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INTRODUCTION

The shortcomings of the classical tests of homogemeity, i.e., test-
ing the hypothesis of equality of parameters, have Inngibeen.knéwn. Ba-
hadur [2] was one of the earliest authors to recognize this and t; con-
tribute to the theory of the k-sample problems.. Given k populations
and from each population a fixed number of observations whose distribu-
tion depends on & parameter Qi, concluding thét all :Qi are-not equal
may not be sufficient. Many times the experimenter is interested in as-
sessing which population is associated with the largest (or irsma;llest) e,
which populations possess the t largest (or smallest) @, etc. These
questions may be formulated into multiple decision problems, and a more
realistic answer may be obtained if a ranking of the parameters is the
desired outcame as is often the case.

Suppose the experimenter is interested in identifying which one of
the k populations possess the largest ©. This populstion will be called
the ''best'' population. The parameter 6 may be, for example, the mean,
variance, some quantile, or some function of these parameters. There
have been two approaches 1".0 ranking and selection problems, the '‘'indif-
ference zone'' approach and the ''subset selection'' approach. In the
first a single population is chosen and is guaranteed to be the best with
probability P*, a given constant. However, some knowledge of the para-
meter space is assumed known a priori, e.g., the experimenter must be

able to guarantee that the largest parameter is separated from all other
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ranking perameters by a distance not less than d¥. This formulation is
due to Bechhofer,[B}. Other contributions to this problem are Bechhofer
‘and Sobel [9]; Bechhofer, Dunnett and Sobel [10]; Sobel and Huyett [61];
Chambers and Jarratt 11513 Barr and Rizvi [5)}; Eaton [21}; and Mehamunulu
[hl}. Selection procedures based on ranks (or scores) of observations
are studied in Ietmann [%0]; Puri and Puri [su].

The second approach assumes no & priori information‘about’the para-
meter space. A single population is not necessarily chosen; rathér a
subset of the given k populations is selected which is guaranteed to
contain the best population with probability FP¥, the basic probability
requirement in these procedures. In this sense the size of the selected
7 subset is a random variable. Among decision procedures which satisfy the
basic probability requirement, one which yields the smallesﬁ_qxpected size
of the selected subset is considered in some ways to be the mést desirable.
Other performance criteria for comparing decision procedures aré: expected
minimal rank, expected sum of ranks of the populations selected in the
subset, and the expected number of the non-best populations in the se- :
lected subset. This '‘subset selection'' formulation is due to Gupta
[24]. Contributions to this aspect of the problem are Seal (591, L60];
Gupta and Sobel [25], 126], L27]; Letmann [39]; Gupta [28], [30], [31]; "
Rizvi [55]; Barr and Rizvi [s5]; stuaden [62]; Gupte and Nagel [3312‘ Re-
cent application of the subset selection formulation to multivariate nor-
mal populations ﬁay.be found in Alem and Rizvi [l]; Gnanadesikan [22];
Gupta {32]; Gneedesikan and Gupta [23];’Gupta and Panchapakesan [3&];
Guptae and Studden [35]. Barlow and Gupta [3] and Barlow, Gupta and Pan-'

chapakesan [h] have considered the problem of selecting a subset containing
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the largest (smallest) quantile of a given order and a subset containing
the largest (smallest) mean. They assume the observations from each popu~
lation have a distribution which belongs té certain restricted families,
e.g., IFR distributions, IFRA distributions, etc. Distribution-free sub-
set selection procedures have been studied by Bartlett and Govindarajulu
[7]; Patterson L48]; Rizvi and sebel Ls6].

Multiple decision procedures have also been investigated from a Baye-
sian point of view. Work assuming an a priori distribution on the para-
meter space has been done by Dunnett [19]; Guttman and Tiao 136]; Deely
and Gupta [17]. Deely [16] uses an empirical Bayes approach to multiple
decision problems. He assumes only the existence of an a priori distri-
bution, the exact distribution itself remaining unknown, ana then uses
a decision theoretic framework with a specific loss structure to derive
procedures which minimize the Bayes risk.

The sequential and multistage aspects of the ranking and selection
problems have been explored by Bechhofer, Dunnett and Sobel [101; Bech-
hofer [ll]; Bechhofer and Blumenthal 112]; and Paulson [h9], [56], [511,
[52]. Nearly.all of this work in sequential and multistage procedures
has been through thé indifference zone approach. Bechhofer, Kiefer and
Sobel [13] in a recent monograph have considered sequential procedures
for selecting the best of k Koopman-Darmois populations, again using
an indifference zone approach. Barron [ 6] considers sequentisl proce-
dures from the subset selectién approach..

The present thesis deals with some nonrandomized distributioh-free
ranking and selection procedures using the subset selection approach.

The main problem is to select a subset of k glven populations which
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contains the ''best'!’ popuwlation with probability at least P¥. The ran-
dom variables associated with a fixed population are assumed to be inde-
pendent identically distributed with a continuous distribution funcfion
depending on a single parameter. This parameter is assumed to stochas-
tically order the k distribution functions, and the ''best'' popula-
tion is the stochastically largeét (smallest) populationf The procedures
presented depend on the individual 6bservations of a given populafion only
through the sum of their ranks in the combined sample. Procedures of this
nature are labeled ''nonrandomized rank sum procedures'' (NRSP). In other
words, one is not required to have at hand the actual observations from
each population; it suffices to have the rank of each observation in the
combined sample. In some preference type tests or lost data problems,
these ranks may be the only information available to an expéri;entér.

In eontrast, gandomized distribution-free ranking and selection proce-
dures depend on the individuel observations of a given population through
the sum of random functions of their Joint ranks. Typically these random
functions are ordered observations from some fixed distribution. These
procedures are also termed ''randomized rank sum procedures '’ (RRSP)t

The work of Bell and Doksum [lh] has facilitated some distribution prob-
lems associated with the RRSP. This is one reason why most of the liter-
ature on distribution-free procedures has been devoted to the randomized
procedures. However, these procedures are usually more cgmbersome to ap- -
Ply than the nonrandomized procedures indicated here. A more serious
drawback to the RRSP is that the chosen subset of populations is not uni-

quely defined by a given set of data, whereas the subset selected by the

| ndnrandomized procedure is uniquely determined.



Chapter I begins by considering two classes of selection rules de-
pending on a continuous, but otherwise arbitrary, distribution G. In
Section 1.2 a theorem is given showing that.the probability of a correct
selection, with any rule in these two classes, is a nondecreasing func-
tion in the largest parameter. The distribution € is then fixed to be
the uniform distribution over the unit interval, and two rules are singled
out for consideration. Examples are given where thejprobabiliﬁy of & cor-
. rect selection is a nondecreasing function of the largest two pa;ameters'
if they are equal, but not necessarily of the second largest paramgter
if it does not equal the largest. Upper and lower bounds for the proba-
bility of a correct selection are also given. Based on thesé bounds, a
theorem is given which provides a conservative method for obtaining the
constants needed to implement the rules under consideration.. :

Chapter II discusses the distribution theory associated witﬂ‘the
two distribution-free procedures under consideration. In Section 2.2
exact expressions are derived for the means, variances and covarlances
of the rank sums associated with each population. JIn Section 2.3 the
distribution of the maximum rank sum minus an individual rsnk sum is
considered. A recursion formula is developed to obtain the exact dis-
tribution when all populations are identically distributed, and the
exact results are shown to be in close agreement with asymptotic a#prox-
imations even for small sample sizes (and a small number of populationms).
Asymptotic expressions are given for the probability of a correct se-
lection and the expected size of the selected subset for a particular
selection :ule. In Section 2.4 the distribution of the maximum rank

sum divided by an individual rank sum is considered. For more than
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two populatiohs, all the results are of én asymptotic nature. Secti&h
2.5 gives the exact distribution of thermaximum rank product divided by
an individual rank product when the populations are identically distri-
buted.

Chapter III compares some performance characteristics of the two
procedures with those of possible competing procedures. In Section
3.2 the asymptotic relative efficiency (ARE) of the two distribu%}on-
free prbcedures relative to a normal means procedure is computed. In
Section 3.3 & similar comparison is made with Gupta's procedure for
gamma populations. In Section 3.4 two parametric procedures are de-
veloped for ranking gammsa populatiéns which differ only in their guaran-~
teed life time. In Section 3.5 these procedures are then compared with
distribution-free procedures (discussed earlier) under certain parameter
configurations. The final section contains some discussion of previous

results along with indications of future work and conjectures.



CHAFTER I

SOME DISTRIBUTION-FREE RANKING AND SELECTION PROCEDURES

1.1 Formulation-of Problem and Two Rules
Let ryseeem, be k(> 2) independent populations. The associated
- random variables xij’ j=l,...,ni, i=1l,...,k, are assumed independent and

to have a continuous distribution Fe (x) where Gi belong to some in-
: i

terval @ on the real line. Suppose Fe(x) is a stochastically increas-
ing (SI) family of distributions, i.e., if el is less than 92, then

F. (x) and F, (x) are distinct and F_ (x) <F, (x) for all x. BEx-
1 % & T8

amples of such families of distributions are: 1) any location parameter

¢

family, i.e., Fe(x) = F(x-6); 2) any scale parameter family, i.e.,
Fe(x) = F(x/8), @ > 0; 3) any family of distribution functions whose
densities possess the monotone likelihood ratio (or TP2) property. Im-

plications of such an ordering are discussed in Lehmann [38]. Let Riﬂ

. denote the rank of the observation xij in the combined sample, i.e.,

if there are exactly r observations less than xij then R,. = r+l.

id
These ranks are well-defined with probability one since the random vari-
ables are assumed to have a continuous distribution. Let 2(1) < 2(2)< ...
, k
< Z(N) denote an ordered sample of size N = I ng from any continuous
, {=1 -
distribution G. With each of the random variables Xij associate the

number ElZ(Rij)IG], and define
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(1.1.1) H, = n; Z E[Z(Rij)lG], i=1,.00,k.
j=1

The following two selection procedures, which choose a subset of

the k given populations, will be considered:

(1.1.2) Rl(G): Select m, iff H, > max _I-IJ.-d, i=l,...,k, 4 >0
1I<J<k R
(1.1.3) RQ(G): Select m irf Hi > c.l max Hj, i=1,...,k, ¢ > 1.
< j<k

The constants d and c are chosen so as to satisfy a certain probabil-
ity requirement which will be imposed on the selection procedgres. The
number of populations included in the selected subset is a rénd;m vari-
able which takes values 1 to k inclusive. ILet ell] < 9[2]5 ee o< e'.k]
denote the ordered ei. Let n(i) ‘be the (unknown) population which has
the pa?ameter 'eli]’ and let X(i)j’ j=l,...,n(i), be the observations
associated with ."(i)' Similerly define H(i) (unknown) to bg the quan-
tity computed in (l.l.l) based on the random variables x(i)J" The
''"best'' population is defined to'be "(k)’ the population with the larg-
est parameter. In case several populations possess the largest parameter,
one is tagged at random and called the ''best.'' A ''correct selection''
(CS)>is said to ocour if and only if the ''best'! population, say m(x)?
is included in the selected subset. The probability of making a correct

selection using any procedure R 1is denoted by P(CSIR). let



(1.1.4) Q={8=1(6;,-+.,8,): 8, € Q, 1= 1,.005K).

The 4 value defining the rule Rl(G) in (1.1.2) is the smallest non-
negative number such that the probability of a correct selection using
rule Rl(G) is never less than a specified comstant P*, ki< pr< 1,

for all 6 € Q, i.e.,
(1.1.5) inf P(CSIRl(G)) > Px,
. Q .

Similarly, the c¢ value defining rule R2(G) in (1.1.3) is the smallest
number not less than 1 such that (1.1.5) holds with Bl(G) replaced
by R2(G).

The corresponding rules for choosing a subset of the k pbpulations

which contains the population with the smallest parameter, say "(1)’ are:

(1.1.6) Ri(G): Select m, iff H,<min H.44', 3=l,...,k, d' >0
I i<k

(r.2.7) Ré(G): Select m, iff H.<c' min Hj, i=l,..a5k, €' > 1.

1 1< J< k

The constants d' and c¢' are obtained as before. No more considera-
tion will be given to these two rules; results and methods develcped for
Rl(G) and RQ(G) will have an obvious analogue for Bi{G) and Ré(G),

- respectively.
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1.2 Probability of a Correct Selection !

A. Monotonicity in e[k]

To find these 4 and c¢ values it is.essential to know the 6
configurations which minimize the P(cisi(G)), i=1,2. These config-
urations are partially specified in Theorem 1.2.1 which is obtained
after a few preliminary lemmas. The first of these follows simply from

Iehmanﬂ ([38], PE- 112, No. 1.1)' * . . [

Temma 1.2.1. Let Fe(x), 8 € ® be a SI family of distribution functions
on the real line. If ¥ is any nondecreasing (nonincreasing) function

of x, then EQ[Y(X)] is a nondecreasing (nonincreasing) function of 8.
By induction Lemma 1.2.2 is obtained.

Iemma 1.2.2. let Xl,...,X£ be independent‘identically distributed with
distribution Fe(x); 8 € @ a SI family of distribution functions on the
real line. ILet ? be a function of xl,...,xn which is nondecreasing

(nonincreasing) in each of its arguments. Then EG[Y(XI,...,Xn)] is a

nondecreasing (nonincreasing) fuhction of 6.

The following lemma is a siightly different version of Lemma 4.2 in

Mahamunulu [41] and Temma 2.1 in Alam and Rizvi {1].

Iemma ;.2-_3. I.et E = (xll,-c-,xlnl,ooo,xl{l,o--,&nl{) be a Vector- V&lued

k
random variable of X ni(zg) independent components with Xij having
© o i=1
the distribution Fg (x), 3=1,..05my5 11,000,k Suppose Fe(x) is a
i

SI family of distributions. Iet Y Dbe a function of XypseeesXypy 300ty
1

xkl,...,xk which, for any fixed i, is a nondecreasing (nonincreasing)



function of Xjy2+*+»X;, When the other components of x are held

- i

fixed. Then Ee[ ‘i’(z)] is a nondecreasing (nonincreasing) function of
e..

i

Proof. ILet 8 = (el,...,ei,...,ek), g"= (el,...,ei,..,,-ek') for some

fixed i, 1 <i <k. Suppose Y 1is nondecreasing in XiqreeesXs ) and
' i

8; = ei'. Let E* denote expectation with respect to the random vari-

ables xil’ cee ’xini while X

Eg[w(g)] = E[Egi(w(p]. By Lemma 1.2.2, Egilw(gg)] sggil‘yz(gﬁ, so

250 4 $ i, are held fixed. Then *

EQ[Y(K)] < E[Eg,(‘i’(&) ) = Ee.[‘i’(z)]. Similar arguments complete the
g 1 = .

proof if Y¥(X) is nonincreasing.

The parameter space has been designated by Q. Now define Q' cCQ

)
[

as

(1.2.1) _ Q' = {g € Q: 6 ,)= e[k-l]]'

Theorem 1.2.1. For i=1,2, Pe(CSIRi(G)) is a nondecreasing function of

e[k]. Hence
(172.2) ' igf Pg(cslni(e)) = 131: Pe_(cslai(c;)). .

Proof. Consider the rule Rl(G). A correct selection occurs if and only
if H( 2> max H(j)—d since 4 > 0. Let

k) 1< i kel
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k) 1< <x-1

¥(X)

0 otherwise.

let R(i)j be the rank of x(i)j, J=l,...,n(i), and consider an observa-

tion x(k)'c for some fixed g, 1< £< n( As x(k)£ increaeses and the

k)*®
other observations remain fixed, either: ' ' .

(1) x(k)z surpasses first an x(i)j’ ik, so R(k)£ increases by
1 and R(i)j decreases by 1.

(2) X(x)y SUrpasses first an X (i) 37 3ts, so R(k)z increases
by 1 and R(k)j decreases by 1.

3) x does not surpass any other observation, so all ranks re-

(k)e |

main the same. _ A

In all three cases, H(k) is nondecreasing and H(j}’ j%k, is nonincreas-

ing and hence so is max 'H(.). Therefore Y(z} is a nonflecreasing
1< J< k-1 MY

function of x(k)j’ J=l,...,n(k). By Iemms 1.2.3, EE!Y(K)]=22‘CblRl(G))
is a nondecreasing function of G{k]. A similar argument proves the re-

sult for R2(G) . n

9 1
Remarks: (1) If H. in (1.1.1) is redefined to be H¥ = n* ¥ Z(R, .)
—_— i i i 3=1 iJ
and rules R{(G) and RZ(G) are defined by (1.1.2) and (1.1.3) with H,

replaced by H?, i=l,...,k, then Theorem 1.2.1 holds with Ri(G) replaced
by R?(G). Thus, Theorem 1.2.1 is valid for randomized, as well as non-

randomized, rank sum procedures. (2) Let H in (1.1.1) be redefined
n
% -1 i
as Hﬁ = ni D h(xij)’ where h 1is any nondecreasing function such
) o1 ‘

‘that h(Xij) is independent of all the random variables except xij'
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Let R, (h) and R, (n) be defined by (1.1.2) and (1.1.3) whed H,
*¥

is replaced by Hi , i=ly.eey3ke Then the function Y(z) defined in

the proof of Theorem 1l.2.1 is nondecreasing in x(k)j’ j=l,...,n(k)

and also nonincreasing in X(i)j’ i=1,...,k-1, j=1,...,n(i). Hence

%R
inf Pe(CSIRi (n)), i=1,2, occurs in the subspace where all the para-
Q -—

meters are equal.

Of special interest in this thesis is the case where the same number

2
of observations are taken from each population and the distribution G

is the uniform distribution over the unit interval. Let n be the com-

mon sample size and define

n
(102-3) Ti = Z Rij, i=1,...,ko
5= | |

The quantity Ti- is the sum of ranks of the observations on the random
variables associated with population . Rules’ Rl(G) and RQ(G)

given by (1.1.2) and (1.1.3) now have the form:

(1.2.4) R, : Select m iff T, > max Tj-d, i=1,...,k, 4 > 0.
1< j<k _
(1.2.5) Ry Select m, iff T, > e max T., i=l,...,k, ¢ >l.
o 1K <k '

From Theorem 1.2.1, if k=2 the probability of a correct selection
using either rule Rl or rule R2 is minimized when the two popula-
tions are identically distributed. The same result is true in a slip-

page configuration, i.e., if e[l]= see = e[k_l] then the probability
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with each are associated two independent random variables denoted by
Xij’ J=1,2, i=1,2,3. let Xij have a uniform distribution over the
interval (C,Gi) where @ = [l,m) and e[l] = 1. The random variables
Xij can be ordered in 720 different ways, but interchanging random
variables from the same population has no effect on the rank sums.
Thus, in computing the probabilities of the various rank sum configura-
tions only 90 arrangements of the random variables must be conéidered

. s

and the probability of each of these arrangements is easily calculated.

By suitable summation of these probabilities, P(CS|R,)=P(T >max T,.\-d)

can be obtained as a function of 9 5] and 9[3] for 4=0,1,...,8.
Examination of these equations yields the following results:

(1) PQ(CSIRI) is a nondecreasing function in 9[3]. This is

il
1

guaranteed by Theorem 1.2.1. | "
(2) Ir o' = (91,92,93) with 6[,]= o[ 5]= 8', then Pe,(CSIRl)
is a nondecreasing function in  8°'.

_e_o = (l,l’l)o

(3) Hence inf P_(CS|R,) occurs at
o e .
Case 2: Suppose nl,n2,n3 are three independent populations and with

each are associated two independent random varisbles. Iet © = [O,@),

6[;]= 0 and Xij have the distribution F(x-ei) where
1- e-(x-e), x>9

P(x-8) = .

After carrying out the calculations indicated in case 1, the following

results are obtained:
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(1) -pg(CSIRl) is & nondecreasing function in 95"

(2) 1 o' = (91392,93) with €[ 1= @[ 4)= 6', then Pg.(CSIRl) '
is a nondecreasing function in 6°'.

= (0,0,0) .

(3) Hence igf Pg(CSIRl) ‘occurs at go

Case 3 Again consider three independent populations and with eagh as-
sociate two independent random varisbles. Iet Xi 3 J=1,2, i=1,2,3,

have the continuous distribution

f

o . ) X _<_ ei - €
a(x-8, +e)/2¢ y 8 ~e<xZ6,+e
(1.2.6) F(x-ei) = q s 6 telxg 91.+- 1-e

!
- +l+e *
ei+lesxseile

& , x20 +lte.

q+p(x-ei—l+e Y/ 2e

.

where 0 <p <1, p+g=l. It should be pointed out that the distribution
,(1.2.6') does not have MLR in x. The probability of & correct selection
will be computed for various parameter configurations. For the first

of these configurations choose the location parameters and ¢ so that

0=%1] “%a <93 =

(1.2‘.7) | e<9[2]-e <9[2] +e<9[3]- €<9[3]f€<1'€-

The following method provides a systematic way to calculate

P[T(3) 2 max T(j)-d] for 0 <d <8. Denote a sample outcome by
1< J<£3 ‘

. a(1)1 a(l)2, 3(2)13(2)2, -a(j)la(3)2, where

[N - S
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R F RN T PV
(1.2.8) a(i)j = »
1 ’ l+e[ﬂ-esx <l+9[i] + €

(1)5=
3=1,2, i=1,2,3. It follows from (1.2.6) that P[a‘.( i)j=0] =q and

Fla =1] = p- Thus for each sample outcome its probability aqd rank

(1)3
sums can be easily computed. Interchanging a( 1)1 with a(i)a has no
effect on the rank sums, so there are 27 sample outcomes to be noted.

A few of these are

Sample Probability T(1):7(2)"%(3)
00, 00,00 o 3,71
01,01,00 4q*p2 | 6,8, 7
11,11,01 , 2q p5

5:9, 7

“~

Now to obtain P(T(3) > max Tu)-d) for a fixed 4, merely sum_the
| 1< 4< 3 -

probabilities corresponding to & configuration which satisfies

> -d d > -d.
T(3) 2 %2y = F(3) 2 %)

The above choice of location parameters will be termed a Cl-
configuration. A Cz-configuration exists if 9[ 3] is reduced to coin-

cide with 9[2] . A C,-configuration exists if 9[ 3] remains fixed and

3
e[ o] is reduced to coincide with e[ 1]° A Ch-configuration exists if
both 6 3] and 6 o] &re reduced to coincide with 9 1] (= 0). Pictor-

ially the configurations are:
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C.: ) N 0

' €130 9 2] °3]
C.: ' {

SCTIES o219 3]
C,: i - ) B

3 9 50 T g
Ch:

o[ 1179 21=%3]=°

Let PC (CSIBl) represent the probability of a correct selection using
i

rule Rl when the location parameters are arranged according to config-
uration Ci- Then the following remarks hold: o "

(1) Pcl(cslnl) zrca(cslnl) _>_PC)+(CSIR1), 3=0,1,¢00,8.

(2) Pcs(CSIRl) zPCh(cslnl)", d=0,1,+04,8
(3) Pcl(CS|Rl) <P, (CSIRl), 30,1, +.+,8, @ } k.
3

(&) Pcl(CSIﬁl) >PC3(CSIR1), a =k

In this example, PQ‘CS|R1) is nondecreasing in 9[3], but not in 9[2}

for fixed 9[3].

C. Upper and Lower Bounds
Upper and lower bounds for the probability of a correct selection
can be obtained for rules Rl and R2 by making use of some elementary

inequalities. First consider rule Rl. Iet xij have a continuous



distribution Fg (x), J=1l,ee.»n, i=ly+0.,k. Then
i

1.2.9) P{cs|R,) = P(T > T,.\-d),
( ( I yl ( (k) ]{ngs k-1 ( ) )

where d is the smallest nonnegative integer so that

(1.2.10) inf P(CSIRl) > P,
Q

Now the rank sums satisfy the inegualities

k-1
i -1
(1.2.11) (k-1) le T(j) < ﬁxx k-lT(‘j) < n(2kn-n:+1!-);/2.

‘The second of these inequalities follows since T(j) is maximized when
it is the sum of the last n integers from 1 to (k-1)n. For con-

venience of notation, let

o} ] oy

(1.2.12) v(d,k,n) n(2kn-n+l)-d

=

(1.2.13) u(d,k,n) n(kn+1) - % (k-1)4 .

Using (1.2.11) in (1.2.9) ylelds

(1.2.1k) : P(T(k) >v) < P(cslnl) < P(T(k) > u),

anﬁ hence
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1.2.15 inf P(T >v) < inf P(C5|R,) < inf P(T, 4 > u).
( ) 19 ((k)—v -lQ (Il _vn ((k)—u

The infimum of the left and right hand probabilitiies in (1.2.15) can be
shown to‘be attained. when Q[l]= 9[2]= ves = GTk]. This follows directly
from Lemma 1.2.3 and by an argument similar to the proof of Theorem 1l.2.1.
Thus, P(CSIRl) is bounded below (and above) by a function which:in turn

. attains its minimum value when all parameters are equal, arnd the bound

is independent of the common 8-value and the underlying distribution F.
This lower bound is useful in the sense that it gives a conservative
method for determining the constant d +to implement rule Rl. This

is made more precise in the next theorem. Recal that'theiMann-whithey

U statistic is calculated using observations from two;indeﬁénﬁent (not
hecessarily'identically distributed) pqpulationé with sample sizes p
and q, say. Denoting thesé observations py xl""’%p’ and y‘l,...,yq
then U is the number of times an xg precedes a ij The distribu-
tion of the random variable U is well tabulated when the two popula-
tions are identically distributed. If 'I'x denotes the rank sum of

the x's in the combined sample, then U and Tx are related byd
(1.2.16) U+T =pq+3 p(p+l).

Theorem l.2.2. If U is the Mann-Whitney statistic aséociated with

sample sizes n and (k-1l)n from identically distributed populations,

then

(1.2.17) inf P(CSIRl) > pP(U < 4).
‘ Q
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Proof. From (1.2.15) and the remaiks foliowing those inequalities, all
that remains to be shown is [T(k) > vl ire lu < d]l when all pqpulé-
tions are identically distributed. But this is a direct conseguence of
(1.2.16) with p=n, g=(k-1)n.

Similar results also hold for rule R,. Inequalities (1.2.14) hold

2
“when Rl is replaced by R2 and v and u are replaced by v' and
]
u' where
(1.2.18) v'(e,k,n) = n(2kn-n+l)/2c,
(1.2.19) u'(e,k,n) = £ n(in+d)l e(k-1)41] 7L,
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CHAFTER II

DISTRIBUTION THEORY

2.1. &ntroduction

» In order to actually implement rules Rl and R2 defined b&
(1.2.4) and (1.2.5) it is necessary to obtain the appropriate constants
which will guarantee the basic P* condition. The main objective of this
chapter is to present exact and asymptotic methods for determining these
constants.

- In the éecond section exact expressions are derived for;the means,
variances and covariances of the Ti’ the sum of ranks associatéd'#ith
population e The assumption of continuity is the only condition im-
posed on the distribution of the random variables associated with each

population. 1In the third section the distribution of the statistic

max T.-Ti is considered for k=2, and for higher values of k when
1< <k '

the observations are identically distributed and equal in numbér from
each population. Asymptotic results are also given that allow the use
.of existing tables to approximate the d-constant required by rule ﬁl
under the conditions discussed in the remarks after (1.2.5). These ap-
proximate values are in close agreement with derived exact values.

Asymptotic expressions are also given for the probability of a correct

selection and for the expected subset size using rule Rl; an example

is given where the underlying distribution is exponential. In Section
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2.4, similar results are given for the statistic max ‘I‘./Ti and
1< Lk
the rule R2° However, exact distribution resulis are not available

for k > 2. Section 2.5 contailns some exact distribution analysis of

the statistic max Z./2., where Z. is the product of ranks associ-
1< j< k + +

ated with ;- A ranking and selection rule could be based on this sta-
"tistic and easily used when the quantity kn is small. ,

In the case where an equal number of independent random variables

are associated with k independent identically distributed populations,

the statistic max ijTi is stochastically equivalent to
1< Lk '
T.- min TJ; and max Z./Zi is stochastically equivalent to
1K<k ISk
Zi/min Z.. If k=2, max 'I'./Ti is stochastically equivalent to
1< <k Y _ 1< <k :
Ti/min T,, but for higher velues of k this equivalence does not
K Lk
hold.

2.2 Some Momeqt Results on Rank Sums
Suppose Tyseee,m are k independent populations. With eac?
population n independent random variables are associated and denoted
by xij’ J=lyeee,n, i=l,.«.,ke The continuous distribution function of

the xiJ is denoted by Fi(x) for j=1,...,n. Let T, be the sum of ranks

i

assOciated with population .
The main objective in this section is to obtain exact expressions

for the means, variances and covariances of the Ti’ i=1,2,...,k. These

results will be useful in certain asymptotic expressions associated with

the ranking and selection procedures introduced in Chapter I which are
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based on the rank sums Ti‘ The method of derivation is based on an
extension of the U-statistic introduced by Mann and Whitney [ME] for a
two population problem and later extended to three populations by

Whitney [63]. Define

l if Xmi< x;zj,' i,j=l,--.,n’ £=m+l’occ,k, H}=l,-~..,k-l

(2.2.1) Uﬁ?’“ | .

O otherwise

and .

r-1 n n

(2.2.2) Z Z ZU(r’z) Z Z Z(l U(m’r)), r=lyeeesk,

L=r+l i=1 j=1 m=1 i=1 J=1

'

b
where % [*] =0 if b <a.
Q=a

The quantity U(r) represents the number of times an observation
associated with . is less than an observation associated with any

other population. The relation between U(l) and Ti is given in

the first lemma.

Iﬁm 2.2-1. FOI‘ i=l’2,-oo,k,
(2.2.3) T, + U(l) = n(2nk-n+l1)/2.

Proof. Equation (2.2.3) follows from (1.2.16) by letting the observa-

tions from L correspond to the x's and all the other observations



correspond to the y's.

Define

(2.2.4) C5 = 2 f_mll-Fi(x)]dFj(x), i,3=1, 000,k

is given by

Theorem 2.2.1. The expected value of Tl

k
(2.2.5) E(Tl) n(2nk+l)/2 - Z Cpp
£=1

Proof. From (2.2.2),

k 'n n k
1)
(2.2.6) E(U( ) = Z Z Zp(xli< xm) = Z ©,u.
£=2 i=1 j=1 =2 "
Since 1= n2/2,
(2.2.7) o E(U(l)) = Z € n2/2.
=1

Equation (2.2.5) now follows from Lemma 2.2.1.

25

Now E(Ti) for a fixed i, 1 <i <k, follows from (2.2.5) by'a

simple relabeling of distribution functions. Define the distribution

k 1

functions Gy,...,G as follows: G,= F, G, = F)s G4= F; for 3¥1,1.

Then the expected value of T, is given by (2.2.5) with ¢

i

in terms of the distribution functions Gl""’Gk’

L1

Corollary 2.2.1. (a) If Fi(x)= F(x), i=1,...,k, then

defined
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(2.2.8) E(Ti) = n(nk+l)/2, i=1,...,k.
(b) 1f Fl(x) 2F2(x) > ... sz(x) for all x, then

(2.2.9) E(T;) < E(TE) < ..o SE(T).

Proof. (a) If F,(x) = F(x), i=1,...,k, then ¢ 5 n?/2 for all 1,j.
“For (b),
X

). (egimey,14)
£2=1

E(T;,) - B(Ty)

i

. |
0 ) [ (#(0-F , (x))ar (x)
£=1 - .] ! [

v

O, i = l,---,k‘l.

From the remarks given above on relsbeling of distribution func-

tions to find 'Var(Ti), i=1,...,k, it suffices to find Var(Tl). Let

(2.2.10) 4y, n® jl&l—Fi(x)][l-FJ(x)]sz(X), 15358%1, 00k,

. (-]
2 -
(2._2-11) hij,a = n f Fi(x) FJ.(x) sz(x), 1,5,8=1,40.,k.
-l
It can easily be shown that

(202012) h. . =d - C, - C, +n.



2.2.2. The variance of T, 1is given by

~ Theorem 1
_ : k .
(2.2.13) Ver(T,) = Z[cﬁl Ml+(n -1)(hy, ;-0 ecil)]
£=2
k k 7
* Z z (ndzsl ,e,lcsl)'
=2 =2
Proof. From (2.2.2),
kK n n k n n
(2 uNZ-d } Y oBO Y T Y olle)
£=2 i=1 j=1 5=2 gq=1 v=1

v, .
E1U§§’£112+ }; EiU(l’z) (1:3)] '
L£,1,J £58,1,]
ods

1,2) 1) ) 1, ) (1,2
Z ElU( L ( 2+ ZE[UfJ £ Uy )]
fr} ) i Q.’J
ij ifq

+ \-' E[U(l’ (l’s)].,. Z E[U(-:‘]-:l) (1:3)]

£,s v £,8,1,9,J
,j;v ,e s, i q
. (l:l) (l)z) '(l:ﬂ) (195)
+ Z E[Uij Uy 1+ ﬂU.. Usv )|
£y1,a53,v £,8,1,
ifq, Jv 448, 1Zq,a+v

which simplifies to

27
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(2.2.15) EiU(l)le - Ej[c£l+(n-l)(dzzl+hll£)+n-2(n-l)2cil]
=2

k k

}; E:[n dﬁsl+n-l(n-l)czlcsl].

4=2 8=2
£ks

Equation (2.2.13) now follows frqm (2.2.15) and (2.2.6) u51ng the rela-

tions Var(T ) = Var(U(l)) E[U(l)]2 2[U(l)]

&

Corollary 2.2.2. If Fi(x)=F(x), i=1,...,k, then

(2.2.16) Var(T,) = n%(k-1)(nk+1)/12, i=1,...,k,k > 1,
and the covariance between Ti and Tj is given by T

(2.2.17) Cov(,,T,) = -n®(nk+1)/12, 1t3,

and hence the correlation coefficient between Ti and ‘I'j is

(2.2.18) By = -(k-1)"%. - | .
Proof. If Fi(x)=F(x) for all i, then cij=n2/2, 1440 /3, 4 L—n2/3

for all i,Jj,4. Substituting these values in (2.2.13) and simplifying

yields (2.2.16). Since Tl,.;.,T sum .to a constant and are identi-~

k
cally distributed when Fi(x)=F(x), i=l,...,k, the relation
k k k k
Var( T T,)=ZVar(T,)+2 T £ Cov(T )T ) implies -kn (k l)(nk+l)/l2
i i
—l i=1 i=1 j=i+l

_=k(k-l Cov(T;,T,), 1fj. Bquation (2.2.17) follows upon simplification.
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This completes the proof.

| Equations(2.2.8), (2.2.16) and (2.2.17) are well known. Assume

1 <r<s <k. An expression for Cov(Tl,Tk) will now be derived in
the general case. To obtain Cov(Tr,TS) interchange distribution func-
tions as indicated earlier and then apply the results of the case where

I‘=l, s=ko

k k-1

(2.2.19) Huly(®)]o X Z Z X Z ZE[U(I’Z)(I ylmk)yy,

Pq
£=2 m=1 i=1 j=1 p=1 q=1

In order to use independence partition as follows:

D IR R N M)

£,myi,J,p,q £,m,3i :J:P:q £,m,i,3,p,q ,(’,,m, 2J,P,Q £,m,1 J:P q
m l,z Kk, L=m m;l, 2=k, 4+m m*l, +k L¥m m=1, ¢k, 2+m

+ zz
£2,m,1i,3,p,q
m=l, 2=k’£ m

DD
RN

J=P
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LN

i=p3J p7i=q  ifp7idq

These calculations yield

(e.2.21) oM a3 (k-2) 2 (n-1)2 &gy H(n-1)(n-h b )

k-1
+ Ej[n(hlkz-hlzk-hkzl)+n-l(n-l)(czlc£k+ckl§£k+clkc£i)]
2=2

k-1 k-1

+Z Zcﬂcmk.
£=2 m=2
m*z

Now Cov(Tl,Tk)=Cov(U(l),U(k))=E[U(1)U(k)]-E(U(l))E(U(k)), 80 £rom

(2.2.21) and- (2.2.6) Theorem 2.2.3 follows.

Theorem 2.2.3. The covariance of Tl and T, is given by

k

(2.2.22) Cov(T ,T,) = n3(k-g)+n'2(1-2n)cklclk+(n-1)(n2-hkkl-hwt)‘

k-1 |
-1 ’
* Z La(hy by oty p0)-n (e 418 o1 gerens o M-
=2

It is easy to show that (2.2.22) reduces.to'(2.2.17) when Ei(x) =
F(x), 1=1,.¢..,ke

A common sample size from each population was not crucial in any
of the above derivations. Asymptotic results of this nature are avail-

able for more general scoring procedures in Puri [53}. However, his
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i

.expressions do not yield the exact moments for finite sample sizes.
For k=2, equations (2.2.5) and (2.2.13) can be obtained from Wilks
(lénl, pg. 461). ‘ '

Suppose Fi(x)=F(x-ei), i=l,...,k, where each ©; belongs to some

interval, ®, on the real line. Iet Aij=ej—ei. Then

cij=n2 f_il-F(x+Aij)]dF(x), dijz=nej.L1-F(x*Aiz)][l-F(x+ﬂ3£)]dF(x).

. $
Thus, for a given continuous distribution F(x), the means, variances
and covariances of the rank sums depend only on the gquantities A&j’
iyj=1,ees,k. Similarly, if Fi(_x)=F(x/Gi), 6; >0, i=l,...,k, then the

previous statement again applies with Aij=ej/ei, 1,j=1yeee ke

2.3. The Distribution of max Tj-Ti‘ ‘ '
1< Lk s

A. Case k=2
Suppose k=2 and the random variables associated with ™ have a
distribution Fi(x) with density fi(x), i=1,2. For Theorem 2.3.1 the

rank sums can be based on an unequal number of cobservations, so assume

ni(Z 1) observations from m.« For d >0,

(2.3.1) P[i;ialc’eTj-ng al = p{r.< [d+(nl+n2)(nl+n2+l)/2]/2} .

Theorem 2.3.1 below specifies the distribution of Tl and hence that of

max T.-TE. The moment generating function of Tl has been obtained by
J=1,2

Dwass L20].
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Theorem 2.3.1. The mass function of Tl is given by

X n
r n X

o 1
n !j
l -QJ—(D j:l

(2.3.2) Hr,=xi= x=n, (n,+1)/2, 40,0, (o, +20,41)/2

‘ 0 » oOtherwise
\ ' s

where Nj » j=l,...,nl, are random variables having the joint mass func-

tion
n nl+l Y.
p i
(2.3.3) BN =y.,..e,N =y ] =( ) o 7,
171 nyn yl""’ynl’ynl+l 1=1 1

where pi=F2(xi)-F2(xi_l), i=l,...,nl+l,' X = ==X .=, and Yyseees¥y 8T

1 1

nonnegative integers which sum to n,e

Proof. Iet x[1] ... < X[ nl] be the ordered observations from it

and let X[ ,j] have rank Rl[ J.] in the combined sample. Then Rl[ j] is

the number of observations not greater than X j] .
n, _
P[Tl=x] =P{ Z Ry J]=x]
J=1

. xn_l X, !
= l:j.-cpf-m'.'f-mP[ ZRl[ ,j]=xlxl[l]=xl’""xl[nl]=xnl]'
i .

n
1
.H fl(xi)dxi'
i=1l
#* Co*
Given the order statistics Xl[ .)']’ Rl[ j] =,j+Nj, j=l,...,nl, where N, is

1 n
2 . | 1
f _mP[ 2 (ny=3+1)N =x-n, (n, +1)/2] il:lfl(xi)dxi,

e
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the number of observations from m, not greater than.xj. Thus

nl . Ill )
Z Rl[ 51 = nl(nl+l)/2+ Z N:
Jj=1 J=1
n, |
= nl(nl+_l)/2 + Z (nl-.j+l)NJ.,
J=1

L

5 belonging to the inter-

val (xj-l’xj]’ X = ==. Thus (2.3.2) holds and (2.3.3) is easily verified.

where I\I'j is the number of observations from 71

In the case where Fl(x)=F2(x), the T, are identically distributed

if nl=n20

in the following manner. Note that obtaining this d value is equiva-

The appropriate d value for rule Rl can then be obtained

lent to obtaining a c¢ value for rule R,, since these two ‘rules are
equivalent for k=2. Iet ny=n,=n > 1.

(2.3.4) P[Tl >max T, -d]
J=1,2

P{T, > [n(20+1)-al/2}

= flu® > (n2a)/2l,

1

where U(a) is defined by (2.2.2). 1In this case, U(e) is the Mann-Whitney

U-statistic. If L(x) is the smallest integer not less than X, then

(2.3.5) Plr, > max 7 -a] = plyl?) > 1{(n®-a)/2)].
=127

For rule R, to satisfy the P* condition (1.1.5), the d value must be

chosen so that
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(2.3.6) P[U(E) > L((n2-d)/2)] > Px,
Thus, one seeks the greatest integer u such that
(2.3.7) CHo® <) <aopw
This. u value is given in Milton [43] for P¥ = .90,.95,.:975,.99,1995,
-9975,:999,-9995 and n=2(1)20, and in Owen L47] the distribution of y 2’

is given for n=2(1)10. Then the desired d is the smallest integral

solution of

(2.3.8) u = L((n2-d)/2) -1,
which is
(2.3.9) a = n2--2(u+1).

These d solutions are given in Table 2 where they are compared with

«

asymptotic solutions.

B. Case k>3
Suppose k=3 and that thevindependent random variasbles xij’ j=l,...,n1,
i=l;2,3 have a continuous distribution F(x). To form'the rank sums,
Tl’T2 and T3, ali the oﬁservations are ordered to obtain the ranks Rij'
The same results are obtained if each Observation in this ordered sample

is replaced by an i if it came from population m, - Now one has only

to consider a sequence of length S=nl+n2+n3 consisting of ny l‘s, n2 2's
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1

and n3 3's. Since the random varisbles are idehtically distributed,
each of the (_- S ) different sequences are equally likely. Hence,
nl,ng,n3

to find Bl Tl > max T.-dl, it suffices to count the number of sequences
1< 3<3

which possess the attribute [TE-T <4, T3-Tl <dl. The recursion for-

mula presented here is of the same type as that given by Odeh [ll-6] in

tabulating the distribution of the maximum rank sum. Iet

(2.3.10) 8 =n, + n, + ng»

and define

number of sequences in which: T2;-Tl <m

(2.3.11) N(nl,nz,n3|m2,m3) .

and 'I'3-Tl < m3.

Then by conditioning on the parent population of the last element in a

sequence, the following recursion foﬁnula is obtained:
(2‘ 3 b 12) N(nl’ n2) n3 I m2)m3 ) =N(nl-l) n2’ n3 l m2+s) m3+s )+N(nl, ne-l) n3 ' mg-s)m3 )

+N(nl,n2,n3-llm2,m3'3),

with the -boundary conditions::
1) 1f fér any i >2, m,;< [ni(ni+l)-nl(l+25-nl)]/2, then
N(nl,na,n3|m2,m3) = 0.
2) If for every i > 2, m, jni(l+2s-ni)- l(nl+l)]/2, ‘then
. N(Fl’n2’7n3'm2’m3) = (n 5 ). |

1785783
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13

- 1 . ?
3) N(O,ne,n |m2,m3) = number of sequences of n, 2's and ng 3's

such that = s(s+1) g < T25 m,y 80

(a if E-S(S+l -m, > m,; N(O,ne,n3|mb,m3) = 0,

(v) if m,< n (n +1)/2, N(O,n ,n [m.a,ms) = 0,

(¢) if my < n3(n +1)/2, N(O,nz,n |m, ,m3) = 0, ,

(a) if (a) through (c do not hold, the texrm can be evaluated

from a Mann—Whtney tables.

a
4}y N(a ,O,n3l ,m3) = nunber of sequences of n, 1's and ng 3's
such that T, > max{-m,, L(S(o+1)/h-m3/2)} = M, where L{x) is the small-
est integer not less than x, so

(a) if M > nl(nl+2 n3+l)/2, N(nl,o,n3]m ,QB) = 0,

(b) if M < nl(nl+l)/2: N(nl,o,n3,m )1113) = ‘(S )s

o
(¢) if (a) and (b) fail to hold, the term can be leva’luated
_ from a Mann-Whitney tables.
5) N(nl,ne,olmz,m3) = number of sequences of n; 1's and n, 2's
such that T, > max{-m3,L(S(S+l)/h-m2/2)} =M, so
(a) if M > nl(n +2n +l)/2, N(nl,nz,olm ,m3) = 0,
(b} if M<n (n +1)/2, N(nl,n ,0|m ,m3) = ( )s
(c) if (a) and (b) fail to hold, the term can be evaluated
from e Mann-Whitney tables.

The following symmetry holds:

(2;3013) N(nl:nan3lm2’m3) = 'N(nl:n3’nalm3:m2)°

Thus, at an !'equal n;, equal m. stage,'' equation (2.3.12) can be

written as



37

(2.3.14) N(n,n,n[m,m)=N(n-l,n,nlm&3n,m#3n)+2N(n,n-l,n[m—3n,m).

In order to get I{Tl > max J-dJ for values of 4 > 0, one uses
1K <3 :
(2.3.15) }?['rl > max -d] = N(n RS ld, d)( .- 'l
< 3L 3 ] By 2B 3 :

’ .
A recursion formula similar to (2.3.12) can be written for an ar-

 bitrary number of populations. Equation (2.3.12) was progfammed for

an IBM 7094 and N(n,n,n|m,m) was computed for n=2,3,4, m=0,l,...,2n2.

Partial results were obtained for n=5. U51ng (2.3.15), FlT, > max -d]
1= l<,j<3'j

was then obtained to four decimal places, the fifth being rounded.

’
¥

These computations compose Table 1. » '

C. Asymptotic Theory

Let Tysees,m be k independent populations. The associated

k
random variables X ,j lyeee,n, i=l,...,k are assumed independent and
to have a continuous distribution function Fi(x); J=1,...,n. As usual,

let Ti be the rank sum associated with Ty Define

| (2.3.16) | my = E(Ty), 1=1,400,k
(2.3.17) ' crf = Var(Ti), i=1,000,k
(2.3.18) o) = Cov(Ti,Tj), iy3=1,0e0,k; i3,



TABIE 1

PlT, >max T -ml for Independent Identically Distributed

I<J<3

Populations with n Observations from Each

38

NG 2 3 L ﬁ\\s\\ 5
0 h2222 <3571k .35405 22 - «89929
1 .48889 41786 .38961 23 .91304
2 .60000 +48095 43169 24 +92520
3 .68889 54286 47105 25 .93611
4 STTTT8 «59762 .51180 26 94506
5 JBllhy .66190 .55302 27 «95467
6 «93333 <1786 «59417 28 .96213
7 97778 . 77024 .63157 29 96877
8 1.00000 .81786 .67169 30 «OThL3
9 .85595 « 70707 31 «97925

10 .88690 . 74193 32 .98339
11 .91905 JTT478 33 .98689
12 + 94286 .80681 34 .98976
13 + 96309 83423 35 . 99216
14 .97857 .86124 36 © 99411
15 .99048 .88358 37 99565
16 « 99643 . 90436 38 .99689
17 .99881 «92214 39 .99785
18 1.00000 «93784 4o .99855
19 95053 L1 - 99906
20 .96214 42 © .9994k2
21 < 97097 43 +99966
22 .97870 Lh 99580
23. 98488 45 +99989
2k .98978 L6 +99995
25 .99348 L7 " +99998
26 .99619 L8 .99999
27 .99781 L9 +99999
28 .99896 50 1.00000
29 «99954

‘30 +99983

31 + 99994

32 1.00000
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1

The quantities Hyo cf and o are given by (2.2.5), (2.2.13)

i3
and (2.2.22). lemma 2.3.1 is given in Puri 1531 with asymptotic ex-
pressions for p., cf and o 3¢ In the case where Fi(x)=F(x), i=1,.00,k,
this lemma can also be found in Dunn [18], the moments being given by
(2.2.8), (2.2.16) and (2.2.17). An equal number of observations from
each population is not required. in either of these papers.
Lemma 2.3.1. The random vector (c-l(T -1 )'... o-l(T -1, )) has limit;
1 VTR e O Uh I % ,
ing normal distribution (as n = ) with & zero mean vector and variance-
-1

covariance matrix M#(mij),'where m =1, i=1,...,k and mij=ii2 Uij(uicd) ’

i,j=l,.-o’k, i+3-
First consider the case where Fi(x) = F(x), i=l,ees,k. Let

Wi=Ui-ﬁ; i=l,...,k, where Ui are independent standard normal variables
_ o

N _ -1 §
and U is their mean. Then E(Wi)-O, E(wiwj)"Gij k ~, where 85 18 the
Kronecker delta. Thus the joint distribution of (Wl""’wk) is the

singular normal distribution with zero mean vector and variance-

covariance matrix tw=(éi -k-l)

j . Iet

4 1/2
1)

(2.3.19) V= (2k o;l(Ti-ui)

=[Ti-n(nk+1)/2][nek(nk+1)/12]'1/2, 1=1, 000 ke
Then
{2.3.20) E(Vi) = o; i=121,0ae,k

. -1 R
(20»3-21;' E(Vivj) = Gij -k ’ l,J=l,I0|,k.
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Now combining the last few remarks with Lemma 2.3.1, a statement given
in Odeh [46] is obtained as the next lemma.

Lemma 2.3.2. The asymptotic joint distriﬁution of (Vl;...,Vk) is the
distribution of (wl, ces ,wk) .

The next lemma follows from a result of Rubin [58] and Lemma 2.3.2.
Lemma 2.3.3. Let g(wl,...,wk) be a function such that its set of dis-
continuity-points has probability zero under the normal distribufion
with zero mean vector and variance-covariance matrix tw' Then the asym-
ptotic distribution of g(Vl,...,Vk) is the distribution of g(Wl,...,Wk).

Now define

(2.3.22) c=c(n,k) = nlk(nk+i)/12] /2,

" ,
¥

Then the asymptotlic distribution of max T.-T  is given by the fol-
1<y<kd K

lowing theorem.

Theorem 2.3.2. Let Xij’ J=1,«se,n, i=l,...,k, be independent identi-
cally distributed random variables with a continuous distribution func-

tion. Then

(2.3.23) Plr, >max T

al = [ La(xra/e)ls L o )ax, & > 0,
k=98 <k ) J._w (x+d/c) (x >

where &(°) and ¢(°) are the cumulative distribution function and den-
sity of a standard normal random variable, respectively.
Proof. For 4 >0,

Plr, > nax 7,-dl = Plmax  v.-v,_<a/cl.
1< i<k d 1< §-1
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Using Lemma 2.3.2 and Lemma 2.3.3, ' '

Pl max V.-V, < afc} < Plmax W -W < dfel.
1< <k 9 1< j< k-1 Y

Now,

i

Plmax W W < d/cl

P[U."U Sd/C, ,j>-= l,-.o,k'l],
1< i<k J

k

i

Jm[ 8(x+d/c)] k-1 <p(x)dx,

which completes the proof.
Integrals of the type appearing on the right hand side of equation
(2.3.23) bave been considered by Gupta [29]. His Table I gives h values

satisfying the equation y

(2.3.24) j L o(xsn/2)15 ox)ax = p*
.for px = .99,;975,.95,.90,.75 and k = 2(1)51. If 4 denotes the value

of d based on the normal approximation, then from (2.3.24) one obtains

o

(2.3.25) 3= hnl k (nk+1)/6] 1/2,

h being the entry in Gupta's Table I corresponding to the given p*
and k.
Remarks: (1) By using (2.3.25) one can obtain an asymptotic value of

d to use in rule Rl when a slippage configuration in Q exists (see
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remarks after (1.2.5)) for k=2(1)51 and ‘for any common sample size n,
n large. (2) In general E will not be an integer. So for the solu-
tion the smallest integer not less than Z, L(E),- should be taken. This
method was used to calculate an asymptotic vélue of d& for k=2(1)5,
n=2(1)25 and P* = .99,.975,.95,.90,.75. These results are presented in
Table 2. E#acf d values are given in parentheses where they are knowvn.
In most cases where the asymptotic value ang, exact value do not agree,
the asymptotic value is larger and hence a conservative constant for thé
rule Rl. From the values given in this table it is seen that
1< L(d)-a< 3 for k=2 and 0< L(d)-d <3 for k=3.

Now consider the more general case where the Fi(x), i=l,ec0,k,
may not all be identical. For large n, the distribution of 2'=(T1,...,Tk)

is gpproximately a multivariate normsl distribution with mean; vector
«

t _ : : - s = .
T -(pl,...,p.k) and variance-covariance matrix t‘l‘ (dij) Let

(2.3.26) W = AT,

where A is a (k-1) x k matrix defined by

.O -l

1 0 0O ..
O l 0 se e O ’l
(2‘3027} A= . . . . .
0 o o ose l -l
i = l,ooo,k"lo

(2.3.28) W, = T,-T
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TABLE 2

Asymptotie d-Solution of P(Tl > max T,-d) > P¥,
1K i<k :

Exact Value is Given As (d)

k=2
=~ ¥*
nTe .99 .95 .90 75
2 T 5 L 2(2) s
3 1 8(7) 6(5) 4(3)
L 17 12(12) 9(8) 5(k)
5 23521) 16(15) 13(13) 7(7)
6 30(28 21(20) 17(16) 9(8)
7 37(35) 26(25) 21(21) 11(11)
8 45( L) - 32(32) 25(24) | 13(14)
9 53(51) 38(37) 30(29) { 16(15)
10 62(60) Bl (L) 34(3Lk) | 18(18)
11 71(69) 51(51) 40(39) 21
12 81(80) 57(58) L5(hi) 2L
13 91(89) 65(65) 50(51) | 27 . .
1L 102(100) T2(72) 56(56) 30
15 113(111) 80(79) 62(63) 33
16 124(122) 88(88) 69(68) | 36
17 136(133) 96(95) 75(75) Lo
18 148(146) lok{10k4) 82(82) 43
19 160(157) -113(113) 88(89) 47
20 172{170) 122(122) 95(96) 50
21 185 131 102 5L
22 199 141 110 58
23 212 150 117 62
2l 206 160 125 66
25 2ko 170 133. 70

For given values of k,n,p¥, this tabie gives the asymptotic smallest
integer 4 which satisfies PLT, > max T.-d] > P*. The rank sums
k - . d - .
1< 3k
Ti’ i=1l,...,k, are based on random variables Xij’ J=lseee,n, 1=l,e0s,k
which are independent identically distributed. Exact 4 values, where
known, are given in parentheses. .
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TABLE 2 (Continued)

k=3
%
T 975 .95 .90 .75
2 10(8) 9(7) 8(7) 6(6) b(4)
3 18(15) 15(1k) 13(13) 11(11) 7(7)
L 27(25) 23(22) - 20(19) 17(16) 11(11)
5 37(35) 32(31) 28(27) 23(23). 15(15)
6 48 L1 36 30 19 .
7 60 52 L5 37 24
8 T3 63 55 45 29
9 87 75 65 5k 35
10 101 88 76 63 4o
11 117 101 87 72 46
12 133 115 99 82 53 .
13 149 129 112 92 59
14 167 1k 125 103 66
15 185 160 138 114 73
16 203 176 152 125 81
17 222 192 167 137 88.
18 242 209 181 149 96 ' |,
19 262 227 197 162 104
20 283 245 212 175 112
21 30k 263 208 188 121
22 326 282 24k 201 130
23 349 301 261 215 138
2L 371 321 278 229 148
25 | 395 341 1 296 2kl 157

For given values of k,n,P¥, this table gives the asymptotic smallest
integer d which satisfies lT, > max T.-a] > P*. The rank sums
fTicaged T |

Ti’ i=l,...,k are based on random variables xij’ J=lyeeeyn, i=l,eee,k

which are independent identically distributed.



k5

TABLE 2 (Continued)

k=14
RYEREE .95 .90 .75
2 14 12 11 9 6
3 | 24 21 - 19 16 . 11
L 37 32 28 24 17
1 5 51 L 39 33 i 23 .
6 66 58 51 43 30
7 83 73 64 5k 37
8 101 89 78 66 45
9 121 106 93 78 5k
10 141 123 108 91 63
11 162 142 125 105 72
12 185 162 142 119 82
13 208 182 160 135 92
h 232 203 179 150 103
15 257 225 198 166 114
16 283 . 248 218 - 183 126
17 310 271 238 201 138}
18 338 . 296 260 218 150 *
19 366 - 320 281 237 162
20 395 346 30k 255 175
21 ko5 372 327 275 188
22 456 399 350 295 202
23 487 Lob 37k 315 216
ok 519 L5k 399 335 230
25 551 483 Lok 356 ol

For given values of k,n,P¥,this table gives the asymptotic smallest
integer 4 which satisfies T > max T.-d] > P*¥. The rank sums
kK T1<icxd T

T;» i=1,...,k, are based on random variables xij’ J=l,eee,n, i=l,eee,k

which are independent identically distributed.:



TABLE 2 (Continued)

k=5
NN R 975 .95 90 .75
2 17 15 14 12 8
3 31 27 ’ 24 21 15
L L7 41 37 31 | 22
5 65 57 51 43 31 .
6 85 75 66 57 %0
7 107 L 83 T1 51
8 130 115 1 102 86 62
9 155 137 121 103 13
10 181 160 141 120 : 86
11 209 184 163 139 99.
12 238 209 185 158 112
13 268 236 . 209 178 126
14 299 263 233 198 141
15 331 292 258 220 156
16 365 322 28 - 2hp 172.].
17 399 352 311 265 881" .
18 435 383 339 289 205
19 472 k15 368 313 222
20 509 L9 397 338 240
21 548 482 Yo7 363 258
22 587 517 458 389 277
23 627 553 489 416 296
24 669 589 521 Ly3 315
25 711 626 55k 471 335

For given values of k,n,P¥, this table gives the asymptotic smallest
integer d which satisfies PlT. > mex T.-dl > P*. The rank sums
k= 1cjcrd =

Ti’ i=l,...,k, are based on random variables xij’ J=ljeee,n, i=l,..a,k

which are independent identically distributed.
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1

It then follows that for large n, W' = (Wl,...,wk_l) is approximately
distributed as a multivariate normal random vector with méan vector
B, = AET and variance-covariance matrix ﬂtw = At&A’. These remarks
are collected in the next theorem.

Theorem 2.3.3. If tw is ndnsingular, then for 4 >0

| | a4 ga . C k-1
(2.3.29) P(T, > T_i_xjs ij-d)~ K f.;..f_:xp[-(g-gw)':f:w (y_—gw)/,2]i1=lldwi, |

where

_=1/2
(2.3.30) K= [(2rr)k'll¥w“ .

A theorem similar to Theorem 2.3.3 can be written for the expected

! ¢

subset size. Iet S5 be the number of populations retained in the chosen
subset by a particular rule under consideration, and let S* be the num-
ber of non-best populations retained. Then S and S* are random
variables taking on values 1 to k and 0 to k-1 respectively, and their
expected values provide a criterion of the efficiency of the procedure
under consideration. For any ranking and selection rule R, the follow-

ing relation holds:

(2.3.31) E(S|R) = E(s*|R) + P(CS|R).

For v = i,...,k, define

(2.3.32) W=4 T,
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where A is the (k-1)xk matrix obteined from matrix A defined in
(2.3.27) by moving column J to column j+l, j=v, v¥l,e..,k-1, and re-

placing colum v by column k. The matrix A, is matrix A. Thus

(2.3.33) WI = Ti'Tv, i= l,oo-,k, i + Ve

" The random vector V_I_v is asymptotically distributed as a multivariate

normal random vector with mean vector = A and variance-covariance
.&v Y I'-"I‘

matrix j:v = AvtTA; " Theorem 2.3.4 now follows after observing

k
E(S|R) = = P[rrv is a selected population] .
v=1 .

Theorem 2.3.4. If tv is nonsingular for v = 1l,...,k, then

k

d 4 | 'k,
(2.3.34) E(S]Rl_) ~ ZK\J ...j expl -(y_v-&v)'il;l(gv-av)/a]igl dw;’,
w1 i;v
wheré
.‘ . -]-/2
(2.3.35) Kk, =LHE D 7

Now an application of Theorem 2.3.3 will be- considered for k=3.
A similer application of Theorem 2.3.4 could also be developed. Sup- .
pose '”1’"é’"3 are three independent populations with associated random
varigbles xi.j’ J=l,eeeyn, i=1,2,3. Let xi.j’ J=1,e¢e,n, have the
density |

-(x-gi)
e ’ x > Qi ) is 1,2’3

(2.3.36) f(x-ei) = o
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i

let ©=L0,) and 6{1]= O- The quantities c,,, d,, and b, defined
by (2.2.4), (2.2.10) and (2.2.11) can now be explicitly obteined as func-
tions of 9[2] and 6[3], and hence so can the means, variances and covari-
ances of Ti, i=1,2,3. Using Theorem 2.3.3 an asymptotic value for the

probabllity of a correct selection can be obtained as follows:

{2.3.37) VP(cslnl) = P[wl_<_ 4, )wzg d]

~ "l 'l
~ Lo ~(a-p_ ), o "(d-p_ ), cor(vw,,w,)) .
wl wl w2 w2 1772

-1 -1
*{cv(swl(d-uwl)) + °’(°w2(d'“w2))]/2'
where
(2.3-38) i{p,q,r) = (X >p, ¥ > q),

X,Y being bivariate normal with zero meens, unit varjances and covari-

ance r, and

(2.3.39) o(x) = r (2m)~2/2 e/ g,
-X
The L(p,q,r) terms can be found in [45] and the ofx) terms in L14],
The I terms cause some difficulty in accuracy sipce interpolation
must be used on p;q and the correlation coefficient. In the cases con-
sidered here, accuracy to three places is obtained.
Table 3 is the evaluation of the right hand side of (2.3.37) for

n = 20,50 and given © configurations. The 4 values used are the
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asymptotic d values obtained using the method discussed in Section 2.3.C,
and subject to P(CSIRl) > p* whénféiso, 1=1,2,3, P* = .99,.975,.95,.90,
.75. It should be pointed out that © = (0,0,0) has not been shown to

be that g_configuration which minimizes the probability of a correct

selection over the entire parameter space 2. However, Table 3 indicates

that this may be the case.

2.4. The Distribution of max TJ/Ti
: 1< J<k

In order to actually implement rule R, defined by (1.2.5), the ¢
value must be specified. This will be the major concern of this section.
Assume Ti’ the rank sum associated with population T3 baesed on n obser-
vations from each population, and that the random variables‘associated
with m, have a continuous distribution F,(x), 1=1,... k. When tHe dis-
tribution functions are not all identical, the distribution of

max T./T, for k=2 is obtained in an exact form directly from Theorem
<ickd?

2.3.1. For k > 2, asymptotic results are presented in this section.

If F,(x) = F(x), 1=1,...,k, then the distribution of max T./T
! g Ut

is independent of the underlying distribution of the random variables.
Froﬁ_Theorem 1.2.1 this is tge configuration which minimizes the proba-
bility of a correct selection given a slippage type problem. The gp-
propriate ¢ value is then obtained (or approximated) from the following
analysis. Asympiotic expressions for the probability of a correct se-
lection and expected subset size will also be given.

First consider the case Fi(x) =PF(x), 1 = 1,.0.,k. let W, Dbe as

before, i.e., Wi= Ui-ﬁ; i=1,...,k, where Ui are independent standard



TABIE 3
Asymptotic Value of P(CSIRl) for Three

Independent Exponential Populations

P i
9[ 2} :9[ 3I .99 975 «95 - «90 '75
1.0 1.0 1.0 1 1.0 1.0
-0, 2.0 1.0 1.0 1.0 1.0 |10

h.0. 1.0 «999L .9975 .9923 <9773 .8996
i + 9994 . 9975 .992L 9771 . 9005
5, 1.0 1.0 1.0 1.0 1.0 .9999
Bddint 1.0 1.0 1.0 1.0 1.0 -
5 5 .998k .99L5 .9862 .9656 BTTT
N .9984 .Q046 - .9863 .9653 . .8785
a5, .5 1.0 «9999 <9997 .9956 «9917
sely o 1.0 1.0 1.0 .9999 .9992
25, .25 .9970 .91k . 9801 .95k} . 856k |

e .9971 .9916 .9807 -9557 .8627
1 25 +9997 .9989 .9970 9913 | ..9595
ot 1.0 .9998 . 9994 .9981 ".9885
1. .1 +9949 .9862 9701 +9360 .6180
R -9955 .9878 9737 . 9429 .8356
ol .1 -9962 - 99k .9865 .9678 .8687

T ¢ .9993 <9977 .99k2 .98L5 .9384
ol. .ol .9909 9771 +9533 .9062 . 7602
hedh .9912 9777 9547 .908k4 . 7641
0. .0l .9916 9707 .9563 9117 . 7690

? + 9923 .9802 » 9593 .9160 . 7799

0., © .9901 Q754 .9504 .9015 <7507

’ .9901 9752 .9501 . 900k . 7506

Asymptotic value of P(CSIR ) for three independent exponential popula-
tions with lcoation parameters O = o 1] <9 o] < 9 3] for 4 values

chosen to satisfy P(CSIRl) > P¥ when 6,=0, 1= 1,2,3. Upper value

‘is for n=20; lower value for n=50.
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3

normal variables and U is their mean. ILet Vi’ i=l,...,k, be defined by

(2.3.19) and

(2.4.1) q = q(e,n,k) = (c-l)[3(nk+l)/k]l/2 .

Then _foi- c>1,

(2.4.2) Pl max /T Sl = Plv, <oV +q, 1=1,...,%-1].
1< )<k

From Iemmsa 2.3.3,

(20&.3) P[Vi S CVk"'q, i-=l,¢-.,k.-1.] : P[Wi S ch+q, i'—'l,-..,k‘].] .
By t i .

Define

(2.4.4) Q = (W~ ) [14c®~(c-1)2/k] 2 4, kL

Then the Joint distribution of (Qys«-+,Q ;) 1s the multivariate normal

distribution with zero mean vector and variance-covariance matrix

-(2.1&.5) t‘Q = ([k513+c2k-(c-l)2]/lk+c?k-(c-l)2] )e

Now

2.4.6) 2| T <ecl Telq, <u,..., ul,
( Exaska/Tk-c G SWeeesQe S

whefe



23

(2-24'07) u = u(c,n,k) = (c-l)[ 3(kn+l)]l/e[k(l+c2)-(c-1)2] ‘1/2‘

In Gupta [29], a suitable transformation is provided which allows the

representation

(2.4.8) I{Ql < u;...,Qk_lS u) =‘r” Qk-l[(u+pl/2x)(l-p)-l/2]¢(x)dx,

where

(2.4.9) p = p(c,k) = [c2k-(c-l)2][k+c2k-(c-l)2]-1.

These statements now lead to the following theorem.

Theorem 2.4.1. Iet xij’ J=lyeee,n, i=l,...,k, be independent identic-
ally distributed random variables with a continuous distribution func-

tion. Then

(2.4.10) Pl max T,/T, < o= J’c &Y (u+pl/2x)(1-p)-1/2]<p(x)a;, c 31
1< j<k -

where u and p are defined by (2.4.7) and (2.4.9) respectively.

For given values of p,k and u the integral given in the fight hand
side of (2.4.10) is evaluated in [29], and these values are displayed
in Teble II of that reference. Equation (2.4.9) can be solved for

in terms of p and k. Recalling ¢ > 1, one obtains

(2.4.11) c = {pfl+[k(l-p)(pk-2p+l)]1/2} [ (x-1)(1-p)1 72

Using obvious bounds,
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(2..12) Blmx 1T./1 <cl=1 for c> (2kn-n+l)(a+1) "L,
1< i<k ¢
Remark: For fixed k, p = p(c,k) is continucus and strictly increasing

for 1 <c <o Also p(1l,k) = 1/2 and lim p(c,k) = 1. Hence c=c(p,k)

c—co
is continuous and strictly increasing for 1/2 < p;< l, and c(l/2,k)=1,
lim C(p,k) = @O, .
p—*l : 3
.
Table 4 gives asymptotic upper and lower bounds for

Iigif < Tj/TkS c] for selected values of ¢, k=2(1)5, n=2(1)10. For a
SISk '

fixed k, the ¢ values are cbtained from (2.4.11) by letting b = 45,46,
«625,2/3,4T,+755+8,+875,.9. These bounds can then be read from [29]
Table II since u is now fixed. Some exact values are alsozin?luded-for
comparison. For k=2, these exact values are obtained from a ManﬁLWhitney
table; for k=3, n=2 exact results were obtained by enumeration. In most
cases the exact values are witﬁin"the aéymptotic bounds. Using the a-
bove method it is possible to comstruct such tables for k=2(1)13,n >2
and forvthe'c values obtained from (2.4.11) for the values of p indi-
cated above. ' : ' .

Now consider the more general case where the Fi(x), i=1,e4.,k may
not a1l be identical. Following the proofs of Theorems 2.3.3 and'2.3;h;

set

(2-’4-.13) | z = B.I'_’

where B is the (k-1)xk matrix defined by



Asymptotic Lower and Upper Bounds on Pl max

TABLE &4

1< J<k

Indicated Values of k, n and ¢

k=2

T/ < e} for

55

1.0

1.23607

1.30940

1.uh9k9

1.58199

1.828i3

2.16228

3.0

3. 47214

«50C00
(-667)

.65542
(.667)
69146

(.667)
69146
12575

(.667)
. 75804
.7881L

. 7881k
.8159h
(.833)

(.833)
.86433
. 88493

(.833)
.91924
.93319

97128
97729
(1.0)

.98214
.98610
(1.0)

« 50000
{.500)

(.650)
.655h2
69146

(.650)
. 72575
. 75804

. 7881k
(.800)
. 81594

(.800)
84134
.86433

(.900)
+90320
.91924

. 94520
{.950)
.95543

. 98610
.98928
(1.0) |

-99379
99534
(1.0)

- 50000
(.557)

(.657)
69146

- 12375

72575
(-757)
. 75804

.B150%
(.829)
84134

.06433
.88493
(.900)

.93319
(.943)
« 94520

(.971)

.97128 ]

97725

-9937

- 9953}
(1.0)

<997k
.99813
(1.0

- 50000
(.500}

« 72575
(.726)
. 75804

- 7580k
. 78814

(.790)

.8L13L

(.845)
.86433

. 88453

(.889)
+ 90320

94520
(.952)
295543

98214
(.984)
.98610

«997hk
.99813
(1.0)

+99903
+99931
{(1.0)

.50009
(.531)

. 72575
(.758)
. 75804

. T881L

(.803)
.8159h

. 86433

(.910)
«91924
+93319

.96407
(.968)
.97128

.98610
.98928
(.992)

» 99903
99931
{1.0)

+99966
«999TT!
(1.0) |

+«50000
(.500)

. 75804

(.772)
. 75814

. 7801%
(.809)
.8159l

(.896)
« 20320

-93319
(.936)
24520

.97128

(.973)
87725

+99180 |

.99379
(.o9k)

.99952
. 99966
(1.0)

«99977

L0

(2.0)

- 50000
(.520)

« 75804
(.779;
. 78814

.8159h
(.836)
.84134

(.903)
90320

.91924 |

. 94520
(.948)
.95543

97725
(.981)
.98214

. 9953k
99653
(.997)

«9997
1.0

(1.0)

50000
(.500)

. 7580k
(.782)
. 78814

(.830)
84134
.86433

« 90320
(.919)
.91924

(-953)
«95543
. 96407

.98610
(.988)
.98928

+39653
<99Thh
(.998)

10

« 50000
(.515)

. 78814
(.803)
. 8150k

8413
(.860)

.86433

9192k
(-928;
93319

.95543
(.962)

.98928
(.991)

9640

.99180

-99613
.59865
(.999)

For

given values of k,n,c, this table gives asymptotic upper and lower -

bounds for Plmax

T./T <cl.
1< i<k Y

on random variables Xij’ J=lyeee,n, i=1,...,k, which are independent
identically distributed.

k

known, are given in parentheses.

The rank sums Ti’ i=l,¢e.,k, are based

The exact values of this probability, where




TABLE 4 (Continued)

k =3
Eﬁ; 1.0 a 23205 1.30278 [L.43649 1.56155 L.79129 2. 09808 2.85410 3 27h92
.33333 .47732 54259 161520 {. 65666)( 73333)( B2222)(-93333)(-95555
2 |(-42222) ( 48888)( 55555){ +62222).69785 L77315 83634 193705 .9598M
52003 .56680  .65487 1.73339 80322 ;86051 . O4870 .96786
.33333 ,52003 .56680 ;65487 ©73339 18307k 9012k .966B2 .97997
3 56248 60822 .69288 .76667 L85564 191798 .97368 .9BLhO
y [+33333 56248 160822 172890 +79749 LBTT94 93249 198388 199080
60419 .6&8&2;;L76266 182572 .89769 .9khoz 198756 199303
5 33333 }.562&8 64842 ;76266 82572 “89769 95547  .99279 99611
L60419 L.68699 L7939k L85130 191500 .96432Aﬁ.99h59 .9971h
61+33333 ,.60&19 ' 68699 I.76266 ¥8513o ;93001 .97168 .99598 » 99549
6LATO 72359 7939k L87h22 L9k289 197772 ..9970h .99892
7133333 160419 .68699 1.7939% »O7h22  L9k2B9 {9826k ~9970k 99923
LELLTO 72350 ’82263 80455 1.95382 ,98660 . 9084  .999L6
g1+33333 {-OL4TO .72359 ; . 82263 b89h55 195382 .98660 .G9888 199963
68360 1.75792 .84863 91238 L96300 t98975 .99921 1.0
g |+33333 164470 ;.72359 _.84863 291236 1.96300 {98975 9994k | !
1.68360 {75792 !.87196 292785 .97063 199223 /99961 |
10{°33333 ‘ 1068360 75792 .87196 .C2785 1.97690 L99L17 .9996T ; )
72054 1.78978 |.8926k4 i.gh115 | 98200 199567 11.0 g i

For given values of k,n,c, this table gives asymptotic upper and lower
bounds for Plmax

1< i<k
on random variables Xi

identically distributed.

k-

known, are given in parentheses.

3° J=lyeee,n, i

The exact values of t

T./T, <cl. The rank sums T, 4> i=1,...,k, are based

i=1l,..4,k, whichiare independent

his probability, where
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1.0

T

|1.23014

1.29966

1.43050

1.55228

’ .
1.77485 {2.07037

—

2.79361;3.19h3u'

» 2500

«39946
Jho66

45021
. 49381

. ShOLL
-59190

60133
. 64206

+ 73009
. 76387

.80534j
.83279

.90949
92511

-95139
.95241

.. 2500

U4L266
18650 ¢

19381
. 537Uk

«59190 ;
.63328 !

.68121
. 71842

.79516 !
.82383

85761
87981

«95007
95978

. 96946
. 97586

12500

48650 ;
. 53046 !

«53Thk

.63328
67313

.71842
-75336

| 82383
84981 |

91661
93147

.OThOL
.98010°

.98533
.98873

. 2500

48650 |
« 53046

58058 |
.58058j
62273 |

.67313
. 71106 |

. 78582
.81563

87309 |
.89372

«93147

9Ll20 |

.98812
+ 99095

99352
.99516

e 2500

+57400 |

+58058 |
62273

. 71106 |
. Th6T76

.81563
84269

.89372
.91180

.95408
. 96402

«99317
. 9948

«99737
.99809

E 75.2500

.53046 ;
57400 !

62273
66343 ¢

- THET6 |
-T7996 |

.84269
.86698

-92743
-9k092

97151
97765

.99622 |
99722 |

99863
99902

' 81,2500

+57400
. 61660

60343 |
. 70225 !

.77996f
.81049

. 86698 |

. 88854

.94092
.95231

97765
.98263

-99798 |-
499855 |

«99931
299952

g 9 |.2500

57400 !
.61660

.66343;
. 70225

-810L9 .
.83824 |

. 86698
.8885L

.95231

.96187¢

.98663
.98981

»99897
+99927

1.0

+99952

!10 « 2500

i 65780

61660

- 70225

.81049 !

.8885L | .96187

.73886; .8382L | .907L6 | .96980 |

.98981
.99231

-999k9]
10}

|

For given values of k,n,c, this table gives asymptotic upper and lower

bounds for

max

Tj/Tk <cl. The rank sums T;5 i=1,...,K, are based
1< 3K k

on random variables xij’ J=ly4e.,n, i=1,...,k, which are independent
identically distributed.
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k=5
;ﬁjﬁ 1.0 il. 2290211 29785,1 h270511 5&699,1 76556*2 o5h89’2 76040 3.15037
20000 | 34859 1 40059 - .50L03 T 56006 . 6607k .7826u: 87975 | .92078
2] -39105 . 4h419 ! 54770 . .6oohl i 69892 | 812291 .89918 | .93483
3= 50000 .39105l JALL39 T .5LTT0 1 J6L36T - 73503 | .83930; 9L366 | 96563
: 43480 : 48843 | .59076 | 68315 . . 76877 .86362 | .95hk2 ; 97273
i |.o0000 | *13480; L3843 -59076 | -68315: -79995, .88529 | .97098 | .98331
‘ h7931, .53276 | .63272 1 72067 | .82845 | .90438 | .97716 | .98712
5 1. 20000 43480 - .53276' .63272| - 72067 | .854191 .92102 .98220 ¢ .99015
N 47931 57665+ 67311 : 755861 .87719 ' .93536 | 98625 .9925k
6!.20000 | *¥7931} 532761 67311 75586 .B7719 -94759 1. 9894899585
i :52403 . 57665 | 7115k ! .788&9' .89751] .95790! .99203 ; .9969L
75 00000 | *H7931, 57665 ¢ 7115k T .788L9 | .89751 -957901 99402 | 99777
:* .52&03 61956 , 74766 | .81839! ,91525! .96650 1 .99555 | .09839
81.20000] *52k03 | 61956 | 14766 | 81839 01525 97350 '99673i -99885
.56840; 66100 .78122 8&5&7! .93058 1 .97939 ' .99761! .99919
9i.20000 | +22403] 61956, -TH766 | .OLSLT L 9L36TT 979397 99828 .999h3
_ 568401 66100 ! .78122 86972 .95472! .98L06| .99877 ! 1.0
10 .20000 | 56840 66100 . 78122 86972 95472‘ .98780 | /99913 |
1 .61187| .70053; .81202| .89119. .96396! .9907h; .9993G !
For given values of k,n,c, this table gives asymptotic upper and lower
bounds for Plmax T /Tk <ecl. The rank sums T, ;1> 1=1,...,k, are based
1< J<k Y

on random variables Xij’ J=lyeeeyn, i=1,...,k, which are independent
identically distributed. '
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l 0 e s o o 0 -C

O l * o o o O -C
(2.‘4’-1"") B = ° . : : : .

O O e o o o l -C

For large n, X! =(Yl,...,Yk_l) " is espproximately distributed as a multi-

variate normal random vector with mean vector By = BET and varisnce-

covariance matrix ty = BjZTB'.

Theorem 2.4.2. 1If t! is nonsingular, then for ¢ >1

-1 ~ 1° Q -1 k-1
(2.4.135) P(T, >c " max T)X1L| ... expl-(r-p. ) (y-u,)/2l m ay,,
k 1< <k 9 - f_m uy) 'Fy A &

v o

'
where

(2.4.16) L =[(omk? H:YI]'l/Q .

To obtein an expression for the expected subset size, define for

vV = l,oao,k,

(2.4.27) - ¥ =B T,

where B, is the (k-1)xk matrix obtained from matrix B defined in (2.4.1k)
by moving column J to column j+1l, J=v, v+l,...,k-1, and replacing colwmn

v by column k. The metrix B, is matrix B. Let W= B, and thvt‘rB\',‘

Theorem 2.4.3. If t'v is nonsingular for v=1,...,k, then
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k o) (s} ' -1 ' k
(2.4.18) E(S]Ra) :Z L, f f exp[-(;[v-&v)'tv (x\’-g\v))/ﬂ _Hldy: ,
. : \)=l -0 -0 R 1=

where

(2.4.19) ‘ L | = [(am¥? H:vll'l/e.

v 5

2.5 The Distribution of max 2 j/zi

A. Introduction

Suppose the populations TMyseee,m &Te independent and the random

k
variables Xij’ J=1,... 20y 5 i=l,...,k, are independent identically dis-

tributed with a continuous distribution function F(x). Let.

n

i
(205.1) Zi = Jg Ri.j, i=l,coo,k-
Then
k
k .
(2.5.2) i} Z'j = (Z nj).'. : , .
R -

The 6bjec£ive of this section is to obtain the distribution of the sta-

tistic mex  Z./2. when n =n, i=l,...,k. This statistic arises from
1< j<k 9 * 1

consideration of the following ranking and selection procedure:

zcélmax Zyy ey 21
1S JSk

(2.5.3) Ry: Select m, iff 2z,
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L,
If the quantity log(Rij) is associated with the random variable xij and

n
T! = T log(R.j), then rule R, can be written in the form of rule R,

i 5=1 i Z 1
i.e.,
(2.5.4) R,: Select m, iff T! >max  T!-d', 4a' > 0.

z Pt T <k d
It should be noted that a theéorem similar to Theorem 1.2.1 can be esta- -
- blished for rule RZ. The recursion formulas given here are similar to
the one developed in Section 2.3.B.

B. Case k = 2

Suppose k = 2, and define

' .
?

(2.5.5) N(nl,nzlm) = number of sequences in which z,< mZJ:.

Iet S = nl+n . Then by conditioning on the parent population of the

largest observation, the following recursion formula is obtained:
=1 o .
(2.5.6) N(nl,nelm) = N(nl-l,nelSm)+N(nl,n2-l|nf>' ),

- with the following boundary conditions:

2

1) 1f (nl+n2)£ m < (nal) , then N(nl,nelm) = 0.

! ! 2 - /S
2) If (nl+n2). < m(ny!)%, then N(nl,nzlm) = (nl).
Then for m > 1,
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(2.5.7) ~ Plmax z/z < m
1< J<k

Hz, Smz]

#

N(nl;nglm)(ni)-l .

From (2.5.2),

(2.5.8) P['z2 <mz] = Z, < (m(nl+n2):)l/2]'.

C. Casek >3

-Suppose k = 3 and let S nl+n +n.. Define

23

(2.5.9)  N(n,, ML o T3)

nuzber of sequences in which Z_ < w2,

[

and Z3 5m3 Z,-

Then

(2-5:10) N(ny,mp,ng]myymy) = N(ny “1,n,,05|8m,,5m,)

-1 i -1
+N(nl,n2-l,n3|m28 ,m3)+N(nl,n2,n3-llm2,m38 )

‘with the boundary conditions:

$ 1 -
1) If for any 1 >2, S! m, < (ni). (n2+n3)., then N(nl,ne,n3lm2,m3)-o

2) If for every i >2, 8! <m,(n,)! ( = n.)!, then
— —— 1 l . J
gt
s
N(nl’ne,n3,m2,m3) = ( [

D;,0,,0q
3) N(O,ne,n fm ,m3) = number of sequences such that

(n2+n3)£ mgl <Z,< m,, so:
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(a) 1if m, < ( n3) m3 , then N(O,ng,n fm ,m3) =0

(v) 1f (a) does not hold then this term can be evaluated
using (2.5.6).

L) N(nl,o,n3|m2,m3) = number of sequences such that
zZ, Z‘max{m-l,[mgl(n +n )1]1/2} = M, s0

(a) irM< n !, then N(nl,O, [m my,m,) = ( ), |

(b} if (n +n3 )< n31 M, then N(n ,0,n l m ,m3) = 0.

(¢} if (a) and (b) fail to hold then this term can be evaluated

using (2.5.6).

5) N(nl,n2,0|m2,m3) is handled with conditions similar to those

v
t

in (4). . e

The following symmetry holds:
(2.5.11) N(nl,nz,n3[m2,m3 N(n n,n lm3,m )e

Thus, at an '‘equal n;, equal m; stage,'' equation (2.5.10) can be

written as

(2.5.12) * N(n,n,n|m,m) = N(n-1,n,0]5m,50)+28(n,n-1,0]us ", m).

In order to get Pl max Z./Z <m] form>1 and k=3, one uses
1< j<k 9 17 -

(2.5.13) P[Ifixx kz'j/zl <m = N(nl,ne,n3Im,m)(nl’nz,ng") ..
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1

For a given k > L4 definitions and fomulas similar to (2.5.9) and
(2.5.10) can be written with boundery conditions involving values from

the k = 1 cese.
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CHAPTER IIIX

TWO PARAMETRIC RULES AND SOME COMPARISONS

3.1. Introduction

The goal of this chapter is to compare some performance character-

" istics of the distribution-free procedures Rl and R2 with those of pos=-

sible competing procedures, as well as to campare rule Rl with rule R2.
In Section 3.2, the asymptotic relative efficiency (ARE) of
rules Rl and R2 relative to & normal means procedure is computed assum-
ing the two given populations have a normal distribution win the saue
known variance. In-Section 3.3 the ARE of rules Rl and R2 rel;tiée to
Gupta's gamma procedure is computed assuming the two given populations
bhave the gamma distribution differing only in the scale parameter. In
Section 3.4 the k populations are assumed to have a gamma distribution
differing only in the location (or guaranteed life time) parameter.
Two parametric selection rules are then developed: one based on the‘
sample means and one based on the minimum observation from each popu-
lation. Section 3.5 contains some exact numerical comparisons between
.the distribution-free procedures Rl and R2 and those developed in the
previous.section.' The last section of this chapter contgins some dis-
cussion of the pfevious results, conjectures, further problems to be in-

vestigated, etc.
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3.2. Asymptotic Relative Efficiency (ARE) of the Rules R, and

R2 Relative to a Normal Means Procedure

Suppose usy and m, are two independent normal populations with a
common variance unity. ILet the random varisbles associated with "(l)
bave mean 0 and those associated with M(p) Pave mean (> 0). A sample
of size n is drawn from each of ‘the two populations. The ARE of proce-
dures Rl and R (to be defined below) will be calculatéd. Based an
X, j
respectively, from P i=l,2. Then the procedures are:

3 J = 1lyeee,n, i=1,2, let Ti and }_Ci be the rank sum and sample mean,

(3.2.1) R,: Select m, iff T >max T,-d, d >0,
1 My 1= 3 =
J=l,2
L
|
(3.2.2) - R: BSelect m, iff X, >max X.-b, b > O..
1 1=, 9 -
R 4

The constants d and b are chosen so that the probability of a correct
selection is bounded below by a given number p*, l/ 2<pP*<1, for all

9, ioe.,

(3.2.3) inf P(rr(e) is selected) > P*.
8>0

~

Procedure R has been investigated by Gupta [30] « First consider rule
Rl, and let S* denote, as before, the number of non-best populations in
the selected subset. Here, of course, S* is either O or 1. For conven-

ience replace d in (3.2.1) by nd. Then
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(3.2.1) E(S*]Rl) = P(T(l)'z T(2)- nd)
= P{o(Tp k) 2 ~o” L p-n(zma-a)/2] )
= #{o {p-n(enr1-a)/21 1,

where

(3.2.5) b= E(2(;)) = n(3n41)/2-07 @(ee'f"'/ %),

(3.2.6) & = Var(T.(l))

2B 802" 2)42(a-1) | $(xs0)p(mdax-(2n-1) 8%(e37Y/2)].

These moments are given by (2.2.5) and (2.2.13). Now set the right hand

side of (3.2.4) equal to € >0 and obtain

-1 ,
(3.2.7) p-n{2n+i-d)/2 = o § (e).
From Theorem 1.2.1 the appropriate d value is obtained from (3.2.3)
when 6 = 0. Equation (2.3.25) provides a large sample solution for 4,
namely,

(3.2.8) aXn o2,

- where h, is independentd n and 6. (Actually hy= h{2/3)'l/ 2, ‘where
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i

h is the appropriate value obtained from Gupta [29]). Putting (3.2,5),

(3.2.6) and (3.2.8) into (3.2.7) and simplifying yields

(3.2.9) n+h1nl/2-2n §(92-1/2) =

2 Q-l(e)[§(92-l/2)+2(nrl)JP §2(x+9)w(x)dx-(2n-l)§2(e2-l/2)]1/2,

Oor upon rearrangement,

(3.2.10) | n(l-eé(ee-l/a))+h1nl/2=2§-l(e)(2n32(e)+R(9))1/2,
where

(3.2.12) 8%(e) = J'}E(xw) o(x)ax-12(e2"/2), B
(3.2.12) R(e) = #(e2"Y 2)-2’I1§2 (x+0) o(x)ax+s2(e2™Y2),

For large n,-thé R(6) term in (3.2.10) can be ignored and then that

equation simplifies to

7(3.2.13) /2 2 [3/2 #1(e) B(e)-hllll-eé(ee'l/e)] -1,
Thusi,

(3.2.14) an(e) ~[23/2 3~(e) B(e)-h1]2 [1-2@(92'1/2)] -2,

Now éonsider rule R.
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(3.2.15) E(5*|R)

P[i(l) > i(a)-b]

o (b-0)(n/2)¥2].

Again, b i1s obtained from (3.2.3) when 6 = O.

(3.2016) b = h1(3/n)l/2. .
Setting the right hand side of (3.2.15) equal to e and using (3.2.16)

yields

(3-2.17) a(e) = [(3%2 n-2/2 573(e) /02,

The asymptotic relative efficiency of R, relative to R is defined to ie

1
(3.2.18) ARE(R,,R;0) = lim[nR(e)/nR (e)].
€40 1
From equations (3.2.1%) and (3.2.17),
(3.2.19) ARE(Rl,R;e) = {[2@(92'1/2)-1]/293(9)32.

If 6 1is allowed to decrease to - 0, then

(3.2.20) Lin ARE(R,,R;0) - 3/m = 9549,
i
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Recall that for k=2, rule R2 has the form:

j=l,2

(3.2.21) R,: Select mIE T, >e

c2>1
In this case rules R, and R, are equivalent, so equations (3.2.19) and

(3.2.20) remain valid if R, is replaced by R,.

3.3 Asymptotic Relative Efficiency of the Rules Rl and

R2 Relative to Gupta's Gamma Procedure

Let USELLN be two independent exponential populations with associ-
ated independent random variables Xi 3 J=1,.¢.,n, i=1,2. The density

funetion of Xi 3

is
=1

(3'3‘1) fi(X) =

where 1 = elﬂs_ Cl o= & The ARE of procedures 32 {end hence Rl) and
R' (to be defined below) will be calculated. Procedure R, is given by

(3.2.21) and R' by

(3.3.2) R': Select m, iff X > .b-l max X s b2>1.
: i 1= -
;]=.l,2
The constants ¢ and b are chosen so that
(3.3.3) inf P(n(e) is selected) > P*,

e>1
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H

. Procedure R' has been studied by Gupta ['28} « Now first consider rule

R2. For convenience replace c¢ by c-l in (3.2.21). Then

(3.3.4) E(S*IRE) = P(T(l) > &.r(g))

~d {dTJ{ p-cn(2n+l)(c+l)-l] 1,

where
(3.3.5) b= E(T(})) = 27n(30+1)-n” o(1+8)7Y,
(3.3.6) o° = Var(T(l))

Yooy

-1]

n{e(1+0) M+ (n-1)f 1-2(1+8) Le(2e+1) T4o(p40)

-(2n-1) 65(1+0)72),
Now set the right hand side of (3.3.4) equal to € >0 and obtein

(3.3.7) p.-cn’(2n+l)(c+l)-l o Q-l(e).

From Theorem 1.2.1, c¢ is obtained from (3.3.3) when & = 1. Through

Theorem 2.4.1 & large sample solution for ¢ can be obtained as

(3.3.8) e X1 (2n+l)l/2-q][ (2n+l)l/2+q_] -l,

where g is independent of n, 6 and e. (Actually g = 3°l/ 2 Q-l(P*)).

Putting (3.3.5), (3.3.6) and (3.3.8) into (3.3.7) and simplifying yields
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(3.3.9) 2'1q(2n+1)1/2+n[2'1-9(1+e)'l]=§'1(e)[n32(e)+R(e)]l/2,

where

(3.3.10) Bz(e) = 1-2(1+e)'l+(2e+1)'l+e(2+e)'l-292(1+e)'2,

(3.3.12) R(e)=ea(1+e)'2+é(1+e)'l-e(2«e)'l-(ee+1)'1+2(1+g)'17}.

- For large n, the R(8) term in (3.3.9) can be ignored. That equation

then simplifies to:

(3.3.22) n.Ré(e) 2 u(e+1)%(e-1) A g2™Y2-571(e) n(0)]2.

oy

Now consider rule R'. From Barlow and Gupta [3](see their equation

(4.21) with § = e'l),
(3.3.13) no.(e) = 2(1og 8)72 [871(e)-3Y/2g)2,

Using (3.3.12) and (3.3.13),

- (3.3.24) ARE(Rz,R';e)

dn, ]
Lim o (E)/nRa(e)

[ (e-1)/4(6+1) B(6) log 6]2 .
letting 6 decrease to 1 yields

(3.3.15) 1i? ARE(R,,R';8) = 3/k .
Y
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Agein equations (3.3.14) and (3.3.15) remain velid if R, is replaced

by Rl'

3.4. Two Parametric Procedures for the Location Parameter

of Gamma Distributions

A. A Procedure Based on Sample Means
Let Myseeesm be k independent populations whose associatéd ran- .
dom varisbles xij’ J=l,e.e0yn, i=1,...,k, are independent and have a gam-

ma distribution with density given by

r[x/r(r)][ (x-, Al r-1 e-x(x-ei) , X386

(3.4.1) £(x-6,) = o o

0] s x<6

\ i’

with common parameters r(> 0) and A.(>‘O) which are assumed known. In
life time studies and reliasbility work the parameter © is often called
the ”gﬁaranteed life time''. Without loss of generality A may be
assumed equal to unity. |

The ''best'' population is that one (or tagged one) with the long-
est guaranteed life, i.e., "(k)' It is desired to choose a subset‘of
the given k populations which will contain the best population with
a given probability. A selection procedure based on the sample means -
can be stated as |

iff X, >max  X.-d, 4 > 0.

(3-4.2) Ry Select m; 1 20 1<
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The nonnegative constant d is chosen so that
(3.4.3) inf P(cisM) = P¥,
Q .

where P¥ is a given constant (k-l < P¥ <1l) and

(3v4.14) Q= {0 =(6;04+,8): 8, >0, i=1,..0,k}.
The distribution of fi is given by
. -n(t-e, ) :
[n/l"(nr)]fx [n(t-ei)]nr-l e i dt, x>,
®
(3.4.5) P(X,< %)= | | S
s x < Gi

i

Let Go(x) = G(x), and i(i) denote the (unknown) sample mean which comes

from "(i)’ that population with parameter e( i]* Then for i=l,...,k,

(3.4.6) P(n(i) is selected) = P(i-(i) > max kf(j)-d)

1< 3<
fL 5o

= I G(x+d+e) ,1 -8 ac(x),
o oy O] e yp) ae(x)s
J¥i

where



b a = , - -a)).
(3.4.7) max(0 e (e[ 57~ 5)-2)) |
In particular,
w k-1 '
(3.4.8) P(cisM) = J .jl—]l G(x+d+9[k]-9[ j]) ac(x).
Thus,

,l|.. = c»[ ]k-l 2
(3.1.9) ot 2(0s|R,) = [ Lo(xra)l*™ ag(x)

and this equation is used to determine 4.

Consider the case where nr is a positive integer. Then

nr-1 _
(3.4.10) G(x) = 1- z e X [(nx)'j/.j!]. v
, 4=
- Thus
nr
(3.4.11) o G(x+d) = Z 8y
J=0
where
-e-n(xm)[n‘j(x-rd)‘j/,j.'] s J=0,1,.e.,nr-1 -
| (3.4.12) 8y =
1 y J=nr
nr
(3.4.13) [G(x+d)]k“l = ( Z aJ)k‘l
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= Z Ae B n(xa)] %,
K ,eee,k
0 nr
Zki=k-l
where
. k-1-k__ nr-1- -k
(i) A= XL (e E T nd,
o7tk 320 | .
ar-1
(3.4.15) = z 3y -
J=0
From (3.4.9),
| . o -nx(k-k__)
(3.4.16) inf P(CSIRM)=[D/F(nr)] }Z 'AI . nx( nr [n(xfd)]z(nx)nr-ldx.'
Q . K yees,k ° o
o or
Zki=k-l

Expanding [n(x+d)]‘z and performing the integration ylelds

Iemma 3.4.1. If nr is a positive integer, then

)
(3.4.17) igf P(cs|R,) < 1/r(nr)] Z A Z(g)(nd)‘c-'j(k-km;)-(‘jmr).

ko, s .’knr J=°

Zk i=k-l

r(j+nr),

where A and (£ are defined by (3.4.1%) and (3.4.15).
As a special case of (3.4.17), note that if nr=1 then £=0 and

(3.4.17) simplifies to



| k-1
(3.4.18) tnt P(csr,) = k™ > (;l)(-e"‘d)*’;
3=0

B. A Procedure Based on Minimum Observetions

ILet Xi[l]= min Xi,j-’ i=l,...,k, and define the selection rule
LJysn ™

Rm to be

(3.4.19) Ry Select my iff X;r.1 > TEIJS kle 1] 220,

where b is chosen to satisfy the basic P* requirement. Barr and Rizvi

[5] have studied procedures of this form. Iet

( oy
J:f(t-ei)dt, x 20, ¢
i
(3-’*020) F(x'ei) = ﬁ ) i= l’l..,k.
\ 0 y x< °1

The distribution of xi[ 1] is given by

[ 1-] 1-1‘"(::-91)]n s x28

(3.4.21) P(xi[l]_<_ x) =

\0 s x < 91
= Hy (x).



8

Iet Hb(x)=H(x), and X(i)[ll denote the (unknown) minimum observation

which is taken from population n(i). Then for i=l,...,k,

(3.4.22) ‘P(rr(i) is selected) P(X(i)[l} > max X(J)[ﬂ-b)

1< i<k
"1 ¢ 1) )
= I H(x+b+oy .3 -6 .1) 4aH(x),.
j; =1 (x [i] [J] x
j":i . ’ s
where
(3.4.23) a = max(0, ?ﬁ(,e['j] 4] -b)).
In particular,
o k-1 : 'y .
-(3.h.21+) P(cism) = fo ng H(x+b+e[k] - J]) dH(x).
Thus
(3.4.25) - inf P(cism) = J‘mlﬁ(x+b)]k-l dH(x),
' Q (o] :

and this equation is used to determine b.
Consider the case where r is a positive integer. The next lemma
is obtained in the same way Lemma 3.4.1 was obtained.

Lemma 3.4.2. If r is a positive integer, then

k-1
-1V k,, -nbk-1-j S
(3.4.26) igf P(cs|ry) Lxr(zr)] Z(j)(-e oy Z B
J=O a.o, .e .,al;_l

Za =n(k-1-3)
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N
) Z D Z (i)bu-q n(k=3)1 14T o pvir)
C sesesC o £=0

)
Zci=n-l
where
(3.4.27) 5= ((a(s-1-9) ) T (1) 1
o i - ao,...,ar_l i=0 ¢ 2
r-l -c
(3-4.28) p=(, "t )m @n 4,
0?*'"*? r1 i=0
r-1 .
(3.%.29) po= Z ia,
i=0
r“l . ’ vl ’
(3..1;.30) E v = Z e, - :
i=0

As a special case of (3.4.26), note that if r=1 then

k-1
' A ky, -nbk-lej
(3.4.31) tor P(CS|R ) = k JZO (3)('5“ ) .

3¢5. Some Exact Comparisons

Sections 3.2 and 3.3 compared the distribution-free rules R, and

32 with certain parametric procedures assuming a particular underlying

distribution of the random variables Xij

of relative asymptotic efficiency, i.e., a large sample comparison.

« The comparison was in terms

This section contains some exact numerical comparisons between the four

- selection rules Rl’Rz’RM and R, These rules are defined by (l,e.h),



{3.5.1) F(x-ei) =

8o

L

(1.2.5), (3.4.2) and (3.4.19), respectively. Suppose LA are three
independent populations and Xij’ J=1,2, i=1,2,3, are the associated in-
dependent random verisbles. lLet X, ,, j=1,2, have the distribution

s -(x-ei)
l'e ) X 2 9

0 » x< Qi ’

where 8 = [O,w), e[l]= o< e[a]= 6[3]= 8. For each of the four rules
under consideration the probability of a correct selection is minimized
when 6 = 0, and it is this configuration which is used to determine the

sppropriate constants needed to implement these rules for a given P*.

1
t

We consider P*¥ = .6 and P* = 14/15. For these choices the infifum of
the probabllity of a correct selection is equal to P* for all four rules,

and the appropriate constants for the rules are:

P R R Ry 2"

.6 2 4/3 0.5928 | -0.3719

/15| 6 11/4 1.8668 1.3425

The expected size of the selected subset for each of the four rules and
for both values of P¥* is computed for 6 = 0(.1)1.5. For rules RM and
R this quantity can be obtained using (3.4.6) and (3.4.22) respectively;

for the procedures R1 and R., an enumeration method yields

2
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(25 + ue'e-ae'ee)/15, P* = .6

(3.5.2) E(s|R,)

(35 + ke ®-7e"20) /15, px

fl
v
N
G

(25 + ye'e-ze‘ee)/ls, P* = .6

(3.5.3)  E(s]R))

(10 + 8e™%-4e™®)/5,  px = 1425,
These computations are found in Table % and are now summarized:

1) Between the two parametric procedures, the rule bssed on the
minimuﬁ cbservations, R , is better in the sense that E(SlRm) SIE(S]RM),
P* = .6, 14/15, 8 = 0(.1)1.5. The inequality is strict except wﬁfn e = 0.

. 2)  The two-distribution-free procedures, Rl and R,., perform eqﬁally

2
well for P* = .6, i.e., E(SlRl) = E(SIR2) for all values of 8. For

P* = 14/15, rule R, is better since E(S|R2) 5:3(5131) for all o, egual-
ity holding only when 6 = O.

3) For P* = .6, both parsmetric rules perform better than the
distribution-free procedures. However, for P* ='lh/15, there.are values
of © for which E(S]Rl) < E(S[Rm), i.e., both distribution-free procedures
perform better than the rule Rm ( and hence BM). There are also psints
at vhich R performs better than R, (and hence R,); R, performs better

than Ry and R, performs better than R,.

3.6. Discussion and Related Problems

The two distribution-free selection rules, Rl and R2, are based

upon statistics which can be looked upon as generalizations of the-



E(S) for Rules 4> By, Ry and R

TABIE 5

8 E(SIRl) E(S[Re) E(SIRM) E(srﬁma
0 1.80000 1.80000 1.80000 1.80000
2.80000 2.82000 2.80000 2.80000
1 1.79879 1.79879 1.79663 1.79066
* 2.79577 2.79276 2.79837 2. 79746
5 1.79562 1.79562 1.78726 1.76557
* 2.78467 2.77371 2.79347 2.78982
3 1.7910k 1.7910k 1.77311 1.7304b
* 2.76865 2.74626 2.78529 2. 77690
L 1.78551 1.78551 1.75555 1.69392
2. 74928 2.72305 2.77379 2.75839
.5 1.77936 1.77936 | 1.73595 1.66324
2.72775 2.67615 2.75887 2.73385
5 1.772066 1.77286 1.71550 1.63813
' 2.70500 2.6371h 2. 74047 2.70278
- 1.76621 1.76621 1.69516 1.61757
* 2.68173 2.59726 2.71849 2.66460
8 1.75957 1.75957 1.67554 1.60073
* 2.65849 2.55741 2.69287 2.61881
9 1.75305 1.75305 1.65706 1.58695
* 2.63566  2.51827 2.66360 2.56510
1.0 1.74672 1.74672 1.63995 1.57566
‘ 2.61353 2.48034 2.63075 2.50360
1.1 1.74066 1.74066 1.62432 | 1.56642
* 2.59231 2.44395 2.59447 2.435
1.0 1.73489 1.73439 1.61019 1.55886
* 2.57211 2.1093) 2.55507 2.36239
i 3 1.7294Y4 1.72944 1.59754 1.55267
: 2.5530L 2.37663 2.51300 2.28967
1.4 1.72432 1.72432 1.58629 1.54760
* 2-53511 2.34591 2.46890 2.22496
1.5 1.71953 1.7°953 1.57635 1.54345
. 2.51835 £.31718 2.42356 2.17182 |

E(S) for rules R.,R ,R”[ and Rm given n=2 and k=3 independent exponential

82

populations with loCation parameters O = 9 l]s e[ o}= e[ 3]: Be. Upper
value is for P* = .6, lower for P¥ = 14/15.
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3

- Mann-Whitney U-statistic'(or‘Wilcoxon rank sum stetistic) to k popula-

tions with continuous random variables. Both rules have been suggested

 for selecting a subset of the given populations which will contain the

stochastically largest one with a specified probaebility. It is assumed
that each population is characterized by a single parameter which sto-
chastically orders the k populations. There is, as yet, no fixed rule
determining which of these two rules should be used in a.given si‘tuation,
One criterion could be simply an analogy with esteblished means proce-

dures, i.e., use rule Rl when the distribution functions differ by a

location parameter and use rule 32 when the difference is in a scale

parameter. However, if one desires to minimize the expected size of
the selected subset, then this analogy leads to an incorrect éhoice of

h

'
rules as seen in Section 3.5. Other reasons can be given for preferring

rule Rl to rule R2. For independent identically distributed populations,

the distribution of the statistic max T.-Tk is better tabulated than
K<k

that of max T./T, . Also rule R, is symmetric in the sense that the
1< J< k J 7k 1

corresponding rule for selecting a subset containing the stochastically

smallest population (see (1.1.6)) yields & statistic, T,-min T,
Kicicx 9

which is stochastically equivalent to the statistic max T.-T.  when
1<ick 90K

the populations are identically distributed and equal samples are taken

from each. The same is not true for rule 32. There are many open prob-

lems here. For which distributions is the rule (BE) the best rule to

Ry
use from the class Rl(G) (RQ(G)) in the sense of minimizing expected

subset size? For which distributions does rule Rl perform better than



a W

8L

rule R2 and vice versa? Certainly Monte Carlo techniqueé could contri-
bute a great deal in these areas. |

Two problems arise from consideration of the probability of a cor-
rect selection. The first is to characterize that class of distribution
functions for which the infimum of the probability‘of a correct selection,
using rules Rl and R2, takes pl;ce wheg the populatiops are idéntiCally
distributed. This has been verified in some specific examples, and from -
Theorem 1.2.1 the result is true for two populetions. However, it is
not true in general as is demonstrated by Rizvi and Woodworth [57].
The same problem can also be posed for the more general class of rules,
Rl(G) and RE(G). The major difficulty in this respect is that the sta-
tistics involved (rank sums) are dependent from population tq popula-
tion, a difficulty encountered by Gupta and Nagel l33] in work;ng'%ith
mﬁltinomial cell frequencies. Secondly, it would be desirasble to char-
acterize the class of distributions which yield the probability of a
correct selection using rule Rl (or Re) as a nondecreasing function in
the qﬁantities e[k]- 9[1], i=l,...,k-1. In the first chapter an example
is given where this is not the case. It should be noted this examplg
involved a distribution whose density lacked the MLR property and did
not have the real line for its support.

Tabulating the distribution of the statistic max T.-T_  as was
. _ 1<3<k'j k

done in Section 2.3 requires é large amount of computer time for rela-
tively small values of k and n. For two and three populations, the
asymptotic results obtained from Theorem 2.3.2 (and Theorem 2.4.1) are
in very close agreement with exact results for small sample siies. For

" a larger number of populations it would be desirable to know how lafge.
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a sample is required to obtain a ''reasonable'' approximation using
these methods. )

Finally, this work can be related to the work of Rizvi and Sobel
[561 and Barlow and Gupta 13]. These two papers are concerned with se-
lecting a subset of populations to contain the population with the larg-
est (smallest) quantile of a given order o(0 < o < 1) provided there

exists a stochastically largest population. The rules Ri and R2 can be

. looked upon as selection procedures for the population possessing the

largest quantiles of every order. In other words, no fixed guantile
need be specified, since the distributions are assumed to be stochas-

tically ordered.
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