ON CLASSICAL AND COMPIEX MULTIVARIATE NORMAL DISTRIBUTION PROBLEMS ** by

Gary Michael Jouris

Department of Statistics Division of Mathematical Sciences Mimeograph Series No. 279

January 1969

[^0]By

Pary Mo Towe

Next	M家	9wame	ge
\therefore	3	$\frac{g^{\prime}}{m}$	$\underset{\sim}{x q}$
6	3	crey	
3	6		
2	9	5 pr	$t_{\text {max }}$
3	9	$\mathrm{g}_{5 \text { max }}$	$\mathrm{E}_{\text {gmode }}$
38	6	\sum_{10}^{0}	\sum_{28}^{9}
3	30	$z_{3} 2^{+0}+e^{2}$	$\sum^{n} y^{2} y^{\prime \prime} y^{\prime}$
36	\%		
39	8	$\arg _{2}$	${ }^{3000}$
59	32	Leg 8	- $\log 5$
0	4	$\left.()^{3}\right)$	$c_{a}^{b^{3}}$
\%	13	x_{1}	${ }_{5}$
42	44	$\sum_{2}^{n_{2}^{2}}$	\sum_{i}^{i+g}

$\infty 20$

Eage	Enine	Qenge	Tor
49	16	z_{2}	2_{4}^{3}
8.4	38		$x_{2}+2 x^{2}=4$
4, 4	2	Ea_{2}	${ }^{3}$
48	23	$2_{1}+\frac{1}{4}$	
45	26		$e^{2}+\alpha$
579 58	8	$\left(x^{2}-2 e^{2}\right)^{2 I} \log V$	$\left.\left(6^{2} \times x^{2}\right)^{-2}\right\} \log 4$
63	16		To 0_{0}
6	28	$2^{\text {E }}$ \%	20
70	3	$\overline{i^{2}} 2^{x+\frac{1}{2}}$	
T	3	5	\%
T3.	20	$x_{2} x^{2} x^{2} x^{2} 18$	$\pi^{2} \sum^{-2}+2$
88	3	$\left.1\left(3_{i+9}\right)^{1}\right)^{1}$	

CHAPTER I
ON THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS
OF THE ROOTS OF TWO MATRICES

1. Introduction and Summary

Let A_{1} and A_{2} be two symmetric matrices of order p, A_{1}, positive definite and having a Wishart distribution [3], [33], with f_{1} degrees of freedom and A_{2}, at least positive semi-definite and having a non-central (linear) Wishart distribution [2], [4], [14], [33], [34] with f_{2} degrees of freedom. Now let

$$
\underset{\sim}{A_{2}}=\underset{\sim}{\mathbb{C}} \underset{\sim}{\underset{\sim}{Y}} \underset{\sim}{Y^{\prime}}
$$

where $\underset{\sim}{Y}$ is $p \times f_{2}$ and $\underset{\sim}{C}$ is a lower triangular matrix such that

$$
\underset{\sim}{A_{1}}+\underset{\sim}{A_{2}}=\underset{\sim}{C} \underset{\sim}{C}{ }^{\prime}
$$

Now consider the $s\left(=\right.$ minimum $\left.\left(f_{2}, p\right)\right)$ non-zero characteristic roots of the matrix $\underset{\sim}{Y} \underset{\sim}{Y}$. It can be shown that the density function of the characteristic roots of $\underset{\sim}{Y} \underset{\sim}{Y}$ for $f_{2} \leq p$ can be obtained from that of the characteristic roots of $\underset{\sim}{Y}{\underset{\sim}{y}}^{\prime}$ for $f_{2} \geq p$ if in the latter case the following changes are made [16], [33];

$$
\begin{equation*}
\left(f_{1}, f_{2}, p\right) \rightarrow\left(f_{1}+f_{2}-p, p, f_{2}\right) \tag{1.1}
\end{equation*}
$$

Now define $U_{i}^{(p)}=\operatorname{tr}_{i}\left({\underset{\sim}{p}}_{p}-\underset{\sim}{Y} \underset{\sim}{Y}\right)^{-1}-p=\operatorname{tr}_{i}\left({\underset{\sim}{f}}_{2}-\underset{\sim}{Y} \underset{\sim}{Y}\right)^{-1}-f_{2}$, where $\operatorname{tr}_{i} \underset{\sim}{A}$ denotes the th elementary symmetric function (est) of the characteristic roots of $\underset{\sim}{A}$. In view of (1.1) we only consider $U_{i}^{(s)}$ when $s=p$, i.e. $U_{i}^{(p)}$ based on the density function [24] of $\underset{\sim}{L}=\underset{\sim}{Y} \underset{\sim}{Y}$ for $f_{2} \geq p$. Now define $V_{i}^{(p)}=\operatorname{tr}_{i} \underset{\sim}{L}$ and further $\underset{\sim}{U}=(\underset{\sim}{I}-\underset{\sim}{Y} \underset{\sim}{Y})^{-I}-p$. Khatri and Pillai [23] have obtained some results towards finding the moments of $U_{i}^{(p)}$ and $V_{\dot{i}}^{(p)}$ and in this paper an attempt is made to give general expressions of the first three moments of $U_{i}^{(p)}$ and the first two moments of $v_{i}^{(p)}$. Furthen, the moments of the second est of a matrix in the non-central means case (James [12]) have been considered and tabulation of certain constants made which arose in this context.

2. Results on the eth est of the Roots of a Matrix

The lemma below is proved by Khatri and Pillai [23] and is used to obtain the results of Section 3.

Lemma: Let $\underset{\sim}{L}=\binom{l_{11}}{\underset{l}{{\underset{\sim}{l}}^{\prime}} \underset{\sim 11}{\underset{\sim}{L}-1}}_{p-1}^{l}$ be a symmetric matrix of order p,
 $\underset{\sim}{u}=\left(\underset{\sim}{\mathrm{p}}-1-{\underset{\sim}{L}}_{22}\right)^{-\frac{1}{2}} \ell \underset{\sim}{f} /\left\{\ell_{11}\left(I-\ell_{11}\right)\right\}^{\frac{1}{2}}$. Further let $\underset{\sim}{U}=\left(I_{p}-\underset{\sim}{L}\right)^{-1}-I p$ and $\underset{\sim}{M}=\left(\underset{\sim}{I} p-1-I_{2}\right)^{-1}-\underset{\sim}{I} \underset{p-1}{ }$. Then

$$
\begin{aligned}
& \operatorname{tr}_{i} \mathbb{U}=\ell_{11}\left\{\left(1-\ell_{11}\right)\left(1-\sim_{\sim}^{\prime} \underset{\sim}{u}\right)\right\}^{-1} \operatorname{tr}_{i-1} \underset{\sim}{M}+\operatorname{tr}_{i} \underset{\sim}{M} \\
& +\left(1-u_{\sim}^{\prime} \underset{\sim}{u}\right)^{-1} \sum_{j=0}^{i-1}(-1)^{j} \underset{\sim}{u}\left({\underset{\sim}{M}}^{j}+M^{j+1}\right) \underset{\sim}{u}\left(\operatorname{tr}_{i-1-j} \sim_{\sim}\right) \text { for } i<p \\
& =\ell_{11}\left\{\left(1-l_{11}\right)\left(1-\underset{\sim}{i}{ }_{\sim}^{u}\right)\right\}^{-1}|M| \quad \text { for } i=p .
\end{aligned}
$$

Notice that the distributions of $S_{11}, \underset{\sim}{u}$ and $\underset{\sim}{\underset{\sim}{2}} \underset{22}{ }$ are available in [21], [22] except that the non-centrality parameter, which is involved in the density of l_{11} above, will be denoted here by λ in place of $2 \lambda^{2}$ given there.
3. Moments of $\operatorname{tr}_{\mathrm{i}} \mathrm{U}$

Let ${\underset{\sim}{U}}^{U}$ be a $\underset{\sim}{U}$ matrix when $\lambda=0$, let $l_{11,0}$ be the top left corner element of $\underset{\sim}{\perp}:{\underset{\sim}{L}}^{I}$ matrix where $\lambda=0$) and let

$$
\begin{equation*}
y_{1}=E\left(1-\sim_{\sim}^{\prime} \underset{\sim}{u}\right)^{-1}\left[E\left\{\ell_{11} /\left(1-\ell_{11}\right)\right\}-E\left\{l_{11,0} /\left(1-\ell_{11}, 0\right)\right\}\right]=\lambda /(a-1), \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
y_{2}=E\left(1-u_{\sim}^{\prime} u\right)^{-2}\left[E\left[l_{11} /\left(1-l_{11}\right)\right\}^{2}\right. & \left.-E\left\{l_{11,0} /\left(1-l_{11,0}\right)\right\}^{2}\right] \tag{3.2}\\
& =\left\{2\left(f_{2}+2\right) \lambda+\lambda^{2}\right\} /\{(a-1)(a-3)\}
\end{align*}
$$

(3.3)

$$
\begin{aligned}
y_{3} & \left.=\underset{\sim}{\left(1-u^{\prime} u\right.}\right)^{-3}\left[E\left\{\ell_{11} /\left(1-\ell_{11}\right)\right\}^{3}-E\left[\ell_{11,0} /\left(1-l_{11,0}\right)\right\}^{3}\right] \\
& =\left\{3\left(f_{2}+2\right)\left(f_{2}+4\right) \lambda+3\left(f_{2}+4\right) \lambda^{2}+\lambda^{3}\right\} /\{(a-1)(a-3)(a-5)\},
\end{aligned}
$$

and
(3.4)

$$
\begin{aligned}
y_{4}= & E\left(1-\sim_{\sim}^{u} \underset{\sim}{u}\right)^{-4}\left[E\left\{\ell_{11} /\left(1-\ell_{11}\right)\right\}^{4}-E\left\{\ell_{11,0} /\left(1-\ell_{11,0}\right)\right\}^{4}\right] \\
= & \left\{4\left(f_{2}+2\right)\left(f_{2}+4\right)\left(f_{2}+6\right) \lambda+6\left(f_{2}+4\right)\left(f_{2}+6\right) \lambda^{2}+4\left(f_{2}+6\right) \lambda^{3}+\lambda^{4}\right\} \\
& /\{(a-1)(a-3)(a-5)(a-7)\}
\end{aligned}
$$

where $a=f_{1}-p$.
Now let

$$
\begin{aligned}
& \beta_{i}=\operatorname{tr}_{i-1}^{M} \text { and } \alpha_{i}=\operatorname{tr}_{i} M \\
& M \sum_{j=0}^{i-1}(-1)^{j}\left(1-u_{\sim}^{i} \sim_{\sim}\right)^{-1}{\underset{\sim}{u}}^{\prime}\left(M_{\sim}^{j}+M_{\sim}^{j+1}\right) \\
& \sim
\end{aligned}
$$

Then
(3.5) $E\left[t r_{i \sim}^{U}\right]=E\left[t r_{i \sim 0} U_{0}\right]+y_{1} E \beta_{i}$,
(3.6) $E\left[\operatorname{tr}_{i \sim}^{U}\right]^{2}=E\left[\operatorname{tr}_{i \sim 0}\right]^{2}+y_{2} E \beta_{i}^{2}+2 y_{I} E \beta_{i} \alpha_{i}$,
(3.7) $E\left[\operatorname{tr}_{i \sim}^{U}\right]^{3}=E\left[\operatorname{tr} \mathrm{X}_{\mathrm{N}}\right]^{3}+\mathrm{X}_{3} \mathrm{E} \beta_{i}^{3}+3 \mathrm{y}_{2} \mathrm{E} 3_{i}^{2} \alpha_{i}+3 y_{i} E \beta_{i} \alpha_{i}^{2}$,
and
(3.8)

$$
\begin{aligned}
E\left[\operatorname{tr}_{i} U\right]^{4}=E\left[t r_{i} U\right]^{4} & +y_{4} E \beta_{i}^{4}+4 y_{3} E \beta_{i}^{3} \alpha_{i} \\
& +6 y_{2} E \beta_{i}^{2} \alpha_{i}^{2}+4 y_{i} E \beta_{i} \alpha_{i}^{3}
\end{aligned}
$$

In order to evaluate the right sides of (3.5) - (3.8), it appears that general results are obtainable in terms of functions of esf's of latent roots of $\underset{\sim}{M}$. Hence we suggest the following general form for $E \beta_{i} c_{i}$

$$
\begin{equation*}
E 3_{i} \alpha_{i}=\frac{1}{a-1} E\left[\operatorname{tr}_{i-1} M\left\{(p-1) \operatorname{tr}_{i-1} M+(a+i-1) \operatorname{tr}_{i} M\right\}\right] . \tag{3.9}
\end{equation*}
$$

The above result as well as others in this section and the next have been suggested by computing special cases for $i=1,2,3,4$ and further checking the result for $i=5$.

Similarly
(3.10) $E \Theta_{i}^{2} \alpha_{i}=\frac{1}{a-1} E\left[\left(\operatorname{tr}_{i-1} M\right)^{2}\left\{(p-i) \operatorname{tr}_{i-1 \sim}^{M}+(a+i-1) \operatorname{tr}_{i} M\right\}\right]$,
and
(3.11) $E 3_{i} \alpha_{i}^{2}=\frac{1}{(a-1)(a-3)} E\left[\operatorname{tr}_{i-1} M\left\{(p-i)(p-i+2)\left(\operatorname{tr}_{i-1} M\right)^{2}\right.\right.$

$$
\begin{aligned}
& +2[(a+i-3)(p-i)+2] \operatorname{tr} \tan ^{M} \operatorname{tr}_{i \sim}^{M}+(a+i-3)(a+i-1) \\
& \left.\left.\cdot\left(\operatorname{tr}_{i \sim}^{M}\right)^{2}+\sum_{k=0}^{1-1} \sum_{j=2 i-2-k}^{2 i-k} a_{k j} \operatorname{tr}_{k \sim} M \operatorname{tr} M\right]\right],
\end{aligned}
$$

where

$$
a_{k j}= \begin{cases}0 & \text { if } j-k \leq 1 \\ -2(j-k) & \text { if } j-k>1 \text { and } j-k \text { is even } \\ 4(j-k) & \text { if } j-k>1 \text { and } j-k \text { is odd. }\end{cases}
$$

Now noting that $E\left[\operatorname{tr}_{i_{\sim}} U_{0}\right], E\left[\operatorname{tr}_{i_{\sim}} U_{0}\right]^{2}$ and $E\left[\operatorname{tr}_{i} U_{0}\right]^{3}$ are available in Pillai [27], [28], using (3.9) - (3.11) in (3.5) - (3.7) and the fact that $E O_{i}^{j}=E\left(\operatorname{tr}_{i-1} \mathcal{M}^{j}\right)^{j}$, we can obtain the first three moments of $U_{i}(p)=\operatorname{tr}_{i}\left\{(\underset{\sim}{I}-\underset{\sim}{I})^{-1}-I\right\}$ (which are suggested based on computations for $i=1$, 2, 3, 4, 5). Expected values of functions of $\operatorname{tr}_{\mathrm{i}} \mathrm{M}$ can be obtained in individual cases by use of zonal polynomials [13] or by Pillai's lemma on multiplication of a basic Vandermonde determinant by monomials of esf's [27].

$$
\text { 4. Moments of } \operatorname{tr}_{\mathrm{i}} \mathrm{I}
$$

Khatri and Pillai have shown [23] that

$$
\begin{equation*}
E\left[\operatorname{tr}_{i \sim} I\right]=E\left[\operatorname{tr}_{i \sim 0} I_{\sim}\right]+x_{1} E B_{1}(i), \tag{4.1}
\end{equation*}
$$

(4.2) $E\left[\operatorname{tr}_{i} I\right]^{2}=E\left[\operatorname{tr}_{j} I_{0}\right]^{2}-x_{2} E B_{I(i)}^{2}+2 x_{I} E \alpha_{I(i)} \beta_{I(i)}$,
(4.3) $E\left[\operatorname{tr}_{i \sim} L\right]^{3}=E\left[\operatorname{tr}_{i \sim}^{I_{\sim}}\right]^{3}+x_{3} \beta_{I(i)}^{3}-3 x_{2}^{E} \beta_{I(i)} \alpha_{I(i)}$

$$
+3 x_{I} E \beta_{I(i)} \alpha_{I(i)}^{2}
$$

and

$$
\begin{aligned}
& \text { (4.4) } E\left[\operatorname{tr}_{i} I\right]^{4}=E\left[\operatorname{tr}_{i \sim} I_{0}\right]^{4}-x_{4} \beta_{I(i)}^{4}+4 x_{3} \beta_{I(i)} \alpha_{I(i)}-6 x_{2} \beta_{I(i)^{\alpha}}^{2} \alpha_{I(i)}^{2} \\
& \\
& +4 x_{I} \beta_{I(i)^{\alpha}}{ }_{I(i)}^{3}
\end{aligned}
$$

where $x_{1}, x_{2}, x_{3}, x_{4}, \alpha_{I(i)}, \beta_{I(i)}$ and $\underset{\sim}{I_{0}}$ are defined in [23] and are functions similar to $y_{i}^{\prime} s, \alpha_{i}^{\prime} s$ and $\beta_{i}{ }^{\prime} s$ in the preceding section. Using the results or Section 2 of [22] and further computing as in the previous section we get
(4.5) $\quad E\left[\beta_{1(i)}\right]=\frac{1}{f_{1}} E\left[(a+i) \operatorname{tr}_{i-1} I_{22}+i \operatorname{tr}_{i \sim 22}\right]$,
where $\quad a=f_{1}-p$ and $\quad \operatorname{tr}_{o_{\sim}} I_{22}=1$.

Similarly

$$
\text { (4.6) } \begin{aligned}
E\left[\alpha_{I(i)} \beta_{I(i)}\right]=\frac{I}{f_{1}} E\left[(a+2 i) \operatorname{tr}_{i-1} I_{22} \operatorname{tr}_{i} I_{22}\right. & +(a+i)\left(\operatorname{tr}_{i-1} I_{22}\right)^{2} \\
& \left.+i\left(\operatorname{tr}_{i \sim 2} I_{2}\right)^{2}\right]
\end{aligned}
$$

and

$$
\text { (4.7) } \begin{aligned}
E\left[\left[_{I(i)}^{2}\right]=\right. & \frac{1}{f_{1}\left(f_{1}+2\right)} E\left[(a+i)(a+i+2)\left(\operatorname{tr}_{i-1} I_{22}\right)^{2}\right. \\
& +[2 i(a+i+1)+2(i-2)] \operatorname{tr}_{i-1} I_{22} \operatorname{tr}_{i} I_{22}+i(i+2)\left(\operatorname{tr}_{i \sim 22} I_{2}\right)^{2} \\
& \left.-\sum_{k=0}^{i-1} \sum_{j=2 i-2-k}^{2 i-k} a_{k j} \operatorname{tr}_{k-22} L_{2 n} \operatorname{tr}_{j n 22} I_{2}\right],
\end{aligned}
$$

where
where $x_{1}, x_{2}, x_{3}, x_{4}, \alpha_{I(i)}, \beta_{I}(i)$ and I_{\sim} are defined in $[23]$ and are functions similar to $y_{i}{ }^{\prime} s, \alpha_{i}^{\prime} s$ and $\beta_{i}{ }^{\prime} s$ in the preceding section. Using the results of Section 2 of [22] and further computing as in the previous section we get
(4.5)

$$
E\left[\beta_{1(i)}\right]=\frac{1}{\mathbf{I}_{1}} E\left[(a+i) \operatorname{tr}_{i-1} I_{22}+i \operatorname{tr}_{i \sim 22} I_{2}\right]
$$

where

$$
a=f_{1}-p \quad \text { and } \quad \operatorname{tr}_{0_{2}} I_{22}=1
$$

Similarly
(4.6)

$$
\begin{aligned}
\left.E\left[\alpha_{1(i}\right)_{1(i)}\right]=\frac{1}{f_{1}} E\left[(a+2 i) \operatorname{tr}_{i-I_{\sim}} I_{22} \operatorname{tr}_{i \sim 22}\right. & +(a+i)\left(\operatorname{Lr}_{i-1} I_{22}\right)^{2} \\
& \left.+i\left(\operatorname{tr}_{i \sim 22} L_{2}\right)^{2}\right]
\end{aligned}
$$

and
(4.7) $E\left[\beta_{I(i)}^{2}\right]=\frac{1}{f_{1}\left(f_{1}+2\right)} E\left[(a+i)(a+i+2)\left(t r_{i-1} I_{22}\right)^{2}\right.$

$$
+[2 i(a+i+1)+2(i-2)] \operatorname{tr}_{i-1} I_{22} \operatorname{tr}_{i} I_{22}+i(i+2)\left(\operatorname{tr}_{i} I_{22}\right)^{2}
$$

$$
-\sum_{k=0}^{i-1} \sum_{j=2 i-2-k}^{2 i-k} a_{k j} \operatorname{tr}_{k L_{22}} \operatorname{tr}_{j-22} I_{k 2}
$$

where

$$
\begin{aligned}
& \text { (4.4) } E\left[\operatorname{tr}_{i_{\sim}} I_{1}\right]^{4}=E\left[\operatorname{tr}_{i_{\sim} L_{0}}\right]^{4}-x_{4} \beta_{I(i)}^{4}+4 x_{3} \beta_{I(i)} \alpha_{I(i)}-6 x_{2} \beta_{I(i)}^{2} \alpha_{I}^{2}(i) \\
& +4 x_{1} \beta_{1}(i)^{\alpha_{1}(i)},
\end{aligned}
$$

$$
a_{k j}= \begin{cases}0 & \text { if } j-k \leq 1 \\ 2(j-k) & \text { if } j-k>1 \text { and even } \\ 4(j-k) & \text { if } j-k>1 \text { and odd }\end{cases}
$$

Now noting that $E\left[\operatorname{tr}_{\dot{j} \sim 0} \mathrm{~L}_{0}\right]$ and $E\left[\operatorname{tr}_{\dot{i} \sim 0}\right]^{2}$ are available in Pillai [27], [28] and using the above results, we can obtain the first two moments of $V_{i}^{(p)}=\operatorname{tr}_{i} L_{\sim}((4.5)-(4.7)$ being suggested based on computations for $i=1,2,3,4$ and 5). Further expected values of functions of $\operatorname{tr}_{i} I_{22}$ can be obtained by methods suggested at the end of the preceding section.
5. Moments of the Second esf of a Matrix

Let $\underset{\sim}{X}: p \times f$ be a matrix variate $(p \leq f)$ whose columns are independently normally distributed with $E(X)=\underset{\sim}{M}$ and covariance matrix $\underset{\sim}{\sum}$. Let w_{1}, \ldots, w_{p} be the characteristic roots of $|\underset{\sim}{x} \underset{\sim}{x}|-w \underset{\sim}{\sum} \mid=0$, then the distribution of $\underset{\sim}{\underset{\sim}{W}}=$ diag $\left(w_{i}\right)$ is given by James [12], [13]

$$
\begin{array}{r}
e^{-\frac{1}{2} \operatorname{tr} \Omega} \sim K(p, f) \mathcal{F}_{1}\left(\frac{1}{2} f ; \underset{\sim}{\sim} \Omega, W\right) e^{-\frac{1}{2} \operatorname{tr} W} \sim|\underset{\sim}{\sim}|^{\frac{1}{2}(f-p-I)} \underset{i>j}{\sim}\left(w_{i}-w_{j}\right) \tag{5.1}\\
\\
0<w_{1} \leq \cdots \leq w_{p}<\infty
\end{array}
$$

where

$$
\begin{equation*}
k(p, f)=\Pi^{\frac{1}{2} p^{2}} /\left\{2^{\frac{1}{2} p f} \Gamma_{p}\left(\frac{1}{2} f\right) \Gamma_{p}\left(\frac{1}{2} p\right)\right\} \tag{5.2}
\end{equation*}
$$

$\underset{\sim}{\Omega}=\operatorname{diag}\left(\omega_{i}\right)$ where $\omega_{i}, i=1, \ldots, p$ are the characteristic roots of $|\underset{\sim}{M} \underset{\sim}{M}-\omega \underset{\sim}{\Sigma}|=0, \quad O_{1} \quad$ is the hypergeometric function of matrix argument and $\Gamma_{p}(\cdot)$ is the multivariate gamma function defined in [13]. Now define $W_{2}^{(p)}$ as the second esf in $\frac{1}{2} W_{1}, \ldots, \frac{1}{2} W_{p}$. Then from Gupta [II] we have
(5.3) $\quad E\left[W_{2}(p)\right]^{3}=\frac{7}{64} I_{\left(3^{2}\right)}+\frac{1}{12} \mathrm{~L}_{(321)}+\frac{57}{320} \mathrm{I}_{\left(2^{2} 1^{2}\right)}+\frac{3}{40} \mathrm{~L}_{\left(31^{3}\right)}+\frac{1}{8} \mathrm{~L}_{\left(2^{3}\right)}$

$$
+\frac{9}{40} \mathrm{~L}_{\left(21^{4}\right)}+\frac{27}{64} \mathrm{~L}_{\left(1^{6}\right)}
$$

where I_{k} represents $I_{k}^{\gamma}\left(-\frac{1}{2} \Omega\right)$, which is the generalized Daguerre polynomial of the form [6], [13]

Pillai and Gupta [32] have evaluated the first two moments of $\mathrm{W}_{2}^{(\mathrm{p})}$ using ${ }^{a_{k, \nu}}$ coefficients for $k=2,4$ available in [6].

Here we evaluate the third moment in (5.3) using the table of $a_{k, \eta}$ coefficients presented in the next section.

$$
\begin{equation*}
E\left[W_{2}^{(p)}\right]^{3}=\mu_{3}^{\prime}(0)\left\{W_{2}^{(p)}\right\}+\sum_{i=1}^{4} \sum_{\substack{j=1 \\ i \neq j}}^{3} \sum_{\substack{k=1 \\ k \neq \ell}}^{3} \sum_{\ell=0}^{2} a_{i j k \ell} b_{i}^{k} b_{j}^{\ell} \tag{5.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{1210}=12 \mu_{3}^{\prime}(0)\left\{W_{2}^{(p)}\right\} / c_{0}, a_{1220}=c_{-1}\left[c_{-2}\left\{c_{1}\left(342 c_{4}+70 c_{0}\right)+c_{-3}\left(3 d_{41}+175 c_{4}\right)\right\}\right. \\
& \left.+4 d_{3}\right] / 13440, a_{2110}=\left[c _ { - 2 } \left\{4 c _ { - 3 } \left(175 c_{4}{ }^{d_{21}}+27 c_{-4} d_{52}-3 c_{-1} d_{41}\right.\right.\right. \\
& \left.\left.\left.+627 c_{1} c_{2}\right)+8 c_{1}\left(35 c_{0} d_{21}+9 c_{4}\left\{13 c_{2}-19 c_{1}\right\}\right)\right\}+d_{3}\left\{7 c_{2}-16 c_{-1}\right\}\right] / 40320, \\
& a_{2120}=\left[c_{-2}\left\{4 d_{40}+290 c_{-3}-504 c_{1}\right\}+7 c_{3}\left\{7 c_{4}-8 c_{1}\right\}\right] / 840, \quad a_{3110}= \\
& {\left[c_{-3}\left\{5 c_{2}\left(912 c_{1}+245 c_{4}\right)+135 c_{-4}\left(39 c_{2}+20 c_{-5}\right)-c_{-2} d_{9}+1120 c_{-1} c_{2}\right\}\right.} \\
& \left.+c_{1}\left\{6 c_{4}\left(150 c_{2}-666 c_{-2}-49 c_{3}\right)+14\left(16 c_{-1} d_{32}+25 q_{0} d_{22}\right)\right\}\right] / 16800, \\
& a_{1230}=c_{-1}\left[c_{-2} d_{13}+c_{1} c_{3}\right] / 120, a_{2130}=1, a_{4110}=\left[1 0 c _ { - 2 } \left\{2 d_{40}\right.\right. \\
& \left.+397 c_{-3}\right\}+c_{1}\left\{1120 d_{32}-400 d_{05}+23712 c_{-3}+7182 c_{2}\right\}+35 c_{-4}\left\{7 c_{3}-184 c_{-3}\right. \\
& \left.+54 c_{2}\right\}+243 c_{-4}\left\{66 c_{2}+25 c_{-5}+56 c_{-3}\right\} / 12600, a_{2311}=18, a_{1212}= \\
& (3 / 2) c_{1}+6, a_{1221}=a_{1230} /\left(6 c_{-1}\right), \quad a_{1211}=\left[c _ { - 2 } \left\{c_{-3}\left(d_{9}-2520 c_{-1}\right)\right.\right. \\
& \left.\left.+6 c_{1}\left(666 c_{4}-756 c_{-1}+175 c_{0}\right)\right\}+42 c_{1} c_{3}\left\{7 c_{4}-12 c_{1}\right\}\right] / 25200, a_{1311}= \\
& {\left[c_{-3}\left\{805 c_{4}+1701 c_{-4}+2964 c_{1}-2980 c_{-2}\right\}+10 c_{1}\left\{5 \alpha_{05}-378 c_{-2}-14 c_{3}\right\}\right.} \\
& -16 \mathrm{c} \mathrm{C}^{\mathrm{d}} \mathrm{~d}_{40} / 2520 \text {, }
\end{aligned}
$$

and all other $a_{i j k!}=0, \quad c_{\alpha}=(f+\alpha)(p+\alpha), \mu_{3}^{\prime}(0)\left\{W_{2}^{(p)}\right\}$ is the third moment in the central case [5] with $2 \mathrm{~m}=\mathrm{f}-\mathrm{p}-1$ and

$$
\begin{aligned}
& d_{3}=7 c_{1} c_{3} c_{4}, \quad d_{52}=19 c_{2}-7 c_{-5}, \quad d_{21}=c_{2}-c_{-1}, d_{40}=35 c_{0}+99 c_{4}, d_{32}=c_{3}-9 c_{-2} \\
& d_{9}=6840 c_{1}+1995 c_{4}+2835 c_{-4}, d_{22}=c_{2}-3 c_{-2}, d_{05}=7 c_{0}+18 c_{4}, d_{41}=152 c_{1}+63 c_{4} .
\end{aligned}
$$

6. Results for $a_{k, T}$

The $a_{k, \tau}$'s are constants [6] satisfying the equality

$$
\begin{equation*}
\left.C_{K}(\underset{\sim}{A}+\underset{\sim}{I}) / C_{K}(I)=\sum_{\tau=0}^{k} \sum_{\tau} a_{K, \tau} C_{T} \underset{\sim}{A}\right) / C_{T}(I) \tag{6.1}
\end{equation*}
$$

where T is a partition of t. The following are suggested based on the available results. For $k=k-j, l^{j}$
(6.2)

$$
a_{k, \tau}=\left\{\begin{array}{ll}
j(2 k-(j+1)) /(2 k-(j+2)) & \text { if } \tau=k-j, 1 \\
(2 k-j)(k-(j+1)) /(2 k-(j+2)) & \text { if } \tau=k-j-1,1^{j}
\end{array} .\right.
$$

Also for $k=k-j, j, \quad k \geq 2 j$
(6.3)

$$
a_{k, \tau}=\left\{\begin{array}{l}
j(2 k-(4 j-2)) /(2 k-(4 j-1)) \text { if } \tau=k-j, j-1 \\
(k-2 j)(2 k-(2 j-1)) /(2 k-(4 j-1)) \text { if } \tau=k-j-1, j
\end{array}\right.
$$

For $k=k, \quad T=k-j$

$$
\begin{equation*}
a_{k, \tau}=k!/(j!(k-j)!) \tag{6.4}
\end{equation*}
$$

As previously stated the $a_{k, T}$ for $k=1,2,3,4$ are available in [6] and for $k=5,6,7,8$ now follow.

Table 4. $a_{k, \tau}$ Coefficients ${ }^{*}$ for $k=8$

${ }_{K}{ }^{T} 0$	01	21^{2}	$3{ }^{3}$	4	$31 \quad 2^{2}$	$21^{2} 1^{4}$	5	41	32	$31^{2} 2$	$2^{2} 121^{3}$	I^{5}	
81	18	128	56	70			56						
				265	$\underline{225}$			100					
711	18	1235		7			3	3					
		5826	124156	643	884143		4601	1456	572				
621		$\frac{3}{3}$	$5 \frac{5}{5}$	35	$21 \frac{15}{15}$		63	45	35				
$61^{2} 1$	18	[$\frac{55}{3} \frac{29}{3}$	$24 \quad \frac{57}{2} \quad \frac{7}{2}$	$\frac{125}{7}$	$\frac{850}{21}$	$\frac{35}{3}$	$\frac{64}{9}$	$\frac{565}{18}$		$\frac{35}{2}$			
53	1.8	\|llll	171	$\frac{82}{5} \frac{198}{5}$	$\frac{272}{35}$	$\frac{297}{7} \frac{99}{5}$		$\frac{32}{21}$	$\frac{308}{15}$	$\frac{1188}{35}$			
521	18	8 $\frac{46}{3} \frac{38}{3}$	$\frac{72}{5} \frac{183}{5} \quad 5$	$\frac{247}{35}$	$\frac{766}{21} \quad \frac{49}{5}$	$\frac{50}{3}$	$\frac{88}{63} 1$	$\frac{1673}{90}$	$\frac{438}{35}$	$\frac{35}{2}$			
$51^{3} 1$	I 8	81414	$\frac{68}{5} \frac{162}{5} 10$	$\frac{47}{7}$	$\frac{240}{7}$	$\frac{132}{5} \quad \frac{13}{5}$	$\frac{4}{3}$	$\frac{53}{3}$		$\frac{207}{7}$	$\frac{52}{7}$		
4^{2}	18	81612	$\frac{64}{5} \frac{216}{5}$	$\frac{128}{35}$	$\frac{288}{7} \frac{126}{5}$			$\frac{64}{5}$	$\frac{216}{5}$				
431	18	8 $\frac{41}{3} \frac{43}{3}$	$\frac{136}{15} \frac{411}{10} \frac{35}{6}$	$\frac{72}{35}=$	$\frac{1948}{63} \frac{791}{45}$	$\frac{175}{9}$		$\frac{36}{5}$	$\frac{1006}{45}$	$\frac{140}{9}$			
42^{2}	18	$\frac{38}{3} \frac{46}{3}$	$\frac{112}{15} \frac{201}{5} \frac{25}{3}$	$\frac{9}{5}$	$\frac{226}{9} \frac{689}{45}$	$\frac{250}{9}$		$\frac{63}{10}$	$\frac{574}{45}$	$\frac{325}{18}=$			
421^{2}	$1) 8$	$\frac{35}{3} \frac{49}{3}$	$\frac{106}{15} \frac{183}{5} \frac{37}{3}$	$\frac{12}{7} 1$	$\frac{1495}{63} \frac{161}{18}=$	$\begin{array}{ll} 1454 \\ 45 & \frac{33}{10} \end{array}$		6	$\frac{68}{9}=$	$\frac{1394}{63}$	$\frac{98}{9} \quad \frac{66}{7}$		
41^{4}	18	\|10 18	$\frac{32}{5} \frac{153}{5} 19$	$\frac{17}{7}$	$\frac{150}{7}$	$\frac{186}{5} \frac{49}{5}$		$\frac{71}{2}$		$\frac{387}{14}$	$\frac{146}{7}$	2	
$3^{2} 2$	18	- $\frac{35}{3} \frac{49}{3}$	$\frac{14}{3} \quad 42 \quad \frac{28}{3}$		$\frac{175}{9} \frac{175}{9}$	$\frac{280}{9}$			$\frac{140}{9}$	$\frac{140}{9}$			
$3^{2} 1^{2}$	18	8 $\frac{32}{3} \frac{52}{3}$	$\frac{64}{15} \frac{192}{5} \frac{40}{3}$		$\frac{160}{9} \frac{124}{9}$	$\frac{1568}{45} \quad \frac{18}{5}$			$\frac{104}{9}$	$\frac{1088}{63}$	$\frac{152}{9} \quad \frac{72}{7}$		
$32^{2} 1$	18	$8 \frac{29}{3} \frac{55}{3}$	$\frac{8}{3} \quad \frac{75}{2} \frac{95}{6}$		$\frac{100}{9} \frac{245}{18}$	$\begin{array}{ll}\frac{367}{9} & \frac{9}{2}\end{array}$			$\frac{50}{9}$	$\frac{800}{63}$	$\frac{224}{9} \quad \frac{20}{7}$		
3213	118	$\frac{25}{3} \frac{59}{3}$	$\frac{12}{5} \frac{321}{10} \frac{43}{2}$		$10 \quad \frac{43}{6}$	$\frac{623}{15} \frac{113}{10}$			3	$\frac{96}{7}$	$13 \frac{503}{21}$	$\frac{7}{3}$	
31^{5}	18	$8 \frac{12}{3} \frac{65}{3}$	$2 \quad 24 \quad 30$		$\frac{25}{3}$	$\frac{116}{3} \quad 23$				$\frac{100}{7}$	$\frac{680}{21}$	$\frac{28}{3}$	
2^{4}	18	8820	3620		15	487					3620		
$2^{3} 1^{2}$	18	8721	$\frac{63}{2} \frac{49}{2}$		$\frac{21}{2}$	$\frac{231}{5} \frac{133}{10}$					$\frac{126}{5} 28$		
$2^{2} 1^{4}$	18	$8 \frac{16}{3} \frac{68}{3}$	2432		$\frac{14}{3}$	$\frac{608}{15} \frac{124}{5}$					$\frac{56}{5} \frac{104}{3}$	$\frac{152}{15}$	
21^{6}	28	8325	$\frac{27}{2} \frac{85}{2}$			2743					30	26	
$1{ }^{8}$	18	8.28	56			70						56	

7. Further Uses of ${ }^{K}{ }_{K}$,

Pillai [29] has shown that
(7.1) $E\left[e^{\text {titI }} \sim\right]=e^{-\frac{1}{2} \operatorname{tr} \Omega} \sim \sum_{k=0}^{\infty} \sum_{k} \sum_{n=0}^{k} \sum_{\eta} \frac{\left(\frac{1}{2} f_{2}\right)_{k}\left(\frac{1}{2} \nu\right)_{\eta} a_{k} n^{t^{k-n} C_{k}(I) C_{n}\left(\frac{1}{2} \Omega\right)}}{\left(\frac{1}{2} \nu\right)_{K}\left(\frac{1}{2} f_{2}\right)_{\eta} k!C_{\eta}(I)}$
where $\underset{\sim}{\Omega}, \nu, f_{1}$ and f_{2} are defined in [29].
From (7.1) we get the moments of $\operatorname{trI}_{\sim}^{\sim}$ by differentiation with respect to t and letting $t=0$. Thus

$$
\begin{aligned}
\frac{\partial^{r}}{\partial t^{r}} E\left[e^{t \operatorname{trL}} \sim\right. \\
\sim
\end{aligned}=e^{-\frac{1}{2} \operatorname{tr\Omega }} \sim \sum_{k=0}^{\infty} \sum_{K} \sum_{n=0}^{k} \sum_{\eta}^{\infty}\left(\left(\frac{1}{2} f_{2}\right)_{K}\left(\frac{1}{2} v\right)_{\eta} a_{k, \eta}\right) \cdot\left(\begin{array}{ll}
\left.\left(\frac{1}{2} v\right)_{K}\left(\frac{1}{2} f_{2}\right) \eta_{\eta}^{k!C_{\eta}(I)}\right)
\end{array}\right.
$$

and hence
(7.2) $E\left[\operatorname{tram}_{\sim}^{I}\right]^{r}=e^{-\frac{1}{2} \operatorname{tr} \Omega} \sim \sum_{k=0}^{\infty} \sum_{K} \sum_{\eta} \frac{\left(\frac{1}{2} f_{2}\right)_{K}\left(\frac{1}{2} \nu\right) \eta_{K} a_{K} \eta^{r!C_{K}(I) c_{\eta}\left(\frac{1}{2} \Omega\right)}}{\left(\frac{1}{2} \nu\right)_{K}\left(\frac{1}{2} f_{2}\right)_{\eta} k!C_{\eta}(I)}$
where η is a partition of $n=k-r$.
Pillai [29] also gives in the case of canonical correlation

from which, as before, we obtain the eth moment,
(7.4) $E\left[\underset{\sim}{\operatorname{tr} R^{2}}\right]^{r}=\left|\underset{\sim}{I-P^{2}}\right|^{\frac{\nu}{2}} \sum_{k=0}^{\infty} \sum_{K} \sum_{\eta} \frac{\left(\frac{1}{2} f_{2}\right)_{K}\left(\left(\frac{1}{2} \nu\right)_{\eta}\right)^{2} a_{k, \eta} \eta^{r!} C_{k}(I) C_{\eta}\left(P^{2}\right)}{\left(\frac{1}{2} \nu\right)_{K}\left(\frac{1}{2} f_{2}\right) \eta_{\eta}^{k!} C_{\eta}(I)}$,
where η is as above, and $\underset{\sim}{R^{2}}$ and $\underset{\sim}{\underset{\sim}{p}}$ are defined in [29]. Further, Khatri [18] has obtained the moment generating function of $V^{(p)}$ associated with the test $\lambda \sum_{\sim}=\sum_{\sim}$ as

We get the rth moment of $\mathrm{V}^{(\mathrm{p})}$ in this case as
(7.6) $E\left[V^{(p)}\right]^{r}=|\lambda \Lambda|^{-\frac{1}{2} f_{1}} \sum_{k=0}^{\infty} \sum_{K} \sum_{\eta} \frac{\left(\frac{1}{2} f_{1}\right)_{K}\left(\frac{1}{2} \nu\right) \eta^{a} \kappa \eta_{2} \eta^{r!} C_{K}(I) C_{\eta}\left(I-(\lambda \Lambda)^{-1}\right)}{\left(\frac{1}{2} \nu\right)_{K} k: C_{\eta}(I)}$,
where η is a partition of $n=k-p$ and $\underset{\sim}{\Lambda}$ is defined in [18], [29] .

CHAPTER II
ON THE MON-CENTRAL DISTRIBUTIONS OF WILKS' - A
FOR TESTS OF THREE HYPOTHESES

1. Introduction and Summary

In multivariate analysis we are interested in testing three hypotheses, namely

1) that of equality of the dispersion matrices of two p-variate normal populations,
2) that of equality of the p-dimensional mean vectors for k-variate normal populations having a common covariance matrix and
3) that of independence between a p-set and a q-set of variates in a ($p+q$)-variate normal population, with $p \leq q$. We obtain the non-central distribution of Wilks' criterion $\Lambda=W^{(p)}=\prod_{i=1}^{p}\left(I-c_{i}\right)$ in each of the above cases, where the c_{i} 's are functions of the characteristic roots of the appropriate matrices. The density functions for Case 2 have been obtained by Pillai and Al-Ani [30] for $p=2,3,4$ and here we obtain the density functions for all three cases for general p in terms of Meijer*s G-function [25] with special cases being explicitly evaluated. In this connection a theorem has been proved using some results on Mellin transforms [7], [8], [9]. Also the cumulative distribution function (or cdf) of $W^{(p)}$ is obtained for $p=2$ in the above three cases. The densities in all cases may be put in a single general form given by
(1.1) $\quad f(W(p))=\frac{\Gamma_{p}(\delta)}{\Gamma_{p}\left(\frac{1}{2} \gamma\right)} \alpha\{W(p)\}^{\frac{1}{2}(\gamma-p-1)}$

$$
\left.\cdot \sum_{k=0}^{\infty} \sum_{K} \frac{(\delta)_{K}^{\theta}}{k!} C_{K}(M) G_{p, p}^{p, 0}(W)(p)\right|_{b_{1}, b_{2}, \ldots, b_{p}} ^{\left.a_{1}, a_{2}, \ldots, a_{p}\right)}
$$

where

$$
a_{i}=\frac{1}{2}(2 \delta-\gamma)+k_{p-i+1}+b_{i} \quad \text { and } \quad b_{i}=(i-1) / 2
$$

and

$$
\begin{aligned}
& \text { Case 1 Case 2 Case 3 } \\
& \gamma=n_{2} \quad t \quad n-q \\
& \delta=\frac{1}{2} n \\
& B=\left(\frac{1}{2} n_{1}\right)_{K} \\
& \alpha=|\lambda \Lambda|^{-\frac{1}{2} n_{1}} \\
& \underset{\sim}{M}=\underset{\sim}{I} p-(\lambda \underset{\sim}{\Lambda})^{-1} \\
& \text { Case } 2 \\
& \text { t } \\
& \nu \\
& 1 \\
& \begin{array}{l}
e^{-\operatorname{tr} \Omega} \sim \\
\sim
\end{array} \\
& \text { Case } 3 \\
& \text { n-q } \\
& \frac{1}{2} \mathrm{n} \\
& \left(\frac{1}{2} n\right)_{K} \\
& \underset{\sim}{\underset{\sim}{P}} \underset{\sim}{I}-\left.P_{\sim}^{2}\right|^{\frac{1}{2} n}
\end{aligned}
$$

See the following sections for definitions of the parameters as well as the G-function.

2. Preliminary Results

Some results on Mellin transforms [7], [8], [9] and Meijer's G-function [25] useful in proving the theorem below will now be given. Lemma 1. If s is any complex variate and $f(x)$ is a function of a real variable x, such that

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} x^{s-1} f(x) d x \tag{2.1}
\end{equation*}
$$

exists, then under certain regularity conditions

$$
\begin{equation*}
f(x)=(2 \pi i)^{-1} \int_{c-i \infty}^{c+i \infty} x^{-s} F(s) d s \tag{2.2}
\end{equation*}
$$

$F(s)$ is called the Mellin transform of $f(x)$ and $f(x)$ is the inverse Mellin transform of $F(s)$.

Lemma 2. If $f_{1}(x)$ and $f_{2}(x)$ are the inverse Mellin transforms of $\mathrm{F}_{1}(\mathrm{~s})$ and $\mathrm{F}_{2}(\mathrm{~s})$ respectively, then the inverse Mellin transform of $F_{1}(s) F_{2}(s)$ is

$$
\begin{equation*}
(2 \pi i)^{-1} \int_{c-i \infty}^{c+i \infty} x^{-s} F_{1}(s) F_{2}(s) d s=\int_{0}^{\infty} f_{1}(u) f_{2}(x / u) d u / u \tag{2.3}
\end{equation*}
$$

Meijer [25] defined the G-function by
(2.4) $\quad G_{p, q}^{m, n}\left(\left.x\right|_{b_{1}, b_{2}} ^{a_{2}, a_{2}, \ldots, b_{p}, \ldots}\right)=$

$$
(2 \pi i)^{-1} \int_{C} \frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-s\right)} x^{s} d s
$$

where an empty product is interpreted as unity and C is a curve separ ating the singularities of $\prod_{j=1}^{m} \Gamma\left(b_{j}-s\right)$ from those of $\prod_{j=1}^{n} \Gamma\left(1-a_{j}+s\right)$, $q \geq 1,0 \leq n \leq p \leq q, \quad 0 \leq m \leq q ; x \neq 0$ and $|x|<1$ if $q=p ;$
$x \neq 0$ if $q>p$. It is easily verified that
(2.5) $\quad G_{2,2}^{2,0}\left(\left.x\right|_{b_{1}, b_{2}} ^{a_{1}, a_{2}}\right)=\frac{x^{b_{1}}(1-x)^{a_{1}+a_{2}-b_{1}-b_{2}-1}}{\Gamma\left(a_{1}+a_{2}-b_{1}-b_{2}\right)}$
$2^{F_{1}\left(a_{2}-b_{2}, a_{1}-b_{2} ; a_{1}+a_{2}-b_{1}-b_{2} ; 1-x\right) \quad 0<x<1}$
where the generalized hypergeometric function $2_{2} F_{1}$ is given by James [13]. The G-function of (2.4) can be expressed as a finite number of generalized hypergeometric functions as follows [26],

$$
\begin{aligned}
& G_{p, q}^{m, n}\left(\left.x\right|_{b_{1}} ^{a_{1}}, \ldots, a_{q}\right)=\sum_{h=1}^{m} \frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-b_{h}\right) \prod_{j=1}^{n} \Gamma\left(I+b_{h}-a_{j}\right)}{\prod_{j=m+1}^{q} \Gamma\left(1+b_{h}-b_{j}\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-b_{h}\right)} x^{b_{h}} \\
& { }^{*}{ }_{p}{ }_{q-1}\left(1+b_{h}-a_{1}, \ldots, 1+b_{h}-a_{p} ; 1+b_{h}-b_{I}, \ldots * \ldots 1+b_{h}-b_{q} ;(-1)^{p-m-n_{x}}\right)
\end{aligned}
$$

where the asterisk denotes that the number $l+b_{h}-b_{h}$ is omitted in the sequence $I+b_{h}-b_{I}, \ldots, l+b_{h}-b_{q}$. Although the following theorem gives a more complicated form for expressing the $G-f u n c t i o n$, it is useful in that expression (2.4) of Consul [9] and Lerma l of Pillai and Al-Ani [30] are special cases.

Theorem 1. If s is a complex variate, $a_{i}, b_{i}, i=1,2, \ldots, p$ are reals, then for $p \geq 3$

$$
\begin{align*}
& G_{p, p}^{p, o}\left(\left.x\right|_{b_{1}}, b_{2}, \ldots, a_{p}, \ldots, a_{p}\right)= \tag{2.6}\\
& \frac{x^{b}(1-x)^{c-1}}{\Gamma\left(c_{1}+c_{2}+c_{3}\right)} \prod_{i=1}^{p-3}\left(\sum_{j_{i}=0}^{\infty} \frac{\left(b_{p-i+1}+c_{p-i+1}^{-b} p_{-i}\right)_{j_{i}}}{\left(j_{i}\right)!}\right) \\
& \text { p-3 } \\
& : \sum_{j=0}^{\infty} \frac{\left(c_{1}\right)_{j}\left(b_{2}+c_{2}-b_{1}\right)_{j}}{\left(c_{1}+c_{2}+c_{3}\right)_{j} j!} \quad(1-x)^{j+\sum_{i=1}^{j} j_{i} p-3} \prod_{\ell=1}\left[\frac{\Gamma\left(g_{\ell}+j_{\ell}\right)}{\Gamma\left(h_{\ell}\right)}\right] \\
& \text { - }{ }_{p-1}{ }^{F}{ }_{p-2}\left(b_{3}+c_{3}-b_{2}, f_{1}, f_{2}, \ldots, f_{p-2} ; g_{1}, g_{2}, \ldots, g_{p-2} ; 1-x\right) \\
& 0<x<1
\end{align*}
$$

where for notational convenience $c_{i}=a_{i}-b_{i}, c=\sum_{i=1}^{p} c_{i}$, $\mathrm{f}_{\ell}=\sum_{i=1}^{\ell+1} c_{i}+\sum_{i=1}^{\ell-1} j_{i}+j, g_{\ell}=\sum_{i=1}^{\ell+2} c_{i}+\sum_{i=1}^{\ell-1} j_{i}+j, h_{\ell}=\sum_{i=1}^{\ell+3} c_{i}+\sum_{i=1}^{\ell} j_{i}+j$ and $(a)_{k}=a(a+1) \ldots(a+k-1)$.

Proof. Using mathematical induction starting with $p=3$, we see making the substitution $(a, b, c, m, n, p) \rightarrow\left(b_{3}, b_{2}, b_{1}, c_{3}, c_{2}, c_{1}\right)$ in (2.4) of Consul [8] that
$(2,7) \quad c_{3,3}^{3,0}\left(\left.x\right|_{b_{1}} ^{a_{1}, b_{2}, b_{2}, b_{3}}\right)=\frac{x^{b_{3}}(1-x)^{c_{1}+c_{2}+c_{3}-1}}{\Gamma\left(c_{1}+c_{2}+c_{3}\right)} \sum_{j=0}^{\infty} \frac{\left(c_{1}\right)_{j}\left(b_{2}+c_{2}-b_{1}\right)_{j}}{\left.j!\left(c_{1}+c_{2}\right)^{+c_{3}}\right)_{j}}$

- $(1-x)^{j}{ }_{2}{ }_{1}\left(b_{3}+c_{3}-b_{2}, c_{1}+c_{2}+j ; c_{1}+c_{2}+c_{3}+j ; 1-x\right)$

$$
0<x<1
$$

which is (2.6) with $p=3$. Now assuming (2.6) is true for $p=n$, we show it holds for $p=n+1$. Applying Lemma 2 with

$$
F_{1}(s)=\frac{\prod_{i=1}^{n} \Gamma\left(s+b_{i}\right)}{\prod_{i=1}^{n} \Gamma\left(s+a_{i}\right)} \text { and } F_{2}(s)=\frac{\Gamma\left(s+b_{n+1}\right)}{\Gamma\left(s+a_{n+1}\right)}
$$

we have $f_{1}(x)$ is (2.6) with $p=n$ and $f_{2}(x)=\frac{x^{b_{n+1}}(1-x)^{c_{n+1}-1}}{\Gamma\left(c_{n+1}\right)}$
and it follows that
(2.8) $\quad G_{n+1, n+1}^{n+1,0}\left(\left.x\right|_{b_{1}, b_{2}, \ldots, a_{n+1}} ^{a_{1}, \ldots, b_{n+1}}\right)=\frac{x_{n+1}^{b_{n}}}{\Gamma\left(c_{1}+c_{2}+c_{3}\right) \Gamma\left(c_{n+1}\right)} \int_{x}^{1} u^{b_{n}-b_{n+1}-c_{n+1}}$

- $(1-u)^{\sum_{i=1}^{n} c_{i}+1} \prod_{i=1}^{n-3}\left(\sum_{j_{i}=0}^{\infty} \frac{\left(b_{n-i+1}+c_{n-i+1}-b_{n-i}\right)_{j}}{\left(j_{i}\right)!}\right)$
- $\sum_{j=0}^{\infty} \frac{\left(c_{1}\right)_{j}\left(b_{2}+c_{2}-b_{1}\right)_{j}}{\left(c_{1}+c_{2}+c_{3}\right)_{j} j!}(1-u)^{j+\sum_{i=1}^{n-3} j_{i}} \prod_{\ell=1}^{p-3} \frac{\Gamma\left(q_{\ell}+j_{\ell}\right)}{\Gamma\left(h_{\ell}\right)}$
$\cdots{ }_{n-1} F_{n-2}\left(b_{3}+c_{3}-b_{2}, f_{1}, f_{2}, \ldots, f_{p-2} ; g_{1}, g_{2}, \ldots, g_{p-2} ; 1-u\right)$

$$
(u-x)^{c_{n+1}-1} d u
$$

Expanding $u^{b_{n}-b_{n+1}-c_{n+1}}$ in powers of $1-u$ when $b_{n+1}+c_{n+1}>b_{n}$, letting $u=x+(1-x) t$ and integrating with respect to t, the result is the same as (2.6) with $p=n+1$.

It is easily verified that Lemma 1 of Pillai and Al-Ani [30] is a special case of (2.6) with $p=4$ by making the following substitution

$$
\left(b_{1}, b_{2}, b_{3}, b_{4}, c_{1}, c_{2}, c_{3}, c_{4}\right) \rightarrow(c, b, a, d, p, n, m, b) .
$$

It should be mentioned that this theorem doesn't apply when $p=1,2$. This is due to the fact that a simplification in the form of the G-function for $p=3$ reduces the hypergeometric function involved from $3^{F} 2$ to $2^{F_{1}}$. A general form for all p can be given as below, but we see it is more cumbersome to use because we have p_{p-1} rather than $p-1^{F} p-2$ a.s in (2.6)

$$
\begin{aligned}
& \sum_{r=0}^{\infty} \frac{\left.\left(b_{p-2^{+c} p-2^{-b} p-1}\right)_{r}\left(c_{p-1}+c_{p}\right)_{r}^{p-3} \prod_{i=1}^{p} \sum_{j=i+2}^{p} c_{j}+\sum_{j=1}^{p-4} \ell_{j}+r\right)_{\lambda_{i}}}{r!(c)_{l+r}} \\
& { }_{p}^{F} p_{p-1}\left(c_{p}, b_{p-1}+c_{p-1}-b_{p}, f_{1}, \ldots, f_{p-2} ; c_{p-1}+c_{p}, g_{1}, \ldots, g_{p-2} ; 1-x\right) \\
& \text { - }(1-x)^{6+x} \quad 0<x<1
\end{aligned}
$$

where

$$
\ell=\sum_{i=1}^{p-3} \ell_{i}, f_{1}=\sum_{j=p-i}^{p} c_{i}+\sum_{j=1}^{p+i-6} \ell_{j}+r, g_{i}=\sum_{j=p-i-1}^{p} c_{j}+\sum_{j=1}^{p+i-6} \ell_{j}+r, c=\sum_{i=1}^{p} c_{i}
$$

It follows that letting $p=2$ we get (2.5) and $p=1$ gives

$$
G_{1,1}^{1,0}\left(\left.x\right|_{b_{1}} ^{a_{1}}\right)=x^{b}(1-x)^{c_{1}^{-1}} / \Gamma\left(c_{1}\right)
$$

3. The Non-Central Distribution of $\mathrm{W}^{(\mathrm{p})}$ in Case 1

Let $\underset{\sim}{X}: p \times n_{1}$ and $\underset{\sim}{Y}: p \times n_{2}, p \leq n_{i}, i=1,2$, be independent matrix variates with the columns of $\underset{\sim}{X}$ independently distributed as $N\left(0, \Sigma_{1}\right)$ and those of $\underset{\sim}{Y}$ independentiy distributed as $N\left(0,{\underset{\sim}{2}}_{2}\right)$. Hence
 $\left(n_{i}, p, \Sigma_{i}\right), i=1,2$. Let $0<f_{1}<f_{2}<\ldots<f_{p}<\infty$ be the characteristic (ch.) roots of the determinantal equation

$$
\begin{equation*}
\left|S_{N_{1}}-f{\underset{\sim}{2}}\right|=0 \tag{3.1}
\end{equation*}
$$

and $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{p}<\infty$ be the ch. roots of

$$
\begin{equation*}
\left|\Sigma_{\sim}-\gamma \Sigma_{\sim}\right|=0 . \tag{3.2}
\end{equation*}
$$

For testing the hypothesis $H_{0}: \lambda \underset{\sim}{\Lambda}=\underset{\sim}{I} p, \lambda>0$ being given, we will use

$$
\begin{equation*}
W^{(p)}=\prod_{i=1}^{p}\left(1-W_{i}\right) \tag{3.3}
\end{equation*}
$$

where

$$
\underset{\sim}{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right), \quad w_{i}=\lambda f_{i} /\left(I+\lambda f_{i}\right) \quad i=1,2, \ldots, p
$$

Khatri [18] has shown that
(3.4) $\quad f\left(W_{1}, W_{2}, \ldots, W_{p}\right)=C|\lambda \Lambda|^{-\frac{1}{2} n_{1}}|\underset{\sim}{W}|^{\frac{1}{2}\left(n_{1}-p-1\right)}|\underset{\sim}{I}-\underset{\sim}{W}|^{\frac{1}{2}\left(n_{2}-p-1\right)} \prod_{i<j}\left(W_{i}-W_{j}\right)$

- $\quad{ }_{1} F_{0}\left(\frac{1}{2} n ; \underset{\sim}{I}-(\lambda \Lambda)^{-I}, \underset{\sim}{W}\right)$
where

$$
\begin{gathered}
\underset{\sim}{W}=\operatorname{diag}\left(W_{1}, W_{2}, \ldots, W_{p}\right), n=n_{1}+n_{2}, \Gamma_{p}(t)=\pi^{p(p-1) / 4}{\underset{j}{j=1}}_{p} \Gamma\left(t-\frac{1}{2} j+\frac{1}{2}\right), \\
C=\pi^{\frac{1}{2} p^{2}} \Gamma_{p}\left(\frac{1}{2} n\right)\left[\Gamma_{p}\left(\frac{1}{2} n\right) \Gamma_{p}\left(\frac{1}{2} n_{1}\right) \Gamma_{p}\left(\frac{1}{2} n_{2}\right)\right]^{-1} .
\end{gathered}
$$

To find $E\left[W^{(p)}\right]^{h}$ we multiply (3.4) by $\left|I_{p}-W\right|^{h}=\left[\prod_{i=1}^{p}\left(1-w_{i}\right)\right]^{h}$, transform $\underset{\sim}{W} \rightarrow \underset{\sim}{H} \underset{\sim}{V}{ }_{\sim}^{i}$, where $\underset{\sim}{H}$ is an orthogonal and $\underset{\sim}{V}$ is a symmetric matrix, integrate out $\underset{\sim}{H}$ and $\underset{\sim}{V}$ using (44) and (22) of Constantine [5] and we find

$$
\begin{equation*}
E[W(p)]^{h}=\frac{\Gamma_{p}\left(\frac{1}{2} n\right) \Gamma\left(\frac{1}{2} n_{2}+h\right)}{\Gamma\left(\frac{1}{2} n_{2}\right) \Gamma_{p}\left(\frac{1}{2} n+h\right)}|\lambda \Lambda|^{-\frac{1}{2} n_{1}}{ }_{2}^{F_{I}}\left(\frac{1}{2} n, \frac{1}{2} n_{1} ; \frac{1}{2} n+h ; I_{\sim}^{1}-(\lambda \Lambda)^{-1}\right) . \tag{3.5}
\end{equation*}
$$

Using Lemma 1 , the density of $f\left(W^{(p)}\right.$) has the form

$$
\begin{gather*}
f(W(p))=C_{p} \sum_{k=0}^{\infty} \sum_{K} \frac{\left(\frac{1}{2} n\right)_{K}\left(\frac{1}{2} n_{1}\right)_{K}}{k!} C_{K}\left(I_{\sim}-(\lambda \Lambda)^{-1}\right)\left\{W^{(p)}\right\}^{\frac{1}{2}\left(n_{2}-p-1\right)} \tag{3.6}\\
\cdot(2 \pi i)^{-1} \int_{c-i \infty}^{c+i \infty}\{W(p)\}^{-r} \frac{\prod_{i=1}^{p} \Gamma\left(r+b_{i}\right)}{\prod_{i=1}^{p} \Gamma\left(r+a_{i}\right)} d r
\end{gather*}
$$

where

$$
\begin{gathered}
r=\frac{1}{2} n_{2}+h-\frac{1}{2}(p-1), \quad b_{i}=\frac{1}{2}(i-1), \quad a_{i}=\frac{1}{2} n_{1}+k_{p-i+1}+b_{i}, \\
C_{p}=\frac{\Gamma_{p}\left(\frac{1}{2} n\right)}{\Gamma_{p}\left(\frac{1}{2} n_{2}\right)}|\lambda \Lambda|^{-\frac{1}{2} n_{1}},(a)_{k}=\prod_{i=1}^{p} \Gamma\left(a-\frac{1}{2}(i-1)\right)_{k_{i}}, \\
(a)_{k}=a(a+1) \ldots(a+k-1),
\end{gathered}
$$

\sum_{κ} is the sum over all partitions κ of the integer k where $k=\left(k_{1}, k_{2}, \ldots, k_{p}\right), k_{1} \geq k_{2} \geq \ldots \geq k_{p}>0, \sum_{i=1}^{p} k_{i}=k$, and $C_{K}(\underset{\sim}{s})$ is a zonal polynomial; see James [13].

Noting that the integral in (3.6) is in the form of Meijer's Gmfunction we can write the density of $W^{(p)}$ as

$$
\begin{align*}
& f\left(W^{(p)}\right)=C_{p}\left\{(\underline{W})^{\frac{1}{2}\left(n_{2}-p-1\right)} \sum_{k=0}^{\infty} \sum_{k}^{\infty} \frac{\left(\frac{1}{2} n\right)_{k}\left(\frac{1}{2} n_{1}\right)_{k}}{k!} \quad .\right. \tag{3.7}\\
& \text { - } C_{K}\left(I_{p}-(\lambda \Lambda)^{-1}\right) G_{p, p}^{p, 0}\left(\left.w^{(p)}\right|_{b_{1}, b_{2}} ^{a_{1}, a_{2}, \ldots, b_{p}}\right) \quad .
\end{align*}
$$

Letting $p=2$ in (3.7) and using (2.5) we obtain

$$
\begin{align*}
& f(W(2))=C_{2}\{W(2)\}^{\frac{1}{2}\left(n_{2}-3\right)} \sum_{k=0}^{\infty} \sum_{k} \frac{\left(\frac{1}{2} n\right)_{K}\left(\frac{1}{2} n_{1}\right)_{K}}{k!} \tag{3.8}\\
& C_{K}\left(I_{2}-(\lambda \Lambda)^{-1}\right) \frac{\{1-W(2)\}^{a_{1}+a_{2}-b_{1}-b_{2}-1}}{\Gamma\left(a_{1}+a_{2}-b_{1}-b_{2}\right)} \\
& \text { - } \quad 2^{F_{1}}\left(a_{2}-b_{2}, a_{1}-b_{2}, a_{1}+a_{2}-b_{1}-b_{2} ; 1-W(2)\right. \text {. }
\end{align*}
$$

The probability that $W^{(2)} \leq w(\leq 1)$ can be obtained by integrating (3.8) by parts a_{1} times when n_{1} is even. Using the relation [8]

$$
\begin{equation*}
\left(d^{n} / d z^{n}\right)\left[z^{c-1} 2^{F_{1}}(a, b ; c ; z)\right]=(c-n)_{n} z^{c-n-1}{ }_{2} F_{1}(a, b ; c-n ; z), \tag{3.9}
\end{equation*}
$$

and recalling that $k=\left(k_{1}, k_{2}\right)$, we obtain the cdf of $W^{(2)}$ in terms of a_{i} 's and $b_{i}{ }^{\prime} s$ as
(3.10)

$$
\begin{aligned}
\operatorname{Pr}\{\mathrm{w}(2) \leq w\} & =|\lambda \Lambda|^{-\frac{1}{2} n_{1}} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{\left(\frac{1}{2} n_{1}\right)_{K} C_{k}\left(I_{2}-(\lambda \Lambda)^{-1}\right) w^{\frac{1}{2}\left(n_{2}-1\right)}}{k!} \\
& \cdot\left\{\frac{\Gamma_{2}\left(\frac{1}{2} n\right)\left(\frac{1}{2} n\right)_{K}}{\Gamma_{2}\left(\frac{1}{2} n_{2}\right) \Gamma\left(a_{1}+a_{2}-b_{1}-b_{2}\right)} \sum_{r=0}^{a} \frac{\left(a_{1}+a_{2}-b_{1}-b_{2}-r\right)_{r}}{\left\{\frac{1}{2}\left(n_{2}-1\right)\right\}_{r+1}}\right. \\
& \cdot w^{r}(1-w)^{a_{1}+a_{2}-b_{1}-b_{2}-r-1} \\
& \cdot 2^{\left.F_{1}\left(a_{2}-b_{2}, a_{1}-b_{2}, a_{1}+a_{2}-b_{1}-b_{2}-r ; 1-w\right)+I_{w}\left(\frac{1}{2} n_{2}, b\right)\right\}}
\end{aligned}
$$

where $I_{w}(a, b)$ denotes the incomplete beta function, a_{i}, b_{i} are defined in (3.6), $a=a_{1}-1$ and $b=a_{2}-b_{2}$. When n_{1} is odd, after integrating (3.8) by parts a_{2} times, the cdf of $W^{(2)}$ is (3.10) with $a=a_{2}-1$ and $b=a_{1}-b_{2}$. Letting $p=3$ in (3.7) we have

$$
\begin{align*}
f(W)(3) & =\frac{\Gamma_{3}\left(\frac{1}{2} n\right)}{\Gamma_{3}\left(\frac{1}{2} n_{2}\right)}|\lambda \wedge|^{-\frac{1}{2} n_{1}}\{W(3)\}^{\frac{1}{2}\left(n_{2}-4\right)} \tag{3.17}\\
& \left.\left.\cdot \sum_{k=0}^{\infty} \sum_{K} \frac{\left(\frac{1}{2} n\right)_{K}\left(\frac{1}{2} n_{1}\right)_{K}}{k!} C_{K}\left(I_{\sim}-(\lambda \Lambda)_{\sim}^{-1}\right) G_{3}^{3,0} 0_{3}(W)\right|_{b_{1}} ^{a}, b_{2}, b_{3}, a_{2}, a_{3}\right)
\end{align*}
$$

where a_{i} and b_{i} are defined in (3.6).

It is clear $\left.G_{3,3}^{3,0}(W)(3)\right|_{b_{1}, b_{2}, b_{3}} ^{a_{1}, a_{2}, a_{3}}$, could be written out in terms of the hypergeometric function using Theorem l, for computation purposes. Also letting $p=4$ in (3.7) yields
(3.12) $\quad f\left(W^{(4)}\right)=\frac{\Gamma_{4}\left(\frac{1}{2} n\right)}{\Gamma_{4}\left(\frac{1}{2} n_{2}\right)}|\lambda \Lambda|^{-\frac{1}{2} n_{1}}\left\{\begin{array}{l} \\ (4)\end{array}\right\}^{\frac{1}{2}\left(n_{2}-5\right)}$

$$
\cdot \sum_{k=0}^{\infty} \sum_{K} \frac{\left(\frac{1}{2} n\right)_{K}\left(\frac{1}{2} n_{1}\right)_{K}}{k!} C_{k}\left(I_{4}-(\lambda \Lambda)^{-1}\right) G_{4,4}^{4,0}\left(\left.W^{(4)}\right|_{b_{1}, b_{2}, b_{3}, b_{4}} ^{a_{1}, a_{2}, a_{3}, a_{4}}\right)
$$

where $a_{i}{ }^{\prime} s$ and $b_{i}^{\prime} s$ are defined in (3.6).
4. The Non-Central Distribution of $\mathrm{W}(\mathrm{p})$ in Case?

$$
\text { Let } \Lambda=W(p)=\prod_{i=1}^{p}\left(I-l_{i}\right) \text { where } l_{1}, l_{2}, \ldots, l_{p} \text { are the ch, roots }
$$

of the determinantal equation

$$
\begin{equation*}
\left|{\underset{\sim}{S}}-\ell\left({\underset{\sim}{S}}_{1}+{\underset{\sim}{S}}\right)\right|=0 \tag{4.1}
\end{equation*}
$$

where $\mathbb{S}_{工}$ is a ($\mathrm{p} x \mathrm{p}$) matrix distributed as non-central Wishart with s degrees of freedom, $\underset{\sim}{\Omega}$ is a matrix of non-centrality parameters and $\underset{\sim}{\mathbb{S}_{2}}$ has the Wishart distribution with t degrees of freedom, the covariance matrix in each case being $\underset{\sim}{\sum} . \operatorname{Pillai}$ and Al-Ani [30] obtained the density of $W^{(p)}$ for $p=2,3,4$. Here we obtain the density of $W^{(p)}$ in general in terms of Meijer's G-functions. As in Section 3, applying Lemma 1 to the expression for $E\left[W^{(p)}\right]^{h}$ obtained by A1-Ani $[I]$ and using (2.4) we find

$$
\begin{align*}
f(W)(p) & =C_{p}\left\{W^{(p)}\right\}^{\frac{1}{2}(t-p-1)} \sum_{k=0}^{\infty} \sum_{K} \frac{(\nu)_{K} C_{K}(\Omega)}{k!} \tag{4.2}\\
& \cdot{ }_{k} \frac{p, 0}{p, p}\left(\left.W(p)\right|_{b_{1}} ^{a_{1}, a_{2}}, \ldots, \ldots, b_{p}\right)
\end{align*}
$$

where

$$
\nu=\frac{1}{2}(s+t), c_{p}=\frac{\Gamma_{p}(\nu)}{\Gamma_{p}\left(\frac{1}{2} t\right)} e^{-t r \Omega} \sim b_{i}=\frac{1}{2}(i-1), a_{i}=\frac{1}{2} s+k_{p-i+1}+b_{i} .
$$

The probability that $W^{(2)} \leq w(\leq 1)$ can be obtained by using (2.5) in (4.2), integrating by parts a_{1} times when s is even, then using (3.9) we get the cdf of $W^{(2)}$ as

$$
\begin{align*}
\operatorname{Pr}\{W
\end{aligned} \begin{aligned}
(2) \leq w\} & =e^{-\operatorname{tr} \Omega} \sim \sum_{k=0}^{\infty} \sum_{K} \frac{C_{k}(\Omega)}{k!}\left\{\frac{w^{\frac{1}{2}(t-1)} \Gamma_{2}(v)(v)_{K}}{\Gamma_{2}\left(\frac{1}{2} t\right) \Gamma\left(a_{1}+a_{2}-b_{1}-b_{2}\right)}\right. \tag{4.3}\\
& \cdot \sum_{r=0}^{a} \frac{\left(a_{1}+a_{2}-b_{1}-b_{2}-r\right)_{r}}{\left\{\frac{1}{2}(t-1)\right\}_{r+1}} w^{r}(1-w)^{a_{1}+a_{2}-b_{1}-b_{2}-r-1} \\
& \left.\left.\cdot 2^{F_{1}\left(a_{2}-b_{2}, a_{1}-b_{2} ; a_{1}+a_{2}-b_{1}-b_{2}-r ; 1-w(2)\right.}\right)+I_{w}\left(\frac{1}{2} t, b\right)\right\}
\end{align*}
$$

where $a=a_{1}-1, \quad b=a_{2}-b_{2}$ and the $a_{i}^{\prime} s$ and $b_{i}^{\prime \prime s}$ are defined in (4.2). When s is odd, we integrate (4.2) by parts a_{2} times and find the cdf is (4.3) with $a=a_{2}-I, b=a_{1}-b_{2}$. The densities of $W^{(3)}$ and $W^{(4)}$ obtained by Pillai and Al-Ani [30] are special cases of (4.2) as can be verified by letting $p=3,4$ in (4.2), applying Theorem I and making the substitution

$$
\left(a_{1}, a_{3}, b_{1}, b_{3}\right) \rightarrow\left(a_{3}, a_{1}, b_{3}, b_{1}\right)
$$

5. The Non-Central Distribution of $\mathrm{W}^{(\mathrm{p})}$ in Case 3

Let the columns of $\left(\underset{\sim}{X_{2}}\right)$ be independent normal (p+q)-variates ($p \leq q, p+q \leq n, n$ is the sample size) with zero means and covariance matrix

$$
\left.\underset{\sim}{\Sigma}=\begin{array}{ll}
\sum_{11} & \sum_{\sim 12} \tag{5.1}\\
\sum_{12} & \sum_{\sim 22}
\end{array}\right) \cdot
$$

Let $\underset{\sim}{R^{2}}=\operatorname{diag}\left(r_{1}^{2}, r_{2}^{2}, \ldots, r_{p}^{2}\right)$ where r_{i}^{2} are the ch. roots of (5.2) $\quad\left|X_{\sim} X_{2}^{\prime}\left(X_{2} X_{2}^{\prime}\right)^{-1} x_{2} X_{1}^{\prime}-r^{2} X_{1} X_{1}^{\prime}\right|=0$
and $\underset{\sim}{P^{2}}=\operatorname{diag}\left(\rho_{1}^{2}, \rho_{2}^{2}, \ldots, \rho_{p}^{2}\right)$ where ρ_{i}^{2} are the ch. roots of

$$
\left|\Sigma_{12}{\underset{\sim}{2}}_{-1}^{\Sigma_{\sim}^{-1}}{ }_{12}^{\prime}-\rho^{2}{\underset{\sim}{n} 11}\right|=0
$$

Constantine [5] obtained the density of $r_{1}^{2}, r_{2}^{2}, \ldots, r_{p}^{2}$ as
(5.4) $\quad f\left(r_{1}^{2}, x_{2}^{2}, \ldots, r_{p}^{2}\right)=C\left|I p_{\sim}-P_{\sim}^{2}\right|^{\frac{1}{2} n}\left|R_{\sim}^{2}\right|^{\frac{1}{2}(q-p-1)}\left|\underset{\sim}{I}-R_{\sim}^{2}\right|^{\frac{1}{2}(n-q-p-1)}$

$$
\prod_{i<j}\left(x_{i}^{2}-r_{j}^{2}\right) \sum_{k=0}^{\infty} \sum_{K} \frac{\left(\frac{1}{2} n\right)_{K}\left(\frac{1}{2} n\right)_{K} C_{K}\left(R^{2}\right) C_{K}\left(p^{2}\right)}{\left(\frac{1}{2} q\right)_{K} C_{K}\left(I_{\sim}\right) K!}
$$

where

$$
c=\pi^{\frac{1}{2} p^{2}} \Gamma_{p}\left(\frac{1}{2} n\right)\left[\Gamma_{p}\left(\frac{1}{2} q\right) \Gamma_{p}\left(\frac{1}{2}(n-q)\right) \Gamma_{p}\left(\frac{1}{2} p\right)\right]^{-1} .
$$

To find $E\left[W^{(p)}\right]^{h}, W(p)=\prod_{i=1}^{p}\left(1-r_{i}^{2}\right)$, we multiply (5.4) by $\left|\underset{\sim}{I}-\sim_{\sim}^{2}\right|^{h}$, proceed as in Section 3 for Case 1 and we find
(5.5) $\quad E\left[W^{(p)}\right]^{h}=\frac{\Gamma_{p}\left(\frac{1}{2} n\right) \Gamma_{p}\left(\frac{1}{2}(n-q)+h\right)}{\Gamma_{p}\left(\frac{1}{2}(n-q)\right) \Gamma_{p}\left(\frac{1}{2} n+h\right)}\left|\underset{\sim}{I_{p}}-{\underset{\sim}{p}}^{2}\right|^{\frac{1}{2} n} 2_{1}^{F}\left(\frac{1}{2} n, \frac{1}{2} n ; \frac{1}{2} n+h ;{\underset{\sim}{p}}^{2}\right)$.

Noting that (5.5) can be obtained from (3.5) by substituting

$$
\begin{equation*}
\left(n_{2}, n_{1}(\lambda \sim)^{-I}\right) \rightarrow\left(n \sim q, n, \underset{\sim}{I}-{\underset{\sim}{P}}^{2}\right) \tag{5.6}
\end{equation*}
$$

it can be verified that the density of $W^{(p)}$ in this case is
(5.7) $f\left(W^{(p)}\right)=C_{p}\left\{W^{(p)}\right\}^{\frac{1}{2}(n-q-p-1)} \sum_{k=0}^{\infty} \sum_{K} \frac{\left(\frac{1}{2} n\right)}{} \frac{\left(\frac{1}{2} n\right)}{} K^{C} K\left(p_{\sim}^{2}\right)$

- $\left.\left.{ }_{G}^{p, 0}(W, p)(p)\right|_{b_{1}, b_{2}} ^{a_{1}, a_{2}, \ldots, b_{p}}\right)$
where

$$
C_{p}=\frac{\Gamma_{p}\left(\frac{1}{2} n\right)}{\Gamma_{p}\left(\frac{1}{2}(n-q)\right)}\left|\frac{I_{\sim}}{}-p_{\sim}^{2}\right|^{\frac{1}{2} n}, \quad a_{i}=\frac{1}{2} q+k_{p-i+1}+b_{i}, b_{i}=\frac{1}{2}(i-1)
$$

The cdf of $W^{(2)}$ is obtained from (3.10) when q is even by substituting as in (5.6) and using the $a_{i}^{\prime} s$ as just defined. For q odd the cdf of $W^{(2)}$ follows from that of Case 1 for n_{1} odd by making the substitution (5.6) and using the $a_{i}{ }^{\prime} s$ just defined. The densities of $W^{(p)}$ for $p=2,3,4$ follow from (3.8), (3.11), (3.12) respectively making substitution (5.6).

CHAPIER III

EXACT DISTRIBUTION OF THE LIKELIHOOD RATIO CRITERION*
 FOR TESTING INDEPENDENCE OF SETS OF VARIATES
 UNDER THE NULL HYPOTHESIS

1. Introduction and Summary

Let the p-component vector $\underset{\sim}{X}$ be distributed according to $\underset{\sim}{\mathbb{N}} \underset{\sim}{\mu}, \underset{\sim}{\Sigma})$. We partition $\underset{\sim}{X}$ into q subvectors with $p_{1}, p_{2}, \ldots, p_{q}$ components respectively, that is
(1.1)

$$
\underset{\sim}{x}=\left(\begin{array}{c}
{\underset{\sim}{x}}^{(1)} \\
\underset{\sim}{\underset{\sim}{x}} \\
\vdots \\
\underset{\sim}{x}
\end{array}\right)
$$

The vector of means $\underset{\sim}{\mu}$ and the positive definite covariance matrix $\underset{\sim}{\Sigma}$ are partitioned similarly

The hypothesis H_{0} to be tested is whether the q sets are mutually independent. Thus we test the hypothesis

$$
\begin{equation*}
H_{0}: \mathbb{N}\left(\left.\underset{\sim}{x}\right|_{\sim} ^{\mu}, \underset{\sim}{\Sigma}\right)=\underset{i=1}{\underline{M}} \mathbb{N}\left(\underset{\sim}{x}(i){\underset{\sim}{\mu}}^{\mu}(i), \sum_{\sim i i}\right) \tag{1.3}
\end{equation*}
$$

or equivalently $H_{0}: \sum_{\sim i j}=0, i \neq j$, against $H_{1}: \sum_{i j} \neq 0$, $i \neq j$. If $x_{1}, x_{2}, \ldots, x_{N}$ is a sample of N observations drawn from $N(\underset{\sim}{\mu}, \underset{\sim}{N})$, where $\underset{\sim}{x} \alpha, \underset{\sim}{\mu}$, and $\underset{\sim}{\Sigma}$ are partitioned as above, then the likelihood ratio criterion is a monotonic increasing function of V defined by [37]

$$
\begin{equation*}
V=|\underset{\sim}{A}| / \prod_{i=1}^{q}\left|A_{i i 1}\right| \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{\sim}{A}=\sum_{\alpha=1}^{N}\left(x_{\alpha}-\bar{x}\right)\left(x_{\alpha}-\bar{x}\right)^{\prime} \tag{1.5}
\end{equation*}
$$

and is partitioned in the same manner as $\underset{\sim}{\Sigma}$. The corresponding matrix Aii $_{\text {is defined and partitioned similarly. }}$

In 1935 Wilks [37] obtained the distributions of the likelihood ratio criterion V, in the following special cases; for $q=3$,
i) all values of $p_{3}, p_{1}=p_{2}=1$, ii) $p_{1}=1, p_{2}=2, p_{3}=3$,
iii) $p_{1}=1, p_{2}=2, p_{3}=2,4$ iv) $p_{1}=p_{2}=2, p_{3}=2,3$, each expres. sion being a finite series involving incomplete beta functions. Wald and Brookner [36] gave a method for obtaining the exact distributions of V, if not more than one p_{i} was odd, but exact distributions weren't explicitly obtained. Here we give expressions for the distributions of the
likelinood ratio criterion for the cases: $q=3 ;$ all values of p_{1} and
i) $p_{2}=p_{3}=1$,
ii) $p_{2}=2, p_{3}=1$,
iii) $p_{2}=p_{3}=2$, iv) $p_{2}=3, p_{3}=1$,
v) $p_{3}=3, p_{2}=2$, vi) $p_{2}=4, p_{3}=1$, vii) $p_{2}=4, p_{3}=2$, (See Section 3). $q=4$, all values of p_{1} and i) $p_{2}=p_{3}=p_{4}=2$, ii) $p_{2}=p_{3}=2, p_{4}=1$, iii) $p_{2}=2, p_{3}=p_{4}=1$, iv) $p_{2}=p_{3}=p_{4}=1$, (See Section 4).

Consul [8] has obtained the cdf's in all cases of Section 3, except case vi), expressing his results as infinite series using Mellin's inversion theorem. Using a transformation suggested by Schatzoff [35] and some results of Gupta [11] many of the cdf's given here are in finite series form. Exact lower 1% and 5% points for Case ii), iii) and v) of Section 3, are given in Tables 5-10.

2. Some Preliminary Results

The following results, available in Gupta [11] will be noted. Let X_{j} be a beta random variable with
(2.1) $\left.\quad X_{j} \sim \beta\left[f_{1}-j+1\right) / 2, f_{2} / 2\right]=K_{j} X_{j}^{\left(f_{1}-j-1\right) / 2}\left(I-X_{j}\right)^{\left(f_{2}-2\right) / 2} 0<X_{j}<1$ $\mathrm{f}_{1} \geq \mathrm{j}$
where
(2.2)

$$
K_{j}=\left(1 / \beta\left[\left(f_{1}-j+1\right) / 2, f_{2} / 2\right]\right)
$$

When f_{2} is even, $\left(f_{2}-2\right) / 2$ is an integer and (2.1) can be expanded using the binomial theorem, giving
(2.3) $\quad \beta\left[\left(f_{1}-j+1\right) / 2, f_{2} / 2\right]=K_{j} \sum_{\ell=0}^{b}(-1)^{\ell} x_{j}^{\left(f_{1}-j+2 \ell-1\right) / 2}$
where
(2.4)
$b=\left(f_{2}-2\right) / 2$.

Making the transformation

$$
\begin{equation*}
Y_{j}=-\log X_{j}, \quad d Y_{j}=-d X_{j} / X_{j} \tag{2.5}
\end{equation*}
$$

where

$$
\log X \equiv \log _{e} X
$$

we find the density of y_{j} is given by

$$
\text { (2.6) } \quad Y_{j} \sim K_{j} \sum_{\ell=0}^{b}(-I)^{\ell}\binom{b}{\ell} e^{-Y_{j}\left(f_{I}-j+2 \ell+1\right) / 2} Y_{j}>0
$$

Considering the relationship of Theorems 8.5 .1 and 8.5 .2 in Chapter 8 of Anderson [3] we see that for

$$
\begin{gather*}
z_{j}=X_{2 j-1} \cdot x_{2 j} \quad \text { where } x_{j} \text { has density (2.I) } \tag{2.7}\\
\left.z_{j \sim c_{j}} \cdot z_{j} f_{1}-2 j-1\right) / 2 \\
\left(I-\sqrt{Z_{j}}\right)^{f_{2}-1}
\end{gather*}
$$

where

$$
\begin{equation*}
C_{j}=\left(2 \beta\left[f_{1}-2 j+1, f_{2}\right]\right)^{-1} \tag{2.9}
\end{equation*}
$$

If we make the further transformation as in Schatzoff [35]

$$
\begin{equation*}
Y_{j}^{j}=-\log Z_{j} \tag{2.10}
\end{equation*}
$$

then expanding, using the binomial theorem, we get the density of Y_{j}^{\prime} as
(2.11) $Y_{j}^{\prime} \sim C_{j} \sum_{\ell=0}^{f_{2}-1}(-1)^{\ell}\binom{f_{2}-1}{\ell} \exp \left[-Y_{j}^{i}\left(f_{1}+\ell-2 j+1\right) / 2\right], Y_{j}^{t}>0$

Now consider the density and distribution of random variables like $V=V_{1}+V_{2}$ where apart from normalizing constants

$$
\begin{equation*}
v_{1} \sim v_{1}^{k} e^{a v_{1}}, \quad v_{1}>0, \quad k \text { a non-negative integer } \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{2} \sim e^{b v_{2}}, \quad v_{2}>0 \tag{2.13}
\end{equation*}
$$

The density function of V is easily found by forming the convolution integral

$$
\begin{align*}
v_{1}^{k} e^{a V_{1}} * e^{b V_{2}} & =\int_{0}^{v} v_{1}^{k} e^{a v_{1}} e^{b\left(v-v_{1}\right)} d v_{1} \tag{2.14}\\
& =e^{b v} \int_{0}^{v} v_{1}^{k} e^{(a-b) v_{1}} d v_{1}
\end{align*}
$$

where the asterisk denotes the convolution operator. We have two cases
i) $a=b$, then (2.14) is
(2.15)

$$
e^{b v} \int_{0}^{v} v_{1}^{k} d v_{1}=e^{b v} \frac{v^{k+1}}{k+1}
$$

ii) $a \neq b$ is

$$
\begin{align*}
& e^{b v} \int_{0}^{v} v_{1}^{k} e^{(a-b) v_{1}} d v_{1}= \tag{2.16}\\
& \quad e^{a v}\left[\sum_{r=1}^{k+1}(-1)^{r+1} \frac{k!v^{k-r+1}}{(k-r+1):(a-b)^{r}}\right]+e^{b v}\left(\frac{-1}{a-b}\right)^{k+1} k!
\end{align*}
$$

Now, more explicitly we will denote V by $V_{p_{1}}, p_{2}, \ldots, p_{q} ; \mathbb{N}$ in the case where we have q sets of variates with p_{i} variates in the i th set and N observations have been taken on $\underset{\sim}{X}$. Also notice that V is unchanged by permutation of the p_{i} 's. Anderson [3] shows that

$$
\begin{equation*}
v_{p_{1}, p_{2}}, \ldots, p_{q} ; N^{\sim} \prod_{i=2}^{q}\left\{\prod_{j=1}^{p_{i}} x_{i j}\right\} \tag{2.17}
\end{equation*}
$$

where

$$
\mathrm{X}_{i j} \text { are independent and have density }
$$

$$
\begin{equation*}
x_{i j} \sim \beta\left[\left(n-\bar{p}_{i}-j+1\right) / 2 ; \bar{p}_{i} / 2\right] \tag{2.18}
\end{equation*}
$$

where

$$
\bar{p}_{i}=p_{1}+p_{2}+\ldots+p_{i-1} \quad \text { and } \quad n=N-1
$$

3. Exact Distributions of V When $a=3$

$$
\text { Distribution of } \mathrm{V}_{\mathrm{p}_{1}, 1,1 ; \mathbb{N}}
$$

For any p_{1} value, $p_{2}=p_{3}=1$ we have from (2.17)

$$
\begin{equation*}
\mathrm{v}_{\mathrm{p}_{1} ; 1,1 ; N}=\mathrm{X}_{21} \cdot \mathrm{X}_{31} \tag{3.1}
\end{equation*}
$$

Denote $X_{2 j}$ by S_{j} and $X_{3 j}$ by T_{j}. Thus

$$
\begin{equation*}
s_{j} \sim 9\left[\left(f_{1}-j+1\right) / 2, f_{2} / 2\right] \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}=n-\bar{p}_{2} \quad \text { and } \quad f_{2}=\bar{p}_{2} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{j} \sim B\left[\left(f_{1}^{\prime}-j+1\right) / 2, f_{2}^{\prime} / 2\right] \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}^{\prime}=n=\bar{p}_{3}=f_{1}-1 \quad \text { and } \quad f_{2}^{\prime}=\bar{p}_{3}=f_{2}+1 \tag{3.5}
\end{equation*}
$$

Now letting

$$
\begin{equation*}
Y_{1}=-\log S_{1} \text { and } Y_{1}^{*}=-\log T_{1} \tag{3.6}
\end{equation*}
$$

we have
(3.7)

$$
\begin{aligned}
-\log \mathrm{V}_{\mathrm{p}_{1}, 1,1 ; \mathbb{N}} & =\log \mathrm{S}_{1}-\log \mathrm{T}_{1} \\
& =Y_{1}+\mathrm{Y}_{1}^{*}=\mathrm{W}_{1} \quad \text { (say) }
\end{aligned}
$$

It follows from (2.6) that

$$
\begin{equation*}
Y_{1} \sim\left(\beta\left[f_{1} / 2, f_{2} / 2\right]\right)^{-1} \sum_{\ell=0}^{b}(-1)^{\ell}\left({ }_{\ell}^{b}\right) e^{-Y_{1}\left(f_{1}+2 \ell\right) / 2} Y_{1}>0 \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
b=\left(f_{2}-2\right) / 2 \tag{3.9}
\end{equation*}
$$

and also

$$
\begin{array}{r}
Y_{1}^{*} \sim\left(\beta\left[\left(f_{1}-1\right) / 2,\left(f_{2}+1\right) / 2\right]\right)^{-1} \sum_{m=0}^{b^{\prime}}(-1)^{m}\binom{b_{l}^{t}}{l} e^{-Y_{1}^{*}\left(f_{1}+2 l-1\right) / 2} \tag{3.10}\\
Y_{1}^{*}>0
\end{array}
$$

where

$$
\begin{equation*}
b^{\prime}=\left(f_{2}-1\right) / 2 \tag{3.11}
\end{equation*}
$$

Now
(3.12) $\quad W_{1}=-\log V_{p_{1}, 1,1 ; \mathbb{N}} \sim\left\{\left(B\left[f_{1} / 2, f_{2} / 2\right]\right)^{-1} \sum_{l=0}^{b}(-1)^{\ell}\binom{b}{l} e^{-Y_{1}\left(f_{1}+2 \ell\right) / 2}\right\} *$

$$
\left\{\left(\beta\left[\left(f_{1}-1\right) / 2,\left(f_{2}+1\right) / 2\right]\right)^{-1} \sum_{m=0}^{b^{\prime}}(-1)^{m}\binom{b_{l}^{\prime}}{l} e^{-Y_{1}^{*}\left(f_{1}+2 m-1\right) / 2}\right\}
$$

where * denotes the convolution operator. Thus we get the probability density function of $-\log V_{p_{1}, 1,1 ; N}$ using (2.14) and (2.16), is

$$
\begin{align*}
W_{1}=-\log V_{p_{1}, 1,1 ; N} \sim 2 \beta_{1} & {\left[\sum_{\ell=0}^{\left(f_{2}-2\right) / 2\left(f_{2}-1\right) / 2} \sum_{m=0}^{\ell+m}(-1)^{\ell+m} g_{1}(\ell, m)\right.} \tag{3.13}\\
& \left.\cdot\left\{\frac{e^{-W_{1}\left(f_{1}+2 \ell\right) / 2}-e^{-W_{1}\left(f_{1}+2 m-1\right) / 2}}{2 m-2 \ell-1}\right\}\right]
\end{align*}
$$

where

$$
\begin{equation*}
g_{1}(l, m)=\binom{\left(f_{2}-2\right) / 2}{l}\binom{\left(f_{2}-1\right) / 2}{m} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{1}=\left(\beta\left[f_{1} / 2, f_{2} / 2\right] \beta\left[\left(f_{1}-1\right) / 2,\left(f_{2}+1\right) / 2\right]\right)^{-1} \tag{3.15}
\end{equation*}
$$

Now substituting

$$
\begin{equation*}
W_{1}=-\log V \quad d W_{1}=-\frac{d V}{V} \tag{3.16}
\end{equation*}
$$

in (3.13) we obtain

$$
\begin{align*}
& V_{p_{1}, 1,1 ; N} \sim 2 \beta_{1}\left[f_{2}-2\right) / 2\left(f_{2}-1\right) / 2 \tag{3.17}\\
& \sum_{\ell=0} \sum_{m=0}(-1)^{\ell+m} \frac{g_{1}(\ell, m)}{2 m-2 l-1} \\
&\left.\cdot\left\{V^{\left(f_{1}+2 l-2\right) / 2}-v^{\left(f_{1}+2 m-3\right) / 2}\right\}\right]
\end{align*}
$$

To find the cdf of $V_{p_{1}, I, I ; N}$ we integrate between the limits ($0, v$) in (3.17), $0 \leq v \leq 1$ obtaining

$$
\begin{align*}
\operatorname{Pr}\left\{V_{p_{1}, 1,1 ; \mathbb{N}} \leq \mathrm{V}\right\}=4 \beta_{1}\left[\sum_{l=0}^{\left(f_{2}-2\right) / 2}\right. & \sum_{m=0}^{\left(f_{2}-1\right) / 2}(-1)^{\ell+m} \frac{g_{1}(\ell, m)}{(2 m-2 \ell-1)} \tag{3.18}\\
& \cdot\left\{\frac{\left.v_{1}+2 \ell\right) / 2}{f_{1}+2 l}-\frac{v\left(f_{1}+2 m-1\right) / 2}{f_{1}+2 m-1}\right]
\end{align*}
$$

which is an infinite series for f_{2} even or odd.

$$
\text { Distribution of } V_{p_{1}}, 2,1 ; \mathbb{N}
$$

For any p_{1} value, $p_{2}=2, p_{3}=1$ we have from (2.17)

$$
\begin{equation*}
V_{p_{1}, 2,1 ; N}=X_{21} \cdot X_{22} \cdot X_{31} \tag{3.19}
\end{equation*}
$$

where, as in Case i), with $S_{j}=X_{2 j}$ and $T_{j}=X_{3 j}, S_{j}$ and T_{j} are distribute as (3.2) and (3.4) respectively, but now

$$
\begin{equation*}
f_{1}^{\prime}=f_{1}-2 \quad \text { and } \quad f_{2}^{\prime}=f_{2}+2 \tag{3.20}
\end{equation*}
$$

Now letting

$$
\begin{equation*}
z_{1}^{\prime}=S_{1} \cdot S_{2}, \tag{3.21}
\end{equation*}
$$

and using (2.7) and (2.8) it follows

$$
\begin{equation*}
z_{1} \sim\left(2 B\left[f_{1}-1, f_{2}\right]\right)^{-1} z_{1}\left(f_{1}-3\right) / 2,\left(1-\sqrt{z_{i}}\right)^{f_{2}-1} \tag{3.22}
\end{equation*}
$$

Applying (2.10) and (2.11) we have the density of $Y_{1}^{q}=-\log Z_{1}$ as (3.23) $\quad Y_{1}^{2} \sim\left(2 ß\left[f_{1}-1, f_{2}\right]\right)^{-1} \sum_{l=0}^{f_{2}-1}(-1)^{\ell}\binom{f_{2}-1}{\ell} e^{-Y_{1}^{\prime}\left(f_{1}+l-1\right) / 2}, Y_{1}^{\prime}>0$.

Further defining X_{1}^{*} as in (3.6) and using (2.6) we find its density is (3.24) $\quad Y_{1}^{*} \sim \frac{-}{\beta\left[\left(f_{1}-2\right) / 2,\left(f_{2}+2\right) / 2\right]} \sum_{m=0}^{f_{2}-2}(-1)^{m}\binom{f_{2} / 2}{m} e^{-Y_{1}^{*}\left(f_{1}+2 m-2\right) / 2}, Y_{1}^{*}>0$.

Since

$$
-\log V_{p_{1}, 2,1 ; N}=-\log Z_{1}-\log T_{1}=Y_{1}^{\prime}+Y_{1}^{*}=W_{2} \quad \text { (say) }
$$

$$
\begin{align*}
W_{2} & \sim\left\{\left(2 \beta\left[f_{1}-1, f_{2}\right]\right)^{-1} \sum_{l=0}^{f_{2}-1}(-1)^{l}\binom{f_{2}-1}{l} e^{-Y_{1}^{\prime}\left(f_{1}+l-1\right) / 2}\right\} \tag{3.25}\\
& *\left\{\left(\beta\left[\left(f_{1}-2\right) / 2,\left(f_{2}+2\right) / 2\right]\right)^{-1} \sum_{m=0}^{\sum_{2} / 2}(-1)^{m}\left({ }_{m}^{f_{2} / 2}\right) e^{-Y_{1}^{*}\left(f_{1}+2 m-2\right) / 2}\right\} .
\end{align*}
$$

Now using (2.14) - (2.16) we get the density of W_{2} as

where

$$
\begin{equation*}
B_{2}=\left(\Omega\left[f_{1}-1, f_{2}\right] \beta\left[\left(f_{1}-2\right) / 2,\left(f_{2}+2\right) / 2\right]\right)^{-1} \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}(l, m)=\left(f_{l}^{f_{2}-1}\right)\binom{f_{2} / 2}{m} \tag{3.28}
\end{equation*}
$$

Substituting in (3.26)

$$
\begin{equation*}
W_{2}=-\log V \quad d W_{2}=-\frac{d V}{V} \tag{3.29}
\end{equation*}
$$

we obtain the density of $V_{p_{1}}, 2,1 ; \mathbb{N}$ as
(3.30) $\quad v_{p_{1}}, 2,1 ; N \sim 2 \beta_{2}\left[\sum_{m=1}^{f_{2} / 2}(-1)^{m+1} g_{2}(2 m-1, m)(-1 \log V) v^{\frac{1}{2}\left(f_{1}+2 \ell-4\right)}\right.$

$$
\left.+2 \sum_{\substack{\ell=0 \\ \ell \neq 2 m-1}}^{f_{2}-1} \sum_{m=0}^{f_{2} / 2}(-1)^{\ell+m} \frac{g_{2}(\ell, m)}{2 m-l-1}\left\{v^{\left(f_{1}+\ell-3\right) / 2}-v^{\left(f_{1}+2 \ell-4\right) / 2}\right\}\right] .
$$

Integrating (3.30) between the limits ($0, \mathrm{v}$), $0 \leq \mathrm{v} \leq 1$, we obtain the c.d.f. of $V_{p_{1}, 2,1 ; N}$ as
(3.31) $\quad \operatorname{Pr}\left\{v_{p_{1}, 2,1 ; N} \leq v\right\}=p_{2}\left[\sum_{m=1}^{f_{2} / 2}(-1)^{m+1} \frac{g_{2}(2 m-1, m)}{a^{2}} v^{2 / 2}\{2-a\right.$ log $v\}$

$$
\left.+2 \sum_{\substack{l=0 \\ \ell \neq 2 m-1}}^{f_{2}-1} \sum_{m=0}^{f_{2} / 2}(-1)^{\ell+m} \frac{g_{2}(\ell, m)}{2 m-\ell-1}\left\{\frac{\left(f_{1}+\ell-1\right) / 2}{f_{1}+\ell-1}-\frac{v^{a / 2}}{a}\right\}\right],
$$

where
(3.32)

$$
a=f_{1}+2 m-2,
$$

and (3.31) is a finite series for f_{2} even and an infinite series for f_{2} odd.

It can be shown that the expression obtained by Winks [37] for the c.d.f. of v when $p_{I}=1, p_{2}=p_{3}=2$ is a special case of (3.31) with $p_{1}=2$. This follows by letting $f_{1}=N-3$ and $f_{2}=2$ in (3.31) and letting
in Wilks' expression and simplifying.

$$
\text { Distribution of } \quad V_{p_{1}}, 2,2 ; \mathbb{N}
$$

For any p_{1} value $p_{2}=p_{3}=2$, from (2.17) we have

$$
\begin{equation*}
v_{p_{1}, 2,2 ; N}=X_{21} \cdot X_{22} \cdot X_{31} \cdot X_{32} \tag{3.34}
\end{equation*}
$$

where again S_{j} and T_{j} are defined and distributed as in (3.2) and (3.4) and $f_{1}^{\prime}, f_{2}^{\prime}$ are as in (3.20) and f_{1} and f_{2} as in (3.3). Defining Z_{1}^{\prime} as in (3.21) we have the density of $Y_{1}^{\prime}=-\log Z_{1}^{1}$ is (3.23). Now letting

$$
\begin{equation*}
\mathrm{Z}_{1}=\mathrm{T}_{1} \cdot \mathrm{~T}_{2} \tag{3.35}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{1}=-\log Z_{1} \tag{3.36}
\end{equation*}
$$

from (2.11) we have

$$
\begin{equation*}
U_{1} \sim\left(2 \beta\left[f_{1}^{1}-1, f_{2}^{i}\right]\right)^{-1} \sum_{m=0}^{f_{2}^{i}-1}(-1)^{m}\left(f_{m}^{f}-1\right) e^{-U_{1}\left(f_{1}+m-1\right) / 2} U_{1}>0 \tag{3.37}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{I} \sim\left(2 \beta\left[f_{1}-3, f_{2}+2\right]\right)^{-I} \sum_{m=0}^{f_{2}+1}(-I)^{m}\left(_{m}^{f_{2}-I}\right) e^{-U_{1}\left(f_{1}+m-3\right) / 2} U_{1}>0 \tag{3.38}
\end{equation*}
$$

Now

$$
\begin{equation*}
-\log V_{p_{1}, 2,2 ; N}=-\log Z_{1}^{1}-\log Z_{1}=Y_{1}^{1}+U_{1}=W_{3} \quad \text { (say) } \tag{3.39}
\end{equation*}
$$

thus
(3.40) $\quad W_{3} \sim\left\{\left(2 \beta\left[f_{1}-1, f_{2}\right]\right)^{-1} \sum_{\ell=0}^{f_{2}-1}(-1)^{\ell}\binom{f_{2}-1}{\ell} e^{-Y_{1}^{\prime}\left(f_{1}+\ell-1\right) / 2}\right\}$

$$
*\left\{\left(2 \beta\left[f_{1}-3, f_{2}+2\right]\right)^{-1} \sum_{m=0}^{f_{2}+1}(-1)^{m}\left({\underset{m}{f_{2}+1}}_{m}\right) e^{-U_{1}\left(f_{1}+m-3\right) / 2}\right\}
$$

Using (2.14) - (2.16) we obtain the density function of W_{3} as
(3.41)

$$
\begin{aligned}
& W_{3} \sim \beta_{3}\left[\sum_{l=0}^{f_{2}-1} g_{3}(\ell, \ell+2) W_{3} e^{\frac{a W_{3}}{2}}\right. \\
&\left.+2 \sum_{\substack{l=0 \\
m \neq \ell+2}}^{f_{2}-1} \sum_{m=0}^{f_{2}+1}(-1)^{m+\ell} g_{3}(\ell, m)\left\{\frac{e^{-\frac{a W_{3}}{2}}-e^{-\frac{b W_{3}}{2}}}{b-a}\right\}\right]
\end{aligned}
$$

where

$$
\begin{align*}
& \beta_{3}=\left(4 \rho\left[f_{1}-1, f_{2}\right] B\left[f_{1}-3, f_{2}+2\right]\right)^{-1} \tag{3.42}\\
& g_{3}(l, m)=\binom{f_{2}-1}{\imath}\binom{f_{2}+1}{m}
\end{align*}
$$

and
(3.44)
$a=f_{1}+l-1$
$b=f_{1}+m-3$.

Substituting

$$
\begin{equation*}
W_{3}=-\log V \quad d W_{3}=-\frac{d V}{V} \tag{3.45}
\end{equation*}
$$

in (3.41), we obtain the density of $V_{p_{1}, 2,2 ; N}$ as

$$
\begin{align*}
& \mathrm{V}_{\mathrm{p}_{1}, 2,2 ; N} \sim \beta_{1}\left[\sum_{l=0}^{\mathrm{f}_{2}-1} g_{3}(l, \ell+2)(-\log \mathrm{V}) \mathrm{v}^{(\mathrm{a}-2) / 2}\right. \tag{3.46}\\
& \left.+2 \sum_{l=0}^{f_{2}-1} \sum_{m=0}^{f_{2}+1}(-1)^{m+\ell} \frac{g_{3}(l, m)}{b-a}\left\{\mathrm{v}^{(\mathrm{a}-2) / 2}-\mathrm{v}^{(\mathrm{b}-2) / 2}\right\}\right] .
\end{align*}
$$

Integrating (3.46) between the limits ($0, v$), $0 \leq v \leq 1$, the cdf of $\mathrm{V}_{\mathrm{p}_{1}, 2,2 ; \mathrm{N}}$ is

$$
\begin{align*}
& \operatorname{Pr}\left\{V_{p_{I}, 2,2 ; N} \leq v\right\}=2 \beta_{I}\left[\sum_{l=0}^{f_{2}-1} g_{3}(l, l+2) \frac{v^{a / 2}}{a^{2}}\{2-a \log v\}\right. \tag{3.47}\\
& \left.+2 \sum_{l=0}^{f_{2}-1} \sum_{\substack{m=0}}^{f_{2}+1}(-1)^{m+\ell} \frac{g_{3}(l, m)}{b-a}\left\{\frac{v^{a / 2}}{a}-\frac{v^{b / 2}}{b}\right\}\right]
\end{align*}
$$

which is a finite series for f_{2} even or odd.
It can easily be shown that the expression obtained by Wilks [.37] for the cdf of V in the case when $p_{1}=1, p_{2}=p_{3}=2$ is a special case of (3.47) with $p_{1}=1$. This follows by letting $f_{1}=N-2, \hat{r}_{2}=1$ in (3.47) and using (3.33) in Wilks' expression and simplifying. Also the expressions obtained by Wilks [37] in the cases when $p_{1}=p_{2}=p_{3}=2$ and $p_{1}=p_{2}=2$,
$p_{3}=3$ are special cases of (3.47) with $p_{1}=2, f_{1}=\mathbb{N}-3, f_{2}=1$ and $p_{1}=3$, $f_{I}=N=4$, and $f_{2}=3$ respectively.

In as much as the mechanics of obtaining the remaining results are the same as in the previous cases, only the final results will be given.

$$
\text { Distribution of } V_{p_{I}}, 3, I ; \mathbb{N}
$$

The cdt of $V_{p_{1}}, 3, I ; N$ for all values of p_{1} is

$$
\begin{align*}
& \left(f_{2}-2\right) / 2\left(f_{2}+1\right) / 2 \\
& \operatorname{Pr}\left\{\mathrm{~V}_{\mathrm{p}_{1}, 3,1 ; \mathrm{N}} \leq \mathrm{v}\right\}=B_{4}\left[4 \sum_{\mathrm{m}=1} \sum_{\mathrm{t}=0}(-1)^{\mathrm{m}+\mathrm{t}+1} \frac{\mathrm{~g}_{4}(2 \mathrm{~m}-1, \mathrm{~m}, \mathrm{t})}{\mathrm{c}-\mathrm{b}}\right. \tag{3.48}\\
& \cdot\left\{\frac{v^{b / 2}}{\mathrm{~b}^{2}}[2-\mathrm{b} \log \mathrm{v}]-\frac{2 \mathrm{v}^{\mathrm{b} / 2}}{\mathrm{~b}(\mathrm{c}-\mathrm{b})}+\frac{2 \mathrm{v}^{\mathrm{c} / 2}}{\mathrm{~d}(\mathrm{c}-\mathrm{b})}\right\} \\
& \left(f_{2}-2\right) / 2\left(f_{2}+1\right) / 2 \\
& +4 \sum_{m=0} \sum_{t=1}(-1)^{m+t} \frac{g_{4}(2 t-2, m, t)}{(b-c) c^{2}} v^{c / 2}[2-c \log v] \\
& +8 \sum_{\substack{l=0 \\
l \neq 2 m-1}}^{f_{2}-1} \sum_{l \neq 2 t-2} \sum_{t=0}^{\left(f_{2}-2\right) / 2} \frac{(-1)^{l+m+t} f_{g_{4}}(l, m, t)}{(b-a)(c-2)}\left\{\frac{v^{a / 2}}{a}-\frac{v^{c / 2}}{c}\right\} \\
& \left.-8 \sum_{l=0}^{f_{2^{-1}}} \sum_{\substack{m=0 \\
l \neq 2 m-1}}^{\left(f_{2}-2\right) / 2} \sum_{t=0}^{\left(f_{2}+1\right) / 2} \frac{(-1)^{\ell+m+t} g_{4}(\ell, m, t)}{(b-a)(c-b)}\left\{\frac{v^{b / 2}}{b}-\frac{v^{c / 2}}{c}\right\}\right]
\end{align*}
$$

which is an infinite series for f_{2} even or odd and where

$$
B_{4}=\left(2 \Omega\left[f_{1}-1, f_{2}\right] \beta\left[\left(f_{1}-2\right) / 2, f_{2} / 2\right] \rho\left[\left(f_{1}-3\right) / 2,\left(f_{2}+3\right) / 2\right]\right)^{-1}
$$

and

$$
g_{4}(2, m, t)=\binom{f_{2}-1}{2}\binom{\left(f_{2}-2\right) / 2}{m}\binom{\left(f_{2}+1\right) / 2}{t}
$$

and
$a=f_{1}+l-1, \quad b=f_{1}+2 m-2, \quad c=f_{1}+2 t-3$.

$$
\text { Distribution of } \mathrm{V}_{\mathrm{p}_{1}}, 3,2 ; \mathbb{N}
$$

The cdt of $\mathrm{V}_{1}, 3,2 ; \mathrm{N}$ for all values of p_{1} is
(3.49) $\operatorname{Pr}\left\{V_{p_{1}}, 3,2 ; \mathbb{N} \leq v\right\}=B_{5}\left[\sum_{m=1}^{\left(m_{2}-2\right) / 2} \frac{(-1)^{m+1} g_{5}(2 m-1, m, 2 m+2)}{b} v^{b / 2}\right.$

- $\left\{(\log v)^{2}+\frac{8}{b^{2}}-\frac{4 \log v}{b}\right\}$

$$
\begin{aligned}
&+4 \sum_{m=1}^{\left(f_{2}-2\right) / 2} \sum_{t=0}^{f_{2}+2} \frac{(-1)^{m+t+1} g_{5}(2 m-1, m, t)}{c-b} \\
& \cdot\left\{\frac{v^{b / 2}}{b^{2}}[2-b \log v] \frac{2 v^{b / 2}}{b(c-b)}+\frac{2 v^{c / 2}}{c(c-b)}\right\}
\end{aligned}
$$

$$
+4 \sum_{\substack{l=0 \\ l \neq 2 m-1}}^{f_{2}-1} \sum_{m=0}^{\left(f_{2}-2\right) / 2} \frac{(-1)^{m+1} g_{5}(\ell, m, l+3) v^{a / 2}}{(b-a) a^{2}}[2-a \log v]
$$

$$
\begin{aligned}
& -4 \sum_{l=0}^{f_{2}-1} \sum_{m=0}^{\left(f_{2}-2\right) / 2} \frac{(-1)^{m+\ell} g_{5}(l, m, 2 m+2) v^{b / 2}}{(b-a) b^{2}}[2-b \log v] \\
& \left.-8 \sum_{l=0}^{f_{2}-1} \sum_{m=0}^{\left(f_{2}-2\right) / 2} \sum_{t=0}^{f_{2}+2} \frac{(-1)^{\ell+m+t} g_{5}(\ell, m, t)}{(b-a)(c-a)}\left\{\frac{v^{b / 2}}{b}-\frac{v^{c / 2}}{c}\right\}\right] \\
& l \neq 2 m-1 \\
& t \neq 2 m+2
\end{aligned}
$$

which is a finite series for f_{2} even and an infinite series for f_{2} odd and where

$$
\beta_{5}=\left(4 \beta\left[f_{1}-1, f_{2}\right] \beta\left[\left(f_{1}-2\right) / 2, f_{2} / 2\right] \beta\left[f_{1}-4, f_{2}+3\right]\right)^{-1}
$$

and

$$
g_{5}(l, m, t)=\binom{f_{2}^{-1}}{\ell}^{f_{2}-2 / 2}{ }^{f_{2}+2}\left(\begin{array}{c}
t
\end{array}\right)
$$

and

$$
a=f_{1}+\ell-1, \quad b=f_{1}+2 m-2, \quad c=f_{1}+t-4
$$

It can easily be verified that the expression obtained by WiIks [37] for the cdf of V when $p_{1}=p_{2}=2, p_{3}=3$ is a special case of (3.49) with $p_{1}=2, \quad f_{1}=N-3$ and $f_{2}=2$.

$$
\text { Distribution of } \mathrm{V}_{\mathrm{p}_{1}, 4,1 ; \mathbb{N}}
$$

The cade of $V_{p_{1}, 4,1 ; N}$ for all values of p_{1} is
(3.50) $\operatorname{Pr}\left\{\mathrm{V}_{\mathrm{p}_{1}, 4,1 ; N} \leq v\right\}=\beta_{6}\left[\sum_{t=2}^{f_{2} / 2} \frac{(-1)^{t} g_{6}(2 t-3,2 t-1, t)}{c}\left\{(\operatorname{Iog} v)^{2}\right.\right.$

$$
\left.+\frac{4 v c / 2}{c^{2}}[2-c \log v]\right\}
$$

$$
+4 \sum_{l=0}^{f_{2}-3} \sum_{\substack{t=0 \\ \ell \neq 2 t-3}}^{\left(f_{2}+2\right) / 2} \frac{(-1)^{t} g_{6}(\ell, \ell+2, t)}{(c-a)}\left\{\frac{v^{a / 2}}{a}[2-a \log v]\right.
$$

$$
\left.-\frac{2 v^{a / 2}}{a(c-a)}+\frac{2 v^{c / 2}}{c(c-a)}\right\}
$$

$$
\begin{aligned}
& f_{2}-1\left(f_{2}+2\right) / 2 \\
&\left.+4 \sum_{\substack{m=0 \\
m \neq 2 t-1}} \sum_{\substack{ \\
m}} \frac{(-1)^{m+t+1} g_{6}(2 t-3, m, t) v^{c / 2}}{(b-c) c^{2}}[2-c \log v]\right]
\end{aligned}
$$

$$
-4 \sum_{\substack{l=0 \\ \ell \neq 2 t-3}}^{\left.\sum_{\substack{t=1}}^{f_{2}-1} \frac{(-1)^{\ell+t+1} g_{6}(\ell, 2 t-1 ; t) v^{c / 2}}{(c-a) c^{2}}[2-c \log v]\right] .2}
$$

$$
\left.-8 \sum_{\substack{l=0 \\ m \neq 2 t-1,}}^{\substack{f_{2}-1}} \sum_{\substack{m \neq \ell+2}}^{f_{2}-I} \frac{(-1)^{\ell+m+t} g_{6}(\ell, m, t)}{(b-a)(c-a)}\left\{\frac{v^{b / 2}}{b}-\frac{v^{c / \Omega}}{c}\right\}\right]
$$

which is a finite series for f_{2} even and an infinite series for f_{2} odd and where

$$
\beta_{6}=\left(4 \beta\left[f_{1}-1, f_{2}\right] \beta\left[f_{1}-3, f_{2}\right] \beta\left[\left(f_{1}-4\right) / 2,\left(f_{2}+4\right) / 2\right]\right)^{-1}
$$

and

$$
g_{6}(l, m, t)=\binom{f_{2}^{-1}}{\ell}_{m}^{f_{2}^{-1}}\binom{\left(f_{2}+2\right) / 2}{t}
$$

and

$$
a=f_{1}+l-1, \quad b=f_{1}+m-3, \quad c=f_{1}+2 t-4
$$

It can be verified that the cdf of V obtained by Winks [37] in the case where $p_{1}=1, p_{2}=2, p_{3}=4$ is a special case of (3.50) by letting $p_{1}=2$, $f_{1}=N-3$ and $f_{2}=2$.

$$
\text { Distribution of } \mathrm{V}_{\mathrm{p}_{1}, 4,2 ; \mathrm{N}}
$$

The cadi of $\mathrm{V}_{\mathrm{p}_{1}, 4,2 ; \mathbb{N}}$ for all values of p_{1} is given by

$$
\begin{align*}
& \operatorname{Pr}\left\{V_{p_{1}, 4,2 ; N} \leq v\right\}=B_{7}\left[\sum_{\ell=0}^{f_{2}-3} \frac{(-1)^{\ell} g_{7}(l, \ell+2, \ell+4) \mathrm{v}^{a / 2}}{a}\right. \tag{3.51}\\
& \cdot\left\{(\log v)^{2}+\frac{8}{a^{2}}-\frac{4 \log v\}}{a}\right\} \\
& +4 \sum_{\substack{\ell=0 \\
t \neq \ell+4}}^{\sum_{t=0} \frac{(-1)^{t} g_{7}(\ell, \ell+2, t)}{c-a}\left\{\frac{v^{a / 2}}{a}[2-a \log v]-\frac{2 v^{a / 2}}{a(c-a)}\right.} \\
& \left.+\frac{2 v^{c / 2}}{c(c-a)}\right\}
\end{align*}
$$

$$
\begin{aligned}
& +4 \sum_{\substack{l=0 \\
m \neq \ell+2}}^{f_{2}-1} \frac{(-1)^{m_{2}} g_{7}(\ell, m, \ell+4) \mathrm{v}^{\mathrm{a} / 2}}{(b-a) a^{2}}[2-a \log \mathrm{v}]
\end{aligned}
$$

$$
\begin{aligned}
& \left.-4 \sum_{\substack{\ell=0 \\
m \neq \ell+2}}^{f_{2}-1} \sum_{f_{2}-1}^{(-1)^{\ell} g_{7}(\ell, m, m+2) v^{b / 2}}\left([-a) b^{2}\right] \log v\right] \\
& \left.\sum_{\substack{l=0 \\
l \neq \ell \\
m \neq l+2}}^{f_{2}-1} \sum_{\substack{m=0 \\
f_{2}-1}}^{f_{2}+3} \frac{(-1)^{l+m+t} g_{7}(l, m, t)}{(b-a)(c-b)}\left\{\frac{v^{b / 2}}{b}-\frac{v^{c / 2}}{c}\right\}\right]
\end{aligned}
$$

which is a finite series for f_{2} even or odd and where

$$
\beta_{7}=\left(8 \beta\left[f_{1}-1, f_{2}\right] B\left[f_{1}-3, f_{2}\right] \beta\left[f_{1}-5, f_{2}+4\right]\right)^{-1}
$$

and

$$
g_{7}(l, m, t)=\left(\begin{array}{c}
f_{2}-1 \\
l
\end{array} C^{f_{2}-1}{ }_{m}^{f_{2}+3}\left(\begin{array}{c}
t
\end{array}\right)\right.
$$

and

$$
a=f_{1}+l-1, \quad b=f_{1}+m-3, \quad c=f_{1}+t-5
$$

Further it can be shown that the cdf of V obtained by Wilks [37] for $p_{1}=1, p_{2}=4, p_{3}=2$ is a special case of (3.51) with $p_{1}=1, f_{1}=N-2$, $f_{2}=1$.

4. Exact Distributions of V When $q=4$

$$
\text { Distribution of } V_{p_{1}}, 2,2,2 ; N
$$

The cdf of $V_{p_{1}, 2,2,2 ; \mathbb{N}}$ for all p_{1} may be obtained from (3.51) by changing the limits of summation of m and ℓ from $f_{2}-1$ and $f_{2}-3$ to $f_{2}+I$ and $f_{2}-I$, where appropriate and replacing β_{7} and $g_{7}(\ell, m, t)$ by β_{8} and $g_{8}(\ell, m, t)$ where

$$
B_{8}=\left(8 \beta\left[f_{1}-1, f_{2}\right] \beta\left[f_{1}-3, f_{2}+2\right] \beta\left[f_{1}-5, f_{2}+4\right]\right)^{-1}
$$

and

$$
\begin{aligned}
& g_{8}(l, m, t)=\left(\begin{array}{c}
f_{2}-1 \\
l
\end{array}\left(_{m}^{f_{2}+1} X^{f_{2}+3} t\right) \quad .\right. \\
& \text { Distribution of } \mathrm{V}_{\mathrm{p}_{1}}, 2,2,1 ; \mathrm{N}
\end{aligned}
$$

The caf of $V_{p_{1}, 2,2,1 ; \mathbb{N}}$ for all p_{1} may be obtained from (3.50) by changing the upper limits of summation of l, m, t from $f_{2}-3, f_{2}-1$ and $f_{2} / 2$ to $f_{2}-1, f_{2}+1$ and $\left(f_{2}+2\right) / 2$ where appropriate and replacing $g_{6}(l, m, t)$ and β_{6} by $g_{9}(l, m, t)$ and β_{9} where

$$
\beta_{9}=\left(4 \beta\left[f_{1}-1, f_{2}\right] \beta\left[f_{1}-3, f_{2}+2\right] \beta\left[\left(f_{1}-4\right) / 2,\left(f_{2}+4\right) / 2\right]\right)^{-1}
$$

and

$$
\left.g_{9}(\ell, m, t)=\binom{f_{2}-1}{\ell}^{f_{2}+1} \begin{array}{c}
\left(f_{2}+2\right) / 2 \\
t
\end{array}\right)
$$

$$
\text { Distribution of } \mathrm{V}_{\mathrm{p}_{1}, 2, I, I ; \mathrm{N}}
$$

The cdf of $V_{p_{1}, 2,1, I ; N}$ for all p_{I} may be obtained from (3.48) by changing the upper limit of summation of m from $\left(f_{2}-2\right) / 2$ to $f_{2} / 2$, whenever it appears, and substituting β_{10} and $g_{10}(\ell, m, t)$ for β_{4} and $g_{4}(l, m, t)$ where

$$
\beta_{10}=\left(2 \beta\left[f_{1}-1, f_{2}\right] \beta\left[\left(f_{1}-2\right) / 2,\left(f_{2}+2\right) / 2\right] \beta\left[\left(f_{1}-3\right) / 2,\left(f_{1}+3\right) / 2\right]\right)^{-1}
$$

and

$$
g_{10}(l, m, t)=\binom{f_{2}^{-1}}{l}_{m}^{f_{2} / 2}\binom{\left(f_{2}+1\right) / 2}{t}
$$

$$
\text { Distribution of } V_{p_{1}, 1,1,1 ; N}
$$

The caf of $V_{p_{1}, 1,1,1 ; N}$ for all values of p_{1} is

$$
\begin{aligned}
& \operatorname{Pr}\left\{V_{p_{1}, 1,1,1 ; N} \leq v\right\}=B_{11}\left[4 \sum_{l=0}^{\left(f_{2}-2\right) / 2} \sum_{m=0}^{\left(f_{2}-1\right) / 2} \frac{(-1)^{m+1} g_{g_{11}}(\ell, m, l+1)_{v^{a / 2}}}{a^{2}(b-a)}\right. \\
& \text { - }[2-a \log v] \\
& \begin{array}{r}
8 \sum_{l=0}^{\left(f_{2}-2\right) / 2} \sum_{\substack{m=0 \\
t \neq \ell+1}} \sum_{t=0}^{\left(I_{2}-1\right) / 2} \frac{(-1)^{\ell+m+t} f_{11}(\ell, m, t)}{(c-a)(b-a)} \\
\cdot\left\{\frac{v^{2 / 2}}{a}-\frac{v^{c / 2}}{c}\right\}
\end{array}
\end{aligned}
$$

which is an infinite series for f_{2} even or odd.
Results for many other combinations of $p_{i}{ }^{i} s$ could be obtained using this method but more than two convolutions are involved and the cdf's become quite unwieldy.

5. Computation of Percentage Points

The expressions dexived in the preceeding sections were used for
 computed on the CDC 6500 to a minimum accuracy of four significant digits based on three arguments $\left(p_{1}, N, \alpha\right)$ where α is the lower probability level. For values of $\mathrm{N}>24$ Anderson's approximation ([3] page 239) was used. These values were then used to obtain correction factors for converting chi-square percentiles with $f=\frac{1}{2}\left(p^{2}-\Sigma p_{i}^{2}\right)$ degrees of freedom to exact percentiles of $-\left\{N-1.5-\left(p^{2}-\Sigma p_{i}^{3}\right) / 3 f\right\} \log V$. Finally tabulation of the correction factors,

$$
\begin{aligned}
& C=\left[\text { percentile of }-\left\{N-1.5-\left(p^{3}-\Sigma p_{1}^{3}\right) / 3 f\right\} \log V /\right. \\
&\text { (percentile of } \left.x_{f}^{2}\right)
\end{aligned}
$$

was made. These are given to three decimal places although they were generally obtained to four decimals. The correction factors are presented for $\alpha=0.01,0.05, M=1(1) 10(2) 20,24,30,60,120, \infty, p_{1}=1(1) 10$ in Tables 5 and 6 and $p_{1}=2(2) 10$ in Tables $7-10$.

Table 5. Chi-Square Adjustments to
the $V_{p_{1}}, 2,2 ; N$ Criterion, Factor C for
Lower 1% Points of V (Upper Percentiles of x^{2})

$M p_{1}$	1	2	3	4	5	6	7	8	9	10.
1	1.367	1.444	1.503	1. 555	1.602	1.646	1.687	1.726	1.762	1.796
2	1.134	1.171	1.203	1.234	1.264	1.292	1.320	1.346	1.371.	1.395
3	1.071	1.094	1.115	1.137	1.158	1.179	1.199	1.219	1.239	1.257
4	1.044	1.060	1.075	1.091	1.107	1.124	2.140	1.156	1.171	1.187
5	1.030	1.042	1.053	1.066	1.079	1.092	1.105	1.118	1.131	1.144
6	1.022	1.031	1.040	1.050	1.060	1.071	1.082	1.093	1.104	1.115
7	1.017	1.024	1.031	1.039	1.048	1.057	1.066	1.075	1.085	1.094
8	1.013	1.019	1.025	1.032	1.039	1.047	1.055	1.063	1.071	1.079
9	1.011	1.015	1.021	1.026	1.033	1.039	1.046	1.053	1.060	1.067
10	1.009	1.013	1.01	1.02	1.02	1.033	1.039	1.045	1.052	1.058
12	1.006	1.009	1.013	1.016	1.02	1.025	1.030	1.034	1.039	1.044
14	1.005	1.007	1.010	1.013	1.016	1.019	1.023	1.026	1.031	1.035
16	1.004	1.005	1.008	1.010	1.013	1.016	1.018	1.021	1.025	1.028
18	1.003	1.004	1.00	1.008	1.010	1.013	1.015	1.018	1.021	1.024
20	1.002	1.004	1.00	1.00	1	1.01	1.012	1.015	1.017	1.020
24	1.002	1.003	1.004	1.005	1.006	1.00	1.008	1.012	1.014	1.015
30	1.001	1.002	1.002	1.003	1.00	1.005	1.006	1.009	1.010	1.011
40	1.001	1.001	1.002	1.002	1.002	1.003	1.005	1.007	1.007	1.008
60	1.001	1.000	1.001	1.001	1.001	1.002	1.003	1.004	1.004	1.005
120	1.000	1.000	1.000	1.000	1.000	1.000	1.001	1.001	1.002	1.003
∞	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	20.090226 .2170									
x_{f}			1.999							. 7095

$p_{1}=$ number of variates in the first set; $M=N-p_{1}-4 ; N=$ number of observations, $C=\left[\right.$ percentile for $-\left[\mathbb{N}-1.5-\frac{1}{3}\left(p^{3}-\Sigma p_{i}^{3}\right)\left(p^{2}-\Sigma p_{i}^{2}\right)^{-1} \log V\right] /$ (percentile for x^{2} with $\frac{1}{2}\left(p^{2}-\Sigma p_{i}^{2}\right)$ degrees of freedom).

Table 6. Chi-square Adjustments to
the $V_{p_{1}, 2,2 ; N}$ Criterion, Factor C for
Lower 5% Points of V (Upper Percentiles of x^{2})

$M p_{1}$	1	2	3	4	5	6	7	8	9	10
1	1.299	1.360	1.409	1.453	1.494	1.532	1.568	1.601	1.633	1.663
2	1.110	1.142	1.171	1.199	1.226	1.252	1.277	1.301	1.324	1.346
3	1.059	1.079	1.098	1.118	1.138	1.157	1.176	1.195	1.213	1.230
4	1.037	1.051	1.065	1.080	1.095	1.110	1.125	1.140	1.154	1.169
5	1.025	1.035	1.046	1.058	1.070	1.082	1.094	1.106	1.119	1.131
6	1.018	1.026	1.035	1.044	1.054	1.064	1.074	1.084	1.095	1.105
7	1.014	1.020	1.027	1.035	1.043	1.051	1.060	1.069	1.077	1.086
8	1.011	1.016	1.022	1.028	1.035	1.042	1.050	1.057	1.065	1.073
9	1.009	1.013	1.018	1.023	1.029	1.035	1.042	1.048	1.055	1.062
10	1.007	1.011	1.015	1.020	1.025	1.030	1.036	1.042	1.047	1.054
12	1.005	1.008	1.011	1.015	1.018	1.023	1.027	1.032	1.037	1.041
14	1.004	1.006	1.008	1.011	1.014	1.018	1.021	1.025	1.029	1.033
16	1.003	1.005	1.007	1.009	1.011	1.014	1.017	1.020	1.024	1.027
18	1.002	1.004	1.005	1.007	1.009	1.012	1.014	1.017	1.020	1.023
20	1.002	1.003	1.004	1.006	1.00	1.010	1.012	1.014	1.017	1.019
24	1.001	1.002	1.003	1.004	1.005	1.006	1.008	1.009	1.012	1.013
30	1.001	1.001	1.002	1.002	1.003	1.004	1.006	1.007	1.008	1.009
40	1.000	1.001	1.001	1.001	1.002	1.002	1.004	1.005	1.006	1.007
60	1.000	1.000	1.000	1.001	1.001	1.001	1.002	1.002	1.003	1.004
120	1.000	1.000	1.000	1.000	1.000	1.000	1.001	1.001	1.001	1.002
∞	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
x^{2}	5073									

$p_{1}=$ number of variates in the first set; $M=N-p_{1}-4 ; N=$ number of observations, $C=\left[\right.$ percentile for $-\left\{N-15-\frac{1}{3}\left(p^{3}-\Sigma p_{i}^{3}\right)\left(p^{2}-\Sigma p_{i}^{2}\right)^{-1} \log V\right] /$ percentile for χ^{2} with $\frac{1}{2}\left(p^{2}-\Sigma p_{i}^{2}\right)$ degrees of freedom).

Table 7. Chi-Square Adjustments to the $V_{p_{1}, 2,1 ; N}$ Criterion,
Factor C for Lower 1% Points of V (Upper Percentiles of X^{2})

p_{1}	2	4	6	8	10
1	1.367				
2	1.134				
3	1.071				
4	1.044				
5	1.030				
6	1.022				
7	1.017				
8	1.013				
9	1.011				
10	1.009				
12	1.006				
14	1.005				
16	1.004				
18	1.003				
20	1.002				
24	1.002	1.002	1.004	1.006	1.009
30	1.001	1.001	1.002	1.004	1.006
40	1.001	1.001	1.001	2.002	1.004
60	1.000	1.000	1.000	1.001	1.002
120	1.000	1.000	1.000	1.000	1.000
∞	1.000	1.000	1.000	1.000	1.000
$\chi^{\chi_{f}^{2}}$	20.0902	29.1412	37.5662	45.6417	53.4858

$\mathrm{p}_{1}=$ number of variates in the first set; $\mathrm{M}=\mathrm{N}-\mathrm{p}_{1}-3 ; N=$ number of observations, $C=\left[\right.$ percentile for $-\left\{N-1.5-\frac{1}{3}\left(p^{3}-\sum p_{i}^{3}\right)\left(p^{2}-\Sigma p_{i}^{2}\right)^{-1}\right\}$ log $\left.v\right] /($ percentile for χ^{2} with $\frac{1}{2}\left(p-\Sigma p_{i}^{2}\right)$ degrees of freedom).

Table 8. Chi-Square Adjustments to the $\mathrm{V}_{\mathrm{p}_{1}, 2,1 ; \mathrm{N}}$ Criterion, Factor C for Lower 5\% Points of V (Upper Percentiles of χ^{2})

p_{1}	2	4	6	8	10
1	1.299				
2	1.110				
3	1.059				
4	1.037				
5	1.025				
6	1.018				
7	1.014				
8	1.011				
9	1.009				
10	1.007				
12	1.005	,			
14	1.004				
16	1.003				
18	1.002				
20	1.002				
24	1.001	1.002	1.004	1.006	1.009
30	1.001	1.001	1.003	1.004	1.006
40	1.000	1.001	1.002	1.003	1.004
60	1.000	1.000	1.001	1.001	1,002
120	1.000	1.000	1.000	1.000	1.001
∞	1.000	1.000	1.000	1.000	1.000
χ^{2}	15.5073	23.6848	31.4140	38.8851	46.1943

$p_{1}=$ number of variates in the first set; $M=N-p_{1}-3, N=n u m b e r ~ o f ~ o b s e r v a-~$ tions, $C=\left[\right.$ percentile for $-\left\{N-1.5-\frac{1}{3}\left(p^{3}-\Sigma p_{i}^{3}\right)\left(p^{2}-\Sigma p_{i}^{2}\right)^{-1}\right\}$ log $\left.V\right] /$ percentile for χ^{2} with $\frac{1}{2}\left(p^{2}-\Sigma p_{i}^{2}\right)$ degrees of freedom).

Table 9. Chi-Square Adjustments to the $V_{p_{1}, 3,2 ; N}$ Criterion, Factor C for Lower I\% Points of V (Upper Percentiles of χ^{2})

M_{1}	2	4	6	8	10
1	1.503				
2	1.203				
3	1.115				
4	1.075				
5	1.053				
6	2.040				
7	1.031				
8	1.025				
9	1.021				
10	1.017				
12	1.013				
14	1.010				
16	1.008				
18	1.006				
20	1.005				
24	1.004	1.004	1.005	1.007	1.010
30	1.002	1.002	1.003	1.005	1.007
40	1.002	1.002	1.002	1.003	1.004
60	1.001	1.001	1.001	1.001	1.002
120	1.000	1.000	1.000	1.000	1.001
∞	1.000	1.000	1.000	1.000	1.000
x_{f}^{2}	31.9999	45.6417	58.6192	71.2014	83.5134

$p_{1}=$ number of variates in the first set; $M=N-p_{1}-5, N=n u m b e r ~ o f ~ o b s e r v a-~$ tions, $C=\left[\right.$ percentile for $-\left\{N-1.5-\frac{1}{3}\left(p^{3}-\Sigma p_{i}^{3}\right)\left(p^{2}-\Sigma p_{i}^{2}\right)^{-1}\right\}$ log $\left.V\right] /($ percentile for x^{2} with $\frac{1}{2}\left(p^{2}-\Sigma p_{i}^{2}\right)$ degrees of freedom).

Table 10. Chi-Square Adjustments to the $V_{p_{1}}, 3,2 ; N$ Criterion, Factor C for Lower 5% Points of V (Upper Percentiles of x^{2})

M_{I}	2	4	6	8	10
1	1.409				
2	1.171				
3	1.098				
4	1.065				
5	1.046				
6	1.035				
7	1.027				
8	1.022				
9	1.018				
10	1.015				
12	1.011				
14	1.008				
16	1.007				
18	1.005				
20	1.004				
24	1.003	1.003	1.005	1.008	1.011
30	1.002	1.002	1.004	1.005	1.007
40	1.001	1.001	1.002	1.003	1.005
60	1.000	1.001	1.001	1.002	1.002
120	1.000	1.000	1.000	1.000	1.001
∞	1.000	1.000	1.000	1.000	1.000
$\underline{x_{f}^{2}}$	26.2962	38.8851	50.9985	62.8296	74.4683

$p_{1}=$ number of variates in the first set; $M=N-p_{1}-5, N=$ number of observations, $C=\left[\right.$ percentiles $-\left\{N-1.5-\frac{1}{3}\left(p^{3}-\Sigma p_{i}^{3}\right)\left(p^{2}-\Sigma p_{i}^{2}\right)^{-1}\right\}$ log $\left.V\right] /($ percentile for x^{2} with $\frac{1}{2}\left(p^{2}-\Sigma p_{i}^{2}\right)$ degrees of freedom).

CHAPTER IV
SOME DISTRIBUTION PROBLEMS IN
THE MULTIVARIATE COMPLEX GAUSSIAN CASE

1. Introduction and Summary

Let $X_{\sim}: p \times n$ and ${\underset{\sim}{2}}_{2}: p \times n$ be real random variables having the joint density function
(1.1) $\quad(2 \pi)^{-p n}\left|\sum_{\sim}\right|^{-\frac{1}{2} n} \exp \left\{-\frac{1}{2} \operatorname{tr} \sum_{\sim}^{-1}(\underset{\sim}{x}-\underset{\sim}{\nu})(\underset{\sim}{\sim}-\underset{\sim}{x})^{\prime}\right\},-\infty \leq \underset{\sim}{x} \leq \infty$
where
$\sum_{\sim}: p \times p$ is a real symmetric positive definite (pod.) matrix,
 ($j=1,2$), are given matrices or their joint density does not contain $\Sigma_{\sim}, \sum_{\sim},{\underset{\sim}{1}}_{1}^{\mu}, \mu_{2}$ as parameters. Then it has been shown by Goodman [10] that the distribution of the complex matrix $\underset{\sim}{Z}=\underset{\sim}{X} X_{I}+\underset{\sim}{i},\left(i=(-I)^{\frac{1}{2}}\right)$, is complex Gaussian and its density function is given by

$$
\begin{equation*}
N_{c}\left(\underset{\sim}{\nu}, \Sigma_{\sim}\right)=\pi^{-p n}|\Sigma|^{-n} \exp \left\{-\operatorname{tr}{\underset{\sim}{x}}^{-1}(\underset{\sim}{z}-\underset{\sim}{\mu} M)(\underset{\sim}{z}-\underset{\sim}{\mu})^{\prime}\right\} \tag{1.2}
\end{equation*}
$$

where $\underset{\sim}{\Sigma}={\underset{\sim}{I}}+i \Sigma_{\sim}$ is Hermitian p.d., i.e. $\underset{\sim}{\bar{\Sigma}}=\underset{\sim}{\Sigma}, \underset{\sim}{\mu} \underset{\sim}{\mu}{\underset{\sim}{1}}^{\mu_{1}}+\underset{\sim}{\mu_{2}}$ and $\underset{\sim}{M}=\underset{\sim}{M}+i{ }_{\sim}^{M}{ }_{2}$. Goodman [10], Wooding [38], James [13], AI-Ani [1], and Khatri [16], [17], [19], [20] have studied distributions derived from a sample of a complex p-variate normal distribution.

Some concepts which are important and necessary notation are given below.

$$
\begin{gathered}
\widetilde{\Gamma}_{m}(a)=\pi^{\frac{1}{2} m(m-1)} \prod_{i=1}^{m} \Gamma(a-i+1) \\
{[a]_{k}=\prod_{i=1}^{m}(a-i+1)_{k_{i}}=\tilde{\Gamma}_{m}(a, k) / \tilde{\Gamma}_{m}(a)}
\end{gathered}
$$

where $k=\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ is a partition of the integer k and

$$
\tilde{\Gamma}_{m}(a, k)=\pi^{\frac{1}{2} m(m-1)} \prod_{i=1}^{m} \Gamma\left(a+k_{i}-i+1\right)
$$

The hypergeometric functions are defined as
or when $\underset{\sim}{B}=I_{m}$ we denote it by

$$
\widetilde{p}_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; \underset{\sim}{A}\right)
$$

and $\tilde{C}_{K}(\underset{\sim}{A})$ is a zonal polynomial of a Hermitian matrix A and is given as a symmetric function of the characteristic roots of $\underset{\sim}{A}$. (See Section 6)

The non-central distributions of the characteristic roots concerning the classical problems of the covariance model, MANYOVA model, and canonical correlation coefficients have been found by James [13] and Khatri [16], [19]. Here for the three cases mentioned, we give the general moment and the density which is expressed in terms of Meijer's G-function [25],[26], for $W^{(p)}=\prod_{i=1}^{p}\left(1-w_{i}\right)$, where the $w_{i}, i=1,2, \ldots, p$ are the characteristic roots in the above cases. The moments and densities are analogous to those given in the real case in Chapter II. Further the density functions of U and Pillai's V criteria in the complex central case are obtained for $p=2$ and from the non-central complex multivariate F distribution various independence relationships are shown and independent beta variables are obtained. The last section is devoted to complex zonal polynomials. A method for corputing them in terms of elementary symmetric function (esf's) is given and they are tabulated through degree 8 in Tables 11-14.

$$
\text { 2. Density Functions of } W(p) \text { in the Non-Central Case }
$$

Testing the Equality of Two Covariance Matrices
Let $\underset{\sim}{X}:\left(\begin{array}{lll}p & n_{1}\end{array}\right) \sim \mathbb{N}_{c}\left(\underset{\sim}{O}, \Sigma_{1}\right)$ and $\underset{\sim}{Y}:\left(p \times n_{2}\right) \sim \mathbb{N}_{c}\left(0, \Sigma_{2}\right)$ be independent and $n_{1} \geq p$. Then Khatri [19] has shown the density function of the characteristic roots, $0<f_{1}<\ldots<f_{p}$ of $\left.\left(\underset{\sim}{X} \underset{\sim}{X}{\underset{\sim}{x}}^{i}\right)(\underset{\sim}{Y})^{i}\right)^{-1}$ can be written as

where

$$
\begin{equation*}
c(p)=\frac{\pi^{p(p-1)} \tilde{\Gamma}_{p}(n)}{\Gamma_{p}\left(n_{1}\right) \tilde{\Gamma}_{p}\left(n_{2}\right) \tilde{\Gamma}_{p}(p)}, n=n_{1}+n_{2}, \underset{\sim}{F}=\operatorname{diag}\left(f_{1} ; \ldots, f_{p}\right) \tag{2.2}
\end{equation*}
$$

and $\underset{\sim}{A}$ is a diagonal matrix whose diagonal elements are the characteristic roots of $\left(\Sigma_{1} \Sigma_{2}^{-1}\right)$. Transforming

$$
\begin{equation*}
w_{i}=f_{i} /\left(1+f_{i}\right) \tag{2.3}
\end{equation*}
$$

we find the density of $0<w_{1}<\ldots<w_{p}$ is

$$
\begin{equation*}
c(p)|\underset{\sim}{\Lambda}|^{-n_{1}} \underset{I}{F_{0}}\left(n ; I_{p} \sim_{\sim}^{-1}, \underset{\sim}{W}\right)|\underset{\sim}{W}|^{n_{1}-p}\left|I_{p}-W\right|^{n_{2}-p} \underset{\sim}{\Pi>j}\left(W_{i}-W_{j}\right)^{2} \tag{2.4}
\end{equation*}
$$

where

$$
\underset{\sim}{W}=\operatorname{diag}\left(W_{1}, W_{2}, \ldots, W_{p}\right) .
$$

To find $E\left[W^{(p)}\right]^{h}$ where $W^{(p)}=\prod_{i=1}^{p}\left(1-W_{i}\right)$ we multiply (2.4) by $\left|I_{\sim}-W\right|^{h}$ and transform $\underset{\sim}{T} \rightarrow \underset{\sim}{U} \underset{\sim}{W} \underset{\sim}{U} \bar{U}^{r}$ where $\underset{\sim}{U}$ is unitary, i.e. $\underset{\sim}{U} \underset{\sim}{U}{ }^{\mathbb{U}}=\underset{\sim}{I}$, and $\underset{\sim}{T}$ is Hermitian p.d. . Using the Jacobian of transformation giver by Khatri

$$
\begin{equation*}
\underset{\sim}{J}(\mathbb{T} ; \underset{\sim}{U}, \mathbb{W})=\underset{i>j}{\mathbb{T}}\left(w_{i}-W_{j}\right)^{2} h_{2}(\underset{\sim}{U}) \tag{2.5}
\end{equation*}
$$

and integrating out $\underset{\sim}{U}$ and $\underset{\sim}{W}$ using

$$
\begin{equation*}
\int_{\sim}^{U}{\underset{\sim}{U}}^{\prime}=\underset{\sim}{I} h_{2}(\underset{\sim}{U})=\frac{\pi^{p}(p-I)}{\underset{\Gamma_{p}}{ }(p)} \tag{2.6}
\end{equation*}
$$

and
(2.7) $\int_{\underset{\sim}{S}=S>0}|\underset{\sim}{S}|^{q-p}\left|I_{\sim}^{p}-\underset{\sim}{S}\right|^{n+h-q-p_{C_{i}}^{\sim}}(\underset{\sim}{S}) d \underset{\sim}{S}=\frac{\tilde{\Gamma}_{p}(q, k) \tilde{\Gamma}_{p}(n+h-q) \tilde{c}_{k}\left(I_{p}\right)}{\tilde{\Gamma}_{p}(n+h, k)}$
we get after simplifying

$$
\begin{equation*}
E\left[W^{(p)}\right]^{h}=\left\lvert\,{\underset{\sim}{n}}^{-n_{1}} \frac{\tilde{\Gamma}_{p}(n) \tilde{\Gamma}_{p}\left(n_{2}+h\right)}{\underset{\Gamma_{p}}{\sim}\left(n_{2}\right) \tilde{\Gamma}_{p}(n+h)} 2^{F_{1}}\left(n, n_{1} ; n+h ; I_{p}-A_{\sim}^{-1}\right) .\right. \tag{2.8}
\end{equation*}
$$

Before finding the density of $W^{(p)}$, below are stated some needed results on Mellins transforms [7], [8], [9], and Meijer's G-function [25], [26].

If s is any complex variate and $f(x)$ is a function of a real variable x, such that

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} x^{s-1} f(x) d x \tag{2.9}
\end{equation*}
$$

exists, then under certain regularity conditions

$$
\begin{equation*}
f(x)=(2 \pi i)^{-1} \int_{c-i \infty}^{c+i \infty} x^{-s} F(s) d s \tag{2.10}
\end{equation*}
$$

$F(s)$ is called the Mellin transform of $f(x)$ and $f(x)$ is the inverse Mellin transform of $F(s)$. Meijer [25], [26] defined the G-function by

$$
\begin{equation*}
G_{p, q}^{m, n}\left(\left.x\right|_{b_{1}} ^{a_{1}}, \ldots,,_{p}, \ldots, b_{q}\right)=(2 \pi i)^{-1} \int_{C} \frac{\prod_{j=1}^{q} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{n}\left(1-a_{j}+s\right)}{\prod_{j=m+1}^{q} \Gamma\left(I-b_{j}+s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-s\right)} x^{s} d s \tag{2.11}
\end{equation*}
$$

where C is a curve separating the singularities of $\prod_{j=1}^{m} \Gamma\left(b_{j}-s\right)$ from those of $\prod_{j=1}^{n} \Gamma\left(1-a_{j}+s\right), q \geq 1,0 \leq n \leq p \leq q, \quad 0 \leq m \leq q ; \quad x \neq 0$ and $|x|<I$ if $q=p ; x \neq 0$ if $q>p$. Using (2.9) and (2.10) we see from (2.8) that the density of $f\left({ }^{(p)}\right)$ has the form

$$
\begin{align*}
f(W)(p)) & =c_{p} \sum_{k=0}^{\infty} \sum_{k} \frac{[n]_{k}\left[n_{1}\right]_{k}}{k!} \tilde{c}_{k}\left(I_{\sim} p^{-N} \sim_{\sim}^{-1}\right)\{W(p)\}^{n_{2}-p} \tag{2.12}\\
& \cdot(2 \pi i)^{-1} \int_{c-i \infty}^{c+i \infty}\left\{W^{(p)}\right\}^{-r} \frac{\prod_{i=1}^{p} \Gamma\left(r+b_{i}\right)}{\prod_{i=1}^{p} \Gamma\left(r+a_{i}\right)} d r
\end{align*}
$$

where

$$
\begin{equation*}
c_{p}=\frac{\tilde{\Gamma}_{p}(n)}{\tilde{\Gamma}_{p}\left(n_{2}\right)}|\underset{\sim}{\mid \Lambda}|^{-n_{1}}, \quad b_{i}=i-1, \quad a_{i}=n_{1}+k_{p-i+1}+b_{i} \tag{2.13}
\end{equation*}
$$

Noting that the integral in (2.12) is in the form of Meijers G-function we can write the density of $W^{(p)}$ as

$$
\begin{align*}
& f\left(W^{(p)}\right)=c_{p} \sum_{k=0}^{\infty} \sum_{K} \frac{[n]_{K}\left[n_{1}\right]_{k}}{k!} \tilde{c}_{K}\left(\underset{\sim}{I} p_{\sim}^{-A} \sim^{-1}\right)\left\{W^{(p)}\right\}^{n_{2}-p} \tag{2.14}\\
& \cdot G_{p, p^{p}}^{p, 0}\left(\left.W(p)\right|_{b_{1}} ^{a_{1}}, \ldots, b_{p}\right) \quad .
\end{align*}
$$

Using the fact that

$$
\begin{align*}
& \mathrm{G}_{2,2}^{2,0}\left(\left.x\right|_{b_{1}, b_{2}} ^{a_{1}, a_{2}}\right)=\frac{x^{b_{1}}(1-x)^{a_{1}+a_{2}-b_{1}-b_{2}-1}}{\Gamma\left(a_{1}+a_{2}-b_{1}-b_{2}\right)} \tag{2.15}\\
& \quad \cdot 2^{F_{1}\left(a_{2}-b_{2}, a_{1}-b_{2} ; a_{1}+a_{2}-b_{1}-b_{2} ; 1-x\right) \quad 0<x<1}
\end{align*}
$$

we find the density of $W^{(2)}$ to be

$$
\begin{equation*}
f\left(W^{(2)}\right)=C_{2} \sum_{k=0}^{\infty} \sum_{k} \frac{[n]_{k}\left[n_{1}\right]_{k}}{k!} \widetilde{c}_{k}\left(J_{2}-A^{-1}\right)\{w(2)\}^{n_{2}-2} \tag{2.16}
\end{equation*}
$$

$$
\text { - } \frac{\{1-W(2)\}^{2 n_{1}+k-1}}{\Gamma\left(2 n_{1}+k\right)} 2^{F_{1}}\left(n_{1}+k_{1}, n_{1}+k_{2}-1 ; 2 n_{1}+k ; 1-W(2)\right)
$$

where $k=\left(k_{1}, k_{2}\right)$. Using the results of Consul [9] for $p=3$ and Al-Ani [1] for $p=4$ we could also write out the densities of $W^{(3)}$ and $W^{(4)}$.

MANOVA Model

Suppose $\underset{\sim}{X}: p \times m \sim N_{c}(\underset{\sim}{\mu}, \Sigma)$ and $\left.\underset{\sim}{Y}: p \times \mathrm{n} \sim{\underset{N}{c}}^{(0} \underset{\sim}{0}, \Sigma\right)$ are independent with $m \geq p$. Then the joint density of the characteristic roots $0<f_{I}<\ldots<f_{p}$ of $\left(\underset{\sim}{X} \underset{\sim}{\bar{X}^{1}}\right)(\underset{\sim}{Y} \underset{\sim}{\bar{Y}})^{1}$ is given by Khatri [19] as
where

$$
C^{\prime}(p)=\frac{\tilde{\Gamma}_{p}(m+n) \pi^{p(p-1)}}{\tilde{\Gamma}_{p}(m) \tilde{\Gamma}_{p}(n) \tilde{\Gamma}_{p}(p)}, \quad \underset{\sim}{F}=\operatorname{diag}\left(f_{1}, \ldots, f_{p}\right)
$$

and $\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{p}\right)$ where ω_{i} are the characteristic roots of ${\underset{\sim}{\mu}}_{\sim}^{\sim}{\underset{\sim}{\Sigma}}^{-1} \underset{\sim}{\mu}$. Now proceeding as in the previous case we obtain $E[W(p)]^{h}$, $W_{W}(p)=\prod_{i=1}^{p}\left(1-W_{i}\right)$ where

$$
\begin{gather*}
{ }_{w_{i}}=f_{i} /\left(I+f_{i}\right) \\
E[W(p)]^{h}=e \stackrel{-\operatorname{tr} \Omega}{\sim} \underset{\tilde{\Gamma}_{p}(m+n) \tilde{\Gamma}_{p}(n+h)}{\underset{\Gamma_{p}}{ }(n) \tilde{\Gamma}_{p}(m+n+h)} \tilde{F}_{I}(m+n ; m+n+h ; \Omega) \tag{2.16}
\end{gather*} .
$$

Using Mellin's transform and Meijer's G-function as in the previous case we get the density of $W^{(p)}$ as

$$
\begin{align*}
& f(W)=e^{-\operatorname{tr} \Omega} \sim \frac{\tilde{\Gamma}_{p}(m+n)}{\widetilde{\Gamma}_{p}(n)} \sum_{k=0}^{\infty} \sum_{K} \frac{[m+n]_{K} \widetilde{C}_{k}(\Omega)}{K!}\{W(p)\}^{n-p} \tag{2.17}\\
& \text { - } G_{p, p}^{p, 0}\left(\left.W(p)\right|_{b_{1}} ^{a_{1}, \ldots, b_{p}},\right.
\end{align*}
$$

where

$$
a_{i}=m+k_{p-i+1}^{+b_{i}}, \quad b_{i}=i-1 .
$$

As in the covariance model case, we could also obtain the density explic. itly for $p=2,3,4$.

Canonical Correlation

Let

$n \geq p+q$ and $q \geq p$. Then the joint density of the characteristic roots
 [19] as

$$
\begin{equation*}
C^{\prime \prime}(p)\left|I_{\sim}-P_{\sim}^{2}\right|_{2}^{n}{\underset{F}{F}}^{\sim}\left(n, n ; q ; P_{\sim}^{2}, R_{\sim}^{2}\right)\left|R_{\sim}^{2}\right|^{q-p}\left|I_{\sim}^{p}-R_{\sim}^{2}\right|^{n-q-p} \underset{i>j}{\Pi}\left(r_{i}^{2}-r_{j}^{2}\right)^{2} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
C^{\prime \prime}(p)=\frac{\tilde{\Gamma}_{p}(n) \pi^{p}(p-1)}{\tilde{\Gamma}_{p}(n-q) \tilde{\Gamma}_{p}(q) \tilde{\Gamma}_{p}(p)}, \quad \underset{\sim}{R^{2}}=\operatorname{diag}\left(r_{I}^{2}, \ldots, r_{p}^{2}\right) \tag{2.20}
\end{equation*}
$$

and $\underset{\sim}{\underset{\sim}{P}}{ }^{2}=\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{p}\right)$ where ρ_{i} are the characteristic roots of $\Sigma_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1}$. Proceeding as in the previous cases we find $E\left[W^{(p)}\right]^{h}$, $W^{(p)}=\prod_{i=1}^{p}\left(1-r_{i}^{2}\right), \quad$ by substituting in (2.8) as follows

$$
\begin{equation*}
\left(n_{1}, n_{2}, \Lambda\right) \rightarrow\left(n, n-q, \quad\left(I_{\sim}-P_{\sim}^{2}\right)^{-1}\right) \tag{2.21}
\end{equation*}
$$

Further the density of $W^{(D)}$ is obtained from (2.14) by making the above substitution and letting

$$
a_{i}=q+k_{p-i+1}+b_{i}, \quad b_{i}=i-1
$$

As in the other cases the densities could be written out explicitly for $p=2,3,4$.

3. The Density Function of Pillai's V-Statistic

in the Central Case For Two Roots
If $\underset{\sim}{P}{ }^{2}=\underset{\sim}{\sim}$ in (2.19) we have the density function of the characteristic roots $r_{1}^{2}, x_{2}^{2}, \ldots, r_{p}^{2}$ in the central case. Letting $p=2$ we have

$$
\begin{equation*}
f_{1}\left(r_{1}^{2}, r_{2}^{2}\right)=C^{:}(2)\left|R_{\sim}^{2}\right|^{q-2}\left|I_{\sim}-R_{\sim}^{2}\right|^{n-q-2}\left(r_{1}^{2}-r_{2}^{2}\right)^{2} \tag{3.1}
\end{equation*}
$$

Let $V=r_{I}^{2}+r_{2}^{2}$ and $G=r_{I}^{2} r_{2}^{2}, 0<V<I$. To find the density function of V we make the above transformation and find

$$
\begin{equation*}
f_{2}(V, G)=C^{\prime \prime}(2) G^{q-2}(I-V+G)^{n-q-2}\left(V^{2}-4 G\right)^{\frac{1}{2}} \tag{3.2}
\end{equation*}
$$

Integrating G between the limits 0 to $V^{2} / 4$, [31] and writing $(I-V+G)^{n-q-2}$ as a finite series we have

$$
\begin{align*}
f(v)=C^{\prime \prime}(2) & \sum_{r=0}^{n-q-2}\binom{n-q-2}{r}(1-v)^{n-q-r-2} \tag{3.3}\\
& \cdot\left\{\int_{0}^{v^{2} / 4} G^{q+r-2}\left(v^{2}-4 G\right)^{\frac{3}{2}} d G\right\} \cdot
\end{align*}
$$

Integrating the expression in the brackets by parts we find the density function of V to be
(3.4)

$$
\begin{aligned}
f_{3}(v)=C \cdot \cdot(2) & \sum_{r=0}^{n-q-2}\left(\frac{n-q-2}{r}\right)(1-v)^{n-q-r-2} \\
& \cdot \frac{(q+r-2): v^{2}(q+r)-1}{2^{q+r-1} 3 \cdot 5 \ldots(2(q+r)-1)}, 0<v<1 .
\end{aligned}
$$

To obtain the density function of V in the range $\mathrm{I} \leq \mathrm{V} \leq 2$ we change $r_{i}^{2} \rightarrow I-r_{i}^{2}$ in (3.1) and transform as before to get
(3.5) $f_{4}(V, G)=C^{\prime \prime}(2)(I-V+G)^{q-2} G^{n-q-2}\left(V^{2}-4 G\right)^{\frac{1}{2}}$.

Writing $(1-V+G)^{q-2}$ as a series and integrating G between the limits 0 to $v^{2} / 4$ we have
(3.6) $\quad f_{5}(v)=C \cdot(2) \sum_{r=0}^{q-2}\left(\frac{q-q}{r}\right)(1-v)^{q-r-2}$

- $\int_{0}^{v^{2} / 4} G^{n+r-q-2}\left(v^{2}-4 G\right)^{\frac{1}{2}} d G$.

Evaluating the integral by parts yields
(3.7)

$$
f_{5}(v)=c^{\prime \prime}(2) \sum_{r=0}^{q-2}\left(\frac{q-2}{r}\right)(1-v)^{q-r-2} \frac{(n+r-q-2)!v^{2(n+r-q)-1}}{2^{n+r-q-1} 3 \cdot 5 \cdots 2(n+r-q)-1} .
$$

Transforming $V^{t}=2-\mathrm{V}, \quad \mathrm{l} \leq \mathrm{V} \leq 2$ we find

$$
\begin{array}{r}
f_{6}(v)=c^{\prime \prime}(2) \sum_{r=0}^{q-2}\left({\underset{r}{q-2})(v-1)^{q-r-2} \frac{(n+r-q-2)!(2-v)^{2(n+r-q)-1}}{2^{n+r-q-1} 3 \cdot 5 \ldots(2(n+r-q)-1)},}_{1 \leq v \leq 2 .},\right. \tag{3.8}\\
1 \leq 2 .
\end{array}
$$

By making the following changes in the parameters in (3.1)

$$
\left(q, n-q, r_{i}^{2}\right) \rightarrow\left(m, n, w_{i}\right)
$$

or

$$
\left(q, n-q, r_{\dot{i}}^{2}\right) \rightarrow\left(n_{1}, n_{2}, w_{i}\right)
$$

we obtain the central density of the characteristic roots in the MANOVA or equality of two matrices cases, respectively. Thus the results of this section and the next aren't restricted to the canonical correlation case, but extend to the two cases mentioned above as well.

4. The Density Function of the U-Statistic

in the Central Case For Two Roots
To obtain the density function of U we make the transformation in (3.1)

$$
r_{i}^{2}=\lambda_{i}\left(1+\lambda_{i}\right)^{-1}
$$

and find
(4.1)

$$
g_{1}\left(\lambda_{1}, \lambda_{2}\right)=C^{1}(2)|Q|^{q-2}|\underset{\sim}{I}+Q|^{-n}\left(\lambda_{1}-\lambda_{2}\right)^{2}
$$

where $\underset{\sim}{Q}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$. Letting $U=\lambda_{1}+\lambda_{2}$ and $G=\lambda_{1} \lambda_{2}$ we see the joint density of U and G can be put in the form
(4.2) $\quad g_{2}(U, G)=C^{: ?}(2) G^{q-2}\left(1+\frac{U}{2}\right)^{-2 n}\left(U^{2}-4 G\right)^{\frac{1}{2}}$

$$
\cdot\left[1-\frac{U^{2}-4 G}{4\left(I+\frac{U}{2}\right)^{2}}\right]^{-n}
$$

Writing the part in brackets as a series and integrating G between the limits 0 to $U^{2} / 4$ yields

$$
\begin{align*}
& g_{3}(U)=C^{\prime \prime}(2)\left(1+\frac{U}{2}\right)^{-2 n} \sum_{r=0}^{\infty} \frac{(-1)^{r}\left(\frac{-n}{r}\right)}{4^{r}\left(1+\frac{U}{2}\right)^{2 r}} \tag{4.3}\\
& \cdot\left\{\int_{0}^{U^{2} / 4}\left(U^{2}-4 G\right)^{r+\frac{1}{2}}{ }_{G}^{q-2} d G\right\} \quad .
\end{align*}
$$

Integrating the expression in the brackets by parts, we find the density of U for $p=2$ is

$$
\text { (4.4) } \begin{aligned}
g_{3}(U)=C^{\prime \prime}(2) & \sum_{r=0}^{\infty}(-1)^{r} \frac{\binom{-n}{r}(q-2)!U^{2 r+2(q-3)+5}}{4^{r+q-1}\left(1+\frac{U}{2}\right)^{2 r+2 n}} \\
& \cdot \frac{1}{\left(r+\frac{3}{2}\right)\left(r+\frac{5}{2}\right) \cdots\left(r+\frac{2(q-3)+5}{2}\right)}
\end{aligned}
$$

5. Complex Multivariate Beta Distribution and

Independent Beta Variables
If $\underset{\sim}{X}: p \times m$ and $\underset{\sim}{Y}: p \times n$ are independent complex matrix variates $m \geq p$, whose columns are independent complex p-variate with covariance matrix \sum_{\sim}^{\sim}, and if $E(\underset{\sim}{X})=\underset{\sim}{\mu}$ and $E(\underset{\sim}{Y})=\underset{\sim}{0}$, then the distribution of

$$
\begin{equation*}
\underset{\sim}{F}=\underset{\sim}{\bar{X}^{2}}\left(\underset{\sim}{Y} \underset{\sim}{\mid} \overline{\mathcal{Y}}^{1}\right)^{-1} \underset{\sim}{X} \tag{5.1}
\end{equation*}
$$

depends on parameters

$$
\begin{equation*}
\underset{\sim}{\Omega}={\underset{\sim}{\mu}}^{7}{\underset{\sim}{\Sigma}}^{-1} \underset{\sim}{\mu} \tag{5.2}
\end{equation*}
$$

and is [13]

where

$$
\begin{equation*}
k_{1}=\frac{\tilde{\Gamma}_{p}(m+n)}{\tilde{\Gamma}_{p}(m) \tilde{\Gamma}_{p}(n)} \tag{5.4}
\end{equation*}
$$

Since the density of $\underset{\sim}{F}$ for $p \geq m$ can be obtained from (5.3) by making the changes

$$
\begin{equation*}
(p, m, n) \rightarrow(m, p, m+n-p) \tag{5.5}
\end{equation*}
$$

it suffices to work only with (5.3). Making the transformation

$$
\begin{equation*}
\left.\underset{\sim}{I}=(\underset{\sim}{I} p+\underset{\sim}{F})^{-1}\right)^{-1} \tag{5.6}
\end{equation*}
$$

in (5.3) and noting $J(\underset{\sim}{I} ; \underset{\sim}{F})=|\underset{\sim}{I} \underset{\sim}{I}-|^{-2 p} \quad[I 6]$ we have,

$$
\begin{equation*}
f(\underset{\sim}{I})=k_{I} e^{-\lambda^{2}}{\underset{I}{F}}_{I}\left(m+n ; m ; \lambda{ }_{\sim}^{L}\right)|\underset{\sim}{I}|^{m-p}\left|I_{\sim}-\underline{\sim}\right|^{n-p}(d \underset{\sim}{d}) \quad . \tag{5.7}
\end{equation*}
$$

Proceeding in a manner similar to Khatri and Pillai [21] let

and note that $|\underset{\sim}{L}|=\ell_{11}\left|I_{22}\right|$ and

Now it can be shown that ℓ_{11} and $\left\{\underset{\sim}{L_{22}}, \underset{\sim}{v}=\ell /\left[\ell_{11}\left(1-\ell_{11}\right)^{\frac{1}{2}}\right]\right\}$ are independently distributed and their respective distributions are
(5.10) $\quad f_{1}\left(l_{11}\right)=[\beta(m, n)]^{-I} e^{-\lambda^{2}} \tilde{F}_{1}\left(m+n ; m ; \lambda^{2} l_{1 I}\right) l_{11}^{m-I}\left(I-l_{11}\right)^{n-1}$
and
(5.11)

$$
f_{2}\left(I_{22}, v\right)=k_{2}\left|{\underset{\sim}{2}}^{I_{22}}\right|^{m-p}\left|I_{\sim p-1}-I_{\sim 2}-\bar{v}_{\sim}^{r} \underset{\sim}{v}\right|^{n-p},
$$

where

$$
\begin{equation*}
k_{2}=k_{1} B(m, n) \tag{5.12}
\end{equation*}
$$

For further independence, we can use the transformation

$$
\underset{\sim}{u}=\left(I_{\sim}^{I} p-1-I_{\sim}\right)^{-\frac{1}{2}} \underset{\sim}{v} .
$$

With Jacobian of transformation $\left|I_{\sim p-1}-{\underset{\sim}{\sim}}_{22}\right|^{-1}$ it can be shown that $\underset{\sim}{u}$ and ${\underset{\sim}{2}}^{L_{22}}$ are independently distributed and their respective distributions are
(5.13) $\quad f_{3}(\underset{\sim}{u})=\pi^{-(p-1)}[\Gamma(n) / \Gamma(n-p+1)]\left(1-{\underset{\sim}{u}}_{\sim}^{\sim} \sim_{\sim}^{n}\right)^{n-p}$
and

$$
\text { (5.14) } \quad f_{4}\left(I_{\sim 2}\right)=k_{3}\left|I_{\sim 22}\right|^{m-(p-1)-1}\left|I_{\sim p-1}-I_{\sim 2}\right|^{n+1-(p-1)-1}
$$

where

$$
k_{3}=\pi^{(p-1)}[\Gamma(n-p+1) / \Gamma(n)] k_{2}
$$

Notice that ${\underset{\sim}{2}}_{2}:(p-1) \times(p-1)$ is the central complex multivariate beta distribution with m and $n+1$ degrees of freedom. Making the transformation
(5.15) $\quad x_{i}=u_{i} /\left(1-\bar{u}_{1} u_{I}-\ldots-\bar{u}_{p-1} u_{p-1}\right), i=1,2, \ldots p-1, u_{0}=0$
in (5.13) with Jacobian of transformation $\prod_{i=1}^{p-1}\left(1-\bar{x}_{i} x_{i}\right)^{p-i-1}$, we obtain the density of $\underset{\sim}{X}=\left(x_{1}, x_{2}, \ldots, x_{p-1}\right)^{\prime}$ as
(5.16) $\underset{\sim}{f(x)}=\pi^{-(p-1)} \underset{\prod_{i=1}^{p-1}}{\Gamma(n-i+1)} \Gamma\left(1-\bar{x}_{i} x_{i}\right)^{n-i-1}$.

After making the transformation of $x_{j}=a_{j}+i b_{j}$ to polar coordinates $\left(r_{j}, \theta_{j}\right)$, we find with $\underset{\sim}{r}=\left(r_{1}, \ldots, r_{p-1}\right)^{\prime}$

$$
\begin{equation*}
f(r)=\prod_{i=1}^{p-1} \frac{\Gamma(n-i+1)}{\Gamma(n-i)}\left(1-r_{i}^{2}\right) \quad 2 r_{i} d r_{i} \tag{5.17}
\end{equation*}
$$

Finally the transformation $w_{i}=r_{i}^{2}$ yields independent real beta variates and their respective densities are given by

$$
\begin{equation*}
f_{i}\left(w_{i}\right)=[\beta(1, n-i)]^{-1}\left(1-w_{i}\right)^{n-i-1} \tag{5.18}
\end{equation*}
$$

6. Complex Zonal Polynomials

The zonal polynomials of a Hermitian matrix $\underset{\sim}{A}$ [13], are given by

$$
\begin{equation*}
\tilde{C}_{K}(A)=x_{\sim K]}(I) x_{\{K\}} \stackrel{(A)}{\sim}, \tag{6.1}
\end{equation*}
$$

where $k=\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ is a partition of the integer k and $\chi_{[k]}(1)$ is the dimension of the representation [K] of the symmetric group and is given by

$$
\begin{equation*}
X_{[k]}(1)=k!\prod_{i<j}^{m}\left(k_{i}-k_{j}-i+j\right) / \prod_{i=1}^{m}\left(k_{i}+m-i\right)! \tag{6.2}
\end{equation*}
$$

$\chi_{\{c\}} \underset{\sim}{(A)}$ is the character of the representation $\{K\}$ of the linear group and is given as a symmetric function of the characteristic roots $e_{1}, e_{2}, \ldots, e_{m}$ of $\underset{\sim}{A}$ by

$$
\begin{equation*}
x_{\{k\}}(A)=\left|\left(e_{i}^{k_{j}+m-j}\right)\right| /\left|\left(e_{i}^{m-j}\right)\right| \tag{6.3}
\end{equation*}
$$

There the determinants are Vandermonde type. Further the following equality is satisfied

$$
\begin{equation*}
\sum_{K} \tilde{C}_{K}(A)=\left(a_{1}\right)^{k} \tag{6.4}
\end{equation*}
$$

where a_{i} is the ith esf of the $e_{i}{ }^{\prime}$ s. Using the following lemma obtained by Pillai [27] we can get the zonal polynomials as a linear combination of the esf's. Tables 11-14 give $X_{\{k\}} \underset{\sim}{(A)}$ and $X_{[k]}(1)$ through degree 8.

Lemma: Let $D\left(g_{s}, g_{S-1}, \ldots, g_{1}\right),\left(g_{j} \geq 0, j=1,2, \ldots, s\right)$, denote the determinant

$$
D\left(g_{s}, g_{s-1}, \ldots, g_{1}\right)=\left|\begin{array}{cccc}
g_{s} & g_{s-1} & \ldots & e_{s} \tag{6.5}\\
e_{s} & e_{s} & \ldots & g_{s} \\
\vdots & & & \\
g_{s} & g_{s-1} & & g_{1} \\
e_{1} & e_{1} & &
\end{array}\right|
$$

If $a_{r}(r \leq s)$ denotes the eth est in $s e^{i} s$, then

$$
\begin{equation*}
\text { i) } \quad a_{r} D\left(g_{s}, g_{s-1}, \ldots, g_{1}\right)=\Sigma^{1} D\left(g_{s}^{1}, g_{s-1}^{:}, \ldots, g_{1}^{1}\right) \tag{6.6}
\end{equation*}
$$

where $g_{j}^{2}=g_{j}+\delta, j=1,2, \ldots, s, \delta=0,1$ and $\Sigma^{\text { }}$ denotes the sum over the $\binom{s}{r}$ combinations of $s g^{\prime} s$ taken r at a time for which r indices $g_{j}^{\prime}=g_{j}+I$ such that $\delta=I$ while for other indices $g_{j}^{2}=g_{j}$ such that $\delta=0$.
ii) $\left(a_{r}\right)^{k}\left(a_{h}\right)^{l} D\left(g_{S}, g_{S-1}, \ldots, g_{1}\right), k, 2 \geq 0$, can be expressed
as a sum of $\binom{s}{r}^{k}\binom{s}{h}^{\ell}$ determinants obtained by performing on $D\left(g_{s}, g_{s-1}, \ldots, g_{1}\right)$ in any order (i) k times and (i) $\&$ times with $r=h$. However if at least two of the indices in any determinant are equal, the corresponding tern in the summation vanishes.

An example will suffice to show how $X_{\{\kappa\}} \underset{\sim}{(A)}$ for any degree can be obtained from those of lower degree. Here we obtain $X_{\{k\}}(A)$ for $k=3$. Let

$$
\begin{equation*}
D=\left|\left(e_{i}^{\mathrm{m}-j}\right)\right| \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
D\left(k_{I}+m-1, k_{2}+m-2, \ldots, I\right)=\left|\left(e_{i}^{k_{j}+m-j}\right)\right| \tag{6.8}
\end{equation*}
$$

When $k=2$ we have

$$
\begin{equation*}
\left(a_{1}^{2}-a_{2}\right) D=D(m+1, m-2, m-3, \ldots, 1) \text { for } k=(2) \tag{6.9}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2} D=D(m, m-1, m-3, \ldots, I) \text { for } k=\left(I^{2}\right) \tag{6.10}
\end{equation*}
$$

MuItiplying (6.9) and (6.10) by a_{1}, using Pillai's lerma, gives
(6.11) $\left(a_{1}^{3}-a_{1} a_{2}\right) D=D(m+2, m-2, \ldots, 1)+D(m+1, m-1, m-3, \ldots, 1)$
and

$$
\begin{equation*}
a_{1} a_{2} D=D(m+1, m-1, m-3, \ldots, 1)+D(m, m-1, m-2, m-4, \ldots, 1) \tag{6.12}
\end{equation*}
$$

But since

$$
\begin{equation*}
a_{3} D=D(m, m-1, m-2, m-4, \ldots, 1) \tag{6.13}
\end{equation*}
$$

we have substituting in (6.12)

$$
\begin{equation*}
\left(a_{1} a_{2}-a_{3}\right) D=D(m+1, m-1, m-3, \ldots, 1) \tag{6.14}
\end{equation*}
$$

$$
\text { When } k=\left(1^{3}\right) \text { and } k=(21) \text { in (6.8), we obtain (6.13) and (6.14) }
$$ respectively. Thus

$$
\left.x_{\{1}{ }^{3}\right\} \stackrel{(A)}{\sim}=a_{3} \quad \text { and } \quad x_{\{21\}} \underset{\sim}{(A)}=a_{1} a_{2}-a_{3} .
$$

Substituting (6.14) in (6.11) we find

$$
(6.15)
$$

$$
\left(a_{1}^{3}-2 a_{1} a_{2}+a_{3}\right) D=D(m+2, m-2, \ldots, 1)
$$

and thus

$$
x_{\{3\}}(A)=a_{1}^{3}-2 a_{1} a_{2}+a_{3}
$$

Table 11. Complex Zonal Polynomials of 1st - 5th Degree

Table 12. Complex Zonal Polynomials for 6th Degree

Table 14. Complex Zonal Polynomials for 8th Degree

Table 14. (Cont:d.)

	$a_{2} a_{3}^{2}$				$a_{1}^{2} a_{6}$					${ }^{2} 8$	$x_{[k]}(1)$
$\chi_{\{8\}}$	-3	-3	-6	-6	-3	1	2	2	2	-1	1
${ }^{\text {\{71 }}$	3	3	4	4	1	-1	-2	-2	-1	1	7
${ }^{\text {\{ }}$ (62\}	-1	-2	2	0	1	0	0	1	-1	0	20
${ }_{\left\{61^{2}\right\}}$	-2	-1	-4	-2	-1	1	2	1	1	-1	21
$\chi_{\{53\}}$	-1	2	-2	0	1.	0	1	-1	0	0	28
$\chi_{\{521\}}$	2	0	0	-1	-I	0	-I	0	1	0	64
$x_{\left\{5 I^{3}\right\}}$	0	1	2	2	1	-1	-1	-1	-1	1	35
$\left.x 4^{2}\right\}$	2	-2	-2	2	0	1	-1	0	0	0	14
${ }^{\chi}$ \{431\}	-1	0	3	-1	-1	-1	0	1	0	0	70
$x_{\left\{42^{2}\right\}}$	-1	1	-1	1	0	0	1	-1	0	0	56
$x_{\left\{421^{2}\right\}}$	0	-1	-1	1	I	1	0	0	-1	0	90
$x_{\left\{41^{4}\right\}}$	0	0	0	-2	-1	0	1	1	1	-1	35
$\left\{3^{2} 2\right\}$	1	-1	-1	I	0	1	-1	0	0	0	42
$x\left\{3^{2} 1^{2}\right\}$		1	-1	-1	1	0	1	-1	0	0	56
${ }^{x}\left\{32^{2} 1\right\}$			1	-1	0	-I	0	1	0	0	70
$x_{\left\{321^{3}\right\}}$				1	-1	0	-1	0	1	0	64
${ }_{\left\{31^{5}\right\}}$					1	0	0	-1	-1	1	21
$\left\{2^{4}\right\}$						1	-1	0	0	0	14
$\left\{2^{3}{ }_{1}{ }^{2}\right\}$							1	-1	0	0	28
$\left\{2^{2} 1^{4}\right\}$								1	-1	0	20
${ }_{\left\{21^{6}\right\}}$									1	-1	7
$\left.x^{x} 1^{8}\right\}$										1	1

CHAPIER V

AN APPROXIMATION TO THE DISTRIBUTION OF THE

LARGEST ROOT OF A MATRIX AND PERCENTAGE POINTS

1. Introduction and Summary

Khatri [16] has pointed out that one can handle all the classical problems of point estimation and testing hypotheses concerning the parameters of complex multivariate normal populations much as one handles those for multivariate normal populations in real variates. Further, he suggested the maximum latent root statistic for testing the reality of a covariance matrix [17]. The joint distribution of the latent roots $w_{1}, w_{2}, \ldots, w_{q}$ under certain null hypotheses can be written as [15], [16]

$$
\begin{equation*}
C_{I}\left\{\prod_{j=I}^{q} w_{j}^{m}\left(I-w_{j}\right)^{n}\right\}\left\{\prod_{i>j}\left(w_{i}-w_{j}\right)^{2}\right\} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{I}=\prod_{j=1}^{q} \Gamma(m+n+q+j) /\{\Gamma(n+j) \Gamma(m+j) \Gamma(j)\} \tag{1.2}
\end{equation*}
$$

and

$$
0 \leq w_{I} \leq w_{2} \leq \cdots \leq w_{q} \leq 1
$$

Khatri [15] has derived the distribution of $w_{q}\left(\right.$ or w_{1}) in a determinant form as follows
(1.3) $\quad \operatorname{Pr}\left\{w_{q} \leq x ; m, n\right\}=C_{1}\left|\begin{array}{cccc}\beta_{0} & \beta_{1} & \cdots & \beta_{q-1} \\ \beta_{1} & \beta_{2} & \cdots & \beta_{q} \\ B_{q} & & \cdots & \cdots \\ \beta_{q-1} & \beta_{q} & & \rho_{2 q-2}\end{array}\right|=\left|\left(\beta_{i+j-2}\right)\right|$
where C_{1} is defined in (1.2),
(1.4) $\quad n_{i+j-2}=\int_{0}^{x} w^{m+i+j-2}(1-w)^{n} d w$
for $i, j=1,2, \ldots, q$, and $\left(\beta_{i+j-2}\right)$ is a qxq matrix. $\operatorname{Pr}\left\{w_{1} \leq x ; m, n\right\}$ can be obtained from (1.3) using
(1.5)

$$
\operatorname{Pr}\left\{w_{I} \leq x ; m, n\right\}=1-\operatorname{Pr}\left\{w_{q} \leq 1-x ; n, m\right\}
$$

In this paper an approximation to the cdf of w_{q} at the upper end is obtained and upper 1% and 5% points are given for $q=2,3,4,5,6$ in Tables $16 \mathbf{- 2 5}$. A general form of the approximation is given with the results for $q=2$ and 3 written out explicitly.
2. Case For Two Roots

It is easily seen from (1.3) that letting $q=2$ and expanding the determinant
(2.1)

$$
\begin{aligned}
\operatorname{Pr}\left\{w_{2} \leq x ; m, n\right\}=C_{1}\left\{\int_{0}^{x} w^{m}(1-w)^{n} d w\right. & \int_{0}^{x} w^{m+2}(1-w)^{n} d w \\
& \left.-\left(\int_{0}^{x} w^{m+1}(1-w)^{n} d w\right)^{2}\right\}
\end{aligned}
$$

This can be written as a finite sum for integral values of m and n integrating by parts and we obtain

$$
\begin{equation*}
\operatorname{Pr}\left\{w_{2} \leq x ; m, n\right\}=C_{1}\left\{\beta_{0} \beta_{2}-\beta_{1}^{2}\right\} \tag{2.2}
\end{equation*}
$$

where β_{ℓ} is defined in (1.4) or a form which is more convenient for our purposes is

$$
\begin{equation*}
\beta_{l}=\beta(m+l+1, n+1)-\sum_{j=0}^{m+l} \frac{(m+l)!}{j!} \frac{x^{j}(1-x)^{m+n+l-j+1}}{\prod_{k=0}^{m+l-j}(n+k+1)} \tag{2.3}
\end{equation*}
$$

where $\beta(a, b)$ is the usual beta function. For small values of m, the approximation is obtained by neglecting all terms involving (1-x) ${ }^{2 n}$ and higher powers. Expanding (2.2) and neglecting terms involving (1-x) ${ }^{2 n}$ and higher powers we have
(2.4) $\quad \operatorname{Pr}\left\{w_{2} \leq x ; m, n\right\} \doteq C_{1}\left[\beta(m+1, n+1) \beta_{2}-\beta(m+3, n+1) \sum_{j=0}^{m} \frac{m^{\prime}!}{j!} \frac{x^{j}(1-x)^{m+n-j+1}}{\prod_{k=0}^{m-j}(n+k+1)}\right.$

$$
\left.-\beta(m+2, n+1) \beta_{1}+\beta(m+2, n+1) \sum_{j=0}^{m+1} \frac{(m+1)!}{j!} \frac{x^{j}(1-x)^{m+n-j+2}}{\prod_{k=0}^{m-j+1}(n+k+1)}\right] .
$$

Adding and subtracting $\beta(m+3, n+1) \beta(m+1, n+1)$ and $\beta(m+2, n+1)^{2}$ in (2.4) we find
(2.5) $\quad \operatorname{Pr}\left\{w_{2} \leq x ; m, n\right\} \doteq C_{1}\left[\beta(m+1, n+1) \beta_{2}+\beta(m+3, n+3) \beta_{0}-2 \beta(m+2, n+1) \beta_{1}\right]-1$.

Noting from (2.2) with $x=1$ that

$$
\begin{equation*}
C_{1}=\left[\beta(m+3, n+1) \beta(m+1, n+1)-\beta(m+2, n+1)^{2}\right]^{-1}, \tag{2.6}
\end{equation*}
$$

and simplifying in (2.5) we find
(2.7) $\operatorname{Pr}\left\{w_{2} \leq x ; m, n\right\} \stackrel{i}{=} \frac{m+n+2}{\beta(m+2, n+2)}\left[\beta_{2}+\frac{(m+1)_{2}}{(m+n+2)_{2}} \beta_{0}-\frac{2 m}{m+n+2} \beta_{1}\right]-1$
where
$(a)_{k}=a(a+1) \ldots(a+k-1)$.

This approximation is very simple for computational use and no products of incomplete beta functions are involved. Upper 1% and 5% points using (2.7) are given in Tables 16,17 . The error involved in using this approximation has been computed and the difference between the exact and approximate percentage points occurs in the seventh place. (See Table 15).
3. Case For Three Roots

When there are 3 roots, we have

$$
\begin{equation*}
\operatorname{Pr}\left\{w_{3} \leq x ; m, n\right\}=C_{1}\left\{\beta_{0} \beta_{2} \beta_{4}+2 \beta_{1} \beta_{2} \beta_{3}-\beta_{2}^{3}-\beta_{0} \beta_{3}^{2}-\beta_{1}^{2} \beta_{4}\right\} \tag{3.1}
\end{equation*}
$$

where β_{l} is defined in (2.3) and C_{1} in (1.2). As in the two-roots case we write the β_{k} 's as finite sums, expand, neglect terms involving $(1-x)^{2 n}$ and higher powers and find
(3.2) $\operatorname{Pr}\left\{w_{3} \leq x ; m, n\right\} \doteq C_{1}\left\{\left[\beta(3) \beta(5)-\beta(4)^{2}\right] \beta_{0}+2[\beta(3) \beta(4)-\beta(2) \beta(5)] \beta_{1}\right.$

$$
\begin{aligned}
+\left[2 \beta(2) \beta(4)+\beta(1) \beta(5)-3 \beta(3)^{2}\right] \beta_{2} & +2[\beta(2) \beta(3)-\beta(1) \beta(4)] \beta_{3} \\
+ & {\left.\left[\beta(1) \beta(3)-\beta(2)^{2}\right] \beta_{4}\right\}-2 }
\end{aligned}
$$

where $\beta(j)=\beta(m+j, n+1)$. Simplifying in (3.2) we find
(3.3) $\operatorname{Pr}\left\{w_{3} \leq x ; m, n\right\} \doteq[\beta(m+1, n+3)]^{-1}\left\{\frac{(m+2)}{2} \beta_{0}-2(m+3)(m+n+4) \beta_{1}\right.$ $\left.+\frac{3\{m(m+n+6)+2 n+7\}(m+n+4)}{m+1} \beta_{2}-\frac{2(m+n+3)}{m+1} \beta_{3}+\frac{(m+n+4)(m+n+3)}{2(m+1)} 2 \quad\right\}=2$.

As in the two-roots case, no products of incomplete beta functions are involved. Upper 1% and 5% points using (3.3) are given in Tables 18 and 19. Comparison of some exact and approximate values is made in Table 15.

Denote the product $\beta_{i_{1}} \beta_{i_{2}} \ldots \beta_{i_{q}}$ occuring in $\left|\left(\beta_{\ell}\right)\right|$ by $\beta_{i_{1}} i_{2} \ldots i_{q}$
where i_{j} are any of the integers $0,1, \ldots, 2 q-2$. It can be seen from cases with $q=2$ and 3 that $\beta_{i_{1} i_{2} \ldots i_{q}}$ is approximated by $\beta_{i_{1} i_{2} \ldots i_{q}}^{1}$

$$
\begin{equation*}
\beta_{i_{1} i_{2}}^{\prime} \ldots i_{q}=\sum_{j=1}^{q} \prod_{\substack{k=1 \\ k \neq j}}^{q} \beta\left(m+i_{k}+1, n+1\right) \beta_{i_{j}} \tag{4.1}
\end{equation*}
$$

where $\beta_{i_{j}}$ is defined in (1.4). Thus the distribution of W_{q} can be approximated by
(4,2) $\quad \operatorname{Pr}\left\{\mathrm{w}_{\mathrm{q}} \leq \mathrm{x} ; \mathrm{m}, \mathrm{n}\right\} \doteq \mathrm{C}_{1}\left|\left(\beta_{\ell}\right)\right|^{\prime}-(q-1)$
where $\left|\left(\beta_{\ell}\right)\right|^{i}$ is obtained by replacing $\beta_{i_{1} i_{2} \ldots} \ldots$ in $\left|\left(\beta_{\ell}\right)\right|$ by $\beta_{i_{1}} i_{2} \ldots i_{q}$. By collecting the coefficients of incomplete beta functions we get the following form which is simpler for computer computations

$$
\begin{equation*}
\operatorname{Pr}\left\{_{q} \leq x ; m, n\right\}=C_{1} \sum_{k=0}^{2 q-2} D_{k}^{z} \beta_{k}-(q-I) \tag{4.3}
\end{equation*}
$$

where D_{k}^{\prime} is the sum of the cofactors of $\beta(k+1)$ in the qua matrix

$$
\left|\begin{array}{cccc}
\beta(1) & \beta(2) & \ldots & \beta(q) \\
\beta(2) & \beta(3) & \ldots & \beta(q+1) \\
\cdots & \cdots & \cdots & \cdot \\
\beta(q) & \beta(q+1) & \ldots & \beta(2 q-1)
\end{array}\right|
$$

where $\beta(j)$ is defined as $\beta(m+j, n+1)$, the usual beta function. Letting $q=2$ and 3 in (4.3) we get (2.5) and (3.2) respectively.

5. Computation of Percentage Points

Based on the results of the preceeding sections upper 1% and 5% points were computed for $q=2,3,4,5,6$ on the $C D C$ Computer. Results are given to five significant figures for the arguments $m=0(1) 5,7,10,15$ and $n=5$ (5) $30(10) 40(20) 120(40) 200,300,500,1000$. As can be seen from the comparisons below the percentage points from the exact and approximate cdf's agree through five figures and generally six.

Table 15. Comparison of Percentage Points From the Exact

			1\%		5\%	
a	m	n	exact	approximate	exact	approximate
2	0	30	. 246078	. 246078	. 194089	. 194089
2	10	160	. 142231	. 142231	. 124867	. 124867
3	0	30	. 332512	. 332512	. 280221	. 280222
3	10	160	. 166031	. 166031	. 148441	. 148441
4	0	30	. 353382	. 353384	. 404003	. 404003
4	15	200	. 183258	. 183258	. 167724	. 167725
5	0	5	. 906746	. 906746	. 867886	. 867887
6	5	100	. 278743	. 278744	. 254438	. 254439

In addition to the above, the approximate expression is attractive for two reasons; first, computation time is less for the approximation because we don't evaluate a determinant at each step in the iteration scheme, as we do for the exact case; second, round off error is less troublesome in the approximate expression.

5	0,73163	0.78184	0.81537	0.83962	0.85809	0.87266	0.89424	0.91559	0.93676
10	. 53116	. 59150	. 63618	. 67120	. 69962	. 72326	. 76050	. 80033	. 84333
15	. 41313	. 47060	. 51546	. 55216	. 58304	. 60955	. 65296	. 70184	. 75786
20	. 33720	. 38956	. 43175	. 46720	. 49774	. 52449	. 56946	. 62199	. 68488
25	. 28459	. 33194	. 37091	. 40426	. 43346	. 45942	. 50389	. 55722	. 62327
30	0.24608	0.28901	0.32489	0.35600	0.38357	0.40834	0.45138	0.50409	0.57110
40	. 19356	. 22946	. 26007	. 28770	. 31144	. 33364	. 37300	. 42265	. 48826
60	. 13558	. 16236	. 18570	. 20672	. 22599	. 24387	. 27631	. 31867	. 37738
80	. 10430	. 12558	. 14434	. 16141	. 17722	. 19203	. 21924	. 25548	. 30712
100	. 084737	. 10237	. 11803	. 13237	. 14574	. 15832	. 18165	. 21311	. 25878
120	0.071353	0.086398	0.099823	0.11218	0.12374	0.13467	0.15505	0.18277	0.22353
160	. 054221	. 065846	. 076284	. 085945	. 095034	. 10367	. 11900	. 14223	. 17563
200	. 043723	. 053191	. 061725	. 069652	. 077135	. 084271	. 097732	. 11640	. 14461
300	. 029460	. 035927	. 041786	. 047253	. 052438	. 057405	. 066832	. 080034	. 10029
500	. 017829	. 021785	. 025384	. 028756	. 031966	. 035051	. 040938	. 049252	. 062166
1000	. 0089721	. 010980	. 012811	. 014533	. 016176	. 017760	. 020794	. 025107	. 031871

Table 17. Upper 5\% Points of the Largest Root for $q=2$

m	0	1	2	3	4	5	7	10	15
5	0.63265	0.69818	0.74271	0.77533	0.80039	0.82031	0.85006	0.87975	0.90950
10	. 43902	. 50675	. 55776	. 59825	. 63143	. 65925	. 70356	. 75138	. 80371
15	. 33433	. 39500	. 44309	. 48290	. 51673	. 54598	. 59435	. 64947	. 71347
20	. 26957	. 32303	. 36671	. 40383	. 43608	. 46455	. 51286	. 56993	. 63918
25	. 22572	. 27305	. 31252	. 34665	. 37678	. 40376	. 45038	. 50695	. 57791
30	0.19409	0.23638	0.27217	0.30350	0.33149	0.35681	0.40118	0.45612	0.52687
40	. 15156	. 18626	. 21619	. 24286	. 26705	. 28925	. 32893	. 37949	. 44714
60	. 10534	. 13073	. 15308	. 17337	. 19210	. 20957	. 24150	. 28358	. 34255
80	. 080711	. 10068	. 11846	. 13475	. 14994	. 16423	. 19067	. 22619	. 27734
100	. 065413	. 081862	. 096599	. 11019	. 12294	. 13500	. 15749	. 18808	. 23290
120	0.054990	0.068967	0.081547	0.093203	0.10417	0.11459	0.13413	0.16093	0.20070
160	. 041699	. 052443	. 062169	. 071230	. 079800	. 087984	. 10344	. 12487	. 15720
200	. 033582	. 042306	. 050231	. 057639	. 064668	. 071400	. 084170	. 10200	. 12918
300	. 022589	. 028522	. 033937	. 039022	. 043868	. 048529	. 057421	. 069958	. 089343
500	. 013651	. 017268	. 020583	. 023707	. 026695	. 029578	. 035105	. 042961	. 055254
1000	. 0068625	. 0086933	. 010376	. 011966	. 013491	. 014966	. 017805	. 021864	. 028277

Table 18. Upper 1% Points of the Largest Root for $q=3$

n									
m									
m	0	1	2	3	4	5	7	10	15
5	0.82375	0.85143	0.87131	0.88637	0.89821	0.90777	0.92231	0.93711	0.95222
10	.64650	.68669	.71788	.74301	.76379	.78132	.80934	.83983	.87331
15	.52543	.56765	.60185	.63041	.65476	.67586	.71074	.75044	.79641
20	.44092	.48177	.51575	.54480	.57008	.59238	.63013	.67453	.72803
25	.37927	.41773	.45033	.47865	.50366	.52602	.56453	.61094	.66864
30	0.33251	0.36841	0.39925	0.42638	0.45059	0.47246	0.51062	0.55750	0.61724
40	.26649	.29770	.32502	.34944	.37158	.39185	.42791	.47348	.53372
60	.19053	.21482	.23651	.25628	.27451	.29148	.32234	.36267	.41848
80	.14819	.16793	.18576	.20217	.21745	.23180	.25824	.29346	.34355
100	.12123	.13782	.15290	.16688	.17997	.19234	.21531	.24630	.29118
120	0.10256	0.11685	0.12991	0.14206	0.15349	0.16433	0.18458	0.21214	0.25258
160	.078406	.089581	.099855	.10947	.11857	.12724	.14356	.16603	.19957
200	.063457	.072627	.081090	.089040	.096582	.10380	.11744	.13636	.16491
300	.042971	.049297	.055165	.060702	.065983	.071057	.080708	.094234	.11495
500	.026110	.030012	.033647	.037089	.040386	.043565	.049643	.058234	.071564
1000	.013180	.015173	.017034	.018803	.020501	.022143	.025297	.029783	.036813

Table 19. Upper 5% Points of the Largest Root for $q=3$

| n | | | | | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | 0 | 1 | 2 | 3 | 4 | 5 | 7 | 10 | 15 |
| 5 | 0.75420 | 0.79166 | 0.81882 | 0.83952 | 0.85589 | 0.86916 | 0.88944 | 0.91022 | 0.93158 |
| 10 | .57006 | .61690 | .65359 | .68337 | .70816 | .72917 | .76298 | .80005 | .84112 |
| 15 | .45433 | .50053 | .53828 | .57004 | .59728 | .62101 | .66049 | .70582 | .75881 |
| 20 | .37674 | .41989 | .45608 | .48723 | .51450 | .53868 | .57988 | .62874 | .68820 |
| 25 | .32148 | .36119 | .39512 | .42479 | .45114 | .47481 | .51582 | .56568 | .62826 |
| 30 | 0.28022 | 0.31672 | 0.34830 | 0.37625 | 0.40134 | 0.42410 | 0.46405 | 0.51355 | 0.57723 |
| 40 | .22286 | .25394 | .28133 | .30595 | .32839 | .34903 | .38593 | .43292 | .49563 |
| 60 | .15800 | .18168 | .20295 | .22243 | .24048 | .25734 | .28815 | .32870 | .38530 |
| 80 | .12235 | .14138 | .15866 | .17463 | .18957 | .20365 | .22970 | .26463 | .31471 |
| 100 | .099816 | .11569 | .13021 | .14371 | .15641 | .16845 | .19090 | .22138 | .26585 |
| 120 | 0.084286 | 0.097902 | 0.11040 | 0.12208 | 0.13311 | 0.14361 | 0.16329 | 0.19024 | 0.23006 |
| 160 | .064281 | .074868 | .084645 | .093829 | .10255 | .11089 | .12664 | .14844 | .18120 |
| 200 | .051949 | .060606 | .068628 | .076190 | .083393 | .090302 | .10341 | .12169 | .14944 |
| 300 | .035108 | .041052 | .046587 | .051828 | .056842 | .061672 | .070891 | .083873 | .10388 |
| 500 | .021298 | .024951 | .028365 | .031610 | .034725 | .037737 | .043516 | .051719 | .064517 |
| 1000 | .010738 | .012597 | .014341 | .016002 | .017602 | .019153 | .022140 | .026407 | .033128 |

Table 20. Upper 1% Points of the Largest Root for $q=4$

n m	0	1	2	3	4	5	7	10	15
5	0.87509	0.89200	0.90477	0.91478	0.92285	0.92951	0.93985	0.95067	0.96202
10	. 72325	.75144	. 77404	. 79266	. 80830	. 82167	. 84335	. 86735	. 89420
15	. 60746	. 63947	. 66606	. 68862	. 70810	. 72512	. 75355	. 78631	. 82470
20	. 52116	. 55371	. 58136	. 60532	. 62638	. 64508	. 67699	. 71484	. 76085
25	. 45542	. 48714	. 51454	. 53863	. 56008	. 57936	. 61278	. 65332	. 70404
30	0.40400	0.43437	0.46093	0.48453	0.50576	0.52502	0.55881	0.60055	0.65398
40	. 32914	. 35648	. 38080	. 40274	. 42276	. 44116	. 47403	. 51571	. 57097
60	. 23973	. 26184	. 28189	. 30031	. 31739	. 33335	. 36244	. 40055	. 45336
80	. 18837	. 20673	. 22355	. 23915	. 25374	. 26751	. 29292	. 32684	. 37510
100	. 15510	. 17073	. 18514	. 19860	. 21128	. 22328	. 24564	. 27585	. 31961
120	0.13180	0.14539	0.15798	0.16978	0.18094	0.19156	0.21144	0.23854	0.27830
160	. 10134	. 11209	. 12211	. 13156	. 14054	. 14914	. 16534	. 18768	. 22103.
200	. 082305	. 091193	. 099506	. 10737	. 11488	. 12208	. 13571	. 15467	. 18326
300	. 056004	. 062195	. 068016	. 073551	. 078854	. 083965	. 093709	. 10739	. 12835
500	. 034164	. 038014	. 041648	. 045128	. 048455	. 051682	. 057869	. 066630	. 08023
1000	. 017298	. 019276	. 021149	. 022942	. 024672	. 026350	. 029579	. 034183	. 041402

m^{m}	0	1	2	3	4	5	7	10	15
5	0.82407	0.84740	0.86511	0.87905	0.89033	0.89965	0.91420	0.92947	0.94557
10	. 66010	. 69366	. 72072	. 74312	. 76203	. 77824	. 80465	. 83405	. 86715
15	. 54470	. 58047	. 61034	. 63583	. 65792	. 67730	. 70983	. 74754	. 79206
20	. 46207	. 49715	. 52713	. 55323	. 57625	. 59679	. 63198	. 67400	. 72548
25	. 40064	. 43405	. 46306	. 48868	. 51158	. 53225	. 56823	. 61217	. 66756
30	0.35338	0.38485	0.41250	0.43718	0.45947	0.47976	0.51552	0.55997	0.61732
40	. 28566	. 31338	. 33815	. 36059	. 38114	. 40009	. 43408	. 47745	. 53537
60	. 20626	. 22818	. 24813	. 26652	. 28363	. 29966	. 32900	. 36765	. 42156
80	. 16132	. 17929	. 19582	. 21121	. 22565	. 23929	. 26457	. 29848	. 34706
100	. 13243	. 14763	. 16169	. 17485	. 18728	. 19909	. 22114	. 25109	. 29473
120	0.11231	0.12545	0.13767	0.14916	0.16004	0.17043	0.18992	0.21663	0.25604
160	. 086129	. 096463	. 10612	. 11526	. 12396	. 13230	. 14807	. 16992	. 20271
200	. 069843	. 078351	. 086332	. 093904	. 10114	. 10810	. 12132	. 13976	. 16772
300	. 047422	. 053318	. 058876	. 064172	. 069258	. 074168	. 083555	. 096781	. 11714
500	. 028878	. 032528	. 035983	. 039288	. 042473	. 045559	. 051488	. 059913	. 073044
1000	. 014602	. 016471	. 018245	. 019948	. 021593	. 023191	. 026275	. 030684	. 037625

$n \mathrm{~m}$	0	1	2	3	4	5	7	10	15
5	0.86789	0.88338	0.89554	0.90537	0.91348	0.92029	0.93111	0.94276	0.95554
10	. 72458	. 74939	.76985	. 78708	. 80180	. 81455	. 83558	. 85934	. 88648
15	. 61439	. 64258	. 66652	. 68720	. 70529	. 72128	. 74834	. 78004	. 81787
20	. 53107	. 55989	. 58488	. 60684	. 62637	. 64388	. 67408	. 71042	. 75528
25	. 46679	. 49507	. 51993	. 54208	. 56199	. 58005	. 61165	. 65046	. 69969
30	0.41600	0.44323	0.46744	0.48921	0.50897	0.52703	0.55900	0.59893	0.65067
40	. 34122	. 36596	. 38829	. 40865	. 42738	. 44471	. 47589	. 51580	. 56926
60	. 25055	. 27081	. 28941	. 30666	. 32277	. 33789	. 36565	. 40227	. 45343
80	. 19780	. 21474	. 23044	. 24514	. 25899	. 27209	. 29643	. 32913	- 37599
100	. 16335	. 17785	. 19137	. 20410	. 21616	. 22763	. 24911	. 27831	. 32088
120	0.13911	0.15175	0.16360	0.17480	0.18544	0.19562	0.21476	0.24101	0.27975
160	. 10726	. 11730	. 12677	. 13577	. 14438	. 15264	. 16829	. 18999	. 22256
200	. 087264	. 094493	. 10347	. 11098	. 11818	. 12512	. 13832	. 15676	. 18473
300	. 059521	. 065347	. 070882	. 076184	. 081291	. 086232	. 095694	. 10904	. 12959
500	. 036382	. 040017	. 043484	. 046817	. 050039	. 053168	. 059191	. 067761	. 081120
1000	. 018450	.020325	. 022114	. 023839	. 025514	. 027144	. 030294	. 034807	. 041912

Table 24. Upper 1\% Points of the Largest Root for $q=6$

n	0	1	2	3	4	5	7	10	15
5	0.92768	0.93537	0.94156	0.94665	0.95091	0.95456	0.95924	0.97249	0.98011
10	. 81665	. 83213	. 84508	. 85611	. 86561	. 87389	. 88751	. 90160	. 93327
15	. 71783	. 73757	. 75451	.76926	. 78223	. 79376	. 81335	. 83734	. 87568
20	. 63648	. 65818	. 67714	. 69391	. 70887	. 72234	. 74560	. 77358	. 80940
25	. 57007	. 59245	. 61226	. 62999	. 64598	. 66052	. 68603	. 71760	. 76176
30	0.51545	0.53781	0.55780	0.57585	0.59227	0.60731	0.63398	0.66750	0.71631
40	. 43163	. 45300	. 47238	. 49012	. 50646	. 52159	. 54884	. 58380	. 62935
60	. 32472	. 34325	. 36034	. 37622	. 39107	. 40502	. 43062	. 46433	. 51201
80	. 25991	. 27589	.29078	. 30474	. 31790	. 33037	. 35352	. 38460	. 42872
100	. 21656	. 23051	. 24358	. 25591	. 26761	. 27874	. 29958	. 32785	. 36905
120	0.18556	0.19790	0.20951	0.22051	0.23098	0.24099	0.25982	0.28558	0.32356
160	. 14423	. 15421	. 16365	. 17265	. 18126	. 18953	. 20521	. 22692	. 25928
200	. 11793	. 12630	. 13424	. 14183	. 14912	. 15615	. 16952	. 18818	. 21628
300	. 080997	. 086935	. 092602	. 098044	. 10329	. 10837	. 11811	. 13183	. 15284
500	. 049794	. 053543	. 057137	. 060602	. 063956	. 067216	. 073494	. 082419	. 096317
1000	. 025362	. 027312	. 029186	. 030998	. 032758	. 034473	. 037790	. 042539	. 049989

n	0	1	2	3	4	5	7	10	15
5	0.89716	0.90796	0.91667	0.92385	0.92988	0.93502	0.94291	0.95382	0.96990
10	. 77232	. 79117	. 80699	. 82049	. 83217	. 84237	. 85933	. 87831	. 92571
15	. 66925	. 69183	. 71127	. 72824	. 74321	.75654	. 77926	. 80640	. 84101
20	. 58762	. 61157	.63256	. 65117	. 66782	. 68283	. 70888	. 74044	. 78006
25	. 52259	. 54671	. 56812	. 58733	.60471	. 62053	. 64836	.68281	. 72777
30	0.46998	0.49367	0.51492	0.53415	0.55169	0.56778	0.59639	0.63236	0.68045
40	. 39058	. 41271	. 43285	. 45131	. 46836	. 48418	. 51275	. 54948	. 59853
60	. 29127	. 30999	. 32731	. 34344	. 35855	. 37277	. 39893	. 43353	. 48214
80	. 23199	. 24793	. 26282	. 27680	. 29001	. 30255	. 32588	. 35729	. 40229
100	. 19268	. 20649	. 21945	. 23170	. 24334	. 25444	. 27525	. 30359	. 34498
120	0.16474	0.17688	0.18833	0.19919	0.20955	0.21947	0.23816	0.26383	0.30178
160	.12768	. 13744	. 14668	. 15550	. 16396	. 17209	. 18753	. 20898	.24115
200	. 10422	. 11236	. 12010	. 12751	. 13463	. 14151	. 15462	. 17296	. 20076
300	. 071406	. 077150	. 082639	. 087917	. 093015	. 097956	. 10743	. 12083	. 14145
500	. 043810	. 047420	. 050884	. 054227	. 057468	. 060620	. 066699	. 07536	. 088882
1000	. 022288	. 024150	. 025950	. 027692	. 029385	. 031037	. 034236	. 038825	. 046054

CHAPTER VI
M MMMARY AND CONCLUSION

The study of some central and non-central distribution problems in real and complex multivariate analysis has been carried out in this work. The main objective has been to investigate the distributions of characteristic roots, and functions of characteristic roots of certain matrices, with emphasis on various likelihood ratio criteria, in the central and noncentral cases. Although in the first chapter a general form was found for the first three moments of $U_{i}^{(p)}$ and the first two moments of $V_{i}^{(p)}$, bath in the non-central (linear) MANOVA case, it would be useful to obtain expressions for the general moments of both statistics. Further it is hoped that a general expression can be obtained for $a_{K, \tau}$ coefficients given in Chapter I, although such expressions were given in some cases there.

In Chapter II we make use of Mellin's transform and Meijers G-function to find the non-central distributions of Wilks' Λ-criterion in the cases of MANOVA, canonical correlation and the equality of two covariance matrices. The densities were found for any p and the cdf of Λ was explicitly found for $p=2$ but the cdf remains to be found for higher p values. Also power computations could be carried out. The exact distiributions of the likelihood ratio criterion $V_{p_{1}}, p_{2}, \ldots, p_{q} ; N$ for testing
the independence of q-sets of variates under the null hypothesis are found in Chapter III for various combinations of p_{i} values and general N using the convolution operation. Due to the fact that the expressions become unwieldy, results were obtained when no more than two convolutions were necessary, but the work could be extended to more than two convolutions. χ^{2} correction factors, from which lower 1% and 5% points can be obtained, were tabled in special cases but could be obtained for other cases using the results of Chapter III.

In Chapter IV the density functions of Wilks' Λ-criterion in the complex case for the three situations mentioned in Chapter II, are obtained using Mellin's transform and expressed in terms of Meijer's G-function. Results are obtained concerning the complex multivariate beta distribution and independent beta variates. While the density functions of the U-statistic and of Pillai's V-criterion were found for $p=2$ in the complex central case, results haven't been obtained for larger p values. Using Pillai's lemma on the product of an esf and a Vandermonde determinant, zonal polynomials of a Hermitian matrix were found through degree 8 and results for higher degrees could be found in the same manner. In Chapter V, an approximation to the distribution of the maximum characteristic root in the complex case is obtained. Although a computational form, using determinants, was found, it is felt that further research might yield a general term for the coefficient of each incomplete beta function involved. Tables were given for upper 1% and 5% points for values of $q=2(1) 6$. These tables could be easily extended using the results of Chapter V.

REFERENCES
[1] Al-Ani, S. (1968). Some distribution problems concerning characteristic roots and vectors in multivariate analysis. Mimeograph Series No. 162 , Department of Statistics, Purdue University.
[2] Anderson, T.W. (1946). The non-central Wishart distribution and certain problems of multivariate statistics. Ann. Math. Stat. 17, 409-431.
[3] Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis, Wiley, New York.
[4] Anderson, T.W. and Girshick, M.A. (1944). Some extensions of the Wishart distribution. Ann. Math. Stat. 15, 345-357.
[5] Constantine, A.G. (1963). Some Non-Central Distribution Problems in Multivariate Analysis. Ann. Math. Stat. 34, 1270-1285.
[6] Constantine, A.G. (1966). The distribution of Hotelling's generalized T_{0}^{2}. Ann. Math. Stat. 37, 215-225.
[7] Consul, P.C. (1966). On Some Inverse Mellin Integral Transforms. Academic Royale Des Science de Belgique. 52 , 547-561.
[8] Consul, P.C. (1967). On the Exact Distributions of Likelihood Ratio Criteria for Testing Independence of Sets of Variates Under the Null Hypothesis. Ann. Math. Stat. 38, 1160-1169.
[9] Consul, P.C. (1967). On the Exact Distribution of the W Criterion for Testing the Sphericity in a p-variate Normal Distribution. Ann. Math. Stat. 38, 1170-1174.
[10] Goodman, N.R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution. (An introduction) Ann. Math. Stat. 34, 152-176.
[11] Gupta, A.K. (1968). Some central and non-central distribution problems in multivariate analysis. Mimeograph Series No. 139, Department of Statistics, Purdue University.
[12] James, A.T. (1961). The distribution of non-central means with known covariance. Ann. Math. Stat. 32, 874-882.
[13] James, A.T. (1964). Distribution of matrix and latent roots derived from normal samples. Ann. Math. Stat. 35, 475-501.
[14] Khatri, C.G. (1964). Distribution of the generalized multiple correlation matrix in the dual case. Ann. Math. Stat. 35, 1801-1806.
[15] Khatri, C.G. (1964). Distribution of the largest or the smallest characteristic root under the null hypothesis concerning complex multivariate normal populations. Ann. Math. Stat. 35, 1807-1810.
[16] Khatri, C.G. (1965). Classical statistical analysis based on certain multivariate complex Gaussian distribution. Ann. Math. Stat. 36,98-114.
[17] Khatri, C.G. (1965). A test for reality of a covariance matrix in certain complex Gaussian distributions. Ann. Math. Stat. 36, 115-119.
[18] Khatri, C.G. (1967). Some aistribution problems connected with the characteristic roots of $\mathrm{S}_{1} \mathrm{~S}_{2}^{-1}$. Ann. Math. Stat. 38 , $944-948$.
[19] Khatri, C.G. (1968). Noncentral distributions of the ith largest characteristic roots of three matrices concerning complex multivariate normal populations. Mimeograph Series No. 149, Department of Statistics, Purdue University.
[20] Khatri, C.G. (1968). On the moments of two matrices in three situations for complex multivariate normal populations. Mimeograph Series No. 161, Department of Statistics, Purdue University.
[21] Khatri, C.G. and Pillai, K.C.S. (1965). Some results on the noncentral multivariate beta distribution and moments of traces of two matrices. Ann. Math. Stat. 36, 1511-1520.
[22] Khatri, C.G. and Pillai, K.C.S. (1965). Further results on the noncentral multivariate beta distribution and moments of traces of two matrices. Mimeograph Series No. 38, Department of Statistics, Purdue University.
[23] Khatri, C.G. and Pillai, K.C.S. (1968). On the moments of elementary symmetric functions of two matrices and an approximation to a distribution. Ann. Math. Stat. 39, 1274-1281.
[24] Kshirsager, A.M. (1961). The non-central multivariate beta distribution. Ann. Math. Stat. 32, 104-111.
[25] Meijer, C.S. (1946). NederI. Akad. Wetensch. Proc., 49.
[26] Meijer, C.S. (1946). On the G-function I. Indagations Mathematicae, 8, 124-134.
[27] Pillai, K.C.S. (1964). On the moments of elementary symmetric functions of the roots of two matrices. Ann. Math. Stat. 35, 1704-1712.
[28] Pillai, K.C.S. (1965). On elementary symmetric functions of the roots of two matrices in multivariate analysis. Biometrika 52, 499-506.
[29] Pillai, K.C.S. (1968). Moment generating function of Pillai's $\mathrm{V}^{(s)}$ criterion. Ann. Math. Stat. 39, 877-880.
[30] Pillai, K.C.S. and AI-Ani, S. (1967). On the Distribution of Some Functions of the Roots of a Covariance Matrix and Noncentral Wilks: A. Mimeograph Series No. 125, Department of Statistics, Purdue University.
[31] Pillai, K.C.S. and Jayachandran, K. (1967). Power comparisons of tests of two multivariate hypotheses based on four criteria. Biometrika 54, 195-210.
[32] Pillai, K.C.S. and Gupta, A.K. (1968). On the non-central distribution of the second elementary symmetric function of the roots of a matrix. Ann. Math. Stat. 39, 833-839.
[33] Roy, S.N. (1957). Some Aspects of Multivariate Analysis. Wiley, New York.
[34] Roy, S.N. and Gnanadesikan, R. (1959). Some contributions to ANOVA in one or two dimensions: II. Ann. Math. Stat. 30, 318-340.
[35] Schatzoff, M. (1966). Exact distribution of Wilks' likelihood ratio criterion. Biometrika 53, 347-358.
[36] WaId, A, and Brookner, R.J. (1941). On the distribtuion of Wilks' statistic for testing independence of several groups of variables. Ann. Math. Stat. 12, 137-152.
[37] Wilks, S.S. (1935). On the independence of k sets of normally distributed statistical variables. Econometrica 3, 309-326.
[38] Wooding, R.A. (1956). The multivariate distribution of complex normal variables. Biometrika 43, 212-215.

[^0]: *This research was partly supported by the National Science Foundation Contract No. GP-7663. Reproduction in whole or in part is permitted for any purpose of the United States Government.

