ENTROPY OF FIRST RETURN PARTITIONS OF A MARKOV CHAIN

Ъу

E. M. Klimko and James Yackel*

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series No. 175

December 1968

^{*}The work of the second author was supported in part by National Science Foundation Grant GP7631.

ENTROPY OF FIRST RETURN PARTITIONS OF A MARKOV CHAIN

by

E. M. Klimko and James Yackel *

Abstract

We consider the first return time distributions for each state in a Markov chain and show that finiteness of entropy of these distributions is a class property for both recurrent and transient classes.

1. Introduction.

In this note, we answer affirmatively the question raised in [2] concerning the finiteness of entropy for the first return time distributions of Markov chains as a class property. The interest of our result lies in the null recurrent and transient classes since it is known that the finite mean return time of a positive recurrent state implies that the first return distribution has finite entropy. On the other hand, it is easy to construct Markov chains whose first return distribution to a given state has infinite entropy; indeed, it is possible to construct a chain with any given first return distribution to a fixed state, c.f. [1] p. 64.

In section 2, we derive some bounds on entropy which are applied in section 3 to prove our probabilistic result.

^{*}The work of the second author was supported in part by National Science Foundation Grant GP 7631.

2. Preliminaries.

Let (Ω, R, μ) be a σ -finite measure space. To a partition $C = \{A_i\}_{i=0}^{\infty}$ of a set A, $\mu(A) < \infty$, is associated a sequence $f = \{f_i\}_{i=0}^{\infty}$ with $f_i = \mu(A_i)$ $i = 0, 1, \cdots$. The entropy of f is the entropy of G

(1)
$$H(f) = H(G) = -\sum_{i=1}^{\infty} f_i \log f_i$$
.

(The base of the logarithm is usually taken to be 2; 0 log 0 = 0; there are no difficulties in definition (1) since at most a finite number of terms can be negative). The norm $|f| = \sum f_i$; the convolution of f and g is f*g, i.e., $(f*g)_n = \sum_{i=0}^n f_{n-i}g_i$ and f^{*k} is the k-fold convolution of f with itself.

Lemma 1. Let f, g be sequences. Then there is a constant C, depending only on |f|, |g| and the base of the logarithm such that

(2)
$$\text{Max}(H(f), H(g)) - C < H(f + g) < H(f) + h(g),$$

in particular

 $H(f+g)<\infty$ if and only if $H(f)<\infty$ and $H(g)<\infty$.

<u>Proof.</u> The function - $\log x$ is decreasing and - $x \log x$ is increasing for $x \in [0, 1/e]$. For each n,

$$-(f_{n} + g_{n}) \log (f_{n} + g_{n}) = -f_{n} \log (f_{n} + g_{n}) - g_{n} \log (f_{n} + g_{n})$$

$$\leq -f_{n} \log f_{n} - g_{n} \log g_{n},$$

while for n sufficiently large, $f_n + g_n \in [0, 1/e]$ and

-
$$\max (f_n, g_n) \log \max (f_n, g_n) \le - (f_n + g_n) \log (f_n + g_n).$$

Lemma 2. If f and g are sequences, then

(3)
$$\max (f_{i_0} H(g), g_{j_0} H(f)) - C \le H(f*g) \le |f|H(g) + |g|H(f).$$

where f_{i_0} , g_{j_0} are arbitrary non zero elements of f, g. In particular, we conclude $H(f*g)<\infty$ if and only if $H(f)<\infty$ and $H(g)<\infty$.

Proof. By the monotonicity of the loagrithm function,

$$H(f*g) = -\sum_{n=0}^{\infty} (\sum_{i=0}^{n} f_{i}g_{n-i}) \log (\sum_{i=0}^{n} f_{i}g_{n-i})$$

$$\leq \sum_{n=0}^{\infty} (\sum_{i=0}^{n} f_{i}g_{n-i}\log f_{i}g_{n-i}).$$

Now interchanging the order of summation yields

$$-\sum_{i=0}^{\infty}\sum_{n=i}^{\infty}f_{i}g_{n-i} (\log f_{i} + \log g_{n-i}) = |g| H(f) + |f|H(g).$$

The lower bound is obtained by noting that for i_0 , n sufficiently large.

$$- \left(\sum_{i=0}^{n} f_{i} g_{n-i} \right) \log \left(\sum_{i=0}^{n} f_{i} g_{n-i} \right) \ge - f_{i_{0}} g_{n-i_{0}} \log f_{i_{0}} g_{n-i_{0}}$$

$$\ge - f_{i_{0}} g_{n-i_{0}} \log g_{n-i_{0}}$$

which summed on n gives us $f_0H(g) - C$. We similarly can obtain a bound involving H(f).

Lemma 3. If we consider the k-fold convolution of f, f*k, then

(4)
$$H(f^{*k}) \leq k|f|^{k-1}H(f).$$

<u>Proof.</u> We prove (4) by induction, noting that for k=1 we have equality.

If (4) holds for some positive integer k, it follows from Lemma 2 that

$$H(f^{*(k+1)}) = H(f*f^{*k}) \le |f^{*k}|H(f) + |f|H(f^{*k})$$

= (k+1) |f|^kH(f).

Lemma 4. If |f| < 1, then $H(f) < \infty$ implies

$$H\left(\sum_{k=0}^{\infty} f^{*k}\right) \leq \frac{H(f)}{(1-|f|)^2} < \infty .$$

<u>Proof.</u> The result follows from (2), (4) and $\sum ka^{k-1} = (1-a)^{-2}$.

3. Main Result.

We now apply the preceeding lemmas to obtain the following proposition.

(We follow the standard notation and terminology of [1]).

<u>Proposition</u>. The finiteness of the entropy of first return distributions $f_{kk} = \{f^n_{kk}\}_{n=1}^{\infty} \text{ is a class property for Markov chains.}$

<u>Proof.</u> Let the states i and j communicate. It is easily verified probabilistically that for any two states h, k

$$f_{kk}^{n} = f_{kk}^{n} + (f_{kh} * f_{hk})(n) = f_{kk}^{n} + (f_{kh} * (f_{hh} * (f$$

If $H(f_{ii}) < \infty$, our lemmas imply that (i) $H(f_{ii}) < \infty$, (ii) $H(f_{ij}) < \infty$, (iii) $H(f_{ij}) < \infty$, (iii) $H(f_{ij}) < \infty$. Since i and j communicate, we assert that $|f_{ii}| < 1$. From Lemma 4 we conclude that

$$H(\sum_{m=0}^{\infty} j^{*m}) < \infty.$$

This together with (ii) and (iv) implies

$$H(jf_{ji} * (\sum_{m=0}^{\infty} f_{ii}^{*m}) * if_{ij}) < \infty,$$

which together with (iii) completes the proof.

References

- 1. Chung, K. L.: Markov Chains with Stationary Transition probabilities. Berlin-Heidelberg-New York: Springer, 1967.
- 2. Klimko, E. M. and Sucheston, Louis: On Convergence of Information in Spaces with Infinite Invariant measure. Z. Wahrscheinlichkeitstheorie verw. Geb. 10, 226-235 (1968).