On An Asymptotic Representation of the Distribution of the

Characteristic Roots of SL§;l When Roots Are Not All Distinct

by

*
Tseng C. Chang

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series No. 180

January, 1969

1his research was supported by the National Science Foundation, Grant No.

GP-T7663.



On An Asymptotic Representation of the Distribution of the

Characteristic Roots of S]S'B'l When Roots. Are Not All Distinet

by
*
Tseng C. Chang

Purdue University

1. Introduction and Summary

In the study of the distribution of the characteristic roots of S]Sél

where S;: PXD (i = 1,2) are independently distributed as Wishart (ni,p,Ei).

We encounter the difficulty of evaluating the following integral [9]

iy
(1.1) E = J [T + aHIH'] 2 (H*dH)
where A= dlag(al,a2,...,ap), 0<a < ... <a,
a’r]'d L = dia'g(de‘l,lez}"'iflp)’ El z 22 Z o n e Z f;p > O
and characteristic roots of S.S.° and {z 2'1}'1 respectively, and (H'dH)
L2 a2 ? ~

is an invariant measure on the group O(p) of p x p orthogonal matrices as
discussed in detail in [6], [7] and [87 .

An asympbotic form of (1.1) when n = nl+ n, is large and all ai’s

(i =1,2,...,p) are distinct has been derived in [3]. If A = aI, i.e.,

8= 8,= ... = ap= a it can be shown easily that the integrand of (1.1) is
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independent of H and has the form

ol

{oP H%P(Pﬂ‘)/ 5 r(%)} III) (l+a£i)- .
i=1 i=1

(1.2) E

In particular, when A = I, 1i.e,, N ap= 1, we can obtain the so-
-1

called central distribution of the characteristic roots of El§2 [10]. Note
(1.2) is an exact form where we assume no asymptotic condition.

However, the roots need not all be equal, And when we are interested in
the likelihood of‘equality of population roots, the asymptotic formula of the
distinct roots case blows up (see [37). A reasonable method to conjecture a new
formula for that cage is to remove the factor in the asymptotic formula which
blows up and to insert the exact formula for the group containing equal roots
in such a way that when the exact formula for the group is replaced by its asymp-
totic expansion we shall recover the original asymptotic expansion of all the

variables, at least up to the first order.

With this motivation an attempt is made in this paper to give an asymptotic

distribution of the characteristic roots of s]sél under the hypothesis,
B ) . . , o
0< al.< e S <Ay T AL, T e = ap(l < k < p-1) while 2;'s (i =1,2,...,p)

are assumed to be distinct.

2. Asymptotic Representation When All ai's Are Equal

Except an Extreme One

The procedure used to find the asymptotiec representation of (1.1) when
0 < a,y < a, < ... < ay < By = e T %p apd zl > ﬂz > L. > zp >0 is an
extension of the elementary method sketched below for the case when k =1, We

first derive in the following a Jacobian which enables us to study through a

random orthogonal matrix instead of an orthogonal group.



Lemma (2.1). If f(H) is any integrable function of H ¢ O(p) and (dH) is
the normalized Haar measure, i.e., the integral will be one when taken over the

vhole group, and A and I are defined as in (1.1) then

P r)

N k=1 2
. - +l . . . . . ~ . i-
@Dy MO ool Jrisl 1 oang

O(p {HH' = I} 1>3
where
In ! In .eo h -1
(2.2) g = {h . {Pp-L,p-1 Pp,p-1 foo M3 02 }
L[4 Pp h h }h . l -
p-1,» “p,p 2p 3p D

(Note that the choice of the set of p(p-1)/2 random variables on the right hapd
side of (2.1) is completely arbitrary.)

Proof: Let £(S) be the Wishart distribution with n degrees of freedom

up n-~p-1
2 n 2
()" exp {- 3 =7 s} |s]
(2.3) £(3) = Sl = :
H%p(p-l) !EIE ﬁ T ( Bedtly
= —z J

As usual our objective is to find the joint distribution of the characteristic

roots £;'s (1=1,...,p) of S, (4 24, > ... > £ >0). Without loss of

P
generality we may write the exponential part in (2.3) as exp {- % tr BS}

since Z'l Eﬁ B Hi where Hl 1s a fixed orthogonal matrix and the character-

istic roots of S 1is invariant under any orthogonal transformation. Now consider

~

~

H as a complete random matrix with random variables hij(i > j) such that



(2.4) S = HLH
For economy of notation let
S* =dS = (d s..),

~ h

the differential of S. Then from (2.4) we have

(2.5) S% = H¥ L H' + HL¥* H' + HIH"*
or
(2.6) H* S¥ H = H'H* L + I¥ + LH* H .,

It is known that H'H*¥ is a p x p skew symmetric matrix (denote it as

~ o~

then

'(2.7) E'Ex =T

or

(2.8) ffé?f =-T .
Application of (2.7) to (2.6) yields

(2.9) DEHsL -1 .
tet RS

then

(2.10) BemeIr-Ino



Now by the property of conditional probability we can show that

(2.11) J(S;H,L) = J(S¥; H*¥, I¥) = J(S¥;W)T(W;T I*)J(T;H*)

We know J(S%¥;W) = 1 since it is an orthogonal transformation. Also

J(W; T,I¥) = 1 (zi- zj). By substitution of the above results (2.11) can be

i<j
reduced to

S (2.12) J(S; HL) = 0 (g,~ 2.)J(T, H*)

To compute J(T,H¥) we equate corresponding elements on both sides of H¥ = HT

which gives the following set of equations:

P
% = v 1 =
(2.13) hil ZJ LI i=2,...,p
k=2
P
Z,
X = e b i =
(2.14) h¥, bty * L By o i=3,...,p
=3
* P_3
2.1 h¥ = - z h.. t + h, 4 +h. t
(2.15) i,p-2 ik p-2,k i,p=1 p-1,p-2 ip p,p-2
=1
p-2
vl
2,16 hx* ==~ ) h.t +h %
( ) P,p-1 L Pk p-l,k PP Pp,p-1

k=1

where tij(i,j=l,2,...,p) are elements of T. It is easy to see that

(2.17) J(HE*; T) = J(h¥ 5 t..; 1 =2,0..,p) J(B¥.3 t.n3 2 = 3,000sD) oo
~ o~ i1’ il iz2? i2

* s 0 J )6 M t -
(hpsp‘l, Pap'l)

~

~r

i= P'lsp



In detail we can show

'h22 Byy e+ B
(2.18) J(h?l; ti3 1= 2y40.,p) = mod E :
th, h ... h
2p 3p pp
h .. h
33 M3 p3
(2.19) J(hie; UPHE S 3,...,p) = mod 5 : ,
h, h .. h
3p lp pp|
h
l p-1,p-1 “p,p-1
2. * 5t t "= mod
( 20) J(hp"l’P"zap;p"2’ p"l,P"ga P)p'e 1o t
h h
P'l,P B,P
and
2.21 J(nx 5t = |n .
( ) ( P,p-1’ p,p-l) ! ppl
But
(2.22) J(T; H¥) = 1/J(H¥%; T),
hence using the above results (2.3) has the form
np N-p-l
n 2 p 2
() 1 (1) T (2= 25)
_ i=1 i<i
(2.23) AF( £y5ee058) = -

n-i+1l

H%LP(P']-) lZ!E g r( 5 )

i=1

n
‘e =t ! Ji i1 dh,,.
J{HH'=I}J exp (2 r AHLH') |J| 1 i3

i=j



Comparing (2.23) with the result we already know (see [ 7}, [10]) which is

given by
o a=p-1 p
@ 1ot o
_ i=1
(2'2h) dF(ZlD D2 ..’ZP) - o
z -
Pz 1 rEid) rd)
~ o i=l
n 1
1 (ni- 3.) j exp(~ 7 tr AHIH') (aH)

the proof of the lemma is completed,

Note that we may also write the Jacobian in (2.2) as

21| Byp vee hp-l,l I -1

}

(2.25) J = {hll

h, | h ... h

e 221 L, p-1 p-—l,p-ll

gince the choice of random elements in computing J(H¥;T) is arbitrary.

Lemma (2.2). Given matrices A(p x p), B(p xq), C(qa x7p), D(qg x q) where

D 1is non-singular then

~

(2.26) }

1t l»
o 1w

‘ =|p] Ja-mtec :

Proof: See Anderson [ 3]



We now partition H as

[
=

{2.27) H = |

L
U
=N

wvhere the dimensions of these submatrices are Ao: (otl) x @, B: t x o,Y:
(#1) x 1, X: tx1,M: (ofl) xt , Nt xt,l<e<p-l and t = p-o-1 .

Since Ii'li = 1 we can establish the following equalities:

(2.28) A'A + B'B = I
(2.29) A'Y + B = 0
(2.30) XX + Y'Y = 1

Lerma, (2.32. Let X = (xl,xg,..., xt)‘ and A = (A_Y) then

t+1

f dxl,..., dxt 1_[2

°D Al F(E—;—‘-

t

(2.31)

vhere D = {(xl,..., xt) such that H'H = I and {a] > 0}

~

1
Proof:  |A| = |A'A]?
or
Al A A'Yy
-0 o s 2
(2.32) {al = .
Ty



Applying Lemma (2.2) to the right hand side of (2.32) we have

1 1
1 -1 =
1 2 - 1 1 1 2
(2.33) 145 8o1% (1 - X0+ B(ag A0 BYI]
Let
-1 1
(2.34) 7 = [I+B(AC’> AO) B']? X
and the Jacobian of this transformation is simply
-1 _%
. — 1 1
(2.35) 705 2) = |1+ B8 207 2]

In application of lemmsa (2.2) the right hand side of (2.35) can be shown to

be equal to
] ! -1 4 “% t |+%
(2-3%) T+ G )7 Bl - g
since lAé A+ B'B! = 1 by (2.28). Finally by substitution of the result we have
dxl,,.., dxt dzl,dzg,..., dzJG
(2.37) J‘ lA“ =J.'t e . oJﬂ . %
D { 5 Z?_ S. l} [l"?‘%]
i=
t+1
oLt
t+1 *
F(—§~
5
Lemma (2.4), If H = (H )}  vhere H, consists of only the pth row of H and
~d ’\)2 ~

ngz) is an integrable function which depends only on Eé then
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(2.8) [ emy)(an) i [ 20, 25t
2.38 £{H dH ) = = (H 1- % h . 1l dh_.
P O(p) r\2 ~ g p"l . 4\12 1____1 Pl l__l pl
1 { nf <1
i=1 pi

Proof: We first prove below the lemma when p = L4 by an elementary method then
apply lemma (2,3) in proving the case for the general p. When p = 4, the left

hand side of (2.38) becomes

(2.39) f(hhl’ hhz: hu3)(§5) .

[O(h)

Application of lemma (2.1) to (2.39) yields

T dh
3 et
2 >
(2.40) E. £(n, -, , hy ) mod { 1 J -} .
nu i i i L3 hz u3 {h 11 h12 vhll hl2 hl3
=Y hyy hoot By hyy Bog

By Bgp B33

We know by the orthogonality of H

-1 _ 2 2 2,72
(2.41) |7 = (105, - 51 = Byp) ,
and
-1
By Byp By 1 s o -3
(2.k2) mod {hyy By Boal = |y, |77 = (1-n), m), - hy3) .
B3y B3p B3

Moreover,



(2.43)

Since

(2.41)

(2.hL)

then

(2.45)

f is independent of h

(1-h

11

h.. ho, T 1

e 2 .2 2 .2 . 2,72

= {[1-(h3l+hbrl)7.[1-(h32+h42)_,-(h31 h32+ hulhhe) }
21 Boo

2.2 2
=FO’WQIM2”h Byp=hgy * 3£M1 yfa%f%im yo-
2 >
~ [1 (1-h),) 2 (1-hy,) 2
- T T 2 31~ D .2 32~
(1-hy;-h),) (1-hy,-hy,)

Qhuz T 31 32] 1

(l-h n? ) [ 2 2
417 he 1-hy;-h),

21
by
5 P
\/l-h3l - by,
1 1
) 2 -2
21" 31 hu1> by dhg,dhy = (l'“ ) dhgy dby, .

So we can integrate with respect to p from -1 to 1 easily. Next let

N . hhlhhz N
55 v 31 5 5%
(1-hy,; -hp) (1-hy, o) (2 ) =hy )

32 ’

so we make the following transformation into

i~



12

(2.47) | ¥ =\/€:—_é—:): by

hhz

then

.2 .2
(2.48) J(h3l, h3os X, y) = S T

By substitution of the above results (2.40) reduces to

3 £(n, . ,h, ,,h, )
2 hl’ 42243
(2.149) ;11; ‘f J j T dhy, dhy, dhy,

2 .2
{ z hul<l} (- E Z M)
* b £(hy, . b ,h, )
Ll e e JI ST
{Polal o { ; ne <1} G- ._Z.lhu>
i=1

For general p repeated applications of lemma (2.3) to E yields the

following
oF Bzl P2 3
(2.50) [ s(m,)(an) = kzilr(),n2 n? r°
y 2 . "
o)~ ~ R ey pE) ) rE
1
_ Pr(R f(H,) T dh
p~1 5 i= pL Hp;e J p-1 5
{ Z h 1= o 1§1hpl \/ -iE Ppi
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which completes the proof.

-
Lemma (2.5). If H = <:E}‘) where H1 consists of the 1st row of H and

f(f;) is an integrable function which depends only on El then

, 2r(5) £(H, ) P
(2.51) jo( ) £(H, )(aH) = ——1375- f f = B!
P =

Proof: We choose hij’ i<j, (i, =1,2,...,p) as random variables and the

rest of the proof is analagous to the proof of lemma (2.4).

be defined as in (1,1) with

Theorem (2.1). Tet A and L
0 < a;= ay= ... ap_l &, ap a, and gl 22 cea P zp 0

then, for large degrees of freedom n, the first term of the asymptotic expansion

of E is given by

2Pr(E) -5 - & p-1 1
2 2 2 21 2 1\
(2.52) = E (1+a_g ) T (1+ag,) = 0 (==—) |1+0(=)
2 - N T [ n’J
n
where
(2.53) C (a -a)(ﬁ -ﬂ )
)

~,

= T+ I, )(l+ap op) (i =1,2,..05p) «
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then
. _n .8
(2.54) I+AHLHE| 2=|r+manL °
n
T2
= + L + (a -a)h h' L
15 a ~ ( j9] )Agup ~l
where
(2. h' = (.,..., h 3
(2.55) o (Bpseees Pp)~
So
n n n
T2 -2 -1 )
. + ! = +a L I+ =a){I +al hh'L
(2.56) |T+aHLHY I+all |7+ (a,-8)(T +a L) b Ll
n n
) -1 2
= + | 1+(a ~a)h?! I(I + a L h
! P -5
B 2 [ T 2
= lE+a£l &t L 2ibys
i=1
where
2. (a_-a)
1 .
(2.57) z, = - (i=1,2,.00,0)

We see that (2,54) depends only on hé so that application of lemma (2.4) expands

E into the following form
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(2.58) E‘;‘——jr——— T (1+ag,) T dh_.
Hp2 i=1 . Il. i= DL
{thil}@]ﬁz‘, zhj)
1 i=1
2 p-l
Since h__ = 1- X hP , it is easy to show that in a small neighborhood of origin
i=1
p -2 1+, _E -2
< 21) 2=<1 2( N 2N 2
(2.59) <1+ Z zshos 1 _ 05 )
i=1
n p-1
ta 4~ 5 . o
- () fewl- B L ot L (Z ]
<?l+az./ 2 ZJ 1p i SN Clphpl * e

Direct substitution of (2.59) into (2.58) yields

_2Pr(®) - 5 p-1 -2
(2.60) —11_1’7—2— (1+a s, ) 2 (1+as, )

p~1
JI exp (‘g Z 1p p1> H dhp). {l+o (_)}

i=1

{lzlhplq

Since the integrand is of exponential form it attains its maximum value at origin
and most of this integral is concentrated in a small neighborhood of origin.
Therefore, for large n, all limits can be set to + = {41 , and we have for

the first term of the e:gansion of E
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(g 2
oPp(Ry B Ul p-1 1 »
2 i=l 21 N 5 1
(2.61) E o it 2 11+0(=) .
HP/2 o )g_ = (Cipn) [ n :\
+a 2

PP

Theorem (2.2). Let A and L be defined as (1.1) with

~s

= a._. = = = = 9 > > > >
0 < ay < a5 a eve ap-l ap a and 4 22 ces zp 0

then, for large degrees of freedom n, the first term of the asymptotic expansion

of E 1is given by

n
2Pr(R) ﬁ (1+ag, ) 2 1
(2.62) E 2. i= 1 ( 2l )2 [1+o(}-)]
* = n i C,.n n :
£ 5 i=2 14
1 (1+a;2,) :
Proof: We first note that
-3 -2
P 2
(2.63) TAELE] "=zl (ay-edy By X

2 T -
which depends only on h) = (hll’ higseees hlp) . Hence we can apply lemma (2.5)

and the rest of the proof is analogous to the proof of theorem (2,1),

Corollary. In one sample case under the same condition of theorem (2.1), i.e.,‘

= = > > >
0< ay ess ap_1 < ap, zl ﬁa cos ﬁp > 0 then
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6 [ ew(-Feanpi@
o\P

r®) -t
58 LIS ICIIE Sle)
where

(2.65) cx, = (ap-ai)(.o,i-zp) (i =1,2,..., P-1) .

Proof: For the proof, note that

p~1
_n 1) = ! BN o

(2.66) exp( ztréEEE) exp( 2tr’é3) exp( 5 clp hpl) .
i=1

The rest follows easily.

3. Asymptotic Representation When Not All ai's Are Equal

When O<al<a2<...<a,k'<ak+l=...=ap (1 < k < p-l) the method
in the previous section is too troublesome to be applied. However, we notice
that if we partition the matrix §_»into the submatrices Eﬁ- and EE consis-
ting of its first k and (p-k) rows of H and if the integrand does not

depend upon 52 then we can integrate over Eé for fixed El by the formula

(3.1) | e = ()

where the symbol (dEl) stands for the invariant volume element on the Stiefel
manifold of orthonormal k-frames in p space normalized to make its integral
unity. Note that (3.1) can be easily verified by using lemma (2.4) of the last

section,
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We then apply the transformation

(3.2) H = exp S,

~

S a pxp skew symmetric matrix and a parameterization of H may be obtained

by writing
5 5h %
(3.3) =" ) = e ( )
~ Lat
i S 2
where Sll is a %k x k skew symmetric matrix and 512 is a k x (p=k) rectan-

gular matrix,

The Jacobian of (3.3) has been computed in [1] as follows
_ p=2 2 , Bep L
(3.4) J=1+Bptr s+ e 8T+

It can be easily shown from (3.4) that

1 .
(3.5) o (?El) = (éﬁll)(?ﬁlz) 1+0 (squares of S5 s)
k(3p)
(5,,) ) 1 1T
where the symbols (48 and (as stand for T ds,., and I m  ds,.
~L ~12 i<y 3 i=1 j=ktl 9

P
respectively and Fp(t) = Hp(p-l)/h n I(t-35+5) .
J=1

Lemma (3.1). If A and I are defined as in (1.1) with

0 < al < a2 < oo < 2, < ak+1 T ves =T ap = a and zl > 22 P oeee > zp >0
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H

~ls
and if we partition H =< ) such that I,:IZ consisting of last (p-k) TOWS

~2
of H then |I+AHLH' does not depend upon H, .
Proof:

a =2 o
(3.6) A =al + a, -2
o o]
then
(3.7) lT+AHLH] = lI+H AHI
l al-a
= 1
pracem (o ) m|
o] ay-a
which is independent of H2 .
It has been shown in [ 3]
-2 -3
- | 11 2 D ! 1t 2

(3.8) E = lT+A H L H'! (an) o 2 'I+A H L H'! (aH)

where N(I) is the neighborhood of the identity element of the orthogonal

manifold, If O<a.l<a2<...<ak<ak+l=... =ap=a and
8-> 4, > .. > 4 >0 by lemma (3.1) the integrand does not depend upon H, .
1 2 P ~2
Therefore, we can use (3.1) to integrate over H, for fixed H

~2 ~L

-2
(3.9) E . 2P f lT+a H L B'] 2 (am,) .

N(I) VAP VRFPR )
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Now under the transformation (3.3), N(I) - N(S=o) and in the small neighborhood
of N(S o) its Jacobian can be assumed to be equal to one, Moreover, the inte=-

grand of (3.9) can be shown to be equal to

rogs

p -
(3.10) i (1+aiz.) 1 (1+ag,)

K (3372 (34743) o
i
i=1 {=lc+] i< exp{ (2 (1+a )(1+a ﬂ y ® }

kb o (e )(znmsf_ﬂ

I exp ~(3) J {l+0(squares of s,.'s)
i=1 5=kl L7\2 (l+a )(l+az ) ) ij }

Substitution of (3.10) into (3.9) yields

D
k -
(3.11) o 2F T(3) m (l+a,2.) ﬁ (1+ag.)
. - aii 1 aﬂ:i
m2P  i= i=k+1

s

-2
2

k(= Bagmay)(0g-n)s
f f (1+a z )(l+a 50

w{=)(g=- 0 2
g exp{ ( )(a-a, )( )S J} 1 dsij{l+0(squares of sij's)} *

i=1 jektl (l+ai£i)(l+azg) 1,3

For large n and a.'s (i =1,2,0.4,k) and gi’s (i =1,...,k) well spaced
most of the integral in (3.11) will be obtained from small values of the elements
of Sll and S]2. Hence, to obtain an asymptotic series, we can replace the

finite range of sij by the range of all real values of Sij
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p k2 2 .y 2 .

(3.12) E,2 i 121 (1+a,2,) i=g+l (1+ag;)

BT e By ) (8505

i I exp{ 2 i JA 13 ds.

i<j Ve (:L+a 2y )(1+a 3 ) 1

Eop -3 (a-e;)(4;-85)s5

l =
gl J“g+l J exp{ (1+3121)(1+a23 ds, {1+O( )}

We thus have the following theorem,

Theorem (3.1). The asymptotic distribution of the roots, L2 8y > c00 > £p >0
-1 _ | -1y-1
of SJSE ,» for large degrees of freedom n = nl+ Ny when roots of (Ehzz )

are 0 < aq < a, < e < 8y < ak+l T eae = ap is given by

l"P-l n- ( -Pn2)
(3.13) C%_ﬁ.(zi-zj) ?1 {(;@) B (a, )_} i {(1+a 15) 2 }-

1<j i=1 i=k+1

(nl+n2

k o % k P on %
n {(1+a 2.) } i - } nn {T——T’_ }
<;j (O e R

J

[0

where
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.~a. ){(L.=-20.
(3.14) Cis = (1£23¢a$z§+§ JQ;
ij A %5
~and
uP(P"‘l)"‘“kP D
(3.5)  ox =L R G <-)}
r, & 1™ 1=
(3.13) can be rewritten as the following form
-p-l nl
2
(3.16) o 0 (g ~4 ) _r}{ ai—} *Gy Gy [l+0(n o ]
: i<j i=1
where
-(n +n,)

(3.17) {(1+a 2;) } '(x‘{‘:rrré“'} ’

(nl+n2)
(3.18) G, = $1 {(1+a 0 )- 2
2 i=k+l i¥i 3
and
k P z
Al
(3.19) G, = T il
3 a1 gekn {(nf'nzjcij}

Note that except differing by a constant Gl is actually an asymptotic repre-

sentation of the first k distinct roots, (zi's, ai's; i=1,2,ee0,k)

{c.f. Theorem (1.1)7 and G, is related to the next (p-k) equal roots
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s.'s, a,'sy i =5k+tl,...,p) [c.T. Eq. (1.2)] vhile G, can be considered as
i i’ 3

cross effects between the roots of Gl and G2 .
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