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1. Introduction and Summary. Let El:

random variables having the joint density function

pxnand X,: pxn be real

-pny. =30 1 =Ly o) (Xou )
(L.1)  m)™g |72 exp{-} tr I (X-v)(X-v)'Y, - e <X <o

T} PxDp is areal symmetric positive definite (ped.) matrix,

where

zé: PXDp is a real skew-symmetric matrix, uj: Px4q and Mj: gaxn
(3 = 1,2), are given matrices or their joint density does not contain
Z oy jgs Jo 88 parameters. Then it has‘been shown by Goodman [l?]
that the distribution of the complex mstrix 2 =X, + iX,, (1 = (-1)2),
is complex Gaussian and its density function is given by

(1.2) N (i, x) = w2 g™ exp{-tr g‘l(g-g)(g-@)'}

vhere % =% +if, is Hermitien p.d., i.e. =% pe=p tiw, and
M=M +iM,. Goodman [57, Wooding [177], James [6], Al-Ani [1], and

Khatri [8], [9), [10], [11] have studied distributions derived from a

sample of a complex p-variate normal distribution.

The work of this author was supported by the National Science Foundation
Grant No. GP-T663.



Some concepts which are important and necessary notation are givén

below.

Fm(a) = 2”‘(”"1) m T(a-itl)
j=1

[l = 1 (it = Ty(o)/F (o)

vhere « = (kl,kg,..,,kp) is a partition of the integer k and

~ 1 _ m
T (a,k) = paalm-1) o (atk,-i+1) .
m $=1 1

The hypergeometric functions are defined as

o
F g(8gs+eer8,5 by, by B) = )} E

ya

k=0 K

or wvhen B = ,.I.m we denote it by

~e

F (al,...,ap, bl,-.o,b K A)

and CK(A) is a zonal polynomial of a Hermitian matrix A and is given

~

as a symmetric function of the characteristic roots of A. (See Section 6)

The non-éenti'al distributions of the characteristic roots concerning
the classical problems of the equality of two covariance matrices, MANOVA
model, and canonical correlation coefficients have been found by James [6]
and Khatri [8], [10]. Here for the three cases mentioned, we give the

general moment and the density which is expressed in terms of Meijer's

G-function [13], T14], for W(P) = n (l—w ), where the Wi 1=1,2,000,p
i=1 :



are the characteristic roots in the above cases. The moments and densities
are analogous to those given in the real case by Jouris [7]. Further the
densgity functions of U and Pillai's V criteria in the complex central
cese are obtained for p =2 and from the non-central complex multivariate
F distribution various independence relationships are shown and independent
beta variables are obtained. The last section is devoted to complex zonal
polynomials. A method for computing them in terms of elementsry symmetfic
function (esf's) is given and they are tabulated through degree 8 in

Tables 1-L.

(p)

2. Density Functions of W in the Non-Central Case. Case 1: Testing

the Equality of Two Covariance Matrices. )
Let }'S: (p x nl) NNc(g’El) and E:(p x n2)~l\!c(g,§2) be independent

and ny > p. Then Khatri [10] has shown the density function of the char-

acteristic roots, 0 <f; <...< fp <o of (XX*)(Y ?')'l can be written
as
n,-p
-nl ~ -1 F

(2.2)  cle)ial “Foln 5T -A7 :NI*F) ) e 11 (£,-7,)°

~ ~P |I +F| i»j J
where

ﬂP(P-l)Fg(n) \

(2.2) ¢(p) == = = , n'=mn,m,, ,Ii = diag(fl,...,fp)

' (n, )T {n. )T
L(a )T (0T (p)
and A is a diagonal matrix whose diagonal elements are the characteristic

roots of (% ). Transforming

~L2

(2.3) w, =% /(1 +£,)



we find the density of 0 < Wy < eee < wp is

(2.4) c(p)lA'-nl§ (n; I-p"% W)lW[nl-PH -w;ne-P 0 (w,-w.)?

vhere

W = diag (Wl’WE""-"Wp)'

by
To find E[W(p)]h where W(p) = 1 (l—wi) we multiply (2.4) by |Ip-W[h
- i=1 ~P ~

and transform T - UW U' where U is unitary, i.e. UU!' = I, and T

is Hermitian p.d. « Using the Jaccobian of transformation given by Khatri

r8]

(2.5) J(T;U,W) = 1 (w.-w.)ahe(U)
~ o~ o~ i>j U | ~

and integrating out U and W using

~

(2.6) - ——-——-—‘LP(P'l)

fU U=I pp(l) =
= I‘p(p)

~ o~~~

and

I {(a,%)T (nh-q)C (1))

(2.7) s| 3Py 5| BT (5)as = -
o5 0 g - 0

~ o~

we get after simplifying

(2.8) E[W(P)]h = |al "1 Np(n E(n2 : oF (n,n. 3n+h;I -A-l) .
- FP(ne)Fp'(n‘*h) ol ~P o~



(p)

Before finding the density of W=, below are stated some needed
results on Mellin's transforms [2], [3], [4], and Meijer's G-function [137,
[141.
If s is any complex variate and f£(x) is a function of a real

variable x, éuch that

-
(2.9) F(s) = [ x*e(x) ax

o
exists, then under certain regularity conditions

(2.10) f(x) = (2ni)” -1 Jc * x °F(s) ds .

F(s) is called the Mellin transform of f(x) and f£(x) is the inverse

Mellin transform of F(s). Meijer defined the G-function by

m n
I Mb.-s) 0 (l-aj+s)

,...,a.

(2.11) m’n(XIb, Lo) = (2mi)” f ‘3:; J=1 5 x°ds
'..,
q C 0 ra-b.+s) T T(e.-s)
J=o+l J Jj=n+l

vhere C is a curve separating the singularities of H F(b .~-s) from
J=L

those of H F(l—aJ+s), Q>1, 0<n<p<q, 0<m<gqg; x#0 and
J=1

|[x] <1 if qa=p; x £0 if g >p. Using (2.9) and (2.10) we see

from (2.8) that the density of f(w(l’)) has the form



o0

] (o1, ~ _ n,-
ea2)  5®) - % ) z i%ﬁ CelTph l){W(p)} 2

L
k=0 ¢
I Kz+,)
. T I'ir+o
ctiew - i
. (2ﬂi)'lf {W(p)}’r =L e
c~io ' p
I T(r+ai)
i=
where
fp(n) -n,
(2.13) - c, = P lal % by =171, &, = itk 3ay%Py
p2

Noting that the integral in (2.12) is in the form of Meijer's G-function
we can write the density of W(p) as

@

(n] [ ~ -
) o) —g § Y R Gy
=0 ¥

a ,a-n,a
. GP;O(W(P)‘ 1 Py

b, D yeee,b )
Using the fact that
a,a Py B 7Epmby=by-l
(2'15) G2’O(X| 1 bg) - X (l—X.)}-
2,2 bl’ o F(al ag-bl-be)

a.~b.,a.-b a.ta_ -b.~b

- oFy(epmbysai-bys 8y taybivbysl-x) 0 <x <1

we find the density of W(a) to be



[+

el dnly -2
(2.26)  t®)) g, ¥ Lk n] 2l (- By 2

K
k=0 K
2n +k-1 .
2)
{102y ()
. Nen ) Fl(nl+kl,nl+k2 -1;2n, *k;1-W )

where K = (k k )+ Using the results of Consul [4] for p =3 and
Al-Ani [1] for p =L we could also write out the densities of W(3)

and W(h)

Case 2: MANOVA Model. Suppose X:(p x m) ~N_(u,%) and Y:i(p x n) ~ Nc(o,z)
are independent with m > p. Then the joint densiﬁy of the characteristic

roots 0 < f, < .e. < fp of (X X')(y Y‘)-l is given by Khatri [10] as

-t ~1,-1 F‘m—P 2
(2.15) C'(ple (m+n,m-9,(I F )7) m(f.-f.)
m+n i
|;p+F| 1>

where

Ct(p)

T (m+n)nP(P-l)
R » F=adiag (fl,...,fp)
I‘P(m)r‘p(n)l"p(p)

and Q = diag (ml,...,wp) where w, are the characteristic roots of
VRTARD HEm Now proceeding as in the previous case we obtain E[W(P)]h,
= n (1-w,)  where

=1
W, = fi/(l+fi)
-tx0 T (mm)T
_I“P(m )E(n+h) ~

(2.16) E[W(P)]h=e ~ R F_(mnsmin+h;Q) |
T, (n)L (wmn) 1 ~




Using Mellin's transform and Meijer's G-function as in the previous case

we get the density of W(p) as

(2.17) f(W(P)) N e-tr’% (m+n) 2 2 [m+n] C (Q) {W(P)}H-'P
k=0 K
b, 0 (P) l""’ap
GP: (v l l""’bp)
where
a, = mtk th., b, = i-1

As in the covariance model case, we could also obtain the density éxplic-

itly for p = 2,3,k.

Case 3: Canonical Correlation. Let

pxn

(2.18)

trivs

~Ll 12
~N 0,
ixe ¢ %2@2

~~

n>ptg and q > p. Then the joint density of the characteristic roots
2 2 o1 N N =.y=1 . . .

0 <r] <ees< y Xy ) (¥ X)X XY is given by Khatri

[10] as

e 2 ~q- 2 2y
(2.19)  ¢*'(p)|L-F°I",F (0,0 )q,P R IR P|z-R ‘n TP o (5



vhere

2 . 2 2
E =dlag (I‘l,-.-,l“p)

F (ﬁ)ﬂP(P-l)
(2.20) cti(p) = oL
Fp(n—q)tp(q)Fp(p)

and P = diag (pl,...,pp) where p, are the characteristic roots of

-1

-1l o . . . (P)-;h
Eﬁl 212 Eé2 th . Proceeding as in the previous cases we find E[W by,

P
W(P) = 1 (l—ri), by substituting in (2.8) as follows
i=1

(2.21) (psmoh) = (n nmg, (1))

Further the density of w(p) is obtained from (2.14) by making the above

substitution and letting

= g+ + = i-1 .
ay = Qb by =il

As in the other cases the densities could be written out explicitly for

P = 2,3,’-‘-.

3« The Dengity Function of Pillai's V-Statistic in the Central Case For

Two Roots. If P2 =0 in (2.19) we have the density function of the

characteristic roots ri,rg,...,ri in the central case. Letting p =2

we have

2 2y _ Ay 2,9-2 2 n-q-2, 2 2.2
(3.1) £ (r,7p) = (@) |ET[T LK (r]-15)" .
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2, 2 2.2
Let V = rl+r2 and G = rqTs)

of V we make the above transformation and find

0<V<l, To find the density function

(3.2) £,(V,6) = C"(2)Gq-g(l—V+G)n'q'2(V2—4G)% .

Integrating G between the limits O to ve/u, [16] and writing (1-V+G)n'q'2

as a finite series we have

n-q-2
(3.3) (V) = cri(2) }2 (n—g—e)(l_v)n-q-r-e

=0

. {Ivg/u Gq+r“2(v2-ue)%ae} .

0]

Integrating the expression in the brackets by parts we find the density

function of V to be

n=g=2
(3.4) £4(V) = ¢''(2) E{ (R2B)(1y)ReeT2
r=0
. (grep)pRlem)-l

0 «<V < 1.
28135, (2(q*r)-1)

To obtain the density function of V in the range 1<V <2 we

change ri - l-r? in (3.1) and transform as before to get

(3.5) £,(V,6) = c"(2)(1—V+G)q'2Gn‘q"2(v2-hG)% .



11

~2
Writing (IL—V+G)C1 as a series and integrating G between the limits O
to Ve/l»L we have

g-2
(3.6) fS(V)=C”(2) y (Q;E)(l_v)q—r—Q

r:
\ 1
P2 (2 0)E ao

Evaluating the integral by parts yields

q-2 N
(3.7) fS(V) = cri(2) y (Q;z)(l_v)q—r—E (n+r-q-2)1v2(n+r q)-1

= P13, 5. 2(n4r-q)-1
Transforming V' =2-V, 1<V <2 we find
o q-2 gor-2 _(ntr-g-2)i(e-y)2(mir-a)-1
- (1 i i iV A RN
(3.8) £, =cr(2) ) (U)(E-1) pCx e
o0 3*5e00(2(n+r-q)-1)
1<Vv<2.,

By making the following changes in the parameters in (3.1)

2
(q;n'q;ri) - (m) n)Wi)

or

2
(qon-q,ri) - (nl,ne,wi)



we obtain the central density of the characteristic roots in the MANOVA
or equality of two covariance matrices cases, respectively. Thus the
results of this section and the next aren't restricted to the canonical

correlation case, but extend to the two cases mentioned above as well.

L. The Density Function of the U-Statistic in the Central Case for

Two Roots. To obtain the density function of U we make the transformation

in (3.1)
ri = xi(1+mi)'l
and find
(b.1) g,00p) = €11(2)|9) 8| T a )

wvhere % = diag (xl,xg). Letting U = xl+ A, and G = xlxe we see the

2
joint density of U and G can be put in the form

(h.2) 8,(5,6) = c11(2) ¢ 3(1 + 0y 2(Puac)?

.[l__tf_:&ﬁ_'“

S k)

Writing the part in brackets as a series and integrating G between the

limits O to U2/h yields
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2 (=1 ()
(4.3) g (U) =cri(2)(a + ) —E—
’ : r=0 b (l+§) i
e /b )
. { I / (P-bo)T 222 dG} .
0

Integrating the expression in the brackets by parts, we find the density

of U for p =2 Iis

(P)a-2)1 PR30
hr+q-1(l +lg)2r+2n

(hb)  gg(@) =crr@) ) (1)
r=0

1
(243)(@42) oo. (p+ 2183055

5« Complex Multivariate Beta Distribution and Independent Beta Variables.

If X:(pxm) and Y:(p x n) are independent complex matrix variates
m > p, whose columns are independent complex p-variate with covariance

matrix ¥, and if E(X) =, and B(Y) = O, then the distribution

of
(5.1) F=3(y¥)tx
depends on parameters

-1

(5+2)

1O
1
vE!
1
e



1k

and is [6]
-tr{d
~ - -1 - - +
(5:3)  2(F) =kje  F(wmma(L )T IR L ] (mn) (ap)
where
' T (mn)
(5.4) k .

10T
rp(m)l“p(n)

Since the density of F for p >m can be obtained from (5.3) by

~

making the changes

(5.5) (P:m:n:) - (m:bp)m"l"n"‘P)

it suffices to work only with (5.3). Making the transformation

(5.6) L= (L)

in (5.3) and noting J(L;F) = |Ep'£r2p r87 we have,

2
-\ o = mn-p n-p
(5.7) £(L) = ke T gF (wtnsm "D I -0 T (an)

Proceeding in a mamner similar to Khatri and Pillai 127 let



15

by A * /
(5.8) L = N s Ly, = AV
~ {4 Iyp) pel M2 T a1 A A
1 p~1
and note that l’];_:[ = ’0“11“:22! and
4
(5.9) |Z-Lf = (T=q )T 4-Tppm8 £ /00, (200070

1
e - - 5
Now it can be shown that £y and {EEE’ v f/[ﬂll(l ﬂll) 1}

~

are independently distributed and their respective distributions are

(5.0) £ () = [Blmn)] ™™ lgl(mm;m;xgz Vs (1-gy )t
and

(5.11) fg(ggz,z) = kglEE?‘m-P‘fp-l‘Eze"i'zln-p ,

where

(5.12) k, =k, 8(mn) .

For further independence, we can use the transformation

1
N

Ly m )ty
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With Jacobian of transformation Ip-l - 222!-1 it can be shown that u
and 222 are independently distributed and their respective distributions
are
(5.13) £.(2) = n P r(a)/Fn-pH) 1 (15"
and
_ m-(p~1)-1 o qotl=(p-1)-1
I C N e e
where

k3 = ﬂ(p_l>[F(n-p+l)/F(n)]k2 .

Notice that L,,: (p-1) x (p-1) is the central complex multivariate

beta distribution with m and n+l degrees of freedom. Making the

transformation

(5.15) Xy = ui/(l-ulul— cee - up—lup-l)’ i=1,2,00ep-1uy = 0
p-1 - -i-1

in (5.13) with Jacobian of transformation 1I (l—xixi)p , we obtain
i=1

. — 1
the density of E = (;l,xe,...,xp_l) as
 =(p-1) P p(n-i+1) - n-i-1
(5.16) f(z) =1 I (ool (l—xixi) .

i=1
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After making the transformation of xj = aj + ibj to polar coordinates

(rj, ej), we find with r = (rl,...,rp_l)’

-1 o
(5.17) 2p) - n D)

(l-r?) 2r. dr, .
o1 i i i

Finally the transformation W, = ri yields independent real beta variates

and their respective densities are given by

(5-28) £,00) = [B(1,n-1)77" (1w )T

6. Complex Zonal Polynomials. The zonal polynomials of a Hermitian matrix

A Eé], are given by
(6.1) Cel®) = xpiq (@) %)

vhere K = (kl,kz,...,km) is a partition of the integer k and XrK](l)

is the dimension of the representation [K] of the symmetric group and is

given by
. m m

X{K}(A) is the character of the representation {K} of the linear group
and is given as a symmetric function of the characteristic roots

S TAZ T RRET I of A by
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+m

k,+m-j e
(6.3) X&) = 1(e? I/

where the determinants are Vandermonde type. Further the following

equality is satisfied
(6:4) Y Cl8) = (a))"
K 1
K

where a, is the ith esf of the ei's. Using the following lemma obtained
by Pillai [15] we can get the zonal polynomials as a linear combination of

the esf's. Tables 1-L give (A) and (1) through degree 8.
SR k]

Lemma: Let D(gs,gs_l,...,gl), (gj > O,.j = 1,2,400,8), denote the

determinant
gs gs-l gl
e e *re o e
s s s
(6.5) D(gs’gs-—l’ ov-,gl) = Py L)
gs gs-l gl
] €1 €1

It ar(r < s) denotes the rth esf in s e's, then
(6.6) 1) aDlg,e, qseeer8) = 3 Dlgl, gl _15000,8])

where gé = gj 6, J=1,2,e0ey8, & =0,1 and 3 ' denotes the sum over
the (i) combinations of s g's taken r at a time for which r indices

?
&
5=OO

= gj + 1 such that § = 1 while for other indices gS = gj such that
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. koo vLn(,
ii) (ar) (ah) D(gs,gs_l,...,gl), k,4 >0, can be

expressed as a sum of (i)k(s)g determinants obtained by performing on
D(gé,gs_l,...,gl) in any order (i) k times and (i) £ times with
r=h. However, if at least two of the indices in any determinant are equal,
the corresponding term in the summation vanishes.

An example will suffice to show how X{K}(f) for any degree can be

obtained from those of lower degree. Here we obtain XIK}(A) for k = 3.

Let
- m-J
(6.7) D = |{e; )|
and
. k. +m-j
(6.8) D(k, -1k, tm-2, eee,1) = |(eiJ ).
When k =2 we have
(6.9) (ai-az)D = D(m+l,m-2,m~3, es0,1) for Kk = (2)

and

(6.10) D = D(mym-1,m~3,¢0e,1) for K = (12) .

85

Multiplying (6.9) and (6.10) by a using Pillai's lemma, gives

l)

(6.11) (a3-

1 alag) = D(m+2,m-2, «0e,l) + D{m+l,m-1,m=3, 000,1)



and

(6.12) a,a,D = D(m+l,m-1,m~3,400e,1) + D{mym-L,m-2,m-b,u0s,1)s
But since

(6.13) a,D = D(mym-1,m-2,m-%, ¢v.,1)

3

we have substituting in (6.12)
(6.14) (ala2 - a3)D = D(m+l,m-1,m-3,.00,1)

Waen Kk = (13) and K = (21) in (6.8), we obtain (6.13) and (6.14)

respectively. Thus

X{l3}(é) = ag and X{El}(ﬁ) = 88,08, .
Substituting (6.14%) in (6.11) we find
(6.15) (a§—2a a,ta,)D = D(m2,m-2, ses,1)

12 73

and thus

_.3
X{3}(f) = al-2ala2+a3 .

20



Table 1. Complex Zonal Polynomials of lst - 5th Degree

21

In terms of elementary symmetric functions

of the latent roots of A X[K](l)
1st Degree
X(1] ®1 *
2nd Degree
2
X{23 8 7 % .
x{le} a2 1
3rd Degree
3
X{3} aj - 2ala2 +a.3 1
X
{21} 218, - a5 2
X
{13} a3 1
htn Degree
L 2 2
ay a8, 8y ala3 a),
1 - -
X{k} 3 1 2 1 1
X{3l} 1 -1 -1 1 3
X 1 -1 0 2
(21
X 1 -1 3
(1%}
5th Degree
> a3a a a2 a2a a a.a a,. t
1 1%2 1% 1%3 8083 1% 5
X(53 1 -~k 3 3 -2 -2 1 1
X{hl} 1 -2 -1 2 1 -1 L
x{32} 1 -1 -1 1 0 5
X 1 -1 -1 1 6
(31
X o 1 -1 0 P
213
X 3] 1 -1 4
{217}
1 1

(%)




Table

24

Complex

Zonal Polynomials for 6th Degree

6

1 -5

1

aua a2a2 a.
8p 8485 8,485 8184

6
-3

1

3

L
-1

-1

a.3aaa 26, aeaa.
D Bqfpfg 818y a3 858)

-1

-2
-2

1

-1

2

-2

a.a. a

175 6
2 -1
-1 1
-1 0

-1

0
1 0
-1 1
0 0
-1 0
1 -1

1

10

16

10
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#T
#T
Gt

g€
T2
T2
0z
43
T
GT

uds

(D

-1 T T T =2 o0 o0 I

oI~ o0 T T T - - T=- I

0 0 T 1T I 0 2 1= 1 - T

T 1- 1T 2= I 2 2 T T ¢ o T

0 T ™ o0 I 0 - 2 T T - T T

™ 1 2 2 ™ 4 2= £ I 9 € ™ 4~ T

T 2 e~ o= ¢ 9 1) € = et~ H~ G oT o9 T

g %l Sele Mote mdwm e Te mmﬁm mmww ls mmmdwm 26T €ele Soly Zplp Ty

H 2¢ ¢ L

99a8s(q U3/, 10y sTetwouffod Teuoy xoTdwWoO) .mv 3TqelL



ek

Table L, Complex Zonal Polynomials for 8th Degree
8 6 Lo 5 233 b2 a2;2“ 2 3,
8y 898y 218y 8783 898, 818585 898 85 8y 2a3 183 #1822, 8485
X{8} 1 -7 15 6 -10 =-20 -5 1 12 6 12 L
1 -5 -1 6 8 1 -1 -9 -3 -6 -1
X{71]}
1 -1 - 2 101 2 -1 -1
X{62} 3 3
X, 1 0o -4 -1 o 3 3 3 1
X{6l : 1 -2 1 -1 1 2 -1 -1
{53}
1 - -2 - 2
X{521) 1 0 1 1
X 1 0 0 0o -3 -1
{513}
X 1 -3 1 o -1
(4%
*{431} 101 a1 1
X 5 1 -1 0
{127}
X 1 -1
{L217}
X 1
(u1y
X
{3°2}
X
{3%1%)
X
{32%1}
X a3
{321~}
X .5
{317}
X
(2"
X
(2313
X
(221"
X
{216}
X
128
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Table 4., (Cont'd.)

“ asa g a,8), alasah ala2a5 aia6 8), a3a5 aga/ ala,(, ag X[K](l)
-3 -3 -6 -6 -3 1 2 2 2 -1 1
.3 3 L 4 1 -1 -2 -2 -1 1 7
-1 -2 2 0 1 0 0 1 -1 o0 20
-2 -1 -4 -2 -1 1 2 1 1 -1 21
-1 2 -2 0 1 0 1 -1 0O o0 28

2 0 0 -1 -1 0 -1 0 1 o0 64
0 1 2 2 1 -1 ~1 -1 -1 1 35
2 ;2 -2 2 0 1 -1 0 0 0 1k
fl‘ 0 3 -1 -1 -1 0 1 0 © 70
-1 1 -1 1 O 0 1 -1 0 0 56
0 -1 -1 1 1 1 o 0 -1 0 90
0 ) 0 -2 -1 0 1 1 1 -1 35
1 -1 -1 1 0 1 -1 0 0 © 42
1 -1 -1 1 0 1 -1 0 o0 56

1 -1 0 -1 0 1 0O 0 70

1 -1 0 -1 0 i 0 6L

1 0 0 -1 -1 1 21

1 -1 0 | 0O © 14

1 -1 0 © 28

1 -1 o© 20

1 -1 7
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