of j support in H to obtain the left hand side. The proposition is thus proved.

In the special case of a partition into two classes we can obtain another inequality analogous to (3) but for which the right hand side differs.

<u>Proposition 3</u>: For a partition of a set S into two classes to obtain an (n_1, n_2) partition we have

$$\sum_{\nu=n_{2}-k}^{n_{2}-1} (n_{2}-1-\nu) \left(\frac{\nu}{\nu-(n_{2}-1-k)} \right) p_{\nu} \leq k R(n_{1}-1, k+1) \left(\frac{n_{2}-1}{k} \right).$$
 (4)

<u>Proof</u>: To see the truth of (4) we again consider an (n_2-1) -subset $H \subseteq S$ for which all pairs of elements of H are in A_2 . Then for each ν element of S-H with 2 support in H for which that support contains a set H-K for some k-subset $K \subseteq H$ there are at most n_2 -1- ν elements of K whose pairs with that ν element are in class A_1 . But for each element of K there can be at most $R(n_1-1, k+1)$ such elements of S-H whose support contains H-K. Thus if we now impose this restriction for all k subsets of H the inequality (4) is obtained as stated.

3. Applications of the inequalities to $R(n_1, N)$, $n_1 \leq N$.

In our application we assume without loss of generality the existence of a set $S(n_1)$, for each n_1 , which admits an $(n_1+1, N+1)$ partition of the pairs of its elements and which contains an N set $H(n_1)$ all of whose pairs are in the second class. We will denote the number of i elements of 1 support in $H(n_1)$ by \mathbf{p}_i (please note that this number in section 2 was denoted by \mathbf{p}_{N-i}). \mathbf{p}_i is simply the number of

elements of S-H which have i pairs with elements of H in the first partition class.

With this change in our notation the inequality (4) is

$$\sum_{V=1}^{K} V \binom{N-V}{K-V} \quad P_{V} \leq K R(n_{1}, K+1) \binom{N}{K}$$

$$(5)$$

and for K=N becomes simply

$$\sum_{\mathbf{V}=1}^{\mathbf{N}} \mathbf{V} \mathbf{P}_{\mathbf{V}} \leq \mathbf{N} \ \mathbf{R}(\mathbf{n}_{1}, \ \mathbf{N+1}) \ . \tag{6}$$

The pair of inequalities (5) and (6) in the variables p_0, p_1, \dots, p_N will next be used to find max $\sum_{V=0}^{\infty} p_V$ subject to the constraints imposed by those inequalities and $p_V \ge 0$ for $V=0, 1, 2, \dots, N$.

We will now formulate the dual to this linear programming problem.

The dual problem is to find the minimum of

N R(n₁, N+1) X₁ + K (
$$_{K}^{N}$$
) R(n₁, K+1) X₂

subject to the conditions that the variables X_1 , X_2 satisfy the inequalities

$$i X_1 + i {N-i \choose K-i} X_2 \ge 1 \text{ for } i = 1, ..., N.$$
 (7)

If one considers the geometry of the first problem it is natural to N conjecture that the $\max_{\mathbf{V}=\mathbf{0}} \Sigma$ p_V for the variables $\mathbf{p}_0, \cdots, \mathbf{p}_N$ constrained to the given convex region will occur at the extreme point in the coordinate plane of \mathbf{p}_v , \mathbf{p}_{v+1} where \mathbf{v} is that value of \mathbf{V} for which inequality

(5) places a greater restriction on p_V than (6) and inequality (6) places a greater restriction on p_{V+1} than (5). ν is easily found by minimizing p_V subject to (5) over all values of K and taking the largest value of V for which that minimum is achieved by a value of K < N .

To carry out that procedure one must use a value of $R(n_1, K+1)$ which is known to be an upper bound. For that purpose we appeal to [1] and observe that $\binom{K+n_1-1}{n_1-1}$ will be an upper bound for all n_1 , K. With this bound we find that p_V is minimized by (5) when

$$K = integer \left(\frac{n_1(V-1)}{n_1-V}\right)$$
 (8)

and this will be less than N if

$$V < \frac{n_1(N+1)}{N+n_1} \tag{9}$$

Thus we define v to be the largest integer satisfying (9). We now apply this preceding information to show that

$$\frac{\text{Theorem 1.}}{\text{Max } \Sigma \text{ p}_{1}} \leq \frac{K \text{ R}(n_{1}, \text{ K+1})\binom{N}{K}(N-\nu)}{\nu(\nu+1)(N-K)\binom{N-\nu}{K-\nu}} + \frac{\lceil (\nu+1)(N-K)-(N-\nu) \rceil}{\nu(\nu+1)(N-K)} \text{ N R}(n_{1}, \text{ N+1}) \quad (10)$$

where $p_1, p_2, ..., p_N$ satisfy the inequalities (5) and (6).

<u>Proof:</u> We will establish (10) by observing that with $\mathbf{p_i}$ =0, $\mathbf{i} \neq \nu$, ν +1 and solving (5) and (6) as equations in $\mathbf{p_v}$ and $\mathbf{p_{\nu+1}}$ yields the value given on the r. h. s. of (10). That establishes the max $\Sigma \mathbf{p_i}$ to be at least as large as the asserted value.

Next for the dual problem if we let

$$X_1 = \frac{(v+1)(N-K)-(N-v)}{v(v+1)(N-K)}$$
 and $X_2 = \frac{N-v}{v(v+1)(N-K)(\frac{N-v}{K-v})}$

we find that

$$[X_1 \ N \ R(n_1, N+1) + X_2 \ K(N \ R(n_1, K+1))]$$

is the same value as that given in (10) and hence the minimum for the dual problem is at most this value provided X_1 , X_2 satisfy conditions (7). Thus if we demonstrate that we have a feasible solution to the dual problem we can appeal to the duality theorem for linear programming which would then assert that (10) gives the max Σ p_i .

To verify that X_1 , X_2 is a feasible solution we must show that (7) holds. Let N, ν , K be fixed and denote the left hand side of (7) by a_i . Then the first differences

$$a_{i} - a_{i+1} = -1 \left(\frac{(\nu+1)(N-K)-(N-\nu)}{\nu(\nu+1)(N-K)} \right) + \binom{N-1}{K-i} \left(i - \frac{(i+1)(K-i)}{N-i} \right) \frac{(N-\nu)}{(N-\nu)\nu(\nu+1)(N-K)}$$

and the second differences

$$(a_i - a_{i+1}) - (a_{i+1} - a_{i+2}) = (N-K)(i(N-i)-2(i+1)) > 0$$

hence the first differences are decreasing in i, i.e., $a_i - a_{i+1} > a_{i+1} - a_{i+2}$ but it is easily verified that $a_v - a_{v+1} = 0$ and that $a_v = a_{v+1} = 1$. Therefore, the terms $a_i \ge 1$ for all i. This concludes the proof of the theorem.

4. Upper bounds for $R(n_1+1, N+1)$ extrapolated from R(3, K). We will consider (10) and the bound for $R(n_1, N+1)$ given by $f(n_1, N) \, \binom{N+n_1-1}{n_1-1} \quad \text{where} \quad f(3, N) = A \, \log\log\,N/\log\,N \,, \quad \text{see [2, p. 154]} \,.$ Thus, we must consider the ratio

$$\frac{\binom{K+n_1-1}{n_1-1}\binom{N}{K}}{\binom{N-\nu}{K-\nu}\binom{N+n_1}{n_1}}$$
(11)

in estimating the bound for $R(n_1+1, N+1)$ given by the bound for $R(n_1, N+1)$ and $(R(n_1, K+1)$. Expanding the binomial coefficients in (11) it follows immediately that a useful upper bound for this ratio is

$$\frac{n_1}{N+n_1} \left[1 + \frac{C_1 v(N-K)n_1}{K N} \right]$$
 (12)

for which if K = N/2 and $n_1 \le \sqrt{N/(\log N)^{\frac{1}{2}}}$ we can write (12) as

$$\frac{n_1}{N+n_1}\left[1+\frac{C_1 v n_1}{N}\right] \tag{13}$$

where $^{C}_{l}$ is an absolute constant which is independent of N and $^{n}_{l}$. For values of $^{n}_{l} \geq \sqrt{N/(\log N)^{\frac{1}{2}}}$ we let N-K = N loglogN/(v+l) and in this case the ratio (11) can be written as

$$\frac{n_{1}}{K+n_{1}} \prod_{j=1}^{N-K} (1 + \frac{(v-n_{1})(K+j) + v(n_{1}-2)}{(K+n_{1}+j)(K-v+j)})$$
and the product is bounded by $(1 + \frac{c_{3}}{N})$ (14)

with C_3 being a constant independent of n_1 and N_2

Lemma 1.

Let
$$R(n_1, L+1) \le f(n_1, L)(\frac{L+n_1-1}{n_1-1})$$

where

$$f(n_1, N/2)/f(n_1, N) \le 1 + C_4/\log N, n_1 \le N/(\log N)^{\frac{1}{2}},$$

then

$$R(n_1+1, N+1) \le f(n_1, N) \binom{N+n_1}{n_1} (1 + \frac{c_5}{v \log N})$$
.

<u>Proof:</u> Using K = N/2 and the bound obtained in (13) whenever $n_1 \le \sqrt{N/(\log N)^{\frac{1}{2}}}$, Theorem 1 asserts

$$R(n_{1}+1, N+1) \leq \frac{f(n_{1}, N)(\frac{N+n_{1}}{n_{1}}) Nn_{1}}{(N+n_{1})(\nu+1)(\nu+1)(\nu+1)} \left\{ (1 + \frac{C_{1}}{\log N})(1 + \frac{C_{1} \vee n_{1}}{N})(N-\nu) + (\nu+1)N-2(N-\nu) \right\}$$

$$\leq f(n_1, N)\binom{N+n_1}{n_1} \left\{ 1 + \frac{1}{N} + \frac{\frac{C_1}{\log N} (1 + \frac{C_1 \vee n_1}{N}) + \frac{C_1}{\log N} (1 + \frac{C_1}{\log N})}{\nu} \right\}$$

$$\leq f(n_1, N)(\frac{N+n_1}{n_1})\{1 + \frac{C_5}{v \log N}\}$$

where C_5 is independent of n_1 and N.

Lemma 2.

Let
$$R(n_1, L+1) \le f(n_1, L)(\frac{L+n_1-1}{n_1-1})$$
 where

$$f(n_1, K)/f(n_1, N) \le 1 + \frac{C_6 \log \log N}{v \log N}$$

for $K = N(\frac{v+1-\log\log N}{v+1})$ and v as defined in section 3, then

$$R(n_1+1, N+1) \le f(n_1, N)(\frac{N+n_1}{n_1})(1 + \frac{c_8}{v \log N})$$
.

<u>Proof</u>: From Theorem 1 and the bound (14) with $n_1 \ge \sqrt{N/(\log N)^{\frac{1}{2}}}$ and $N-K = N \log \log N/(\nu+1)$ we have

$$R(n_1+1, N+1) \leq f(n_1, N)(\frac{N+n_1}{n_1}) \begin{cases} \frac{Kn_1(N-\nu)}{K+n_1} & (1+\frac{C_3}{N})(1+\frac{C_6\log\log N}{\nu\log\log N}) \\ & \nu & N & \log\log N \end{cases}$$

$$+\frac{Nn_1}{N+n_1}\frac{[NloglogN - (N-v)]}{v \ N \ loglogN}$$
.

Replacing the factor $\frac{Nn_1}{(\nu+1)(N+n_1)}$ by 1 and collecting terms this expression simplifies to

$$R(n_1+1, N+1) \leq f(n_1, N)(\frac{N+n_1}{n_1}) \left\{1 + \frac{1}{N} + \frac{(\nu+1-\log\log N)(N-\nu)C_7\log\log N}{\nu^2 N \log N \log\log N}\right\}$$

$$\leq f(n_1, N)(\frac{N+n_1}{n_1})(1 + \frac{c_8}{v \log N})$$
.

We now use lemmas 1 and 2 to prove

Theorem 2.

$$R(n_1+1, N+1) \le C* \frac{\log\log N}{\log N} {n_1 \choose n_1}$$

where C* is independent of N and $n_{_{1}}\,\leq\,\text{N}$.

Proof: From lemmas 1 and 2 we see that the bound

$$R(3, N+1) \leq \frac{A \log \log N}{\log N} {N+2 \choose 2}$$

obtained in [2, p. 154] can be extrapolated using Theorem 1 to give us

$$R(n_1+1, N+1) \le f(n_1, N)(\frac{N+n}{n_1})(1 + \frac{C'}{v \log N})$$

for some C' independent of N and n_1 provided we can show that $f(n_1, K)/f(n_1, N)$ satisfies the hypothesis of the lemmas for each n_1

If we take

$$f(3, N) = \frac{A \log \log N}{\log N}$$

then

$$f(n_1, N) = \frac{A \log \log N}{\log N} \prod_{j=1}^{n_1} (1 + \frac{C'}{j \log N})$$

and the ratio

$$f(n_1, N/2)/f(n_1, N) = (1 + \frac{\log 2}{\log(N/2)}) \prod_{j=1/4}^{n_1} (1 + \frac{\log 2}{\log(N/2)})(1 - \frac{j \log 2}{j \log N + C'})$$

$$\leq (1 + \frac{\log 2}{\log(N/2)}) \frac{n_1}{n_1} (1 + \frac{C' \log 2}{j \log N \log(N/2)})$$

and with $n_1 < \sqrt{N}$ this product is bounded by

$$(1 + \frac{1}{\log(N/2)}) \frac{C' \log 2}{2} + 1$$

hence if $\frac{c* \log 2}{2}$ +1 < c* this bound can be iterated and we will perpetuate the bound 1 + $\frac{c*}{\log N}$ for the ratio. Note that c* is independent of n_1 and N for $n_1 \leq \sqrt{N}$.

This gives us

$$R(n_1+1, N+1) \le \frac{A \log \log N}{\log N} \binom{N+n_1}{n_1} \binom{n_1}{j=1} (1 + \frac{c*}{j \log N})$$

for all $n_1 \leq \sqrt{N/(\log N)^{\frac{1}{2}}}$.

Similarly, from Lemma 2, the function $f(n_1+1, L)$ satisfies the same bound on the ratio and for $K = N(\frac{\nu+1-\log\log N}{\nu+1})$ this ratio is decreasing with increasing values of n_1 so there is a constant c^* independent of n_1 and N so that

$$R(n_1+1, N+1) \le \frac{A \log \log N}{\log N} \binom{N+n_1}{n_1} \binom{n_1}{j=1} (1 + \frac{c^*}{j \log N})$$

for all $n_1 \leq N$.

Since $\frac{n_1}{j=1} \left(1 + \frac{c^*}{j \log N}\right)$ is uniformly bounded in N for all $n_1 \leq N$

the conclusion of the theorem follows with

$$C^* = A \sup_{N} \frac{N}{\pi} \left(1 + \frac{c^*}{j \log N}\right).$$

Conjecture: In [2, section 3] a rather sharp bound was obtained for the number of pairs that an element must share in class 1 with elements of a maximal set all of whose pairs are in class 2 but only in the case $n_1 = 3$. Comparison with the results of section 3 of this paper indicates that the order of magnitude of $R(n_1, N)$ for $n_1 = 4, 5, \ldots, N$ is much smaller than is indicated by any work to date. One should be able to extend the sharper bounds of [2] for larger values of n_1 to obtain asymptotic bounds of smaller order of magnitude than we have obtained here however I have not been able to do so.

References

- P. Erdos and G. Szekeres, On a combinatorial problem in geometry, Composition Math. 2 (1935), 463-470.
- [2] Jack E. Graver and James Yackel, Some Graph Theoretic Results Associated with Ramsey's Theorem, Journal of Combinatorial Theory 4(1968), 125-175.
- [3] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30(1930), 264-286.
- [4] C. Frasnay, Sur les fonctions d'entiers se rapportant au théorème de Ramsey, Comptes Rendus, 256(1963), 2507-2510.