A Class of Sequential Multiple Decesion Procedures*

by

'Aust;n M. Barron

Department of Statisties
Division of Mathematieal Sciences
Mimeograph Series No, 169

September 1968 ks

x

This research was partly supported by contract AF 33(615)69C12kk
with the Aerospace Research Laboratories, and partly by GPO6073 from
the National Science Foundation.



INTRODUCTION

One problem in statistics is concerned with the ranking and selection
of k populations or categories. Each of the k populations ﬂl, i=1,

2,..., k has an observable random variable X. whose distribution de-

i
pends on some parameter ei. The paremeters ei usually represent an
important attribute of the distribution such as the mean or variance. In
general, the value of the parameter for any given population is unknown.
That is either all the Qi's are unknown, or if they are known the exact
population from which a given © comes is unknown. The "best" population
is designatedito be that one which has the largest parameter value Qi

(or equivalently, the smallest.) Then the fixed sample-size multiple de-
cision problem is fo find "optimal" procedures, based on random samples
of given size from each population, which will select a subset of Hl, H2,
cees Hk of fixed or random size containing the "best" population. The
formulation of the problem as such can be found in Bechhofer ra1,

Lehmenn [2£], and Gupta [15], [22].

The class of multiple decision rules (or selection and ranking proce-
dures) evolved from short comings in the classical tests of homogenéify
of parameters. Testing the hypothesis of equality of means does not
answer questions that an experimenter seeks., Particularly if the hypoth-

-esis of homogeneity is rejected the experimenter ig faced with the situa-

tion of having no statistical procedure available to rank the populations.



A more meaningful approach to this type of question is to view it as a
multiple decision problem. Early contributions to this more realistic
approach were made by Mosteller [27], who considered slippage configura-
tions; Paulson [28] who considered multiple decision problems in the
analysis of variance; and Bahador [1l]} who considered the theory of the
k-sample problems. Man& authors have made various contributions and mod-
ifications to the basic problem, and additional references can be found
in Bechhofer 2], Gupta 15, [22], Gupta and Sobel 716}, and Lehmann M2£7,
Most of thesevcontributions fit into two classes generally called (1) the
"indifference zone" approach and (2) "subset selection" approach.

In the "indifference zone" approach a population is selected so as
to guarantee with a prescribed proﬁability P* that it is the "best"
population whenever the parameters obey some other condition, .This
other condition is thought of as an "indifference zone" in the parameter
space (see Bechhofer [2]). For example, in the problem of selecting the
population with the largest mean of k ngrmal populatiohs with common
known variance the P* condition is satisfled whenever the difference
between the largest mean and the next largest mean is greater than 6*,
another prescribed constant, Other contributions to this problem can be
found in Bechhofer and Sobel [3], Bechhofer, Dunnett and Sobel [L] and
Sobel and Huyett [ 351,

The second approach requires only that the "best" population be in-
cluded in the selected subset with a prescribed probability P* for any
configuration of the parameters., Thus while with the "indifference zone"
approach the experimenter must be givén two apriori constants P* and

*
6 , in the "subset selection" approach only one constant P* need be



3
given., The size of the selected subset is of coursé a random variable and
so in comparing two procedures both meeting the P* condition the one
which gives a smallest expected subset size is in some sense more desir-
able. Expected minimal rank and expected sum of ranks of the populations
selected in the subset are other performance criteria used in comparing
procedures. Contributions to this aspect of the problem can be found in
Paulson (28], cupta [157, [207, 217, Gupta and Sobel [16Y, [171, 181,
[i91, Rizvi [33], and Seal [35]. Recent application of the subset selec-
tion approach applied to selection and ranking of multivariate normal pop-
ulation can be found in Gupta [ 23] and Gupta and Panchapakesan [2h].

A Bayesian approach to the problem of selection dnd ranking has been
worked on by Dunnett 11}, Guttman and Tiao [257, and Deely and Gupta [10}
vhere apriori distributions on the parameter space are assumed. Deely (9]
~ approached the problem through an empirical Bayes study in which he
assumes only the existance of an apriori distribution, the exact distri-
bution itselfrremaining unknown.

A natural modification to the‘multiple decision problem is the use of
sequential and multistage procedures. That is procedures for which the
number,of'obsefvations is not determinéd in advance but is dependent on
the outcome of the observations as they are made, Nearly all of the
work in sequential and multistage selection and ranking procedures has
been through the "indifference zone" approach. Bechhofer, Dunnett, and
Sobel [4] investigated a two-stage multiple decision procedure for the
problem of selecting the population with the largest mean of k normal
populations with known variances. The problem of sequentially selecting

the '"best" one of several normal populations with common unknown variances
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was worked on by Bechhofer 5] and Bechhofer and Blumenthal [6]. Paulson
L29], (30], [31j, and [32] has proposed different solutions to the same
problem as well as the problem of sequentially selecting the "best" of
k binomial populations. Bechhofer, Kiefer and Sobel [7] in a recent
monograph have considered sequential procedures for selecting the best of
k Koopman-Darmois populations, again using an "indifference zone"
approach.

The present thesis deals with sequential and multi-stage procedures
using the "subset selection" approach., In this approach no conditions
are imposed on the parameter space. The main problem is that of finding
a subset of k normal populations, with'common known variance, which con-
tains the "best" population with a prescribed probability P*. The means
will be assumed known but not the correct pairing of populations to means.
Sequential procedures based on a fixed sample-size type (see Gupta [15],
(22} and Gupta and Sobel [17] will be discussed. The first class of pro-
cedures consists of rules of a non-eliminating type; a rule belonging to
this class selects and rejects populations at various stages but continues
taking samples from all populations until the procedure terminates. At
every stage of this above procedure a sample of one is obtained from each
of the k populations and a multiple decision rule is employed which
determines which of the populations would be selected and which rejected
on the basis of that one sample. The number of times a population would
be seleéted in m independent stages then determines whether the experi-
menter accepts or rejects the population or if another trial must be per-
formed to reach a decision. The probability that the "best" population

would be accepted at any individual stage on the basis of the one sample



5

multiple decision rule is at least P*. The second class of procedures is
derived from the first and is of an eliminating type in that it stops sam-
pling from a population once a decision about it has been reached.

Chapter I is concerned with’a class of non-eliminating procedures.
Some general monotonic properties of this class of procedures are derived.
A specific subclass of these procedures is jnvestigated in detail in
gection 1.3 and expressions for the probability of selecting & population
and the expected number of stages to come to 2 decision are found. Sec-
tion 1.4 deals with approximations to the various probabilities and expec-
tations found'in gection 1.3, using a difference equation approach. An
approximate minimax rule for choosing a specific procedure that minimizes
the maximum number of samples needed to make 2 decision on each popula-
tion, among all procedures guaranteeing certain probability conditions, 18
discussed in gection 1.5. Tinally some comparisons to the fixed-sample
size procedure for the slippage problem and the equally spaced means prob-
lem are offered. |

Chapter II1 discusses the eliminating rule and some monotonic proper-
ties of it. gSection 2.2 contains a theorem .that allows a direct compari-
son between the probability of selecting 2 population using the non-elim-
inating rnle,,and the probability of selecting & population using the
eliminating rule. gection 2.3 presents the results of a Monte—Carlo
study of the performance of the second procedure for the slippage problem.

The final chapter offers some generalizations of the procedures dis-
cussed in Chapters 1 and I1 to more general classes of distributions. Bx-
amples using the. binomial and gamma populations are shown. The procedures

are applied to the problem of finding those populations whose parameters



are "better than a standard". Finally a ranking and selection procedure

for k independent binomial populations is discussed,



Il

CHAPTER I

A CLASS OF NONELIMINATING SEQUENTIAL PROCEDURES
FOR SELECTING THE BEST OF k NORMAL

POPULATIONS WITH COMMON KNOWN VARTIANCE

1.1 Definition of the General Class of Procedures

In this section the general nature of a non-eliminating sequential

1 de-

multiple decision procedure will be outlined. ILet Hl, HE,..., T

note k given normal populations with means 9., 9 A, - respec-

12 Fpseees O

tively and common lmowvn variance 02. Let © <O, <. €04 be
(1] = "2} = = “LK]
the ranked means, and let H(j) (unknown) be the population with mean
9[3]. Thg object is to select a small subset of Hl, Hz’f°" nk S0 as
' *

to guarantee, with a prescribed probability P , that the population with
the largest (or equivalently the smallest) mean is included in the selec-
ted subset. We denote this event by CS (correct selection). The se-
quential procedure will be a modification of the following (see Gupta
[15], [22] and Gupta and Sobel L17]) fixed sample-size one.

R(n): Take a sample of size n from each of the k populations .

., i =1, 2,..., k, and select populations Hi if and only

i,
- ~ > -~ - ) ’
if xi > Xﬁax od//n where d is chosen such that

*
igf P{cs|R(n)} =P eand Q ={0; 9 = (81500058,)- @ < 6, <,
i=1,..., k}. -}Ei’ i=1,2,..., k, denotes the sample mean

from I, and X = max X. .
i max 1<i<k i



It has been shown (Gupta [22]) that under this formulation,

© _ k :
(1.1.1) P = P(selecting n(i)) = f [_n @(x+d+(9[i]-e[j])é&)JW(X)dx

-3 =l
J¥L
L 2 t - |
vhere o(t) = /E% e and &(t) = j @(x)dx. Therefore, P{CS|R(n))
= > od —‘[m [kﬁl B (x+da+(9 0 - F/h)] (x)dx and thus
BCER Rt B IR i Pt

the infimum of the probability of a correct selection occurs when 91 e

= Bk = 0 and is independent of the common value 9. Hence d is defined

m .
by f @k-l(x+d)m(x)dx =P, and it is at once clear that d is inde-

-} .
pendent of n the common sample-size. It is also clear that if i > J

h . > P O o= ! - 1= Or.q) =0 ~-8- 4 )>0 F
then By Z by for (9ry3- 0r,1) = (Op43- Opy7) =(Op - 8 ) Z 0 for
all 2 =1, 2,..., k.

For the following procedure it is assumed that the parameters 61,
62,..., ek are known, but that the exact pairing of the ith ranked mean
9[i] to the population it came from is unknown for all i = 1, 2,..., k.
In fact, equation (1,1.1) shows that P> Pyse--, B depend on 8, 9,,

-+ 9, ‘through the differences (6r. - Or.-) only, so that many sets of
k [1] [JJ
neans (91, 92,..., ek) may give rise to the same set of Pys Posones
P - Thus the experimenter need only have an apriori knowledge of Py» Poo

cees Dy and the results of the chapter will apply for any set (0., ©

l)
ooy Bk) giving rise to these pi's. At the first stage perform R(l)

o2

for each of the k populations. For population Hi define a success if

> - ' - - . . »
Xi > xﬁax od, that is if Hi is accepted under R(l)' Similarly,
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define a failure if Xi < xmax - 0d thus rejecting Ti under R(l)' Now
define random variables Yll’ Y2lf"" Ykl where Yil =0 or 1 accor-
ding as a failure or a success occurs,with population Hi,i =1,...,k.

Next draw an additional sample of ane from each of the k populations
independently of the first sample and perform R(l) on the new sample
defining Yl2’ Yé2,..., Yk2 where YiE =0 or 1 as a failure or suc-
cess is gotten from population Hi’ i=1, 2,..., k, on the second sam-
ple. Continuing in this manner, after the mth sample of one drawn from
cach of the k populations independently of the previous m-l samples

perform R(l) and define Y. , Y where Yim =0 or 1 ac-

om’** "2 ‘km

cording as a failure or a success is gotten from Hi on the mth sample.

By construction xlm’ Yém""’ Ykm are Bernoulli random variables with
= = ) = = = i = > ¥

P(Yim 0) a > P(Yim 'l) P;j»> Pyjta; =1, 1 =1,2,..., k, m>1, For

Y are dependent random variables. However,

Yim? Yoot oo Y
for any fixed population Hi, Yil’ Yi2""’ Yim are independent by the

each m > 1,

nature of the sampling. So if for every i = 1,2,..., k we define
n
S, = T Y.. it follows that Sim is distributed as a binomial rendom

variable with parameters m and P - It should be pointed out that
S&m’ i=1,2,..., k are dependent binomial random variables.

For each Hi, shm counts the number of successes observed in m inde-
pendent trials, that is the number of times Hi is accepted by R(l) with
the probability of being accepted at least P*. Since p; > pj for i>j
the expected number of successes from H(i) is greater than the expected

number of successes from H(j). Therefore H(k)’ (H(l)) would have the

greatest (smallest) expected number of Successes in m ‘trials, It is
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based on this fact that the procedure J& will be delined.
Let {aj1, and [bj} be two sequences of real numbers monotonically
increasing to infinity such that

(1.1.2) (i) a; <0<b,, 8 <—bJ., j=2,3,...

(=]
(1i) P{ nl la, <8, <bll =0 i=212,..,k
=

The existance of such seguences is_éuaranteed by the following theorem

(see Feller [12]).

Lav of the Iterrated Logarithm: For all i = 1,2,..., k with prbbability
510y
. Jmpiq. 3 -
one ve have 1lim sup- = 1. Alternative;y,

m- e (2 log log m)2

_1_ .
(1.1.3) P[Sim> mp, + T(2m p,q,log log m)2 io.} =1,0<c7<1 and

. L
P[Sim? mp, + 7(2m P;4;10g log m)? for only finitely many ml = 1,

T > 1L

Py _:L ~
Then if b = mp + 7(2mpq log log m)2 vhere pq = min p.q., m > 1;
m (1) " it U=
. 1<i<k
O0<Tt1 <1l and am is any monotonically increasing sequence going to <
with a, < 0 and such that & < bm’ m>1 (1.1.2) will be satisfied.
Similarly we can choose an appropriate sequence for {anJ by using the
second equation in (1.1.3). These choices are actually stronger than is

actually needed but are sufficient for showing the existance of the two

sequences.
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The sequential brocedure J& can now be defined. Since the Problem

is sequential, if nb decision has-been made about a population ﬂi by the

mth stage m > 1 fhere are three possible choices for the.éxperihenter at
the (m+l)st stage: (1) accept Hi, that is choose ﬂi as one of the

subset of ﬂl, Hz,...,

* . : ‘ _
at least P, (2) reject Hi, that is do not include it in the selected

Hk which will contain the "best" with probability

subset, or (3) make no decision concerning Hi and continue onto the
(m+2)nd stage. Since the procedure is non-eliminating samples are taken
from all populations until all have been either accepted or rejected. A4
population will be called tagged whenever it falls ipto the acceptanée or
rejection regions. “The procedure d& is as follows:
d&: "Tag population ﬂi, i=1,2,..., k at the very first stage
m > 1 such that Simé(am’ Em) “and mark it "rejected" if
Sim Elam gnd "accepted" if Sim > bm . Continug sampling from
all k populations until each one has been tagged, then accept
those marked "accepted” and reject those marked "rejected",
If at stage mi‘ population ﬂi is tagged, that is m, is the first
stage such that bsim?(am.’bm ), then the experimenter will no longer de-
i i

i _
fine Yid’ j= m, or hence S, ,j > m,. 1In a sense the procedure ends

ij i
for Hi at stage m although further samples are taken from it in order
to complete the test for the remaining populations.

Condition (1.1.2) guarantees that ini <o forall i =1,2,..., k.
The number of saniples used in a& is then k(mex m,). Since at a finite
1<i<k
m;  a decision is reached about fl, it then follows that for all i = 1,
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(1.1.%) P(Hi is selected,ld&) + P(Hi is rejected !d&) = 1.

Then in general,
_ ’ T m-1 ‘ ; v
(L.1.5) P{CS!J]_] = P{ N [ar < s(k)r< b1 N [s(k>m3 bmﬂ

vhere S(j)r (unknown) is the sum that corresponds. to the population

with 6oy, J = 1,2,..., ke

1.2 Some Monotone Properties of d& :

In the previous section it was shown that each population ﬂi gave
rise to a sequence of zeros and ones vhich vere summed to provide the
test statistics. Consider a genetic population 1, and a sequence of

0) =1 -p,

independent random variables Y, Y,,... such that P(Yi

‘ ‘ : m
_P(Yi=l)=p, i=1,2,... . Define S, = Z Y, for m=1,2,...,

i=1
and consider pairs of sequences ¢ = ([am}, {v.}) such that

i < ' <
(1) a <a .., bm < bm+l’

(1.2.1) (ii) 1im a_ = lim b = o
m m
m- o m—

m = 1,2,.-0'

(iii) p(z [am<sm<bm])='o .
; mel

bef. (1.2.1) Two'pairs of sequences c¢ and c' are said to be ordered

; ' < 1 ' ! ' :
if & <a, b <b (or a,Sen b < b') for all
m2# 1. We denote this by c¢' <c (or ¢ <c') and say

¢' is ordered less (greater) than < .
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The first theorem of this section shows the behavior of (1.1.5) with res-
pect to ordered pairs of sequences. It is an immediate result of the
folloving lemma,

Lemma (1.2.1). Let S , m>1} be defined as above and for all ¢ sat-
. m-1
o _ S
isfying (1.2.1) s.e"c_ %(E) { f_\l [av< 5, < bv] n [Sm > bm]} and
© : _ )
P(A) = © P(A(c)). Then if c'"<ec, P ,(A)>P (4).
E. m=1 m"= - == £ - E '

" 3 : Al s sy ' S
Proof. Since ¢’ < ¢ by definition 1.2.1 a_mfam, bmfbm . Then

m-1 ‘ - m-1 _
4 | 1 1
N [ar< §.<blc N [ar<.sr_<br4.

. r ~ . ¥ . 1 ’
clearly [Sm > bmj fon LSm > o) and also
r=1 Cr=1l

- m-1.

But then this implies that either N [alg < 8§ < b;j holds or there exists
r=1 '
n-l ,
an n <m-1 such that N{a'<s <b'JNLs » b’} holds. Thus it
- pe1 T r r n - n :
follows that Am_(_c_:) c An(g_') for some n =1, 2,..., m and so Am(c) c
m o ' © ©® » )
U A (c') and therefore UA (c)c U A (c'). It is clear that A (c)
n - m'— m = m'—

n=1 . m=1 m=1

MA(c)=p for m4n and for all ¢ satisfying (1.2.1) since A (c)

is the first time the seqﬁence {Sm,m > 1} 1leaves the bounds (am,bm)

© @
and crosses the upper one. Therefore P( U Am(_g))'= z P(Am(g)) = I’C(A)ﬂ
' m=1 m=1 -

and from the 1>re_v_i-bu§ implication Pc(A) < Pc'(A) wvhich cémpletes the
proof, - - |

Theorem (1,2.1), If c' < c then P{select".i.ng Tii!:fl(_c_')] >

Plselecting Tlll’l(&_)} and P{rejecting ﬂ).‘[‘:”l(_c_:_')} < Plrejecting lTil_Jl(_g)l
for i = 1,2,...; ik. " In particular P{cs!y"l(_g')l > P{CS!:;”i(S_)} vhere
"ﬂl(g), is the procédure /) using the sequences ¢ = ({am], {bm}). v
Proof, For. any Fixed i = 1,2,..., k P(Selecting ﬂilgli(g_)'):: PC(A) as

defined in Lemma 1.2.1 and so the first statement of the theorem follows.
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From (1.1.4) P(réjecting ﬂi[ﬁi(g)l = 1-P(selecting Wi!di(g)) = 1-P_(A).
Since PC(A) < Pc,(A') for ¢' <c¢ it then follows that -
P(rejectzﬁg Ii!dZ(g))f P(rejecting 1i!zﬁﬁsf)). Applying the Lemma 1.2.1
H(k) - gives the feéult for a correct selection and completes the prqof.
Déf. (L.2.2). A set of pairs of sequences C will be called awordered
class if for every ¢ and c' belonging to < either
gge' or g'le. |
Thus for an ordered class C if there exists a ¢ ¢ " such that ¢ <c¢'
for all c¢' ¢ C, then the procedure *1(2) maximizes the probability of
a correct selection over the family. If no minimal ¢ exists in 2 the
probability of a correct selection can be increased by choosing smaller
members of 2 at the cost of increasing the‘chance of selecting "poor"
populations.
Now considef anéther genetic population M' and the Sequence Yi,

Y3,... of independent random variables generated by it. Suppose

P{Y5 = 0} = 1-p' and P{Yg =1} =p', j =1,2,..., vhere p' <p. De-

_ " o
fine Sé = I Yi »m>1, and following the notation of Lemma (1.2.1)
i1
. * m-1 N © '
= 1 > 1] = -/:
set A'(c) [rf:l [a<si<v ] N [s; >b 3} and PE(A ) =1P(Am(g)) |

vhere E‘= ({am], {bml) satisfies (1.2.15. 'To compare PC(A) and
PC(A') ve need the following two lemmas. o

L;ﬁma (1.2.2). There exists a seéuence of independent identically dis-
tributed random variables [Um,m > 11 such that

(i) P(u, <u)=P(Y <u) forall u and m>1, and

(ii) P(Um 5‘Ym) =1, m>1,
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Proof. Define 2 sequence of independent random variables Zm =0 or 1
such that Z . 1is independent of Yﬁ, J +m and P(Zm = l!Ym = 1)= p'/p,
P(Zm = O!Zm = 0) =1 so that {YmZm, m> 1} - is a sequence of independent

and identically distributed random variables. Then let Uﬁ'= Yhzm, m>1.

= = —. = = o= = Y= =! = n'
P(U, = 1) = B(Y =1, 2 =1) =Pz =1y 1e(Y, =1)=p'/p p=7p',

it

and therefore P(Ym =0)=1-p', m=1,2,... . Clearly then the U 's
have the same distribution as the sequence of %;'s and clearly
P(Um < Ym) = 1, which completes the proof.

For the sequence U5 Uyy... as defined in Lemma (1.2.2) let

n

T, = = U;, m>1 and for every ¢ satisfying (1.2.1) set
1=1 m-1 ' ©
B (c)={n [a < T,<bT [,>b 1} ana P, (B) £ P(B (c)). P_(A)
r=1 m=1 - =

and P _(A) canvnqw be compared,

Lemma ?1.2.3). Eor every c. satisfying (1.2.1), PC(A()'S Pc(A)f

Proof. P (A') =P,(B) from Lemma (1.2.2) since the_Aistfibu;ion of the
Ui's is identicalf%ith the distribution of the Y{'s and both sequences

are independent. However the Ui's are bounded abo-e by the Yi's thus

for all m > 1 _P(T < 8,) =1 Therefore, [T >blcls >b] an

m-1 m-1
also N [a < T < b ,J implies either N [a < s < b holds or there
v=l - v=1
. _ n-1 .
exists an n < m-1 such that N [a <85<h ] n [S > b . It then
v=1

follows that B (c) CA (c) for some n = 1,2,....m and so

[}

Ul B (c) Lens U A (c) _As in the proof of Lemma (1.2.1) for m${n
m= m=1

A (c) NA q(e) = ¢ and 51m11arly B (c) NB (c) = . Thus from the pre-

vious 1mp11cat10n P, (A ) =P (B) <P (A), and completes the proof.
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If we define T, = P(selecting ﬂ( )LJ (e)), i=1 2,..., k we get

the following theorem.

' | >
Theorem (1.2.2). 2T, 2 >r, .
Proof. It will syffice to show that ry < ry. Now
m-l
= > g 0y . -
" m§1 PLD fages(a)y< 2 N8y, 2 b0} where 5, 1s = binomial

random variablefﬁith parameters p; and m. Lemma (1.2,3) shéws that

ry is a monotoﬁically increasing function of p; - In Section 1.1 it

was noted that the mean 9[l] from H(l) is less then 9[2] from H(2) sb
that P, > Py and therefore r2> Ty and the proof is complete, _
’ The above property describes the monotohicity of the selection prob-
abilitiesp Anothér property'which follows is given in the next corollary.
Corolléry (1.2.1). The procedure d&(g) is unbiased.

Proof. It follows from (1.1.h) and Theorem (1.2.2) tHat .t.;he probability
of rejecting the population with the largest mean is less than or equal
to the probabillty of rejecting any other populatlon. Hence .’(c) is

unblased. (See Gupta [22]).

1.3 ’A Specific Class of Ordered Pairs of Sequences

A: Introduction, Notations, and Definitions
This and the remaining sections of Chapter I will investigate the
procedure di(g) using the following ordeyed class of pairs of sequences

Cq- Let a = cm-p gnd 'bm = cm+.D2 vhere 0 <c <1 eand Dl,D2> 0.

l’
Since cmtD <c'm¥D for c < c' and any fixed D, the class C,= (c)

vhere ¢ = ({cm-Di],[cm+D2}) for fixed D,,D, is a ordered class in

1272
¢ e (0,1). In fact we will assume ¢ rational in (0,1) and the actual
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probabilities involved will be on the sub-family CJ'_ C 'Cl vfhere c is
rational,

It will be shown ﬁhat with a simple change of variables P{CS|s". (c)}
can be evaluated as a one-dimensional random walk on a finite interval.
Thls section will deal with exact expressions for the probab111ty of
selectlng or rejectlng a population at a given stage of the procedure,
and the overall. probabllity of selectlng or rejecting a population. Also
found are expressions for E:{Mil l(g_)} the expected number of stages
‘until population ﬁi, i=1,2,..., k is tagged. Section 1.4 will deal
with bounds on the various probabilities and expectations.r These boﬁnds'
ére often easier to compute than the corresponding exact expressions and
in addition give a better insight into the nature of the procedure.

In what follows several definitions and properties concerning random
valk are needed. Most of these properties are well known and can be
fouhd in Spitzer's [36] bcok on random walk. The random walk used here
will be defined, én‘the state space L = {x|x = 0,+1,+2,...}, by a
transition function P(x,y) equal to the probability of starting at x
and going to y in one step, The main properties of P(x,y) are

1) = P(x,y) 1, 2) P(x,y) = P(O,y-x), The latter permits a descrip-
"~ YeL ' _ )

tion of the walk by P(0,y), yeL. Let Po(x,¥) = 8(x,¥), P (x,y) = P(x,y)
and P (K,y) equal the probability of going from x to y in exactly n .
~ steps, where x and y are in L and &(x,y) =0 unless x =y vhen
8(x,y) = 1. |

Consider a sequencé of discrete, independent, idehtically distributed

random variables {yi, i'> 1} vhere P(yl= ¥) = P(0,y) and define
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m .
Sy = % ¥, m>1. Then [yi, i > 1} can be said to generate the random
_ i=1 o ‘

walk., If the walk starts at xel, then x + Sm is the state of the walk

after the mth stgp. For positiye integers dl’d2’ define:

(1.3.1) ‘Bl = (==, -s4;], B, =[sd,, =), B =B, U B,

(1.3.2) My =min fm>1] s ¢ B] |

(1.3.3) Qn(x,y)‘= P{ESn= yl n [MB > n}}, x,yeL-B, n >0
(1.3.4) Hén)(x,y) = P{ls =] ﬂ'[MB‘= n], xeL-B; yeB, n > 1 .

Tt is clear that iMh. is the stopping time of the walk. In terms of the
procedure d&(g), MB is the stage at wﬁich e given population Hi is
tagged. Qn(x,y) is the probability of going from x to y in n

steps withoutvleaving_ L-B, and Hén) is the probability of starting at
xeL-B and leaving L-B at the nth step entering B -at y. Analytically,

(1.3.3) and (1.3.4) can be describedlas follows (See Spitzer [36]):

(1.3.5)  Qy(x,y) = 8(x,5), @ (%,¥) = P(x,y)

| Q'111»1("»’3)':_ z Qu(x,t) Q(t,¥) x,yel-B, n>1

tel~B :
: n+l) - N :
(13.6) B"wy) = T Qo8 B(6,y), xeL-B, yeB, n21 .
tel-B ' '
. _ m
As in Section 1.1, , for a fixed popuwlation T., set S. = T V..,
_ _ i’ im j=1. ij

m > 1 vhere yis, J 21 is a sequence of independent identically dis-

tributed random variables with P(yij = 0) = 1-p,, and P(Yﬁj= 1) = o, -
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n
k<

Define Z,. -c for j>1 and i =1,2,..., k. Then

- - - - : 1 =
(yij c) S;p,~ cm, and hence Lcm D < 8, < em+D, ]
- h : 1 = 1 - = - B
€ D,<R, <D, [simz cm+D,,] [Rimz Dy}, and [simg en-D, ] = [R, < -D; 1.

By this transformation the problem of tagging a population Hi’ as it .

crosses bounds depending on the stage of the procedure is convérted to

m .
one of a one-dimension random walk Rim = jflzij vhere P(Zij = l-¢c) = Py

and P(Zij = -¢) = 1-p;, 3 > 1, on the interval ('Dl’Dz)' Here the
bounds used to reach a decision are independent of the stage of the proce-
dure.

Suppose further that c¢ = r/s,dl=EDl]+l,d2=[D2]+l, vhere r, s, dla

and d, are positive integers. In addition assume that r and s are

relatively prime with r < s, Then the state space of the walk is all

N

points of the form —%—‘—1‘-"" for all M>N>O0 . It is a well known

thebrem of numberlfheory that xs-yr = I has non-negativerinteger 501U«
tions, x =N, y=M with M> N, for any integef I piovided r and
.8 are relatively prime. In general then the state épace is at the form
I/s, I en integer. Thus the correspondence I/s + I enables one to

consider the valk on the integer space L via P(2;; = -r) = 1l-p,,

J
P(Z,. = s-r) = p;> with bounds -sd and sd,.

ij 1’
The subscript i will nov be dropped on P, and a general popula-
tion 1 with acceptance probability p in using R(1) will be consid-

8-I

ered. Then the translation function P(0,y) = E—p ig z des-

ceribes the walk on L. After n steps the walk can only5be at points in

L of the form y = (s-r) j-r(n-j) for J =0,1;...,n. For fixed 0< j <n
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the probability of any such point must then be p°(1-p)®™Y, and there are
clearly (?) nunber of ways to reach this point, thus for n >1

(@ P iy = (sr)ir(nay)3=0,1, . un,m1
(1‘3'7) Pn(O‘JY) = L

0 elsewhere

The fact that all members of the class Ci satisfy (iii) of (1.2.1) is
well known and a proof for a more general random walk can be found in
Spitzer (1964). A proof for the case p $ r/s will appear as Corollary
(1.4.1) in Section 1.k. |

Referring nov to (1.3.5) and noting‘that L-B = {4sd1+l,..., sd,-11
we can express Qn(x,y) as the nth power of an N x N matrix Q = (qij)

vhere N = s(dl+d2)-l and qij = P(i=~sd -sdl) for i - sdy, § - sd, ,

(n)

K.
i+sdl,j+sdl)

¢ L-B. Equation (1.3.5) expresses the fact that Qn(i,j) = (q
vhere q§?§ is,fhé (i,§) entry in Q%. To insure the procedure ;&(E)
will not end on or Before e given stage with probability one, the condi-
tion Dy + D, >1 will be imposed. This guarantees that any vertical
line segment joining the parallel lines y = r/s x - D, and y = r/s x+D,,
will have length greater than one. In other vords, at any stage m of

J J
J > 1, there is always a state available to the walk with the bounds.

the procedure in its original form, Y, where Y. =0 or 1 for all

In particular if D= Dy= 4 and s =2 and r =1, then the procedure
+/(e)  reduces to the fixed sample-size procedure R(1). Note that vhen
no ambiguity exists we will write ;l(c) or ;ﬁ‘r/s) for sa(g) when

[ ({cm-Dl}, {cm+D2}) for fixed pi,Da .



B: P{gelecting il at Stage m!a&(r/s)}
F{Rejecting 1 at Stage m}d&(r/s)}
Since at any step the random walk Rm can only move t=8.r steps
to the right or r steps to the left there are only a finite number of
points a population can be absorﬁed (selected or rejected) at. Therefore,

in (1.3.1) as follovs:

we can define subsets of Bl and B2

Y = [ 264 - wed - wed
(1.3.8) B) = [-sa,-r+1, sd,-r+2,..., -sd;] € B,
(1.3.9) Bé:= [sd2,;d2+l,..., sd2+s-r-l]‘CZB2

Then the points of Bi U Bé are the actual absorption states of the walk.
Moreover, by the nature of the walk'absorption can take place at y ¢ Bé
at stage m if and only if at stage m-1, y-(s-r) ¢ L-B. Similarly,

absorption at y ¢ B! at stage m can take place if and only if at stage

1
sdz-l
m-1, y+re L-B. From (1,3.6) Hén)(x,y) = T Qh;l(x,t) P(t,y)
. : t=sdl+l ' )

for y e Bj U Bj. However as stated above if y ¢ B} then P(t,y) > O

if and only if 't = y-(s-r), and if y e¢ B! then P(t,y) > O if and .

1

only if t = y+r. Therefore,

(n-1)

P qx+sdl, y;(s;r)+sdl er— yeBy

(1.3.10) Hén)(x,y) =
(n-1) - :
P qx+sdl, y+r+sdl for ye Bl
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and we get the following theoren.

Theorem (1.3.1).  P{Selecting T at stage m!d&(r/s)}

N
=p 2; q{m-1)

sdl,j
j=N-(s~-r)-1.

or p times the sum of the last g-r elements in the sdlst row of

Q™)) and similerly Plrejecting 1 at stage n< (/)3

r
- (m-1)
e Z g'sdl,j
i=1

, . -1
or ¢q times the sum of the first r elements in the sdlst row of Q(m ).

Proof. From (1.3.4) and (1.3.9),
P{ ing 1 at (x/e)t =y B
P{selecting 1 at stage m]Jl(r/s)} =), Hy (0,¥)
yeBa'
since we select Il only at points of - B). Substituting from (1.3.10) then
gives the first result. Similarly, for the second result
P{rejecting T at stage m|- (r/s)} = Y (m)(O y)
vng Mh L B Oy
?
: yeBl
and substituting from (1.3.10) produces the second probability of the
theorem which completes the proof.

Corollary (1.3.1).

N

(1.3.11) P[tagging 1 at stage m(/, (x/s)} =p - Y (m-l?
-l L d, >3

j:N-(é-r)-’-l

r
v L(m-1)
+a L qsdl,j

j=1



23
Proof. The corollary follows from Theorem (1.3.1) and the fact that
tagging 1l at stage m means either accepting 1l or rejecting T at
stage m, which éompletes the proof.
The acceptance and rejection probabilities at stage n are of prac-
tical interest.. Table Al in the appendix gives these probabilities for

selected values of r,s, d = dl= dé.

C: P{Selecting “LJ (r/s)}, P{Rejecting ﬂl (r/s)}

We now define for x ¢ LB and ye¢ B, H (x,y) = T Hém)(X,Y) 3
m=1

the probability of starting at x and being absorbed at y. From (1.3.10)

for x ¢ L-B
. (m-l) | '
P Za qx+sdl,y (s-r)+sd for y ¢ B,
m=1
(1.3.12)  Hy(x,y) = < | - -
<0
v (m-1) '
-4 s 1 x+sd., y+r+sd, . for ye Bi
m=1 1 1

The matrix Q = (qij) is the transition matrix of the random walk

restricted to states in [L~B. It has the following elements q1’1+s P
..r‘

for i =1,2,..., N-s+r, 955 45 r— g for i= s-r+l,..., N and qi

elsevhere. Thus Q is a substochastic matrix with the following form.
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000...0P00...00000...0

000...00P0C...00000...0

000.,.0000.,,0P00O0...0
(1.3.13) Q = 9q00...0000...00P00 ... 0

0gq0...0000...000PO0...0

0 ...0090...00000...0

0 ...000qg...00000...0

We can bound @ by a matrix P = (pij)’ so that P is an irre-
ducible stochastic matrix with qij < pij’ i,j = 1,2,.,., N, by com-
Pleting the rov sums of Q so that they add up to one giving equal weight
to each non-Zer6 element in a given row. We make use of the following two
lemmas and a remark from Gantmﬁcher (131, [14].

Lemma (1.3.1). (Gantmacher). If A= (aij) and C = (Cij) are square
matrices of the same order n, where A is irreducible and C+ <A,

for ¢ = (?cij]),‘_then for every characteristic g of C and the méxi-
mal characteristic root h of A we have lg] <n, whére equality holds
if and oﬁly if ¢t = a.

Lemma (1.3.2) (Gantmacher). If the function f(x) can be expanded in a

pover series f(i) = ; apxP ~in the-circle !x[fp, then this expresSion
is valid when the scaﬁgi argument i is replaced by a matrix A vhose

- characteristic roots all lie within the circle of convergence.

Remark (1.3.1) (Gontmacher). For an irreducible matrix A > 0 the maxi-

mal characteristic root h equals the rov sums of A when all the row

sums of A are equal.
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The remark gives us immediately that the maximal characteristic valve
of P, being a stochastic matrix, is one. By construction Q < P but
Q + P and hence Lemme (1.3.1) guarantees that lg‘ < 1, wvhere g is
any characteristic root of . The following theorem can now be proved.

Theorem (1.3.2).

g‘ sdl,,j
(1.3.1k) P{selecting Hl&i(r/s)? =p . q >
J=N-s+r+l
and
'y
_ sd. ,J
(1.3.15) P{rejecting n\hﬁ(r/s)l =q E: a o
j=1
where g ’J is the (i,j) entry in [I- }‘l .

Proof. Since, as shown above, all the characteristic roots of Q 1lie in-

side the unit circle, Lemma (1.3.2) allows us to form the sum

o

m -
Zo Q( ) - [1-q]"t. Apply this to (1.3.12) ve get
m=
x+sdl ,y+s -r+sd:L
_ Pq for y e B;
1.3.16 I q) =
( ) {B(x,q) F+sd) ,yHr+sd, '
q4q ‘ for ye Bl'
. | N sd, ,J
Howvever Pfselecting H!.r./‘l(r/s)} = T H.B(O,y) =p = q > and
yeBz' J=N=s+r+1
. L T 84,3
similarly P{rejecting !'II:}l(r/s)} =q T g wvhich completes the
proof.
N r
sd.,,Jj 8d. ,J
v l’ 2
Corollary (1.3.2). p Z q +q Z q YUl
Jj=N-s+r+l j=1
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Proof. Since it is known that with this random walk one must accept or
reject Il with probability one; the corollary follows from Theorem
(1.3.2). |
A more explicit form for the pP{selecting H‘Jl(r/s)} can be ob-
tained vhen s =r+l, or r=1, If s=r+l then r/s = rfr+l, r = 1,

2,..., from (1.3.9) By = [d,] and from (1.3.14) P{selecting H‘:}l(r/sﬂ

sd. ,N
=pgq S Thus vie need the (sdl, s(dl-l-dz)-l) entry in [I-Q]—l. Thus,
*
' P qsdl',N
(1.3.17) P{selecting 0| (x/r+1)} =
1 TRl

* .
vhere q_ 4N is the cofactor of the (S(dl+d2)-l, sdl) entry in [1-Q].
Define A ; bo be the determinant of the 2 x # matrix B = (bi,j)
vhere bii-=l for i=1,..., &, bi.,i'+1 =«p for i =1,..,,2-1, .,

li,i-r"q for i =r+l,..., # and b,; = O elsewhere. Then

J
1 -p00.., 000O0OO0,..00
O 1-p 0O... 00 0O0O0O0...00
0 000.., 0O1l-pOOO.,.00
(l'3t18) B= -q O 0 0... 0 O 0 l-P O.o-o 0
O -.gq 0 0
O 000...-q00000..._:;-p

0 0 0 O.oo O-q o 0 0 o.ao 0 l

— . —

expanding by minors using the first row, whose only non-zero elements are

b11= 1l and b12 = «p, it is easily seen that Az obeys the following
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difference equation;

(1.3.19) Az = Aﬁ-l- 6(x) Aﬁ-(r+l) L > r+l vhere

b =8y = ... =p=land 5(r) =pg", r>1

Lemma (1.3.3). For A, as defined above, By= z (-1) (z'ir) 8 (r)
- # Y i=0
vhere £ = n(r+l),..., n(r+l)+r, n > 0,

Proof. The proof is based on mathematical induction. It is clear that
for £=0,1,..., r n=0 and Az= l. Suppose the lemmaz holds for all
4' such that % < £' and consider A, . From (1.3.19)

Boyy = B,- 6(r) B,
n ] . n
= Y (D ET) S - s Y 0t BT )
i=0 i=0
n 3 s n » . .
= L DI e - T )t BT
i=0 i=0
n+l
= Z e e N R N C Ll b K¢S
i=0 i=1
n
=1 + T\-' (-l) {(}.’;-11‘).’.( ,-11')}6 (1‘) + ( 1)n+l( ,—(n+1)r)6n+l( ) .

i=l
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Now (Lgér)+(£-ir) - (£+i-ir) for i =1,..., n and thus

i-1
n . s
A = ¥ (_1)1(!’.+I!.-1r)6i(r) + (_l)n+l(!',-(n+1)r)6n+l(r). If ¢ is not
21 1=0 i n
of the form n(r+l)+r, that is f=n(r+l)+j, 0< J < r, then n(r+l)+j -
(n+l)r = n-(r-j) < n or (L-(nzl)r) = 0. If however

- 4-(n+l)ry _ ,ny _ . .
4 = n(r+l)+r ( N ) = (n) =1, and in both cases J,,, =
m s g3 .
DX (-1)1(’;?r)51(r) where 4+1 = m(r+l),..., m(r+l)+r and m=n or

n+ 1.

Lemma (1.3.4). For the matrix B in (1.3.1h4) b: . = pﬁ-lbi_l, for
. Iy :

i = l’e,n'n, z .

* ’ i
Proof. bi . = (-1)1+z (cofactor of b i), where the cofactor of b, i
L i

]

2,
is the determinant of the matrix B with the last row and ith column

deleted. Eliminating the last row and the ith column of B we get a

matrix B', of the form below, where By in the upper left corner

B Y

B' =
3

is an i-1 x i-1 block matrix of the same form as B (1.3.14), B, is

3
an jf-i x ¢-i diagonal matrix with -p for its diagonal elements, and

B, is an i-1x 2-i block matrix. Thus |B'| ' can be gotten by expan-

ding consecutively by columns starting with the g-1st row. Thus

8’|

IBsl1B,} or 3| = (-p)z'iIBll. But by the definition of A,

|B

‘ * i+4 -i_f-1 2-1
o} =8, and therefore by 4 = (-1) (-1)b ity o phiy

i-1= P B4’

i=1,..., £ vhich completes the proof.



29

Theorem (1.3.3). If s = r+l, P(selecting H!J&(r/s)) =

vhere N = s(dl+d2)-l .

Proof. Applying ILemma (1.3.3) to the matrix (I-Q) it is easily seen

n . s
that |1-q| = by = T (-1)1(N;?1)61(r) where n = [;gi . By Lemma
i=0

(1.3.4) for £ =N and i = sd, noting N-sd, = sd.-1 and =d, -1 =
sd 1 1 2 1
2

-1
LN 7P A N-sd, Substituting into (1.3.17) gives

the desired result and completes the proof.

*
N-sd2 we get qu

de_

q ANfsdl
By

Corollary (1.3.3). If r =1, P(selecting nlfl(r/s)) =1 -

vhere A, equals A, vith p and q interchanged.

Pl

Proof. If r =1 Theorem (1.3.2) says that, P(rejecting Hlai(r/s)) =

*
Qa4q
sdl’l sdl,l

q9q = T (I%) vhere Q = (qij) has g, =1, i=1,..., N
qi,i-l =-q, i=2,..., N, q‘i,i'i't =-p, i=1,..., N~t and qu =0
elsevhere. Note first that |I-q| = [(x-q)t!, but that (I-Q)% is the
matrix described in Lemma (1.3.3) with p and q interchanged, thus

j1-Q] = Zﬁ. Now observe that [(I-Q)_l]t = [(I—Q)t]-l and so q:dl,l

¥*
of (1-Q) is q°, of (1-9)%. Thus from (1-q)® if ve delete the
>
1,84

first column and the ith row i = 1,..., N we get a matrix B", where
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B& is an i-1l x i-1 diagonal matrix with -q as its diagonal elements,

Bg is a 4-1 x A-i matrix of the same form as (1-Q)°, and B. is an

>
%-i x i-1 block matrix. Expanding by the first colum of B" ‘we get

" i-1 - Ty
18" = |B,|IBg| = (-a)*""Bg|, but |Bg| =3, ; sothat |B"| =

i-le . *
(-a) Aﬂ—i’ i=1,..., N. Thus for 1 = sdl, a

_ xt
a1 " ql,sdl

sdl+1 sdl-l sdl-;_ sdl-;_ .
(-1) (-1) q Dy sa =@ My sg - Therefore
1 1

sd
11—
q AN-sdl

By

1-P(rejecting ﬂ[d&(l/s)) the corollary follows.

P(rejecting Hlda(l/s)) = and since P(selecting H]d&(l/s) =

D: E(MBlai(r/s)), the Expected Number of Steps

Until a Population is Tagged

m
Sm = % Zi is the sum of independent identically distributed rendom
i=1 ‘
. 2 2 .
variables with EZ, = (s-r)p-rq EZ, = (s-r) p+r2(l-p). Thus if

- . . _ 2 _ .2
EZ, ¥ O, then EsMB = BZ, - Bmy, and if EZ, =0 ESMB = EZ] EMj .
Thus we prove the following theorem.

Theorem (1.3.h4).

N
a. .3
1 . 8¢y29
» j=N-g+r+l
r .
o 54, ,]
tq ) (gr-sa)a 2] if pdafs
j=1

and
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1 o o 84).d
(1.3.21) E(MB!:;’l(I‘/S)) = G-:I-‘F [p L (J+S-r-ﬂdl) q
J=N-s-r+l
g sd, ,J '
+q S1 (s-r-sdl)2 q 1 ] if p=r1r/s
j=1

Proof. If p f# r/s E(MB!:S(r/S)) = (EZl)—l ESMB . However P(SMB=Y)'=

H (0,y) for ye B, thus ES,. = % yH_(0,y) = £ yH (O,y) and
( MB yeB B
L] 1]
yeBluB2
from (1.3.16)

sd. ,y-s+r+sd . sd. ,y+r+sd
< 1 1 W 1 1
By <P ) Ve T+a ) ya
1 ~R
yeBe yCBl
N s, 53 r sd 3
= ) @wersa)q Y o+aq). (jer-sq) g
j=N-s+r+l j=1

and (1.3.20) follows. For p = r/s, EZ, = 0, and Ezi = (8-r)r and

again using (1.3.16) one can write ‘E82

Mg

the proof is complete.
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from which (1.3.21) follows and

It is noted here that another expression for E(Mﬁlﬁi(r/s)) can be .

derived using the fact that P(Mb =m) = % (m)(o,y). Thus from
‘ YeB

(1.3.10);
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[=+]

. <« 0
Bl (x/s)) = 7 Y n md®(0,y)
yeB n=1
[+2)
A (nel)
= L P L P9 yeresa
B, n=1 1 1
[+
DA (n-1)
* L L Py ,y-s+r+ed. °
1 1
yc-:B2 n=1
Since it was shown that ¢ Qn = (I-Q) " it follows that £ n QT =
n=0 n=1
-2
(1-Q) ©, therefore;
- sd. ,y+r+sd sd, ,ye-t+sd
N, =N 7 v 1, Vo= 1
(1.3.22) E(MB[Jl(r/s)) = ) q + 1
yCBl yeB2
r N
sd sd. .
_ < Gl 1,3 . T i 1,3
J=1 : j=N-s+r+l

vhere q 1:d s the (i,j) entry in (I-Q)-z. In general, hovever,

(1.3.22) is not easier to compute then (1.3.20) or (1.3.21).

1.k Bounds and Approximations

In this section we again consider the procedure d&(r/s) as a random

valk R~ on the integer space L-B = [-sd +l,..., sd,-1] defined by

1 2
(1.3.7). Bounds and approximations for the probability of a more general
random welk leaving L-B at one end and the expected number of stages to

do so have been discussed by Wald [37], and Feller [12] as well as others.
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A method for getting these bounds following methods of Feller and Wald
will be discussed. Applications of these bounds and approximations will
enable us to state some theorems concerning the behavior of the procedure

1> and d2 50 as

:ﬁ(r/s), and allow us to choose values of ¢ = rfs, d
to attain a given value of P(CS]di(r/s)) while keeping the expected
selected subset size small. ILet t = s-r.

Let U, /5(X) pe the probability of the walk starting at x ¢ L-B

and reaching or crossing sd, before -sd Then P(selecting HL{l(r/s))

ll
= r/S(o). Conditioning on the first step, U(x) = Ui/e(x) satisfies the

following homogeneous difference equation and boundary conditions:

(1.k.1) U(x) = p U(x+t) + q U(x~-r), -sd, < x < sd

1 2

U(x) =0 for x < -sd;, U(x)=1, x> sd

1 2

Feller (1957) has shown that there exists a unique solution for (1.k4.1).
Since the actual absorbing states of the walk are the s points of

Bl U B2 = [-sdl-r+l,..., -sdl] u [sdz,..., sd2+t-l} we can replace

(1.k.1) vy

(1.4.2) U(x) = p U(x+t) + q U(x-r), -sd, < x < sd,
U(x) =0 x = -84, -r+l,..., -sd;
U(x) =1 x= 885,40, 8d5+ -1
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The characteristic equation of the generating random variable of this

valk is f(x) = (1-p)x~F + px>T,  setting f(x) = 1 ve get

(1.4.3) px° - x* + 1-p =0

Every root y of (1.4.3) leads to a formal solution of the difference
equation in (1.4.2), via U(x) = Ay, vhich can not satisfy the s boun-

dary corditions. If (1.4.3) has s distinct roots Yyseee» ¥, then

| U(x) = _; Aiyi is again a formal solution of (1.4.2), and we can choose
Al,...,lxi so that it satisfies the boundary conditions. If one of the
roots of (1.4k.3) vy has multiplicity j > 1 we still have s constants

j=-1

A As since y?, xy?,..., X' y? are all formal solutions of

1200

(1.4.2).
Suppose p } r/s. Equation (1.4.3) has unity as a single root, and

exactly one more positive root y. Por if we comsider f(x) = pxs-xr+l-p,

then f'(x) = xr'l(ps x 5T_r) so that for x > O f(x) 1is a decreasing

1 1

function on (0,[%éﬂs—r) and an increasing function on ([ﬁ%]s-r, ®).

Further £(0) = 1-p >0 and f(1) = O hence if p > r/s, f(x) crosses
the X-axis at 0<y <1, and if p <r/s f(x) crosses the X-axis
at y > 1.

Define g(x) = A+ Aeyx .where y # 1 is a positive root of (1.4.3)
and 8(-Sdl-r+l) = 0, g(sdz) = 1. Then g(x) is a formal solution of

the difference equation in (1.4.2) and g(x) >0 for x = -sd,-r+l,...,

1

-sdl and g(x) >1 for x =sd,,..., 8d,+t-1. Thus g(x) - U(x) is

2 2

a formal solution of the difference equation in (1.4.2) with non-negative
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boundary conditions, hence U(x) < g(x). In a similar manner define
h(x) = Ayt Ay y* vhere h(-sdl) = 0 and 'h(sd2+ €-1) = 1. Then
U(x) - h(x) is again a formal solution of (1.4.2) with non-negative
boundary conditions, thus U(x) > h(x); Solving for Ai, A,, A3, Ay

with p * r/s,

yx ) ysdl 1.-ysdl+r-l
< <
s(d,+d, )+t-1 = ulx) < s(a+d, )+r-1
1 2 1 2
l-y 1-y
Then,
(1.4.4) st SV S —E e -
172 12
1-y 1-y

If p = r/s differentiation of (1.4.3) shows that y =1 is a
double root, and so A5 + A6x is a formal solution of the difference
equation in (1.4.2). Repeating the above arguments we find for p = r/s,

sd sd. +r~1

1 1
(1.k.5) s(‘dl+d2)+t-l <u(o) < S(d1+d2)+r-l |

If we make the assumption that sd;>>r, and s(dl+d2) >>t

we can write (1.4.4) and (1.4.5) as:

sd

1
, : 1- .
(1.4.6) P.(selectlng 1l (x/s)) ~ ) P tr/s

4a
(1.4.7) P(selecting H]J&(r/s)) 253—;—%;— if p=r1r/s
1 ' .
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These formulae can also be derived using Wald's identity and assuming the
walk ends exactly at one of the boundaries. Using (1.4.6) and (1.4.7)

we can get approximations for E(MBldi(r/s)). For p % r/s E(MB!“l(r/s))

=—_l_. ES

2
By i
-sdl or sd2 we get

and if it is assumed we leave IL-B at the boundary points

ES, ~ sd, P(accepting Hldi(r/s)) - sdy P(rejecting H'd&(r/s))

My
d s{d.+d
s(dl+d2)(l-ys 1) - 84, (1-y ( t 2))
= d.+d -
1-yS( 1%9;)
Thus if p ¢ r/s ,
sd s(d,+d,)
s((d;+d,)(1-y Y - d,(1-y L
(1.4.8) E(Mg|+, (r/5)) o 5(d,+d,)
| (ps-r)(1-y L2 )

For p = r/s we use E(MBL—/l(r/S)) = (EZi)-l ESSB vhich with (l.’-l».7)

gives
s2dld2
(1.4.9) B(My!o (x/5)) » 5572

The next lemma demonstrates the well known fact (see Cox and Miller -
[8] that the probability a population is not yet absorbed, by the nth
stage tend to zero geometrically fast, i.e. P(Mh >n) = 0(5\ for some
(0 <p <1). TFor the unrestricted random walk defined by (1.3.7) define:

(1.4.10)  g(8) = ). "™ p(0,x)

Xel



and

(1.4.11) g,(9) = ) & pn(o,;c) n>1 .

XeL

Then it is well known that gn(e) = (g(8))"

Lemma (1.4.1).

9.d _

e 12 g'(6,) if EZ >0

(1.k.12) P(MB >m) <
- m .

e—eldl g (61) if EZ, <0

vhere 9; is the minimum point of g(8), i.e. e 1. (§§? lég)l/s

Proof. From (1.3.3),

<
Qm(o:x) < L‘ Pm(O,X)
xeL~-B xeL~-B

P(My > m) = Z

since Ph(O,x) accounts fof all walks from O to x in n steps,
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while Qn(o,x) accounts for only those which do not leave the boundaries.

Suppose B > 0 and note d2 is greater than all points of L-B. Then

!

| -8(x-d,) 0a
N < 2 2 -6x
L Pm(O,x) < e pm(o,x) <e z e Pm(n,x)
XeL-B : XeL-B xeL
6d 8d

Thus we get
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2d
Py >m) <e © g"(0)

vhich is independent of 0 > O and if EZ 0 it follows that the

1>
minimum point 91 of g(8) is greater than zero, hence the first
inequality of the lemma. For EZ:L < 0 a similar ergument produces the
second inequality which completes the proof.

It is easily seen that for 6, = +ln (§§;‘ E%E)l/s,g(s) is between
O and 1. Hence choosing p = g(el) we have that for EZ, :[: 0
P(M.B >mn) < Cp™ for an appropriate constant C.
Corollary (1.4.1). If p $ r/s equation (iii) of (1.2.1) holds for
8 = ™/s-Dy, by = rm/siD, . |

22
Proof. Equation (iii) of (1.2.1) says P( N [am <s < bm])= 0. It will
m=1

m
suffice to show 1lim P( N [av <s, < bv]) = 0, since this implies the
m- o =1
above probability. However for any m >1
m
n [av <s, < bv]
v=1

[MB >m], therefore

m
< 1
P( ﬂ[av S\)<b\r’)

P(MB>m)_<_CpIn for some 0 <p <1
v=1

m _
As m~oo P(N [gv <s, < bv]) - 0 vhich completes the proof.

v=1
In the symmetric boundaries case, d, =d, =4, formulae (1.4.6),
(1.4.7), (1.k.8), | (1.k.9) simplify to produce a more complete theory.
1
' —— if p L r/s
. sd + !
(1.4.13) P{selecting H!-"l(r/s)} SR Gy

& if p=r/s
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sd
sd_ | l-YSd if p % r/s
(L.b.1k) E{MBI;,-”l(r/s)}: PE-T 4,4y
. 242

T(5-7) if p=1r/s

Theorem (1.4.1)., ILet p b2 the acceptance probability of any population
T when the rule R(1) is used. Then for the sequential selection proce-

dure da(g) vhere ¢ = ({cm - D}, {cm+D}) and ¢ =1r/s, D >0

0 p < r/s

lim P(selecting H]J&(c)) = L p=1r/s
D~ o -

1 p>rfs

Proof. Suppose p < r/s, then from (1.hk.k) with 4, = d, = d

1
1- sd+r-1
P{selecting M|+~ (c)} < =¥ | vyhere y > 1 is a root of (1.4.3).
1= = l_y2sd+r-l
1- sd+r-1
Then clearly as d - o, 4 - 0 and thus P{selecting |-~ (c)}-0.
l_yzsd"'s "1 l -

l-ysd
2sd+s-r-1’
1-y

Similarly if p > r/s (1.h.h) gives P{selecting ﬂ|g&(c)] >

vhere O< y<1 is a root of (1.4.3)., As d~ =, ySd - 0 and therefore

P{selecting ﬂ]J&(g)} =~ 1. Finally, if p = r/s (1.4.5) shows that

N S . sd+r-1
2sd+8-r-1 5 P{selectlng “!d&(g)}vs EEEI;:T" hence as 4 = «

P{selecting Hla&(g)] - % which completes the proof.

Theorem (1.4.2). For any population 1 under the conditions of the pre-

vious theorem, for large d and p % r/s we have,
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: : : sd d
(1.k.15) E{MBldi(E)} = [ps-r| = |p-r/s]
o . sd .
Proof. It is clear that 1lim ysd = 1 and that the sequences
d - 1l+y

approaches one through positive numbers if 0 < y < 1, that is if

ps-r > O, and through negative numbers if y > 1, that is-if ps-r < O,
Hence for large d the result follows from (1.4.14). This completes the
proof.

Comparisons between exact d& probabilities as given by (1.3.1k)
and the corresponding approximations in (1.4.13) are found.in Table A2
of the appendix for selected values of ¢ ‘and d. Similar comparisons
of the exact expression for d& expectations as given by (1.3.20) and

the corresponding approximations in (1.4.14) are found in Table A3.

1.5 A Minimax Approach

The problem stated in Section 1.1 was to select a "small" subset of
|| PR T, vhich contains the population H(k) (H(l)) with a probabil-
*
ity greater than or equal to P, a prescribed probability regardless of

the configuration of the means 9 It was stated that H(y)

1rees Qk.
(H(l)) had theblargést (smallest) acceptance probability P, (pl) asso-
ciated with R(l); A class of procedures J&(g) c el has been pro-

| posed and certain probabilities and expectations concerning the proce-
dure have been obtained. Consider now the problem of choosing “(k)’
since choosing H(l) can be converted into this'problem'by considering

= T >..'.> = 1~ . « o ~t
93 1 Pl > 2 Y 1 Py - To pick a specific ¢ ¢ Cl two constants

¢ =rfs and d an integer must be given. Theorem (1l.4.1) guarantees
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that for any choice of c¢ ¢ (pk-l’ pk) there exists a d = d(c,e¢) such

that for any ¢ > O

(1.5.1) (i) P{CS!Jl(_g_)} > 1l-¢

(ii) P{selecting H(k_l)idi(g)] < ei > o

regardless of the configuration of 12 S Py < eee Py and hence the
i i < < e < B0 4. ' x
configuration of 9[13 < 0[2] < < Oy So that for a small enough ¢
* _ .
the P condition can always be satisfied by choosing an appropriate
ce Ci. If we define S to be the size of the selected subset when the
procedure terminates, then using r, = P{selecting n(i)zal(s)}i=l,2;...,k

' k
ve get from Theorem (1.2.2), ES = r < l+(k-l)rk_l. Thus we can re-
i=1

place (1.5.1) by

(1.5.2) (i) P{CS‘dl(_g_)} > 1-¢

(1) 1l-e < ES < l+(k-1)e

regardless of the configuration of the means 9

120ees Oy
Qbviously if.for a fixed c ¢ (pk-l’pk) d is chosen such that
(1.5.2) holds then any choice of d' > d will also satisfy (1.5.2). So
that the experimenter has for any c¢ ¢ (pk-l’pk) a céuntably infinite
number of procedures ¢ vwhich guarantee (1.5.2). It is also clear that
(1.5.2) are deSirgble properties in that the larger the bound on
P[CSId&(g)} the smaller the expected number of populations selected.

Given two procedures c, c' ¢ C] which satisfy (1.5.2), the procedure
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vhich has the smaller expected number of stages is in some senge prefer-
able. Therefore, the experimenter will want to use the ce Zi if it

exists vhich minimizes,

(1.5.3) max E{Mi!di(g)}

over the subclass 3{ c Ci of procedures satisfying (1.5.2) and where

M, is the number of stages until population H(i) (unknovn) is tagged.

In this section we will show two bounds ¢ and c* between which the ¢

minimizing the approximation to (1.5.3) given in (1.4.15) is found.
Theorem (1.4.2) shows that E{Milda(g)} is asymptotically propor-

tional to d, so that for a given c¢ ¢ (pk-l’ pk) in order to minimize

(1.5.3) over all d such that (1.5.3) is satisfied the experimenter would

choose the smallest d. Thus the problem is reduced to fiﬁding which

C e (pk_l,pk) produces a ¢ e 3{, that minimizes (1;5.3).

Definition (l.S.l). For any rational c ¢ (pk-l’pk) let dl(c) be the

first positive integer such that r, = l-e, and 7d2(c) be the first

positive integer such that ry_y = €. Finally let d(c) = max (dl(c),
a(e)) -

The existance of dl(c) and dz(c) is guaranteed by Theorem (1.4.1).
Then we have the following lemma.
Lemma (1.5.1). dl(c) is a non-decreasing function of ¢, and dz(c)
is a non-increasing function of ¢ for o rational in (pk_l,pk).
Proof. For any fixed 4 and ¢' < c, Theorem (1,2.1) implies that
P{selecting H(i)ldi(c')} > P{selecting H(i)lgi(c)} for all i=1,2,...,k.

Now for d = d,(c) P{selecting H(k)(di(c)} > l-¢, so that



L3
P{selecting H(k)ldi(c')] > l-e. However d (c') was defined to be the
smallest integer satisfying this inequality therefore dl(c') < dl(c).
Similarly for fixed d = dy(c') P{selecting ﬂ(k_l)[a&(c')} < e, there-

fore P{selecting H(k_l)ldi(c)} <e¢, but dz(c) was defined to be

the smallest integer satisfying this inequality therefore 'dz(c') > d2(c)

‘which completes the proof.

*
Lemma (1.5.2). For some c¢ ¢ (pk-l’Pk)

dl(c), c>c

. '> .
dl(c). If ¢ e

]

Proof. Suppose that for some c ¢ (pk-l’pk) d(c)
then by Lemma (1.5.1) dl(c') > dl(c) and de(c') < d2(c). By assumption
dl(c) > dz(c) so that dl(c') > dl(c) > d2(c) >dy(c') and d(c') =
dl(c'). Suppose now that for some c ¢ (pk_l,pk) d(c) = d2(c). If

¢ < c then egain by Lemma (1.5.1) d.(ec) > dl(c") and ‘d2(c) < d2(c").

1€
Since d(c) = d2(c)_ it follows that d2(c) > dl(c) and dz(c") > dz(c)
> d,(c) E‘dl(cﬂ)v and so d(c") = dz(c). Thus it has been shown that if
d(e) = dl(c) for ce (pk~l’Pk) then d(c') = dl(cf) for all

c' e [C:Pk) and if d(c) = d2(c) for some c ¢ (pk_l,pk) then

d(c') = dy(c') for all c'e (pk_l,c]. Now as ¢ - pi , then from
(1.4.10), P{selecting H(k)lui(c)} ~ L so that d,(c) =~ @ vhile d,(c)
approaches its minimum for c e (pk_l,pk); Therefore, for ¢ near .
Py d(?) = dl(c)f Similarly for c¢ near Py d(c) = dz(c), so there

exists a point (or an interval) such that _dl(c*) = dz(c*) , and the
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1llows.
y (1.5.1); d(c*) = min d(c) for c ¢ (Pk-l’pk) vhere ¢ is
t such that dl(c*) = d2(c*).
At c* dl(c*) = dz(c*). Suppose ¢ > ¢’ then from Lemma (1.k.2),
((c). But by Lemma (1.4.1) da,(c) > a,(c*). similarly for
a(e) = ay(e) > ay(c¥), but da(c™)= a(c’) = ay(c¥) so the
y follows.,

roximate values for dl(c) and dz(c) can be obtained from

by using 831' . = l-¢g and ——E%-—— = ¢ . Thus
1+y. 1 1+y, e
k _ k-1
In g%
4 ~ -
1(¢) ~ BrEAON for c e (p_;,P,)
o -1n y, (c) InE
2(c) = n Vi1(C dl(c-) * < 1n yk-l(c) for c ¢ (pk—l’pk)'
in =< '
l-c *
. m for ¢ >c
d(c) ~ ' .
1n =€ °
¢ *

s 1n yk.l('a')* for ¢ _<_ (]

. . * ' '
ximate unique value of c is given in the following lemmsa.

45
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-8
P 1Yk

or

in
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Lemma (1.5.4). For c ¢ (pk-l’Pk) and large d(c),

___L_de for cf_c'

v C =Py
max E{MilJl(g)} o

1<i<k _a(e) for ¢>¢

pk.—c

P, 1P
vhere ©C = —u_:é
2
Proof. From Theorem (i.4.2), for large values of d(c) and

sd(c) _ _d(c)
iS-r] IPi’c[

clear that since c¢ > Py 1 and Py <

ce (Pk_l,pk) E{Mil""l(c)} = Tp where c¢ =rfs . It is

Py 1 for i=1,2,..., k-2 that

p;-¢| = c-p, > ¢e=p_ , = |p, ,~c|. Thus max E{M_|.%(c)} =
| i l i- k-1 l k-1 | 1<i<k 1! 1-

max(E{Mk-l""’l(SH’ E{Mk"}l(s)”’ Now !Pk-g!—= P -¢ > c-p _, if and only '

P, +P
if ¢ 5_-—---5-——k k-1

=¢c. Therefore, for ¢ < ¢ max E.{Mi-l.—)’l(c)] ~ cﬂS.L_
1<i<k “Pk-1

and for ¢ > ¢ max E{Mﬂb’l(ﬁn o Ale) , vhich completes the proof.

IKi<k By~¢
afe)
Lerma (1.5.5). (1) " is an increasing function of ¢, and
le) _ |
(2) é'pk-l is a decrea.ging function of ce (pkél’ Pk)‘

Proof. Lemma (1.5.1) shows that dl(c) is & non-decreasing function and
dz(c) is a non-increasing function of ¢ ¢ (pk_l:,pk). Now p -c de-

creases monotonically to O ag c = Py and increases monotoni-

=Py
celly ags ¢ — P, Thus in (1) the numeretor increases and the denomi-
nator decreases hence the fraction ,j’increasés as c¢ increases; and in

(2) the numerator decreases and the denominator increases as c¢ increases

hence the fraction decreases as o increases. This completes the proof.
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Theorem (1.5.1). For ¢ ¢ (pk-l’Pk)'

. d(c) * _ =
min —=———— for ¢ <c¢
% - Py B
c 5c§_c
min max E{M; |2 ()}
c l<1<k
’ da(c) — E'S
min for c<ec
x P~ C -
c<e<e

Proof. Suppose ™t <'c, then for c>7¢c Lema (1.5.2) and Lemma (1.5.4)

a (c) '
show max E{M |o’ (¢)}=—=——. However,by Iemma (1.5.5) this is an increasing
1<i<k Py =¢

function of ¢, and thus the minimum for ¢>c occurs at c=c. For (c ’f c*
: - a.(c
Lerma (1.5.2) and Lemma (1.5.4) show max E{M, | (c)} =
. il"1 Cc~
I<i<k k-1

s

which

decreases as ¢ increases, by lLemma (1.5.5), so that the minimum for

* *
c<c occurs at c . Thus it follows that min max E{M; Ll(c)}
Py _17C<P, 1<i<k
occurs for some c ¢ [c*, c]. Since ¢ < ¢ by Lemma (1.5.4)
%
min max E{M, |+~ (c)} = min -ﬂ-c—)— , and since ¢ > ¢
% 1<i<k 171 %~ SRy
¢ <ce<c —_— c <¢<c

d(c) = dl(c) and the first approximation of the theorem follows. A simi-
* —
lar argument for c¢ > c¢ will provide the second approximation and hence

prove the theorem.

S — ‘ dl(c)

Corollary (1.5.2). If ¢ =g, min max  E{M, |- (e)} = ——
p]!{_'l<c<pk l_'_<_i_<_k pk-c

i d,(¢c)

C-Py 3

Proof. The proof ‘follbws directly from the theorem by allowing ¢ - c .
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We have shown then that the c¢ ¢ (pk_l,pk) which asymptotically min-
imizes (1.4.18) is found between c* and ¢, and that d(c) approxi-
mated by (1.5.6) then produces a ¢ e C{, that is a procedure which sat-
isfies (1.5.2). This still leaves the experimenter with the problem of
choosing a specific ¢ if’ N £ c. It will be shown in Section 1.7 that
quite often ¢ ~ C , So that the experimenter will not be "far" from
the minimum for any choice of ¢ between ¢ and c*. Numefical evidence
indicates that if ': and ¢ are significantly apart, the minimum takes
place at or near _é*. Another advantage to using ¢ is that the ap-
proximation‘of d(c*) can be given as a function of Beopo B and e so
that the experimenter need not find the roots Y and Yg1 O (1.4.3).

Thus the above discussion suggests that an approximate minimax rule
which has certain desirable properties would be d&(gf) where

¥* : .
¢ =({cm-1"), {c"n+ d*}) with c¢* as defined in (1.5.7) and

(1.5.8) and from (1.5.4)

l-¢
in == =-€
(1.5.10). D' =d(e) = (1c”) l-e _ €_ .
' Py P 1-p, _
k-1 k k-1
n —— 1n— - g
Py P.1 Py

This of course is not the only choice 6f at ce Ci available. It
depends on the need of the experimenter who may wish to replace .(ii).of
(1.4.16) by some other condition such as r.<e -for some i< k-1, or
he may require less of ES than the bounds given in (ii) of (1.4.7). The

* *
use of ¢, d is only one suggestion toward meeting practical require-

ments of a good sequential test.
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1.6 The case c¢ = %

In this section we consider the case c = % in the ordered family
c = ([cm—dl}, {cmﬁdz}) for ¢ ¢ (0,1). With ¢ =1 all the bounds and
approximations in Section (1.4) are exact expressions, so that an analy-
tic comparison can be made between the results in Section (1.3) and those
in Section (1.4).  First however, a closed form expression for
P{accepting Hi at stage mljl(g)} is derived following a method found in
Feller [12].

For c = 1 the random walk R, defined by (1.3.7) is generated by
Xy5 Xp5ee. vhere P{x:j =1} = p, P{x'j = 0} = q, p+q=l, J>1. Let

u (x) = P{starting at x, R, >2d, when -24, < R, <24y, v=1,2,...,

2 1 2’
m-1}. By conditioning on the first step and defining the following'ini-

tial conditions,

0] x < 2d2
(1.6.1) u (x) =

1l X = 2d2

uh(-2dl) = un(2d2) =0, n>1
ve can write the following difference equation, satisfying (1.6.1),

(1.6.2) un+l(x) =p un(x+l) +q un(x-l), -24, < x < 24,

To convert (1.6.2) into a homogeneous difference equation in one variable,
(o]
set U (s) = = u (x) s®. It is clear that |Uk(s)! <« for |s| <1,

n=0

o]
gince [Ux(s)l < z:o l“n(x) sn’ 53:]];5]' . Also Ux(s) obeys the following
‘n=
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conditions,
(1.6.3) Uzdz(s) =1, U_2dl(s) =0

n+l

Now multiply both'sides of (1.6.2) by s and sum on n to get

(1.6.4) Uk(s) = ps Uk+l(s) + qs Ux_l(s), -4, < 2x < 24,

a homogeneous difference equation in x satisfying (1.6.3). To solve
(1.6.4) we try solutions of the form Ux(s) = 2*(s), which when substi-

tuted into (1.6.4) given A*(s) = ps 2 (s) + as A5 X(s) or,
(1.6.5) | | és A%(s) = A(s) + as = O

The roots of (1;675) are.

»

(1.6.6)  xy(s) = l+(l—2§%£*)2 s Apls) = l-(l:gggs

N

Hence U, (s) = A(s) AJ(s) + B(s) \5(s) where A(s) and B(s) are chosen

so that Uk(s) obeys (1.6.3). It is easily seen that

'kz l( s )
-2d 24, 2d =24
A (a0 (8)-ag (s, (s)

(1.6.7) A(s) =

and
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-24
| N ()
(1.6.8) B(s) = 2y A, 2, 24, :
A (e, S(s)eng T(shy, T(s)

Hence,

_ -2d -2d

B N O O E VRO )
(1.6.9) U (8) = ~53 53 53 24

A (Mg S(s)-h B(shy, H(s)

x+2d x+2d

Ay T(8) =Ay (s)

2(a,+a 2(d, +d,) ‘
N OIS M O

o)

Then Ux(s) is a rational fraction since numerator and denominator
- 1
are polymomials in 5 multiplied by (l-hpqsz)z. Now define 9 by
1 i Y 1 _is
555 = 2(pa)?s and note ki(s) = (%)2 elg, xi(s) = (%)2 e "7 . There-

fore we can write,

x-24, sin (x+2d.)8 x-2d
-t 2 1 _ (4 2 Qs
(1.6.10) Uk(s)_— (p) ~ sin2(d;+d,)8 - (5) V%E%

vhere Q(s) and V(s) are polynomials in s. Now sin(2(dl+d2)6) =0

. = = . J0 . =
vhen 9 Gj =z T +d5] J=2,2,..., so that V(s) = O when
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8 =8, = J=0,1,..., 2(dl+d2)

For j =0 and 2(dl+d we get roots of the numerator. Clearly the

5)
term j=d1+d2 musﬁ be disregarded as no number s(dl+d2) corresponds to it.
All other roots s of Q(s) will be eliminated automatically later. Note
that the degree of Q(s) 1is at most one higher than that of U(s) so
Qs 20 5
i ’ rh = -
that we can write V%E} As + B + §1 s 5 vhere a 2(dl+d2) 1

and T' refers to the sum except for j = d,+d,.

Multiplying 3 : by s - s, and taking the limit as s~ s, we

get,
a(s Q(s;)
(1.6.11) p, = lim (s-s 74’-,- .
Lo Il 1€
3
-1

av(s av a8 . 1  sin

Now —aé—l 35 3c [2(d 2) cos 2(dl+d2)9] L s1r29] , there-

| 2/pq  cos™H
fore from (1.6.11) the value of Py is given by,

- Jq
sin (x+2dl) nﬁml——v-y

u(d o) /Pqd cos 3" cos2

(1.6.12) 'pd' -

2 dl+d2



a
-(z+2d,) r  DP.
2 J
Thus (%) Uk(s) = A+ BS + EZ =
J=1
2, P
- '
~A+BS+ ; -2 L
L "5 [ E
j=1 }
J JJ
© a D
ook S5
=A+BS+ g 08 s k+1
k=0 g=1 53

Therefore for n > 1, and the definition of Ux(s),

q (z+2d2) 2(di+d2)—l

(1.6.13)  u (x) = -2 v
W (d44dy) T

n+l

: 1 . i n+l 30 n+l, \ 2
51n(X+2dl)2 dl+dé,s1n2 R os érai;agy 27 (pa)

n-hd2~2z n+hda-2z

) 2 i 2(d,+dy)-1
I q ' v n-1 j©=
- 2(d, ;) s €% Fa Ay
3=1 |

i X+2dl iT  sin gl
sin 2(311657 J: 2(3, 4,

setting x = 0 in (1.6.13) and substituting p;, for b, 1-p; for g
we get the P{selecting H(i) at stage miﬁi(%)} for any m > 1. In par-

ticular in the symmetric boundary case dl = d2 =d,



(1.6.14) P{selecting H(i) at stage ml. "( )}

n+ikd n-Ld
ol 2 a 2 hd-}
= = T3 = F1 (-1)¢ cos™ L %g s1n-J--ﬁ—1 31nHa

i=1

5k

The proof of the equivalence of (1.6.14) and Theorem (1.3.1) can be found

for the case p =% in Spitzer [36].

Now consider the polynomial in (1.4.3) for r =1, s = 2, The roots

are easily seen to be 1 and %, thus from (1.h.L4) and (1.4.5) we get,
1_(2)2d1 |
(1.6.15)  P[selecting 0|~ ($) = g(d1+d2) it ptL
1-(3)
and
(1.6.16) P{selecting M|/ (3)} = d1+é2 if p=4

Also in this case the sets Bi and Bé

become f—2dl] and [2d4,] respectively. Thus the expressions for

2J

E{MBl (3)} given in (1.4.8) and (1.4.9) are exact. Hence for the

symmetric boundary problem dl = d2 = d we can write,

=

P if p %
(1.6.17) P{selecting Hlﬁi(%)} ={P i q
2

i

if p =

and

defined in (1.3.8) and (1.3.9)
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24 24
P -9

d
2d 24
3 +q

WS

if p#
(1.6.18) p{ule (3)} = = ,
kg if p =

ol

If the equation in (1.6.4) 1is to agree with the result in Theorem

' 2d 24
(1.3.3) for r =1, s = 2 then we must have 4, , = Azd-l(p +q )

vhere Aj as given in Lemma (1.3.3), is Z (- l) ) Y with  &=p(1-p)
. i=0
and n = [%ﬂ. By expanding several terms it can be seen that the equality,
24-1 d-1
o Ltd 1-i,,i i,2d- 1 -i ]
(1.6.19) , (- 1) Mt = L., (- 1)%( )6
i=0 i=0
\_‘
AN i 24 i
L../—“—‘ (-l(l)zd-ﬁ] ?
i=0

holds. The proof of (1.6.19) follows from Theorem (1.6.1) below and the

equivalence of the two probabilistic arguments of Sections (1.3) and (1.4).
d . . .

So for completeness ve prove that - I (-l)l (d;l) §§ET 8t = P26+q2d.
i=0 B

First wve need the following lemma.

Lemma (1.6.1).

(1.6.20) = (W

La (2j-n)(n-l) n-l

J
a a .
Proof. Let <x >f(x) stand for the coefficient of x  in the expan-
J-n+l n _ u-n+ _2yn AN
)(-1) (gozgen) = < S (1-x7) (1)
<xu'n*%>(l-x)—n

= (gomip) (-1)¥%

o1
ion of f(x). Then 5 (2J u

It

u- n+2



Now apply the fact that (-15 (1?) =
ity and the lemma follows.

Theorem (1.6.1).
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(n+k l) to both sides. of the equal-

d
N d ,2d-i 2d
(1.6.21) . ()7 (5 )2 (p(1p) ) =p"+(1p) d>1
i=0
. . . . 24 .
Proof. It is obvious that the coefficient of p on both sides of
(1.6.21) is 2, hence it is enough to show that the coefficient of p>  of
the left hand side is (-l)a(i?) =0, 1,..., 2d-1. Now
a o, 1 ad 2d-i i a-i
} = - (aearp——— ' -
<p> WS =, (-1)" mg7 (75 ), ;)(-1)
i
(o132 Y (23-i-1)!
(-1)" 24 ) s e TCeia)T
i
= (-1)® oq * (2d-a)! (2d-i-1)! (2d-a-1)!
L (B2 (Zie)T (a-i)i(2d-a-1)! (2d-a)!
i
a 2d~a ,2d-i-1
= (+1)" 24 (5503 )( )
53ca “ 2d-21/‘2d-a-
i
Now let i = 2d-j-1 and apply (1.6.20) and the theorem follows.
' 2dA
P Py.2g
We have showed that P{selecting ﬂld&(%)] = ——Zg;_—_-
2d 2d 1-1i
2z ( 1) )at
_ i=0
T 2d-1
i 2d- l -i
= (-1)%( )at
—O
24 2d
= P - _D
B . _2d,_2d
S

2d- 2d
’fo (-0 T e
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so that the expression derived in Section 1.3 agrees with that derived

in Section 1.h.

1.7 Some Sample Size Comparisons of ) and R(n)

A. Introduction
In this section we offer some numerical comparisons between the pro-
cedures d& and‘ R(n). Comparisons are difficult in general because
analytic expressions involving the two procedures are‘not available, and
because of the small number of tables available on the performance of
R(n). Two special configurations of the means A15955-44, 8 Will be

considered. The first is called the "slippage configuration", that is,
L v : = = esae =0 = = >
(1.7.1) %1] = O[2] Mi-1] =9 ) =9+ 8, 8> 0

Tables of P{selecting HilR(n)} have been tabulated in this case for se-
- *
lected values of P, k, n, and & by Deely and Gupta [10]. The second

configuration called the "equally-spaced means" configuration is,
(1.7.2) 9[1}= 9, 9[2]= 0+5, 9[3]= e+25,...,e[10}= 0+(k-1)6, 5 > O .

Tables of P{selecting Hi’R(n)1 have been tabulated in this case for
*
selected values of P, k, n, and § by Gupta [22].
For any multiple-decision rule R, consider the following inequali-

ties, for O0< ¢ < 1 ,

(1.7.3) (1) P{csIRl > 1-¢

(i1) 1-¢ < E{S|R} < 1 + (k-1)e
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TABLE 1
Values of ¢ and c* for the Slippage Problem
for the Normal Population: P* = .75

X 0.05 0.10 Q.20 0.30 ©0.40 0.50 0.60 1.00 2.00
o <7500 7495 7480 .Th50 LTh20 L7370 L7315 .T020 .6060
21501 7499 7499 .Th89 .7h89 .7h7Th T30 7M1 .7213

3 +T530  .T555 7595 .7625 .T64L5 .7650 .7640. .7h90 .6580
21531 7558 .7607 .T654 .7699 .T735 .7762 .7841 .779%

L 540 .T575 .T6KO .T695 .TT35 .T765 .T780 .T700 .6865
541 LTSTT 7651 .TT20 .7781 .7839 .7889 .8018 .80oko

5 <7545 7580 .T6T5 JTTHO .T7T90 .7830 .7860 .7830 .7060
27551 .7592 .7685 .7763 .7832 .7899 .7961 .8127 .8207

5 ST545 L7585 .T680 .T760 .7820 L7870 .7905 .7916 « 7200
7521 7507 .796k .7782 .7861 .7936 .8001 .8201 .8328

7 +7550 7590 <7700 .TT75 7845 .7900 .7940 .7980 .7305
7556 7602 7790 .T797 .T7885 .7963 .8033 .8254 .8396

8 -7550 7600 .TT05 7795 .7865 .7925 .7970 .8030 .THOO
«T556 7612 .TT7lh 7816 .790k .7987 .8060 .8246 L8483

9 .T550 7600 .7710 .7800 .7875 .T79ko - 7995 8065 .7470
7556 .7612 .7719 .7820 .7913 .8000 .8083 .8327 .8526

10 7555 +T605 +7700 .7815 .7890 17955 8010 .8095 .T535
+ 7560 T61T .TT729 L7835 .7927 .861k .8096 .8350 .8565

25 .7560 7620 .TT45 .7855 .7955 .8035 .8110 .8280 « 7965
<7566 .T632 .7753 .787h' .7989 .8089 .8189 .8505 .8864

50 -T570 .T625 .7760 .7875 .7975 .8070 .8150 .8360 .8190
(570 .T637 .T768 .789% .8008 .8123 .8226 .8573  .9010
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TABLE 2
Values of ¢ and ¢  for the Slippage Problem
for the Normal Population: P* = .90

;\\i. 0.05 0.10 0.20 0.30 0.40 0.50 0.60 1.00 2.00
5 .9000 .8995 .8980 .8950 .8910 .8860 .8800 .8470 .7215
.9001 .9000 ,8988 .8990 .8982 .8973 .8961 .8903 .8602

3 .9015 .9030 .9045 .,9050 .9045 .9035 .9010 .8805 .7760
.9016 .9033 .9057 .9077 .9094 .911h .0117 .912hk .8952

N .9025 .90k0 .9075 .9090 ,9105 .9105 .9095 .8855 .80L4O
.9026 .90k3 .9085 .9113 .9147 .9170 .9189 .9223 ,91kL6

5 .9025 .90k5 ,9085 .9115 .9130 ,9140 .9140 .9035 .8210
.9026 .90hk7 ,909hk .9136 .9167 .9200 .9226 .9274 .9221

6 .9025 ,9050 .9095 .9125 .9150 .9160 .9165 .9095 .8335
.9026 .9052 .9104 .91hh .9186 .9216 .92LLk ,932h 927k

7 .9030 .9055 .9100 .91k0 .9160 .9180 .9190 .9135 .8430
-9030 _.9057 .9109 .9159 .9194 .9231 .9266 .9348 .931L

8 .9030 .9060 .9105 .91ks5 ‘.9170 .9195 .9205 .9160 .8505
.9030 .9062 .9113 .9163 .9202 .9246 .9277 .9363 .93L5

9 .9030 .9060 .9110 .9150 .9180 .9205 .9215 .9185 .8505
.9030 .9062 .9118 .9168 .9212 .9253 .9285 .9378 .9370

10 .9030 .9060 .9110 .9150 .9185 .9210 .9230 .9210 .8615
.9030 .9062 .9118 .9168 .9216 9257 .9299 .9401  .3390

25 .9030 .9062 ,9115 .9170 .9215 .9245 .9275 .9310 .8950
:9030 _.9062 .9122 .9186 .9243 .9288 .9336 .9h96 .952h

50 -90k0 9075 .9135 .9190 .9235 .9275 .9305 .9365 .9130
.Q0L0O  .9077 .91k2 9205 .9262 .9317 .9362 .9510 .96h6
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For example for k = 6 and & = .40 the c¢ which minimizes M satis-
fieé ¢ = .7820<c< .T861 = o' . Numerically, Tor small &, e ~ ¢ while as
H increases c* becomes larger than c. The table indicates that for any
6 = 0.10 the maxiﬁum difference occurs for k = 2, and that this
difference increases with § and decreases with k. Table 2
which gives the same values as Table 1 for P* = .90 shows the same gen-
eral behavior. It was stated in Section 1.5 that whenever c% and ¢
were gignificantly apart the procedure using c*' was better than the pro-
cedure using ¢ in the following sense, that (c*, d(c*))‘gives a smaller
value of M than (c, d(c)). This was based on numerical evidence such
as given in Table 3. For P* = ,75 and §= 1.0 and 2.0 Table 3 pre-
sents a compariéon of d&(?) and d&(c*) for selected values of k.
The upper number is the approximatevvalue of max E{Mi!J&(E)} and the
lower number is the approximate value of lziiiSIE%Mily&(c*)] both as

given in (1.4.14). 1In each case max E{M,|-%2(¢c)}> max E{M, |~ (c*)Y.
: : i1 - . 71
1<i<k 1<i<k

For example for & = 2.0, k = 6 max E{Mil_—_!’l(c*)] = 9.k < 10.9 =

max E{Mild&(g)}. Of course both procedures satisfy (1.7.3) with ¢ = .001.
For P = .75, Table 4 coﬁpares M with n when Lﬁﬁc*) and

R(n) satisfy (1.7.3). The upper value is the expected sample size M .

while the middle value is the fixed-sample size n. The lowef value

gives the ratio of M to n. The smaller the ratio the more inclined we

are to use Ji(c*) over R(n). The savings in the number of samples

needed to achieve (1.7.3) with ¢ = .00l wusing J&(c*) over R(n) vary

for different values of k from better than 504 to 254 for § < .50

to less of a saving for .50 <6< 1. For large values of &, such as
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TABLE 3

—_ *
Expected Sample Size Comparisons Between J&(c) ‘and A (c )

v
"

for the Normal Population: P = .75

;\\i; 2 3 4 5 6 7 8 9 10 - 25 50

16.5 22.8 27.0 30.0 36.9 3k.0 35.3 36.3 37.8 kh.8 L8.L
16.1 22.1 26.1 29.0 31L.2 32.8 34,2 35.2 36.4 L3.7 k6.7

1.0

5.8 7.2 8.5 9.5 0.4 10.9 11.7 12.0 12.0 16.6 18.4
5.1 6.7 7.9 8.7 9.4 10.0 10.6 10.9 11.4 14.8 17.2

2.0

§ = 2, the fixed sample procedure R(n) requires less samples than
Lﬁ‘c*) to achieve (1.7.3) with ¢ = .001L and so is a more preferable
procedure.

As an evample for k = 6 populations and & = 0.4, the expected
number of samples from each population needed to satisfy (1.7.3) with
¢ = .00L using J(c') is 172.5 or a total of 1035 observations, vhile
using R(n) a sample of 248.1 must be taken from each population, a
total of 1488.6 observations needed to satisfy (1.7.3) with e = .00l.
This is better than a 30% savings in using Ja(c*).

Table 5 gives the same data as Table 4 but for P = .90. In this
case the savings are generally less when using v&‘c*) over R(n), and
8 generally must be much smaller. In general in both tables for a fixed
k as & increases the ratio % increases. For a fixed 3§, T is
smallest for k = 2, while the maximum increasesufrom k=7 to k=50
as & increases. Thus it appears that ;ﬁ‘c*) is a better procedure
when the mean that has slipped to the right has not slipped far. Close

examination of both tables reveals that tl3e ratio % does not increase



TABLE 4

Sample Size Comparisons for the Sequential and
- . Fixed Sample=Sized Rules for the Slippage

Configuration for the Normal Population: P¥ = ,75

&
;>\\ 0.05 0.10 0.20 0.30 0.40 0.50 0,60 1.00 2.00

5422.7 1315.7 336.6 151.8 87.5 57.3 L40.6 16.1 15.1

2 112k0.0 2810,0 702.5 312,2 175.6 112.L 78.1 28,1 19.7
__hB2 268 W79 .L86 498 510 .520  .573 766

7553.9  1022.4  LOL.&k  219.1  12h.3 82.0  57.7 22.1 6.7
13600,0 3460.0 850,0 377.7 212.5 136.0 9kL.5 34,0 8.5
259 556 .578 _ .580  .585 603  .611  .650 788

9890.1 2418.0 586.1  259.4  148.0 95.6  67.5 26.1 7.9

L 15120.0 3780.0 945.0 L420.0 236.2 151.2 102.9 37.8 9.5
. 654 640 620 618 627 632 .656  .690  .B32
10752.,1  2485.3  ©37.2 2BL,T  161.6 105.9 7L.8  29.0 8.7

5 15640.0  3910.0 977.5 L3L.4  24kk  156.L 108.7 39.1 9.8
.687 .636 .652 654 661 672  .688 .7he  .888

- 10752.1  275k.5  679.7 305.9 171.5 111.9 84.5 31.2 9.1

6 15880.0 3970.0 992.5 bh1.1 248,1 158.8 110.h 39.7 9.9
677 694 .685 .696 .691 705 765  .786  .949
12119.5 2835.3 695.0 317.9 180.1  117.0 &4.8  32.8 10.0

7 16400.0 L4100.0 1025.0 455.5 256.2 164.0 114.0 Li.0 10.2
.739 .692 678  .698  .693 713 .74k .800  .980
12695.1+ 2803.7 708.17 325.3  183.9 120.L  86.%  3hL.2 10.8

8 16920.0 4230.0 1057.5 L470.0 26L.L 169.2 117.6 k2.3 10.6
.750 .663 .670 .692 . 796 712 .735 .809 1.000
12695.4  2803.7 7H9.6 331.1 188.86 126.7 83.9 35.2 10.9

9 17440.0 L4360.0 10900.0 L84k 272.5 1744 121.2 43.6 10.9
.728 .643 .688 .685 .692 726,733 .807 1.000
13037.6  2960.2  73L.k 3k6.3 192.9 127.2  9Li.7 36.L 11.%

10 17680.0 L420.0 1105.0 L491.1 276.3 176.8 122.9 Lh.2 11.1
737 .670 .662 . 705 .698 719 .7h6 824 1.027
13037.6  3192.Lk  B17.1  369.7 212.7 143.5 103.5 L3.7 1L.8

25 204k0.0  5110.0 1277.5 567.7 319.4 20h.L 14,1 51.1 12.8
.638 .625 .640 .651 .666 702 - .726  ,855 1.156
13695.1  3096.1  786.9 365.1 220.0 18.1 107.2 4B.7 17.2

50 21600.0 5400.0 1350.0 599.9 337.5 216.0 150.1 51.0 13.5
.634 .573 .583 .609 .665 .686  .71h .86k 1.27




TABLE 5
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Sample Size Comparisons for the Sequential and

Fixed Sample-Sized Rules for thé-Slippage

P = ,90

Configuration for the Normal Population:
:?\6 0.05 0.10 0.20 0.30 0.ko 0.10 0.60 1.00 2.00
\
8786.5 2079.3 s5hk2.L 257.6 1L8.0 97.0 69.2 28.3 9.1
2 15360.0 3840.0 960.0 L426.6 240.0 153.6 106.5 38.4 9.6
572 541 .565 .604 .608 .632 .650 .737 .948
12L69.0 3065.0 O49.1 385.1  217.9 145.6 100.9 L6.Lk 12.2
3  1l74k0.0 4360.0 1090.0 L84 4 272.5 17h.4  121.2 L3.6 10.9
.716 . 704 779 .795 .800 .835 .833 1.064 1,12
1L282.3  3781.5 1024.6 477.0 260.5 ' 170.2 122. Lg9,1 1L.5
L 18600.0 L4650.0 1162.5 516.6 290.6 186.0 129.3 k6.5 11.6
. 786 .813 .881 .923 .896 .915 .947 1.056 1.25
14282.3  L4i77.9 1085.0 494,33 290.9 186.7 135.0 51.0 16.2
5 19600.0 L4800.0 1225.0 54k4,3 306.3 196.0 136 2 59,0 12.3
.853 .886 .908 .950 1.32
. "~ 300.5 . .8 59.0 17.
6 20160.0 5040.0 1260.0 559.9 315.0 201.6 140.1 50.4 12.6
.708 .839 911 .949 954 .998 1.062 1,171 1,413
18033.7  L463.5 1148.4 550.7 333.2 219.8 152.7 63.3 19.1
7 20720.0 5180.0 1295.0 575.5 323.8 207.2 14k.0 51.8 13.0
. . . . . 1.060 1.222 1.469

‘ 566.9 . 20.3

8 21040.0 5260.0 1315.0 584.h 328.8 210.4 1b6 2 52. 6 13.2
.866 .885 1.016  .970 1.028 1.065 1,103 1.270 1.538
18633.7 L653.4 1335.6 '589.0 341.6 232.2 167.5 70.0 2L.b

9 21320.0 5330.0 1332.5 592.2 333.1 213.2 148.2 53.3 13.3
B7h .873 1.002 .995 1,026 1,089 1.130 1.313 1.609

18633.7 4653.4 1335.6 589.0 3L41.6 2L6.6 168.4 72.0 7T2.%

10 21680.0 5420.0 1355.0 602.2 338.8 216.8 150.7 54.2 13.6
.859 .859 .986 .978 1,008 1,137 1,117 1,328 1.647
18633.7 h653.4 1381.86 " 632.1 3B3.L 265.6 195.3 B86.7 30.b

25 2koko.0 6010.0 1520.5 667.7 375.6 240k 167.1 60.1 15.0
175 78 .909 LO47 1,021 1.105 1.169 1.443 2.027
18001.4  5257.6 1338.0 683.3 L03.9 278.1. 200.2 10k.1 37.8

50 25600.0 6400.0 1600.0 711.0 L400.0 256.0 177.9 64.0 16.0
. 734 .81 .836 .961 1.010 1.085 1.125 1.627 2.36
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monotonically for very small values of §, this is due to the fact that
Py and Py_1 do not vary greatly as k increases. 1In fact, for
P = .75 and §.= 0.05, P = 763, D, = .T48 for k=17, 8, and 9
to three significant places. Thus for small § rounding errors play a
somewhat bigger role than for larger §. Another factor in all tables of
this section is tha£ in practice the exact value of C* cannot be used
to obtain the various results, but a close approximation of é* is used

instead. This tends to remove some of the apparent monotonicity as well.

C. The Equally-Spaced Means Problem

For the configuration in (1.7.2) equation (1.1.1) becomes,

o k

(1.7.6) p, = [ [0 a(eea-(5-1) 6 {0)] g(max, 1=1,2,...,k
-CD J.—.:
I

Using tables and extensions of tables in [22] (1.7.6) was evaluated for
. . *
G = 1. A numerical comparison of ;ﬁﬁc ) and R(n) vas carried out

using the same method as in Section 1.7B. That is M and N were eval-

1

uated so that (1.7.3) holds for rl(C*) and R(n) with ¢ = .00l. For

P* = .75, Table 6 gives the values of M, n and the ratio % for selec-
ted values of k and §. The upper value being M, the middle value
being n, and the lower value being the ratio %. Table 7 contains the
same information for P = .90;

It can be seen from Table 6 that the behavior of the ratio % is
similar to that in Table 4 for the slippage configuration. That is the

smaller § is the smaller the ratio. TIn fact for k = 2 there is a

X
50% or better saving in the ‘expected number of samples using ./ (c )



TABLE 6

Sample Size Comparisons for the Sequential and

Fixed Sample-Sized Rules for the Equally-Spaced Means

Configuration for the Normal Population: P¥ = .75
\\ 8
K\ 0.05 0.10 0.20 0.30 0.Lo 0.50. 0,60
sh22.7  1315.7 336.0 151.8 87.5  57.3  L0.6
2 11240.0 2810.0 702.5 312.2 175.6 112.4 78.1
482 1468 .h79 .L86 1498 .510 .520
, 7430.9 18h1.7 470.9 208.9 118.1 77.2 54.5
3 13440,0 3360.0 840.0 372.3 210.0 13L. 4 93.4
.553 .548 .561 561 .562 57k .58k
8258.4  2194.8 551.4 280.3 141,2 0.4 6h,2
L 14880.0 3720.0 930.0 463.3 232.5 148.8 103.4
559 .590 .593 .605 .607 .608 .623
8824.8 2393.9 619.2 276.9 155.8 101.0 72.4
5 15880.8 3970.0 992.5 Lhi,1 248.1 158.8 110.4
.556 .603 624 .628 .628 .636 .656
TABLE 7
SamplevSize Comparisons for the Sequential and
Fixed Sample-Sized Rules for the Equally-Spaced Means
Configuration for the Normal Population: P* = .90
'ng- 0.05 0.10 0.20 0.30 0.%0 0.50 0.60
8786.5 2079.3 5hk2.L~ 257.6 1L6.0 97.0 69.2
2 15360.0 38L0,0 960.0 426.6 240,0 153.6 106.5
272 541 565 .60k 608 .632 .650
1186.5 3262.7  183.2  372.1  2ik.1  IhL.6  100.6
3 17440.0 4360.0 1090.0 L8L 4 272.5 1744 121.2
.680 U8 719 768 .786 .829 .830
15435.0 3792.2 961.9 I50.1 259, 1754.5 123,
L 18640.0 4660.0 1165.0 517.7 291.3 186.4 129.5
LTTh 814 826 .887 .890 .936 .956
174364 4517.0 1207.6 5L0,1 310.1  197.0 1477
5 19520.0 4880.0 1220.0 s5ho,2 305.0 195.2 135.7
.893 .926 .990 .996 1,02 1,01 1.09
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instead of R(n) for & < .50. For a fixed & as k increases from
2to5 -% increases. Of course Table 6 only goes to k = 5, and since
Table L showed erratic behavior as k increased to 50 one cannot meke
a general statement about this monotonic behavior. Table 7 shows the
same general behavior but, the savings using J&(c*) over R(n) are,
in general, less.

Thus based on the numerical computations for the slipbage
' configuration and the equally spaced means configuration one con-
clusion is thai A&(c*) is a more perferable procedure when the

means are close and R(n) is a more perferable procedure as any

one mean gets significantly larger (or smaller) than the others.
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CHAPTER II
A CLASS OF ELIMINATING SEQUENTIAL PROCEDURES
FOR SELECTING THE BEST OF K NORMAL

POPULATIONS WITH COMMON KNOWN VARIANCE

2.1 Definition of the Class of Procedures

In this section the general nature of an eliminating sequential
multiple decision procedure will be outlined. As in Chapter I let

“1’“2""’“k denote k given normal populations with means

91,92,...,9k respectively and a common known variance >02. Again
the object is to select a small subset of nl,nz,...,nk so as fo
guaranteé, with a prescribed probability Pf the the population
with the largest (or equivalently the smallest) mean is included in
the selected subset. The notation of this chapter will be consistant
with that of Chapter I.

The class of procedures A&(g) defined in Section i.i for all
C satisfying (1.1.2) is.a non-eliminating class, that is at each
stage of any procedure in the class a sample must be taken from each
at the k popuiations_regardless of the fact that a decision to
accept or reject a particular population may have occured at an
earlier stage. Thus, from the point of view of a population about

which a decision’has been reached the additional samples taken

from it are unnecessary. These additional samples are not used to
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make a decision about the population they are taken from, but rather
to keep the vector of probabllitles (pl’Pz""’Ik) for "R(1) as
defined in (1. 1. 1) constant from stage to stage of the procedure,

In order to avoid taklng these add1t10nal samples, a sequentlal rank-

ing and selection procedure s% modifying di will be defined for a

suitable class of pairs Of sequences c. The following definition is
‘required.

Definitionv(z.l.l). For the procedure o, to be defined let N, be
that stage of the procedure at vhich a decision is made, for the first

‘time, to accept or reject one or more populatlons. Let Né'z Nl be

the next stage of the procedure at which such a decision is made, and
in general let N, >N, , be the stage of the procedure at which the
jbh. deeision to accept or reject:one or more populations is made.
Define N to be the stage at which the Procedure terminates.

It is clear that since there are X populafions to start with
N <N. InSection 2.2 it is shown that for all c e C!, defined in
Section 1.3, N‘ is finite with probability one. If for some j <k

N, =N then ve take Ny =N for all i > j.

J

Definition (2.1.2)., Let k, §=1,2,...,k-1 denote the number of

J
populations undecided upon immedietely after stage N&.- Clearly

k>k >k, > ... ER T

For the procedure #, as for the procedure A it is assumed
that the means are known but that the exact pairing of the jith ranked

mean 'efi] to the population it eame from is unknown for all

i=1,2,...,k. Again as in ChapterfI we need not know the means, but
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rather their ranked differences (.er'i]-' 9( J])' The method by whiéh the
test statistics Tim,Tam,...,,Tm, m>1 for the procedure oy, corre-
sponding to the test statistics Slm’
cedure Ji as defined in Section l.l, are obtained is as folJ.ows.

Sam’“"’skm m>1 for the pro-

At each stage »m=l,2,..,.,Nl draw a sample of one from each of the
k populations independently of all previous samples. Perform the fixed
sample size procédure R(l)’ as defined in Section 1.1, and define

random variables Ylm’Y2m""’Ykmf wher‘e/. Yim =0 or 1 as a failure

(I'Ii is rejected under R(l)) or a success (ni is accepted under R(l))

ocecurs with population m, on the mth stage. Up to this point the pro-

cedure is identical to e Howevér, at stége 1 for the first time a

decision to accept or reject one or more of the k populations is made s

and there remain kl < k-1 poptila%ions to decide upon. If kl 5 1

the procedure "2 _ defined below will terminate and no further samples

need be taken. If, however, k.l > 2 then for m=Nl+l,.¢,.,N2 drew a

sample of one, independently of all previous samples, from each of the
remaining kl populations only. Perform R(l) on each of these samples,

and define Y Y m’*** ,Y

ilm’ 12 1k1m

‘where Y, m = 00r 1 as a failure or

J
a success is obtained for population 11 1. 6n the mth stage and
| J |
M aTly seeelly are the unknown remaining populations. No further
1l "2 ' - -

samples are taken from populatiOns? about which a decision to accept or

reject has been made at N here’f then is how c’2 differs from Ao

Now at stage N2 -inc_»re populations are decided upon and k2 remain. If
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' k2 <1 the procedure will stoﬁ. If k2 > 2 then for m=1*12+l,...,1>\13

a sample of one is taken, independently of all previous samples, from
each at the remaining k, populations. Repy is performed at each
stage and Y, Y. _e..,¥ are defined tobe O or 1 as a

im® izm ikzm‘

fajlure or a success is obtained from I, ,...,01,
| Lo ikz

where Ili ,...,_Ilik are the remaining populations yet undecided upon.
1 _

2

The procedure continues in this manner, at each s’qage sampling only
from those populations yet undecided upon until it terminates at the
first stage Nj when k:j _51.'

It is 'clear from the nature of the sampling, that for each

the value O or 1, and so for each i=1,25...,k define T z Y

Then for each _c_:_ = .({am},- {bﬁ}) .jﬂhere

l’(i) l<0<a <a l,b <bm+l,'mzl
(2.1) (11) lim 2 =1lim b ==
. . : et o m-bu: moe
(iii) Pf n [a <'r <b ]} i=1,2,.04,k
V=,

t,h_ef :fqllcw:__i.ng' proqedure‘ is definéj%d.
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For each 4=1,2,...3k stop sampling from “1 at the first

> i >
stage m>1 when T £ (am,bm). Accept oI, if T, >b
and reject ni if Timns a . If at any stage only one popu=-

lation remains undecided upon accept that population.

Tim corresponds to the test statistic Sim used for the pro-

cedure a&, but while it is clear that Sim is é bincmial random

variables with parameters by and m, no such statement can be made
about Tim' This is because the distribution of Yim i=1,2,...k is

unknown for m > Nj. Define now for each 1i=1,2,...;k and m>1

P, = P{Y; =1}. Then for m=l,...,N, and all i=1,2,...,k P, =P

as defined in (1.1.1), since the two procedures & and o, are identi-

cal up to stage Ni. However for m > Ni, following (1.1.1) with n=1,

® k
B ;jzl;. 3(erd (9 377 Op59) 2) glx)ax, i=1,2,...k
i

(2.1.2) Pim = j

|

|

where [I' refers to the facﬁ that there are less than k -« 1 factors
Q(x+d+(e[i}- e[J])'%) but hoﬁ many and which ones remaining is un=-

known. This depends on which populations are accepted or rejected at
N sNyseeoN j. Clearly since populations are accepted or rejected

only at stages _Nj, 3=1,2,.4.,k=1 then for i=1,2,...,k, with N_ =0,

(2.1.3) p._ = Piy for m;N5+l,...,N5

: a-nd j=0,...-,k-2.
Jj+1 :

+1
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It is also clear that a8 m goes from NJ to Nj+l some of the

factors @(x+d+(eri]- e[J]) %) are replaced by 1 so that for

i=1,2,...3k,
(2.1.4) PSP <Py m21,
and in particular if N& <N
(2.1.5) CP: T Pigy < DPine Sooe< D,
i 1Ni 1Né 1Nj.

Since at N&

accepted or rejeéted we have the following‘loﬁer bounds for 3$=1,2;...,K,

s j=l,2,...,k-l at least one population must be either

o k S
@1e) [ 1 Gear(op,y o) 3) elxex < R
21 | | :

Since the distribution of T, is in general unknown to us, it

im
can be expected that much less information can be derived about the

procedure a%. Define for each i=l,2,...,k,

(2.1.7) o r; = P{accepting n(i)"@(ﬁ)}'



Tk

‘In general then,

' l mel L
(@1.8)  x} = Fosl(e)] =ij.P{v21[av < Ty <BINE gy2 )

If as in Chapter I we let Mi be the stage at which population H(i)
is accepted or rejected then (2.1.1) guarantees that E{Milg’z(_c_)} < e

for all i=1,2,...,k, so that,

(2.1.9) P{accept HilJz(_g)} + P{reject Ili|,.-}‘2(_c_)} = 1. -

- 2.2. Some Properties of Ja(_q)

Consider two generic pobulations I and M'. Let {Ym, m > 1}
and {Yx;x’ m > 1} be two sequences of independent random variables

generated by II and TI' respectively as ‘shown in Section 2.1,

Suppose P, = P{Ym =1} and pl;1 = P{Y!;1 =1} and that P, < pl:l

. m m :
for m > 1, Finally set Tm =§ YJ and TI; =Z Y5 s .and consider
J=1 Jj=1

. the following lemma.
Lemma (2.2.1). There exists a sequence of independent random variables

{Us m>1} such that,



(1) P{U <u} = P{Y <u} for all u, m>1, and
Py [} =
(i1) P{Um < Ym} 1 for m> 1.

Proof. Consider a sequence of independent random variables

{Z > m>1} where Z is independent of Y for m$n and

P{Zm=l‘Y];1=1}= R P{Zm=o|Yl;1 0}»=,l for all m:/;l..

E'U_I B’U =1

Then as in Lemma (1.2.2) if we set U, =2Z,¥ for all m>1 the

lemma follows.
R 1 t
Theorem (2,2.1). r] STy S ees 1L
Proof. It will suffice to prove r:’L < ré. For the first Nl stages
of the procedure, since no populations have been accepted or rejected,

P{Y(l)m = l} = Pl and P{Y(z)m= l} = p2 for any m=l’2""’Nl

where p, and p, ‘are defined by (L.1.1) with n = 1, Tt was

shown in Gupta [22] that Py £P,. For m>N, from (2.1.2)

1

@ k
POy 2} = 2y = | T, Bavar(opy - 0 ) gx)ax, ana

o k :
P{Y(a)m = l} = P2m = \[‘-m 'Ij]-;l @(x+d+(6[2]- 9[3]) -i—) (p(x)dx. Then at

it2
any stage m before which neither H(l) or H(z) have been accepted

or rejected since em < 9[2] it is clear that pl . < P2;j J <m.

Now Lemma (2.2,1) allows us to consider the sequence {Y(l) } as

bounded above by the sequence {Y(z) }, i.e. P{Y(l)m < Y(a)m} =1
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m-l
for all m > 1. Thus the event { N

n [a\)< T(_l)v< bv] ﬂ[T(l)m>_ bm]}

implies that there exists an n=1,2,...,m such that the event

n=-l
. 3 . 3 3
{vzh [av< T(E)v <b 1N [T(Z)n'z bn]} ho;ds. Therefore it follows

that
n=-1 m  nel _
{v-Dl[a“ < T(l)v< bv] n [Tm =25 ] }cntil {vgl[av< T (2 )‘9<'bv] n

Then taking the union of these events for m > 1, and noting that

they are all disjoint events, we have,

© . - [-23

-1 _ m-1
r} = z P{vgl[av< 1)y < bv]ﬂ[T(l)m 2b 1} < z P{Vgl[av< T(ayy <) N
m=1 ‘ _' m=1 . )

[7 oy 2 b} = -

This completes the proof,

Corollary (2.2.1). The procedure y%(g) is unbiased,

Proof. It follows from Theorem (2.2.1) and (2.1.9) that the proba-
bility of rejectihgv H(k) is less then or eqnai to the probability
of rejecting any other population. Thus a%(é)' is unbiased.

The next theorem corresponds to Theorem (1.2.1) which shdﬁed_the



monoticity of procedure Jl(g ) with respect to the ordered pairs
¢, ¢' satisfying (1.1.2). Here we consider ordered psirs c, c'
which satisfy (2.1.1). The proof of the following theorm follows
from Lemma (1.2.1) with the sequence [Sm, m > 1} replaced by

> 1}.
{im: m > 1}

Theorem (2.2.2). Ir ¢, ¢' satisfy (2,1.1) and ¢ <c' then,
(i) Pselecting Hil_;lz (¢)} > P{selecting Hilsﬁz(g')_} and

(i1) P{rejecting Hild%(g)}.sbP{rejecﬁing I |, (e ).

In particular P{cs]’Jz(g)} > P{cslyz(_c_' ).

Proof. Apply Lemma (1.2.1) to {Tim’ m>1} c=1,2,...,k, and note
that P{selecting N |%(c)} = p, (A) as defined in the lemma. This

will demonstrate (i) above, and (ii) follows from (i) and
(2.1.9). Finally apply (i) to H(k) for the last result which
completes the proof.

Thus the behavior of J2 over an ordered class C, where ceC

2 2

satisfies (2.1.1) is the same as 4 over an ordered class Cy

where 3 € C; satisfies (1.1.2).

We would now like to compare procedures 'Jl-(_é ) and Jz(_c_:_) for any
¢ satisfying both (1.1l.2) and (2.1.1). The existance of such c
will be deomonstrated for ¢ = ({em-d;}, {em+d,}) where c ¢(0,1)

and is rational, in the last lemma of this section. The main



theorem of this section compares r, = P{selecting n(i)IJl(g)} and -
r!l = P{selecting H(i)lo’z(g)}. - Consider any generic population T.

Under Jl(g_ ) T generates a sequence of independent, identically
distributed random variables taking the values O or 1 as described
in Section 1l.l; and under Ja(_g) il generates_a sequence of independent
random variables taking the values O or 1 as diescribed‘ in Section 2.1,
If we let {sm, m > 1} be the sequence at partisl sums of the varia- |
bles generated by Jl(_c_) and {Tm, m > l}‘ be the sequence of partial
sums of the variables generated by Jz(c) then from (2.1.4) and

emna (2.2.1) with ..pm= p, m>1 it follows that we can donsider Sm

dominated by T = by P{Sm_<_ Tm} =1 for all m>1,
Following the notation of Section (2,1) define, 'Am('_g_) =

m-l ' el :
1 ; = [ 1.
[vgl [av <8, <b] n [sm > bm]}, Bm‘(_c_:_) {vgl[af T < bv]» N [Tm > ‘bm]},

@ ' @ ' :
P (a) =z P(A (c)); and P (B) =% P(B (c)). Consider the following
2 m=l T 2 mel O i

lemma.
Lemma (2.2.2). P (A) <P (B) for all ¢ satisfying (1.1.2) and
(2.2.1). :

Proof, From the sbove discussion since P{Sm < Tm}-= 1 for allm>1

m-1
clearly [Sm > bm] c [Tm _>_»bm]. The event Vgl[av < Sv < bv] implies
mel : :
either 0N [av < Tv < bv] or there exists an n=l,..., m=1 such that
=] ‘

: n=-1l : m -
the. event vgl[av <T, < bv] Nb >b ] holds. Thus Am(s_ )an_Jle(_g)_.
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Therefore P( U Am(g_)) <P(u Bm(_g)) but clearly ‘Am(_c_)ﬂAn(g) =@
m=1 m=1

and Bm(_g)ﬂBn(_g_) =¢ if m# n. Thus Pc(A) < Pc(B) and the proof
is complete,

Theorem (2.2.3), For all i=1,2,...,k, r, <ri.

Proof. The proof follows immediatiy from Lemma (2.2.2) since

© m-1 o
= : S
ri mzl P{\)Ql[a\) < S(i)\) < b\)] N rs(i)\) e bm}}, and
© mel . . | | | ) |
. * : : 2.2.2
r; m:lP{le[a\, < T(i)v' < bv] n [T(i)m > bm] Thus apply Lemma (

i =TI s \e
with 11 (l)

Iemma (2.2.3)., For ¢ = ({cm—dl], {cm_+d2}) where c¢ ¢(0,1) is

rational and d,, d, are positive, P{N < =} =1,
Proof, As shown in Section 1.3 we can convert the problem of the

first crossing of the sequence {Tim’ m>1}, i=l,2,...,k out of

the interval (cm-d., cmtd,) to that of a ‘one-dimensional random

m ‘ _ _
walk R! =% Y! on the fixed interval (esd,,sd,) where c=r/s

' eger} = ' o oer} = 1a 1N,
and P{Y} =s r} T P{Yim r} =1 Pyme Now until Ny, the

first stage at which one or more populations are accepted or rejected
pim = Ds» i=1,2,...y3k and the procedures cﬁz and ""01 coincide.
However it was shown in Section 1.3 and Section 1.4 that for each

1i=1,2,...,k E{M_il_Jl(c)} < vwhere M, is the first stage I, is

tagged, therefore P(I\r:L <w®) =1, From stage Nl until stage N2



for those population left we have P; w=Ps y for J=1,2,...,kl.
J J 2 :

Here again we havé a random walk on (-sdl,sdz) for each of the
kl remaining populations. The starting point of each of the random
walks is some point in (-sdl,sdz). However, it is well-known (see Cox

and Miller [8], Chapter I) that for such random walks the probability
of leaving a finite interval in a finite time is one regardless of

the starting point, therefore P{Né < ®} = 1, Since there are at

most k-1 stages at which populations are tagged then the same

argument will show that PN, <=} =1 je3,byu..kel. But NN,

hence P{N < «} = 1 and the proof of the lemma is complete.

2.3. Some Monte Carlo Results for the

Performance of #,(c) With ¢ e Cy

for the Slippage Problem

Since no exact expressions for P{selecting Hily%(g)} and

E{mild%(g)} can be obtained, a Monte-Carlo simulation was carried out

for five normal populations with common variance o° = 1, and certain
slippage configufaﬁions of the meané. A power residue method wés used
to generate a sequence of pseudQ random numbers on (O,l) (see System
Bulletin No. 2, Purdue University, Computer Science Deparﬁment,
December 1967.) These uniform random variables were then converted to
normal random variables with mean O and variance 1 by application of
the central limit,fheofem. They were then adjusted for sliﬁpage of the

mean. Five and fen thousand simulations of a%(g)‘ were then carried



out and the number of times a population was accepted was divided by
the number of simﬁlations,which gives an indication of the true proba-
bility of acceptance using dé(g).

The results were not conclusive and in only one case was there any
saving in the number of samples needed in using d%(g) instead of R(n).
However, a trend in the behavior of the probabilities and.expectations
with respect to ¢ and d indicates that there may be savings in many
cases. The first problem is the choice of ¢ = ({em-d},{cm+d} with

¢ e(0,1), rational and d > 0. In Seciion 2.2 it is shown (Theorem 2.2.3)
| that ri‘< ri, and in Secﬁion 1.5 it is shown that by using c¢%*, d* then
T

k
is attained. Hence for c*, d* we have P{csld%(c*)}i l-¢. With

> l-¢, r; < e, 1,1,2,...,k-1 and the approximate minimum of (1.5.3)

¢ = ,001, the Mbnte-Carlo'technique was applied, and the results appear

in Teble 8, where the probability of selection using a&(c*) given by

TABLE 8
Monte-Carlo Results for the Slippage Problem Using c¥*, with P¥ = .75

Configuration of the Means

Population (0,0,0,0, .4) (0,0,0,0,1)
H(s) 1,000 (1.000) 79.6 1,000 (1.000) 14.9
Meys 3=1,2,3,6 .765 ( .146) 79.3  .626 ( .0B9) 1h.0

the value on the left, and the expected number of samples using aa(c*)

the value on the right., The number in parenthesis gives the value of

R(n) with n approximately equal to the expected number of samples



using d%(g*). "It is clear that the procedure d&(c*) accepts poor

populations with a large probability. One of the reasons for this can
be seen in equation (2.12), where Pim is given as a function of the
number of populations left after stage m-1l. It appears that as k

decreases Pim increases'quickly so that for five populations pim

becomes large at a very fast rate. It may be that for k- 1arge the
rate at which p, ~increases would be slow sO that y(c*) might be
a good procedure for k > 25.

From the definition of dé(g), if at any stage only one population
remains, that population is accepted. It would then seem reasonable to
try and insure that Hk has the largest expected number of stages until
absorbtion so as not to be forced to accept a "poor" population. From
Table A3 in the éppendix it can be seen that for a fixed c, the
expected number of stages until absorbtion is maximized for p=c.

1

smaller by increasing c¢. Thus the

Also since the family of pairs of sequences C! is ordered, we can
make the initial pim’ m < Nl
choice ¢=p, appears to be a reasonable choice to make, For p* = .75

Table 9 gives results similar to Table 8 for a Monte-Carlo sirmmlation

for the configuration (0,0,0,0,2) with- C=p and several values of 4.

TABLE g
Monte-Carlo Results for the Slippage Configuration (0,0,0,0,2)
Using a%(pk) with p¥* = ,75.

Pop. . | d = 0.5 i d=1.0 i a=2.0 d = 3.0

i

n(s) .994(.996) 2.9{1.000(1.0CC) u.6!1.ooo(1.ooo) 6,2:1,000(1,000) 7.

!
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8

Mgy 1<5].130(.305) 1.8 .210 (.180) 3.3! .266 (.026) 4.9] .311 (.005) 6.6
: j 1 - .
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The values to the right give d%(pk) (R(n)) selection probébilities
and the value to the left gives the expected number of stages until the
popﬁlation is tagged using o%(pk). n is taken approximately equal to
that value.

It thus appears that for small enough 4 (d = .5) there exists
in this case a procedure a%(g) which does a bit befter then R(n).
This was done for relatively large 6 and in Chapter I it wés shown .

that d&(g) improved on R(n) for very small &, thus d%(g) may

improve with smaller 6. Table 10 Shows the same results as Table 9
for § = 1. It is clear that d has not been choosen small enough, to
obtain favorable resﬁlts for d%(pk), if such results exist. However
the monotonic behavior of the various probabilities is consistant with

Table g

TABLE 10

Monte~-Carlo Results for the Slippage Configuration (0,0,0,0,1)

Using <,(p) with p* = .75

Pop. 4 =2 d=3 da=24

~ H(S) .993(.999) 8.1 -998(1.000) 10.4  1.000(1.000) 12.9

n(i) i<s 4l5(.230) 6.9 1487 (.190) 9.3 .522 (.123) 11.8



CHAPTER III

SOME GENERALIZATIONS AND RELATED FRCBLEMS

3.1 Generalizations of the Sequential Procedures d& and ‘d%.

Let I, He,...,ﬂk be k populations, each of which has an

observable random variable Xi whose disfribution f(xi;Bi) depends
on a parameter Bi. The problem stated in the introduction of this

thesis is to define sequential procedures which select a small subéet
of Hl, H2,...,Hk containing the population whose distribution has
the largest (or smallest) parametér value, with a prescribed proba-
bility  P¥, % < P¥ < 1, Chapters I and II def'ine sequential pro-
cedures d& and Jé based on a fixed sample-size procedure R(n),
defined in Section 1.1, for the case where Xi, i=1,2,...,k is a
normal random variable with mean Bi »an@ known variance 02. In
this section the extention of di and d% to aIWider class of
distributions>will be discussed. In addition, a generalization of
d& and JE will be proposed. The notation of this section will
be consistant with Chapters I and II.

As in Chapter I, after taking a samplé of one from each of the

k populations and performing the fixed sample-size procedure R(1),

we denote a success from population Hi as the event,



Ut

(3.1.1) X, >xmax - o4

where X max = max (xl,xz,...,xk) and d is a suitably chosen

constant. The-deéision to accept or reject a population I 5 using

o, 1is then based on the statistic S;,> the number of success with

Hi in m independent trials using R(L). The evaluation of certain

necessary probabilities and expectations concerning the procedure d&

depends on knowing - Py i=1l,2,...,k, the probability of a success

r

2y is essentially

with ﬂi. Thus given 10 SRRRES the procedure

selecting and ranking k binomial populations by means of Sim’s2m""’

Skm' Therefore the extention of di to a larger class of distribution

functions depends on the extention of fixed sample-size procedures R(n)
to those distributions. A discussion of such extentions can be found
in Gupta [237.

Gupta defines decision rules based on functions hb(x), where

for all b €¢[0,®] (or l1,x]) and every x,

() h (x) > x

{v) ho(x) =x (or hl(x)‘= x)
1i 3 = o
(c) b_*mw hb(*f)

(a) hb(x) is continues and monotone increasing in b.

Then based on observations xi from Hi he defines procedures th



as follows.

th: Select T, if and only if hb(xi) > Xpox where b

is chosen such that inf P[cs!Rh_b} >P* and Q is the
Q

parameter space.

Given that f(x;0) is stochastically increasing in 6, i.e., F(x;ee)

F(x;el) for all 8, > 6; where F(x;8) = jx f(t;8)dt under certain
-0

other conditions Gupta showed that it is possible to find a unique b

such that inf P[cs!Rh } = P*, The procedure th also has the
G b

following monotonic property. If Bi‘z 6; then,

(3.1.2) P{selecting the population with parameter ai} >

P{selecting the population with parameter Gj}.

This monotonic ordering of PysPoseeesPy is just the property needed

to prove most of the lemmas of Section 1.2, so that the procedure di
will retain such properties as monotonicity and unbiasness when ex-

tended to the wider class of distributions.

Two important examples occur when € is a location or scale

<

parameter. In these cases it is clear that f(x;0) is stochastically

increasing. It has been shown by Gupta [15], [22], [23] and others

t i ‘ = =.'.= 3 1
that the ﬁgf P{cishb} occurs when 0, =0, , = © andis

independent of the value of 0.



For the location parameter when f(x;0) = £(x-6), it is shown
in [23] that hb(x) = x+b, b6[0,»). An example of this type of
distribution is the normal distribution with known variance} Here

th = R(n) as defined in Section 1.1 with'.b = gﬁg .

For the scale parameter f£(x;0) = % f(%) and hb(x) = bx, be[l,»).
An example of this type of distribution is the gamma distribution.
Based on a sample of n independent observations from each population

Gupta in [20] defines Rh = b, (n) as the procedure which selects

b b

. if and only if x, > b x the 0 <b <1, where b is chosen
i i=- max -

so that igf P{cslnhb(n)} = P¥,

There are other types of univariate distributions for which

fixed sample-size procedures exist to which a& is applicable. An

example giveh in 3.2 is the binomial distribution._ Extentions to
multivariate distributions are also possible, examples are given in
Gupta [23] and Gupta and Panchapakesan [2&] of fixed sample-siZe

rules for which the sequential procedure J& can be defined. From

the definition of c%, given in Section 2,1, it is clear that for any
application of. dﬁ there is a similar application for o%o

A slight generalization of Ji and d% will now be proposed.

Often it is not feasible to take only oné observation at a time from
a given population. For example, the fixed sample-size rule we are
applying rj’l(or a%) to may require a minimum of more than one

sample, For example when selecting the smallest variance of k



normal populations with unknown mean (see Gupta and Sobel [187) the

n
fixed sample size rule uses the statistics L T (x, .- x.)2,

» n-1 =1 ij i

i=1,2,...,k which clearly requires a minimum of n = 2. Another

case vhere it is necessary to take more than one observation at a

time occurs for discrete distributions. Here the P¥ condition can

not, in general, be met exactly, so that the fixed sample-size rule

constant is chosen so that inf R{ecs|R(n)} > P*. For large P* the
0

fixed sample size rule that takes jﬁst one observation from each
population may be forced to accept all the populations to meet the

P¥ condition. Clearly if pl=p2=....=pk = 1 +the procedure ;ﬁ will
be useless, hence it is necessary to take 2 or more observations from
each population, at each stage. An example of this will be studied
for the binomial distribution in Section 3.2.

Thus to generalize di, at the first stage take an independent

sample of size £ > 1 from each of the k populations and perfofm
R(4). TFor each i=1,2,...,k define Y., =Oor 1l asa failure

(Hi is rejected by R(£)) or a success (Hi is accepted by R(%))

is obtained with population Hi. At stage 2 take an additional sample
of 4 from each population,Aindependently of the first sample,
perform R(4) and define‘ Yi2 = 0 or 1 as a failure or success 1is
gotten with Hi on the second sample, Continuing in this manner at
the mth stage take a sample of f from each population, independently

of all previous samples, perform R(4) and define Yiﬂ =0 or 1 as

a failure or a success is gotten from Hi from the mth sample. Then



m
let Sim =% Y for i=1,2,...,k and given suitable ¢ = ({am},{bm})

perform d&(g) as defined in Section 1.1. The generalization of aé(g)
is similar to that of ;F(g) but at any stage you only sample from

these populations yet undecided upon.

3.2 Some Sample Size Comparisons

for d&(c*) and R(n) for Binomial Populations

In this section we apply the sequential procedure d&(c*) to a
fixed sample size rule, given by Gupta and Sobel [17]}, for selecting
a subset containing the best of several binomial random variables. So

let ul,n "ﬁk denote k binomial populations, and let A be the

oo
probability of a "success" with population Hi, i=1,2,...,k. Assume

Yl’Y2""’Yk are known but that the correct pairing of Y[i] to H(i)

is unknown for each 1i. Now define xi to be the observed number of
successes based on n observations from ﬂi, i=1,2,...,k, and let

X = max X, Then the following fixed sample procedure is

defined in [17]3.
R(n): Select M, if and only if x, > x - d, where d
i i~ “max

is choosen as the smallest integer such that

inf P{cs|R(n)} > P* and Q is the parameter space
Q
1
of the Yi S.
Comparisons made here will be for the slippage configuration,
where Y[l] = Y[2]= ces = Y[k-l]= Y, Y[k]= Y+6, & > O. Then as

shown in [17],
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n x+d
(3.2.1)  PleslR(m)] = 1 (D(y+6)*(1=(v+6))"( ) (33 (1oy)? 9yt
x=0 J=0
and
n x+d . _
(3.2.2)  Plselecting N, IR(n)}= ZJ(E)Yx(l-Y)n=x[ L__(f].l)ya(l-vn"]}k'2
x=0 v j=0
x+d
— . s
g, (D ree)Y (1-(v+8))").
=0
For k =2, and P*¥ = ,75 a comparison was made between R(n)

defined above and ;ﬁ(c*) as defined Section 3.1 for ’=1. The results
appear in Table 11 below. For k=2, and P%*=,90 the procedure R(1)
chooses all populations since in this case d=1. Thus a comparison was

made between R(n) and Ji(c*) for =2, That is at each stage of

ci(c*) two observations from each population were taken. The results
appear in Table 12.
TABLE 11
Sample Size Comparisons for the Sequential and
Fixed Sample-Size Rules for the Slippage Configuration,

for the Binomial Population: P* = ,75

Y+§ 6 = .25 & = .50

.75 43.8 105.2 11.9 27.0
.80 42,3 103.1 .1.8 25,2
.85 39.8 95.0 11.7 23.6
.90 36.6 85.6 11.5 22.0
.95 33.3 75.2 11.5 - 21.0
.99 26.4 55.1 10.3 17.1
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In Table 11 the value to the . is the expected number of
samples using d&(c*) so that (1.7.3) with €=.001 is satisfied and
‘the value to the....s. is the fixed-sample size n necessary so that
R(n) -satisfies (1.7.3) with =.00L. It can be seen that d&(c%)
saves samples in;évery case shown but as § 1increases the savings
become less. Table 12 gives a similar fesultvfor P¥ = ,90, though
here R(n) appears the better procedure. Both tables indicate that for
small & the sequential test would produce more savings in the number

of samples needed.

TABLE 12
Sample Size Comparisons for the Sequential and
Fixed Sample-Size Rules for the Slippage Configuration,

for the Binomial Population: P* = ,90

Y+6 § = . 5 § = .50
.75 139.6 150.0 39.2 3.0
.80 42,2 135.6 40.0 32,

.85 148.2 128.3 1.2 31.3
.90 148.1 115.3 hi.4 30.5
.95 k2,7 98.0 Lo,2 28,

.99 140.0 9h.3 38.0 25.0

3.3 Some Related Problems

A: A Sequential Multiple Decision Rule for
Selecting the Best of k Binomial Populations.

Consider as in Section 3.2 k population Hl,ﬁg,...,ﬁk where
ui, i=1,2,...,k has an observable random variable x.

each with
probability of success \7E We will suppose that the yi's are

known but that the correct pairing of Yfi“ to ﬁ[11 is unknown
R J



(i
for all i=1,2,...,k. This was not assumed by Gupta and Sobel. The
problem of this section as in previous sections is to find seguential
procedures which select ‘a subset of ﬁl,h ,...,ﬂk which includes H(k)
with a prescribed probability P¥, The previous section applied the
procedure cﬁ(c*) to a fixed sample-size rule found in Gupta and
Sobel [17]. However since we are involved with binomial populations,
and the procedure 5& essentially converts all selection procedures,
to which it applies, to selection of binomial populations; it is

therefore reasonable to consider the following procedure, which makes
use of the fact that the underlying distributions are already binomial.
Let Sim denote the number of successes from population Hi
i=1,2,...,k in m independent trials. Then for suitable ¢ = ({am7,
{bm]) perform the following procedure.
: Stop sampling from ﬂi, i=1,2,...,k, at the first stage
Sim yf(am,bm). Accept T, if S >b  and reject I
if Simf a .
Note that the populations are independent and so therefore are
slm’SZm""’Skm'

tion at each stage. It is clear that since the Yi's are ordered

Thus there is no need to sample from each popula-

the procedure o/ has all the properties of ci proved in Section
(1.2), and for ¢ ¢ ©) all the properties of .f proved in Sections
1.3, 1.4 and 1.5. 1In particular for c = c* as defined in (1.5.7)

and (1.5.10) we have for any ¢ > O,
(1) Ples|s} > 1 - ¢

(2) 1-e<ES<1+ (k-1) e



as well as approximately mininizing max E{Mi[dﬁ over all
1<i<k

c e(Yk_l,Yk), where M, is the stage at which I 'is accepted or

rejected.
B. Selection of Populations Better. than a Standard

The problem defined in Section 1.1, is for Hl,He,...gﬂk, normal

random variables with mean Gi respectively and a common known

variance 02 =1, 1In Section 1.1 it is assumed that P1sPps- - 5Py

as defined in (1.1.1) are known, and procedures to select the best
population are discussed. Suppose now that PysPss--.5P, are not
known, but that the experimenter furnishes two constants p and A,
in addition to P¥, such that p,A > O, and p + A < 1. Now suppose
the problem is to select all populations H(i) such'thaf Dy > p+ A,
while rejecting these populations H(i) where Pi.f p. It is assumed
that the experimenter has no preference as to selection or rejection.
of those H(i) such that p < 1 < pt+A.

Then for any ¢ e C!, that is ¢ = ({cm-d}, {cm+d}) with
¢ e¢(p,p+d) Theorem 1.4.4 guarantees that there exists a d such
thet for the procedure d&(g) defined in Section (1.1), and any

e >0,

(1) P{selecting H(i)ld&(g)}‘z 1-¢ ifp P+ A

lv

i

tA
e

(2) P{selecting H(i)ld&(g)‘s € if p,

. . = . 1-y +A 1-p q-1
In particular, if ¢ =p + 4/2, c* = [1n l_;_A3[ln E? l_p?A3 and



, 9);-
¢ 1is chosen such that c¢ e(z,c*) then as shown in Sectioh 1.5

the approximate minimum of max E[Mgldi(c)} is attained,
l<i<k © T :

over all c e(p,p+A).
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APFENDIX
TABLES SHOWING THE PERFORMANCE OF d&(g) FOR SOME ¢ e C)

This appendix consists of a set of tables showing the performance

of the sequential procedure a&(g) for ¢ e C] such that ¢ = ({em-d},

{emtd}) for ce(0,1) and rational, and d > O. 1In all the tables of
this appendix p will be the probability of a success, associated
with the fixed sample size procedure R(1l) defined in Section 1.1,
for some population . Thebfollowing is an explanation of the tables.

(1) Table AL. Let r(m) = P{selecting m at stage mlda(g)}, and
t(m) = P{rejecting n at stage m'd&(g)} for m > 1. Then for

c=.75 .80, d=1,2,3, and p = .65, .80, .95 Table Al gives

n n

¥ r(m) (upper value) and I t(m) (lower value) for n=2(1) 18,
m=1 _ n=1 '

20, 25, 30, @, The values are obtained from formulas derived in
Theorem (1.3.1). For example, for c¢=.75, d=2 and p=.80 the proba-
bility of selecting m on or before the 17th stage is .41076, and
- the probability of rejecting w on or before the 17th stage is

.12980. A major feature of the procedure ai(g) shown by Table Al

n o
is that for a fixed ¢ and p, £ r(m) converses to T r(m) faster
‘ m=1 m=1

for smaller d. For example, for ¢=.80, p=.95, and d=1 it can be
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©® 30 © :
seen that £ r(m) - £ r(m) = .00000, while for d=3 % r(m) -
m=1 m=1 ‘ m=1
30 v n .
£ r(m) = .00934. The same behavior can be observed for £ t(m).
m=1 ’ m=1
! n-1 n n-1
Since r(n) =zr(m) - = r(m), and t(n) =T t(m) - t(m) the
m=1 m=1 m=1 m=1

table also gives values for r(n) and t(n).

(2) Table A2, For c=.667, 750, .800, @=3(1) 10 and p=.3(11) .9
and .95 Table A2 compares exact (upper values) and approximate (lower
values) of selecting a population using Ji(g). The exact and approxi-
mate values are obtained by formulas in Theorem (1.3.3) and formula
(1.4.13) respecﬁively. The table verifies the behavior shown in
Section 1.4k, That is as d increases the probabilties tend mono-
tonically to O if p<c, tol if p>c, and to 1/2 if p=c.

The latter case can be best seen when c¢=.80. Also for a fixed c

and d as p increases the probasbilities increase monotonically.

Thus in any column if the probability is .00000 for some p, it will
be .CCO00 for all p' <P, Similarly if in any column the probability
is 1 for some p, it willbe 1 for all p' >P. In general the
approximations are less than or equal to the exact values.

Table A3. For the same values of ¢, d, and p as in Table A2,
Table A3, presents a comparison between exact (upper values) and
approximate (lower values) values for the expected number of stages
until a population is tagged. The exact and approximate values are
gotten by formulas in Theorem (1.3.4) and formula (1.k4.14) respectively.
This table also verifies the results of Section 1.k. For a fixed c

and p the values increase monotonically with 4, but for a fixed c



ioo0

and @ the values attain a maximum at p=c, increasing for p<c
and decreasing for p < c. This again can best be seen for c¢ = ,800,
In general, the approximations are less than or equal to the exact

value,
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TABLE Al
The Probability of Selection and the Probability of Rejection of a
Population on or Before the nth Stage Using J&{g) for ¢ ¢ Cj.
c = .75
p= .65 p = .80 p=.95

nid=1 d4d=2 d=314d=1 d=2 d=31d=1 d=2 d=3

5 1.00000 .00000 ~.00000 |.00000 .0OCCOO 00000 1.CCCOO .00CO0 00000
.12250 .00000 00000 |,04000 ,00000 .00000 {,00250 .00000 00000
3 ,00000 .00000 .00000 {.00000 .00000 00000 |.00000 .00000 00000
1.28175 .0u287 00000 [.10400 .00800 .00000 |.00725 .000L2 .0000O
i .17851 .00000 .00000 |.40O960 .00000 .00000 {.81451 ,00000 . .00000
L3702 12648 01501 |.18080 .02720 .00160 |.01k02 .00048 .00001
.17851 .00000 .00000 |.40960 .00000 .00000 |.81451 ,00000 .00000
5
L3702 12648 01501 |,18080 .02720 .00L60 |.01k0O2 .000LB .00OOL
6 .17851 .00000 00000 : .40960 .00000 .00000 |.81L51 ,00000 .00Q0O
7
8 !
9

L8k12 16452 .02866 1.19718 .03334 .00262 |.01kL5 00052 .00OOL
.17851 .00000 .00000 | .40960 .00000 .00000 :@,81451 .00000 00000
' 54534 23046 ,05973 | .22340 04645 00549 |.01526 .00060 .0O0OL
24714 ,03186 .00000 !.57737 .16777 ,00000 |.95417 .66342 .00000
i.60504 .31350 .10877 |.25486 ,06677 .01106 |.0l6h2 .00076 .00002
,.2h71h .03186 .00000 |{,.57737 .16777 .00000 |[.95417 .66342 .00000
i.60504 ,31350 ,10877 |.25486 .06677 .01106 |.016h2 ,00076 .00002
10| -2%714 03186 .00000 |.57737 .16777 .00000 |.95417 .663k2 .00000
i.62315 34519 13141 {.26157 .07222 ,01287 |.01650 .00077 .00002
13! .2471k  ,03186 .00000 |.57737 .16777 .00000 |.95417 .66342 .00000
L.eu669 .39748 .17279 |.27230 .08329 .0L694 |.01664 ,0COB0 ,0C002
12 .27352 ,05637 .00569 ! .64609 .30521 .06872 |.97812 .89094 .54036
..6696k 46133 ,22866 ; .28519 .09994 .02370 |.01683 .00086 .00003
13| .27352 ,05637 .00569 | .64609 ,30521 .06872 |.97812 .89094 .54036
.66964 46133 .22866 | .28519 .09994% .02370 |.0L683 .00086 .00003
1k, -27352 05637 .00569 | .64609 .30521 ,06872 |.97812 .8909% .54036
i.67660 .48523 .25175 | .28794% .10432 .02567 |.01685 .00086 .00003
15]-27352 .05637 .00569 |.6k609 .30521 .06872 |.97812 .8309k .54036
.68565 52437 .29189 !.29234 .11315 .02987 |.01687 .00087 .00003
16: -28367 .07403 .01225 |.67h24 41076 .15316 |.98223 .96409 .81833
L L60uLB 57188 ,3L38L4 |.29761 12634 .03657 (.01691 .00089 .00003
17 .28367 .07403 .01225 ;| .6742k 41076 .15316 |.98223 .96409 .81833
69448 57188 34384 |.29761 .12634 .03657 |.01691 .00089 00003
18!-28367 .o7k03 .01225 @ .67h2h 41076 .15316 |.98223 .96409 81833
69718 ,58959 .36457 |.29761 .12980 .03845 |.01691 .00089 .00003
ool 28757 .08682 .0182k |.68577 .49219 .23531 |.98223 .98772 .9315L
.70506 ,65356 46292 |.30270 .1L4712 .04860 |.01692 .00090 00003
25,-28907 09613 02531 |.69049 ,55535 .30998 |.98305 .99539 .97h62
.TO861 73879 .57156 |.30479 .16339 .05949 |.01692 .00090 .00003

30; -28965 .10293 .02761 | .602k2 .604L9 .37627 |.98308 .99789 .99063
70926 76470 .61599 |.30572 .17777 .O7059 |.01692 .00090. .00003
w | 29001 12151 ,0Oh770 | .69377 .T77864 85769, .98308 .99910 .99997

70999 .87849 .95230 {.30623 .22136 .14231 |.01692 .00090 00003
The upper value gives the selection probablllty and the lower value

gives the rejection probsbility as defined in Theorem (1.3.1).




Table Al (cont'd.)
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c = .80
p = .65 p = .80 p=.95
1

nfd=1 d=2 d=3id=1 d=2 d=3|d=1 d=2 d=3
> 1.00000 00000 .00000 |.00000 ,00000 ,00000 | .00000 .00000 00000
1,12250 .00000 .00000 !,04000 ,00000 ,00000 |.00250 00000 .00000

3 100000 .00000 00000 |.00000 ,00000 ,00000 | ,00000 .00000 .00000
.28175 .04287 .00000 |.10400 ,00800 .00000 | .00725 .00012 .0O0O0O

) 1.00000 .,00000 .00000 {.00000 ,00000 .00000 |.00000 00000 .00000
i, 43702 .12648 .01501 |.18080 .02720 ,00160 i,01k02 .OOOL8 .0000L

5 .11603 .00000 .00000 }.32768 .00000 .00000 !.77378 .00000 .0000O
.57158 .23517 .05402 {.26272 .05792 .00672 |.02259 00116 .00003

6 .11603 ,00000 ,00000 !,32768 .00000 .00000 |.77378 .00000 ,OOO0O
.57158 .23517 .05L402 |.26272 .05792 .00672 |.02259 .00116 .0OOOO3

7 .11603 .00000 ,00000 |.32768 ,00000 .00000 {.77378 .00000 .00000
.60985 .27638 .07621 |.27910 .06611 .00877 |.02310 .00l21 .00003

8 .11603 ,00000 ,00000 ;.32768 .00000 .00000 |.77378 .00000 .00000
.65960 .34335 .11948 |.30532 .08250 .01368 |.02L07 .0OL3L .0OOOL

9 .11603 .00000 .00000 |{.32768 .00000 .00000 |.77378 .00000 .000CO
.70810 ho3hh  .18043 :.33678 .10661 .02220 | .02545 00156 00006
101-15227 .01346 .00000 |.L6190 .10737 .00000 |.93134 .59874 .00000
J75014  ,50719 .25u416 1.37033 ,13765 .03489 |.02719 ,00190 .00009

11 | -15227 .01346 .00000 |.46190 .10737 .00000 |.93134 .59874 .00000
.75014 ,50719 .25416 |.37033 .13765 .03489 j.02719 .00190 .00009
121-15227 .01346 .00000 |.46190 .10727 .00000 | .93134 ,59874 00000
.76209 ,53551 ,28258 {.3770L .14503 .03833 |.02730 .00193 .00009

13 15227 .01346 ,00000 |.46190 .10737 .00000 | .93134 .59874 00000
77763 .57986 .33035 {.38778 .15926 .OuShk |.02749 .00198 .00009

1|+ 15227 .01346 ,00000 |.46190 .10737 .00000 | .93134 .59874 .00000
79279 .63154 .39009 |.4OO66 .17966 05640 | .0277T .00207 .00011

15 .1636€0 ,02187 .00156 |.51687 .19534 .03518 | .96343 .84257 L6329
.80592 .68457 45596 |.u1bhh1 ,20543 ,07126 | .02813 .00221 .00O12

16 ,16360 .,02187 .00156 1.51687 .19534 .03518 |{,96343 .84257 .L6329
80592 .68457 45596 |.hihkhl ,20543 .07126 | .02813 .00221 .00012

17 .16360 ,02187 .00156 |{.51687 .19534% .03518 |.96343 .84257 L6329
80965 .70226 47957 |.b1716 .21148 .07500 | .02815 ,00222 .000L2

18 .16360 .02187 .00303 |{.51687 .19534 .03518 |.96343 .84275 .46329
.8L451 72981 .51793 |k2155  ,22307 .08249 | .02819 .00225 .00013

20 .16713 .02687 .00303 |.5393Lk .26379 07842 | .96996 .93691 .Th631
.82334  .79440 61438 |.43246 26040 .1084k4 | .02832 00234 .0OCOLL

o5 .16824% ,02985 .o0h12 |.54861 .31751 .12092 | .97129 .97371 .88Lé2
82879 .B86158 .72947 |.43486 30447 .14379 | .02836 .00239 00015

30 .16858 .,03165 .00MLO |.55239 .35994 16019 |.97156 .98817 .9481L
.830&2 .90247 .81066 |.Lh2B89 .33964 17645 |.02837 .00241- ,00015

- .1687h o34kl ,00698 |.55501 .52567 .51613 | .97163 .99758 .99968
83126 ,96558 .99302 |.4hh99 .LeL33 48387 | .02837 .002hk2 .00032

The upper value gives ‘the selection probability and the lower value gives
the rejection probabilit: as defined in Theorem (1.3.1).



TABLE A2

Comparisons of Ixact and Approximate Values of the

Probability of Selecting a Population Using Laﬁg) for ¢ e C}
c = 667

N 3
. 0000k
+3%1 ooook
{00088
'”°§.00088
| 01301
- ,01298
. ,14913
i .1hhy
: 12577
19 1ins
. 98466
.98221
9 .99983
¢ + 99977
.00000 1
9%..00000 1

3

.00000
.00000
.00003
ko 00003 -
00067
.00067
.01183
-60 .01120
17965
-70 .é7gh2
.85823
-80 " gii378
.99797
P 99773
.95 .99987 1
.99994 1

L

.CCCCOo
.00000
.00008
.00008
.00323
.00310
.08862
.08791
. 78097
77256
.99573
.99527
.99999
«99999
.00000
.00000

4

.00000
00000
.00000
.00000
.00006
.00006
.00271
00272
.11523
.11361
.91345
.90L55
.99982
. 99970
.00000
.00000

P

.CCOCO
.00000
00001
.00001
.00073
00073
.0511k
.05097
.82802
.82179
.99892
.99875
1.00000
1.00000
1.00000
1.00000

>

.00000
.00000
.00000
00000
.0000L
.00001
,00062
00062
.O7167
.07122
.94835
.ou327
99997

-99996
1.,00000
1.00000

6

.CCCO0
.00000
.00000
.00000
.00017
~.00017
.02911
.02965
.86698
86227
.99972
.99967
1.,00000
1.,00000
1.,00000
1.00000

c = L.750

6

.00000
00000
.00000
. 00000
.00000
.00000
.0001L

.0001h

.ollo1
04387
.96982
. 96686
.99999
.59999
1.00000
1.00000

7

. 0C0C0O
. 00000
.00000
.00000
. 00004
. 0000k
.01642
.01640
.89829
89473

299993

-99991
1.00000
1.00000
1.00000
1.00000

7

.00000
.00000
.00000
.00000
.00000
.00000
.00003
.00003
.02678
.02672
.98254
.98084
1.00000
1.,00000
1.00000
1.00000

8

.00GGO
.00000
.00000
.00000
.00001
.00001
.00921
.00920
+92292
92020
-99998
99998
1.00000
1.00000
1.00000
1.60000

8

.00000
.00000
.00000
.00000
.00000
.00000
. 00001
.00001
.01618
.01616

- 98997

.98899 .

1.00000
1.00000
1.00000
1.00000

1
°

9

.000C0O
.00000
00000
.00000
.00000
.00000
.00515
.00515
.9Lk198
.93999
.99999

99999
1.,00000

1.00000
1.00000
1.00000

9

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00974
.00973
.99426
.99369
1.00000
1.00000
1.00000
1.00000

103

10

.COCCO
.00000
.00000
.00000
.00000
.00000
.00288
.00288
.95717
.95509
1.00000
1.00C00
1.00000
1.00000
1.00000
1.00000

10
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00585
.00585
«99671
.99640

1.00000
1.00000
1.00000
1.00000

The upper value gives the exact probability and the lower value gives
the approximate probability as defined in Theorem (1.3.3) and (1.4.13)

respectively.



N

.00000  .00000

-30 .00000  ,00000

.00000  .00000
.00000 00000
.00005  ,00000
.00005 00000
6o|-00137  .00015
*771.,00137  .00015
.70|-03192  .01029

.03192  .01029
gol.516k2  .512L3
TU|.66667 62162
.90|-99237 99845
.99568 © ,99904
.95 «99991  .99999

.99995 1,00000

TABLE A2 (cont'd.)

C

>

.00000
', 00000
.00000
.00000
.00000
,00000
.00002
.00002
.00329
.00329
.50980
5957k
.99961
.99979
1.00000
1.00000

= .800

6

.00000
.00000
.00000
.00000
.00000
.00000
. 00000
.00000
,00105
.00105
.50820
.57895
99991

99995
1.00000

1.,00000

7

.00000
.00000
.00000
.00000
. 00000
.00000
.00000
.00000
.0003L
.00034
.50704
.56716
.99998

99999
1..00000

1.00000

8

.00000
.00000
.00000
.00000
.00000
.00000
", 00000
.00000
.00011
.00011
50617
.55844
1.00000
1.,00000
1.00000
1.,00000

9

00000
.00000
00000
.00000
00000
, 00000
.00000
.00000
.00003
.00003
.50549
.55172
1..00000
1.00000
1..00000
1.00000

104

10

.00000
,00000
.00000
.00000
.00000
.C0000
.00000
.00000
.00001
.00001
.50483
.54639
1.00000
1.00000
1,00000
1.00000

The upper value gives the exact probability and the lower value gives
the approximate probability as defined in Theorem (1.3.3) and (1.4.13)

respectively.
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