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1, Summary. Consider the test procedures invariant under certain groups of
transformations[6]; (i) for testing the hypothesis El =3, against one-
sided alternatives, [2], [6],which is invariant under the transformation

X, » BX.+ b,, Jj=1,2, wvhere X, are distributed as multivariate normal, and

E, is any nonsingular matrix and b and 22 are any vectors; (ii) for

e
testing the general multivariate linear hypothesis, [3], [6], which is in=

variant under the transformation (El(pxs), §2(px(n-r)), Zs(px(r-s)) -

> BX.Fy + E) where B is nonsingular and F,,F, and F,_ are

(Ezir » BXF, Fa
orthogonal matrieces; and (iii) for testing independence between two sets
of normally distributed variates, [1], [6], which is invariant under the

transformation X B, O where 21’22 are nonsingular

X
~ I\J'N ~ E,
}d 2 BRL

matrices of order p and gq respectively, and E is orthogonal. In the
real case, sufficient conditions on the procedure for the power function to
be a monotonically increasing function of each of the parameters, for (i)
are obtained by Anderson and Das Gupta {2]; for (ii), by Das Gupta, Anderson

and Madholkar [3]; and for (iii) by Anderson and Das Gupta [1]. Furthermore,

£
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for (ii) and (iii) Mudholkar [¥] has shown that the power functions of the
members of a class of invariant tests based on statistics, which are symmetric
gauge functions of increasing convex functions of the maximal invariants, are
monotone increasing functions of the relevant noncentrality parameters. The
monotonicity of the power function of Roy's test has been shown by Roy and
Mikhail 17,12 ].Further, Pillai and Jayachandran, [9],00}, have carried out
exact power function comparisons for these tests based on four criteria for
the.two-roots case,

In this paper, in addition to extending the sbove results to the complex
case, the monotonicity of the power of Pillais V(p) eriterion with respect
to each population root has been shown for the first time for (ii) and (iii).
In fact, for (ii) and (iii) the monotonicity property of power of elementary
symmetricdd. fﬁnction of the ch. roots in the range zero to unity with respect
to each population parameter has been shown. In Section 2, we derive some
distributions in the complex case and in Section 3, prove a lemma, which helps
to extend to the complex case, some results on econvex sets iﬁ the real case.
In Sectiomsh,5, and 6 are briefly stated the theorems which can be pro&ed
from the real case with necessary changes, while in Section 7 for tests
(i), (ii) and (iii), Pillai's V(p)criterion is shown to have monotonicity
property with respect to each population root, and finally, in Section 8
follows a discussion of special cases of tests: the likelihood-ratio test;

Roy's maximum root test; and Hotelling's trace test for (i), (ii) and (iii).

by
2. Introduction and notations. Matrices will be denotedAbold face capital

letters, and their dimensions will be indicated parenthetically. The pxp
identity matrix will be denoted by Ep and zero matrix by O. The complex
conjugate of a matrix A will be denoted by A  and the conjugate transpose

by A'. The notation dA denotes the volume element associated with A.

o~
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E’(pxn) will denote a semi-unitary métrix s wWhere E’Ut'= Ip fbr- p<n or
E'E= I, for n<p, and H(nxn) is unitary matrix if .\UE" :I:J"'E = I. The
characteristic (ch.) roots of A will be denoted by ch[ﬁ] and Chj[ﬁ-—“
denotes the jth ordered characteristic root of 'Ii if :li has real roots.

Let E' = (Zl,....,ZP) be a p-variate complex normal random variable
~such that the vector of real and imaginary parts 'E'= (Xl,Yl,~..-. ’XP,YP) is
2p=variate normal distributed, where Zj= Xj+ i Yj J = lyewssps Then the
distribution of £ was found by Wooding {13] and Goodman [4] and is given by

~

-1 . Tl
(1) B =p(s) =Pzl o EVEEY

where : = E[E] and E = Ei_:, (pxp) 1is a positive definite hermitian matrix.

Now let E(pxn) be a complex random matrix whose columns are independently
distributed, each distributed as (2.1). Then the distribution of E, is given
by, 43, 51, |

-1 -
(2.2) p(z55,0) = PP 5|0 T 2 (Zop) Zp)'

where p = E[2] is a matrix of pn complex parameters. In the more general

case, Z(pxn) can be assumed to be distributed as

-1 Sa—
(2.3) p(Z;5,n) = w PR |5 72 (E"L"f,)(f'&)

~

where A is a known mxn matrix of rank r [assume T < min(m,n-p)]and

~

I'F
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is a pxm matrix of unknown parameters. If p = 0, (2.2) and (2.3) reduce to

lz-z.

(2.4) p(z;5,n) = 20 |37 et L

For later use, we use the same techniques as those in Roy's [11] to

derive some distributions. Transform

~t

'~

Almxn) = (1) U; (pxn)
~mxn) T, Uy (zxn

where ’;Ill(xxr) is nonsingular, T, is (m-¥)Xr metrix, and U, isa

h d

semi-unitary, i.e. ‘6(]5]' = E_r' Let Yz((n-r)Xn) be the completion of H,l

Then make the unitary transformation A = Z(ﬁ]'.ﬁg') = (¢ ’.’{.2) say i.e.

U,

Z=g U+ 2,0, where ( ispxr and 2, is px(n-r) matrix.

~2
Making unitary transformation again ,A.l = ’%(\:]"vg') = (ZJJEB) say where

is sxr , v, is (r-s)xr, 2. is pxs and Z, is px(r-s) matrix

o | ~3 ~1 ~3
e !
respectively, and (V ) is unitary, then
- ~3
Cehut By
- i
Similarly put p, (pxs) = p()V! , wy(px(r-s)) = p(3")vy, then we have

(2.5) p<§l’§2’,%3) = "-pTE‘,-n

expl-tr T2y mp) By )+ 22 (Bgmpa) (Bp-ia) 1.



Put  pypy =

where El((P-t)xt), Ez(txt),

~~

W= <~l) D, (txt) (F1E3), and Z(pxp) =

~

)

£, € Flgl _
AN A2\ eE
25 NS5

£, ((p=6)x(0-1)), and g, (tx(p-t)); and § and

€, are nonsingular; and De denotes the diagonal matrix with ch. roots
8,2 -er 20, of El as its dlagonal elements, and t=min (p,s).
(1)
ol 5 )
Put Py = ( ,wfe ¢ (txs) where ¢ is determined by
52
-1 -1 (2) pot’ - . .
w=0D E n and © o' = I, and complete of{sxt) into a unitary
matrix §'(sxs). Finally, let
-1 - w1 '
5t = =
S L=y, 5 LW

From (2.5) we obtain

n-p(n-r+s)

(2.6) p(V.w) =

SDU

D, (pxp) =
where Dy PXp) =

1)
1o 1o

zero matrix.

Ir v=

;~P(n-r+s)

(2.7)  p(yW) =

and

(ij) J=lyeeesPs;

exp{—tr(WW'+VV' - 2Re VD ,.Je +D )}

O .

and 9

k=l,...,S, then (2.6) can be rewritten

t

expfs trWW' ZJ (V .= 92)(
J=1

b

E; V..V,
JJ J4d
J=t+1

v, —62)
JJ J

) D

j=1 k=1

4k

is (s-t)x{p-t)
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3. Tests of multivariate linear hypothesis. Let random complex matrix Z(pxn)
have density (2.3) and we wish to test the hypothesis Hy: pC = gﬂpxs)
where C is a known mxs matrix of rank s(<r) such that uC is estimable,

against all alternatives. By Section 2, this problem can be transformed into

the canonical form

z = (2, (pxs), 2,(px(n-r)), 53(pX(r-S))), s <r <n-p

with expectations.

E(z,] = E.l(pXS), EZ,1 = g(pX(n-r)), E[ES] = ga(px(r-s))-

The hypothesis Ho is equivalent to the hypothesis By = O(pxs). The matrices

of sums of products due to hypothesis and due to error are given by

Eh = Eigi and Ee = Ezgé respectively. The problem is invariant under the

transformation

where B is nonsingular and

B 21’22 and E3 are unitary matrices. These

. . -1
invariant test procedures depend on Cl.z 1es > Cp, the ch. roots of Ehge R

and it is known 5] that the power function of any such test depends on the

parameters el""’et ‘where el Zees > Gt are the possible nonzero ch.
-— -] .
roots of p]uig and t=min(p,s).

Lemma 3-1. Let ’S' = (Zl,.o.,Zp) and Il' = (Xl’Yl’.'.,Xp’YP) where

Zj= X+ 1Y, J=1,...,p, and let T be a one-one transformation between

J J



% and 1 such that T[g'] = 1| with the following properties:

(1) 7{g;+ §,1 = TME;1 + 75,1 and
(2) T[ag‘; = aT[E] where a is a real number.

Let @ be a subset of E's in p-dimensional complex sample space CP; and

~

w¥ be its corresponding subset of T's in the 2p-dimensional real sample

D
space Rgp. If @ is convex in C  and symmetric in 5' Then ¥ is
. 2p . .
convex in R and symmetric in n and conversely.

Proof: Let T ,7,c &* then T[] =§ for some § e w, k=12,

x
Since W is convex in CP, hence aS»f (l-cf)seeco, O0<ao<l, and

Tlog, + (1-0!)523 ew* d.e. of)+ (l-ot)112 co¥. This shows w* is convex in R°P.
* * *
Let w_ be the set of all -ﬂ such that Tew. If any =Tewy then

* -
Tew and T l['ﬂ] = £ for some Eew. Since o is symmetric in g, hence
w=y_, where w_ is a set of all ~§ for which &ew, implies -;veu, and
* * * *
then T[-£] e , i.e. =lew . Therefore ¢;_C® . Using the same argument,
* *

*
we can show w.Pw and hence © = 0.

Similarly for the converse.

Theorem 3,1. Let the random complex vectors :;{j (3=15+..,8) and the complex

matrix 9] be mutually independent, the distribution of Ej being N(ﬂ‘jﬁj"ij)

J=lseces8. If a set © in the sample space is convex and symmetric in each
S.j given the other g 's and ¢. Then Pr(v) decreases with respect to
each 4, (> 0).
: o= syeee . d".= Y. Lseee X L,Y . ) where
Proof: Let ks (zlJ, ,ZPJ) and T} (xla, 1370 %oy PJ)
*
.ij= ij+ i ij k=lyeeesP; J=lsese,s and let w be the corresponding
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: *
set of @ in the sample space RZP.. Then by Lemma 3.1 we khow that is

convex and symmetric in each 33.. Denote

9 =w (g '8, b¥, b=l,...,85 @} and
¥* *
§ =w {BJ l;nh h%j: h=l,...,s; ’}E:X}

where o = }\(1 + i I Since the E,J-'S - and @ are mutually independent, hence
the ﬂj's and X and Y are mutually independent (but X and Y are not independent).

Define P, (Pﬁ) to be the density of N(o,i\:J) at EJ Then by Theorem 1 of [37, we havg

% ' *
. .+ 2.'. s} . >j‘ . .+ 2.0, d . Where O<Z. <E. '. = s9ese .
IQ*pJ-(ﬂJ 55790 2 | Pyt 4589, Shy sty = Dygoeeeavyg)s

s3vessO_.sf ) k=lyeeesP; j=lyess,s. But

v, , = + i . and (' = .
kg = Y%t T Byj 5 (0’13’513 pi’Fpi

A8+ L.v.)d .=[- n+0.C. .
, JQPJ(,S_’J Zax.]) 85 -‘J,,g*pJ'( 5*/;;53)‘13;, and f

i

.( +00v.)4E = p (M441¢)dT, b
ijij 3% S:}“Jﬁ*pj 113' J-,Q,J- 12 hence

A
DA

*
(3.1) | J‘:QPj(gjfzjxj)dEj P J;gpj(sj"" "‘."j A )dg,j.

Multiplying both sides of inequality (3.1) by the joint density of the
temporarily fixed variables and integrating with respect to them we obtain
* * ]
Pr{wlﬂl,..q,,@j,..-,,@s}ZPr{m‘ﬂ,l,...,,ﬁj,...,,f’,S} for Oszj Sﬂ,j and any Eh S
(bt3).

Theorem 3.2. If the acceptance region of an invariant test is convex in the space
' (see equation (2.6))
of each./celumn vector of V for eech set of fixed values of W and of the other

column vectors of V,-then the power of the test increases monotonically in each GJ..

The proof of the above theorem is asstraight forward as [3].

Corollary 3.,.'_L* If the acceptance region of an invariant test is convex in

V for each fixed W ,then the power of the test increases monotonically in

each 6..
Jd



Lemma 3.2. For any hermitian matrix H(nxn) the region
8 = {A(mxs) | ch [AR'H] <)

is convex in A.
Cacd

Proof: Since the Cauchy~Schwarz inequality is also valid for complex
vectors, hence the proof is asstraight forward as Lemma 1 of [3].

Corollary 3.2, The maximum root test of Roy, the acceptance region of which

is given by
3 =y =1
ch, [(VW') (') <2,

has a power function which is monotonically increasing in each ej.

The proof of the above corollary follows from Corollary 3.1 and Lemma

3.2.

Let ¢, > ¢o0 > c, be the ch, roots of ng')(wﬁ’)"l, and dj= l+cj

1
(§=1seeesp)s Let Q, be the sum of all different products of dl,...,dP

taken k (k=l,...,p) at a time. Consider a complex matrix 2prn)=(yi,...,yh)

where g&'s are the column vectors of 'M. Define Qk(M) as the sum of all

k-=rowed principal minors of M@' +‘Ep, or equivalently as the sum of all

different products of ch., roots of ‘M@' + Ep taken k at a time,

P
Theorem 3.3, An invariant test having acceptance region ¥ aka.S)\(ak's'Z 0)
k=1

has a power function which is monotoniecally increasing in each ej.

The proof of Theorem 3.3 is analogous to that of Theorem 4 in [3].
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In the real case, Das Gupta, Anderson and Mudholkar (3] have given
another sufficient condition on the acceptance region. The same is true for
the complex case, we only state the corresponding theorem, because the
proof is quite similar in [3] with minor changes.

Theorem 3.4t. For each j (j=1,...,8) and for each set of fixed values of V,.'s

* * *
(k*ﬁ) and ;ﬂ, Suppose there exists a unitary transformation: 25* Eyﬁfzﬁ=(vlj”"’vbj)'

: x, *
such that the region w5 (Vj) is transformed into the region wJ(Yﬁ) which

' *, %
has the following property: Any section of “ﬁ(vj) for fixed values of
* *
sz (24k) is ab region symmetric about ij = O, Then the power function
of the test, having the acceptance region ®, monotonically increases in

‘each 0..
J

4, Tests of independence between two sets of variates. Consider a

(p+q)x(n+l) complex random matrix Z, (p<a, P 5 n+l) whose column vectors
Ed‘s (3=1,...,0+1) are independently distributed as a (p+q)-variate complex
normal distribution N(v,T) where Z((p+q)x(p+q)) is positive definite

hermitian and be partitioned as follows:

i1 Zip

—

o Zp

\ A\ \
15 18 ts ,
where Z)) W\ (Pxp), I, AWha (Pxa) and I, K\ (@a). mafrrces

Consider the problem of testing the hypothesis

Byt Z, =0 (pxq)
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against all alternatives. Let the sample covariance metrix be S which is

similarly partitioned as

S S

~l1l A2
E =
Qr
B2 Soo
_ 2 n+l
where n § = Z2'- (n+l) 2 Z and '% =g ZJ/ (n+1). This problem is
J=
invariant under transformations
3 9 .
Z - ZzZU Z.=Z.,+Db J=lsseesntl,
~ ~

where 31 and ']}2 are nonsingular matrices of order p and q respectively,

and E is unitary. A test procedure which is invariant under these transfor-

. 2 2 -1 -1 -,
mations depends only on the ch., roots ry 2 ees > 1:-p of .§all §.12 §22 312:
For convenience let us denote e 3 = rg (3=1,+v.5p). The power function of

2 2 -1 ~1l =,
Py 2 eee 2Py OF Iy Zo Tpo T
which are the squares of the possible nonzero population canonical correlation

A -1 = .
coefficients [5]. The distribution of the ch [Sll 12 §22 12] is the same

as the distribution of the ch [(gg )" (E,Q')(,Q,Q, ) (’I,:,i )] vhere the density

such g test depends only on the ch. roots

of the matrices 5(pxn) = ('{;jk) and C(qxn) = (Cdk) can be given in the form

b
-(p+q)n o (l_p2_)"n
=1 7

o

p n | 4 n
.exp{le(l-pi)'l Ztgjkgjf gjk?;jk- 2ije(§jkEjk)3_z 2 cjkzjk}’
j=

k=1 J=k+1 k=1



or

1) oo g (1-p§)‘n

j=1
D n q n
24=1 Y% . - g -
=1 k=1 =1 k=1

and Ho holds if and anly if P1™ eee = pp= o.

From (4.1) we find that given E,: the column vectors Sj's of 5, are
independently distributed each according to a p-variate complex normal
distribution with covariance matrix R which is a diagonal matrix with
diagonal elements l-pi,. .e ,l—pla). The marginal distribution of E, does
not depend on pj's. Moreover, the conditional expectation of § given

g is E[g’t‘;‘] = A where ’él(pxq) = (A0) and 4 is the diagonal matrix

with diagonal elements p:L seee ,pp.

Define 5= (£ )(¢C! )-l(gg')

5= () = (LN HE.

~r~

If e is the jth largest root of () HET W) HE! ), then ej(l-ej)-l
is the jth largest root of 5&; 1. Thus the class of test procedures based
on the ch[(g:g' )-1(§§,>(QE,)-1(§,)] is the same as the class of test pro-
cedures based on the ch [§ S'l]. Let

V(pxq) = BEF, W(px(n-q)) = BEG

where B(pxp) is nonsingular, and F(nxq) and g(nx(n-q)) are such that
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= == _— -
EoeT(@) @ -5 -T@ e
Then the roots of §h§;l are the same as the roots of (W')(ﬂ') .

The matrices E,}i and G can be found to use the methods in Section 2,

such that the conditional density of V=(ij) and W = (wjk) given { is

P P aq
"Pn . "' -, Y“-. —
(4.2) w exp {-tr(ﬂwv ) -jz‘l(vjj- Tj)(vjj— Tj) -z /) vjkvjk}
=1 k=1
itk

where 72 Z e > Ti are the ch. roots of &E’R-l.

Theorem 4.1, An invariant test for which the acceptance region is convex

in each column vector of V for each fixed W and fixed values of the other

column vectors of V has a power function which is monotonically ine

creasing in each pJ..

The prdof of the above theorem is similar to that of Anderson and
Das Gupta [1] with necessary changes.

Let ¢ > ... > ¢  be the roots of (W')(@')'l. Then c,= ej(l-ej)-l.

- *
Thus the relation ey < A 1is equivalent to the relation ¢y < A(1-2) L. A

(say). Let dj = l+c:I (§=l,...5p) and let Q, be the sum of all different
products of dl""’dp teaken k at a time (k=l,...,p). In particular,

p
=1

(1-e,)"t,
j=r Y



ik

The following theorem is obtained from Section 3 and Theorem 4.1,

P
Theorem 4.2, A test having the acceptance region ¥ anj.S A (aj's > 0)

J=1

has a power function which is monotonically increasing in each pj.

5. Symmetric gauge functions and convex functions of matrices. A real

valued function
¥(@) = tlap,.ena)

on the p-dimensional space of p-tuples of real numbers is said to be a gauge
function if

(1) @(al,...,ap) > 0 with equality if and only if 4= wee = A= 0.

(2) ¢(cal,...,cap) = !c!w(al,...,ap) for any real number c.
(3) \l'(al"’ bl}'°‘)a'p+ bp) 5 ‘h(al"“aap) + ‘_l’(bl,---,bp)-

¥(G) is said to be a symmetric gauge function if, in addition to (1),

(2) and (3), it also satisfies

P Jp p

{4) ¢(elajl,...,e a, ) = W(al,...,ap) wherg €=t 1 for all j and Jyseeesd
is a permutation of 1,...,p.

Let éﬂpxn))p < n be a complex matrix, then ézf is hermitian and all
its c¢h. roots are non-negative. Let oy 2 eee 2 ap be its ordered roots.
For any increasing convex function f on the positive half of the real line

and any symmetric gauge function ¢ of p variables, define

“,é‘ ll{!,f = ‘]lf(f(a%-)n ..,f(cy;%-)),



15

Theorem 5.1. |‘A!!¢ ¢ 1is a convex function of A
~t g, ~a

The proof is analogous to Theorem 4 of [8] with minor changes.

Let ¢ 2 ... 2 e, be the ch. roots of §h§;l in Section 3 and let
S:@(cl,...,cp) be a region in the space of CpanersCy
Theorem 5.2, The power function of an invariant test, which accepts the

L Y
general multivariate linear hypothesis over ®: w(f(ai),...,f(ag)) <,

where V{,f and A are, respectively a symmetric gauge function of p
variables, an increasing convex function on the positive half of the real
line and a constant determined by the significance level of the test, is a
monotonically increasing function in each ej.

The proof follows that of Theorem 5 of [8) with necessary changes.

Now let e, > ... 2> e, be the ch. roots of (gg;')'l(gg;')(gg:')‘l(gg')

in Section 5, and let cj e‘_j(l-ezj)-l J=ly.eesP. Then we have, in view
of Theorem 4.1, the following:

Theorem 5.3. The power of an invariant test which accepts the independence
hypothesis over 8, increases monotonically in each population canonieal

correlation coefficient Py (3=LseeesD)e

6. Tests of theeguality of two covariance matrices. Samples of size Nl

and N, are drawn from N(Xl,gl) and N(!Q’Zé) respectively, where

N(vj,E ) j=1,2 are (2.1). On the basis of these data we wish to test

the null hypothesis:

Hd: Eﬁ =‘E?

Since the null hypothesis is invariant under the transformations

. ™ BE. + Db, j=1,2
EJJ -§uJ ~j =2
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where Ed are distributed as (2.1) and B is any non-singular matrix and
2& and 22 are any vectors. As in the real case, it is known [5] that the
power of any invariant test depends on the parameters only through the ch.

roots vy > e E'Yp of ELEQl. The null hypothesis can then be restated
as
HO: Yq T eee = YP =1
In this paper we consider the following alternatives
S P
H = . >
Hl' 'yj_l J=lye..,P El«(j P
or
% _ P
Hl: 'Yj 5 l J—l,llt,p E'YJ. < P

J=1

Consider only the problem of testing Ho against Hl (for HO against
*
Hl, we consider the test procedures having the above acceptance regions as
»
rejection regions, then the power of such a test will decrease as each

ordered root of EﬁEEl increase. )

Theorem 6.1. Let Z{p¥n), p <n, be a complex random matrix having density

(2.4) and 1let cllz cee 2 cp be the ch. roots of EZ' and © be a set in

the space of cl,...,cp such that when a point (cl,...,cp) is in ® so is
. * * * . .

every point (cl,...,cp) for ey < e (3=1,...,p). Then the probability

of the set ® depends on % only through ch Lg] and is a monotonically

decreasing function of each of the ch. roots of X,

Theorem 6.2. Let Z, and Z, are independently distributed as (2.4) i.e.

p(Z&’El’nl) and P(EQBEé’nz) respectively, and let w be a set in the
A 7iy™

space of ch. roots of (Zlgl)(geze)

satisfying the condition stated in Theorem 6.1. Then the probability of ©

[here also called the cj‘s]
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depends on Z. and §, only through ch % Z_l], and is a monotonically
<1 ~2 12
decreasing function of each of the ch. roots of Zﬁzg%

The proof of the above two theorems are analogous to those of Theorem
1 and 2 in [2] with necessary changes.

Corollary 6.1, If an invariant test has an acceptance region such that if

- - I - % * * Y
(cl,...,cp) is in the region, so is (cl,...,cp) for ey < ey (3=1seevsD)s
then the power of the test is a monotonically increasing function of each

Yj‘

Corollary 6.2, If g(cl,...,cp) is monotonically increasing in each of the
arguments, a test with acceptance region g(cl,...,cp).f A has a monotonically

increasing power function in each ;e

T. Pillai's V(p) test. Pillai and Jayachandran, [ 9], [¥), have carried
9

out ezmact power function comparisons for tests (i) to ( iii) based on four

criteria for the two-rpots case. Now we show that the power function of V(p)

test is monotonically increasing in each of the parameters. First we prove
the following lemma:

Lemma 7.1, For any hermitian matrix H(nxn), the region Q=£§(nxm)‘tr[@§§'l§1§ A}
is convex in K,

Proof. Let H=T'T vwhere T is an nxn matrix, and let k

~

> >
1 2 eee 2 kn be

n
the ch. roots of (KE')H then tr[(KK’)EJ =7y kj‘ Further let K, ,K,ef
J=1

and K = a51+(l-cz)'}§2 for 0 <« < 1. Then

n n
Tk <n ma T e,
Jd - ~ Jd

j=1 j=1
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where k('o‘) ...,kr(lm are the ch. roots of (K )H, 2=1,2, Now

o ()] = tr[TKE'T']

tr{T{ok + (1ma) K, oK)+ (1-c) X }T ]

i

2 G 2 et Trm
trio TR KT + (L=¢s) TR KA + 2c(1-er) ReTK, K'T']

n
<d ;; (l)+ (1- )2 31 ) 20 (1) k§2)
j=1 571

]

{oz( 21«:( ))2 + (lea) (Ek(a))e}

=1 j=

IA
P

Thus Ke9.

For V(p) criterion, the acceptance regions for (i) to (iii) are I e, <A
J=1

- D
where e. = ¢, (l+c.) 1. For test (i), since I e, = Z ——1— and the
gl j=1 9 =1 1%

latter is a monotonically increasing function in each cj, hence the power
function of such test is monotonically increasing in each of parameters,
guarénteed by Corollary 6.2. As for (ii) and (iii), monotonicity property
guaranteed by Lemma 7.1 and Corollary 3.1, It is also guaranteed by the
following theorem:

Let Q; be the sum of all different products of el,...,ep taken

k(k=1,...,p) at a time. Consider a matrix .M(pxn)=(y1,...,y%) where g%'s
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are the column vectors of M. Define Q:(M) as the sum of all k-rowed
prineipal minors of M@‘, or equivalently as the sum of all different
products of the roots of 2@@' taken k at a time.

Lemma 7.2. For any j and k (j=l,...sh; k=1,...,p) and for y&'s fixed,

243, Q;(g) is a positive definite hermitian form in g% plus a constant.
The proof is similar to that of Lemma 2 of [3], except that in the pre-

sent case the matrix B of [3] does not have a second term (which is an

identity matrix in their proof.)

Theorem 7.1l. An invariant test having acceptance region gl aszpf A

(ak's > 0) has a power function which is monotonically iﬁi;easing in each

of the parameters.

The proof is analogous to Theorem 4 of [3].

8. Remarks. The following discussion of special cases of tests generalizes
to the complex case, the results of previous authors in the real case.
(I) The likelihood-ratio test for (ii) and (iii) has the acceptance regions

of the form
1Y
iy (l+cj) S\

The power function of such test is monotonically increasing in each of the
parameters, for (ii) guaranteed by Theorem 3.3, and for (iii) by Theorem k.2,
However, for test (i), it is very difficult to investigate tests with rea-
sonable power against all alternatives, because the acceptance region of

such a test is

n.+n
(l+cj) 172

D

g(cl" e ’cp) = ‘I—Il
J—

C.

J
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and g(cl,...,cp) is an increasing function of cl,...,cp or not, depending

on the values of sample sizes n, and n,.

1
(II). For Roy's maximum root test, the acceptance regions for (i) to (iii)

are of the form

The power function of such test is monotonically increasing in each of the
parameters, for (i) guaranteed by Corollary 6.2; for (ii) and (iii) by
Corollary 3.2.

(111). Fér Hotelling's trace test, the acceptance regions for (i) to (iii)

are of the form

The power function of such test is monotonically increasing in each of the
parameters, for (i) guaranteed by Corollary 6.2; for (ii) by Theorem 3.3

and for (iii) by Theorem 4.2.
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