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1. Introduction and summary. Iet X Xn be independent random

IERRRE

variables identically distributed with absolutely continuous distribution func~'

tion F -and density function f. ILoftsgaarden and Quesenberry [2] propose &
consistent ndnparametric point estimator ;n(z) of f(z) which is quite easy
fo coﬁpute in practice. In this note we introduce a step-function approximastion
f: to En’ and show that both gn and f: convefge unifofmlx (in probability)
to f, assuming that f is positive and uniformly continuous in (@ o). For
mofe genéral £, ﬁniform convergence over any compact inteffal Qﬁefe f is
positi?e and confinuous follows. Uniform convergence is useful for estimation
of the mode of f, fof it follows from our theofem (see [3], section 3) that a
mode of either £n of fz is é consistent estima£of of fﬂe modé of f; The

| " | _ _ . _
mode of fn is particularly tractable; it is applied in [l] to some problems

in pattern recognition.

2. The result. Choose a non-decreasing seqﬁénce of positiVe integers,
{k(n)}, such that k(n) = o but k(n) = o(n). For any real number z, let

rk(n)(z) be the distance from z to the -k(n)th closest of the observations

Xl,;.l, Xn. Then the univariate form of the Loftsgaarden-Quesenberry estimator

is

fn(z) = {(k(n) - 1) / n} {l/2rk<n)(z)j .



« .
We define also the random step-function fn as follows: let Xln < X2n < s

S'Xﬁn be the ordér statistics from Xl,..., Xn' Then

£,(2)

]
o
5]
A
>3

1
~
o]

) X, <z <X

in in — i+l,n i = l,‘!l, n"l .

IHEOREM. If f(z) is uniformly conmtinuous and positive on (~o ) and

(Log n) / k(n) = 0, then for every e > 0

(2.1) 2| sup l%n(z) -2(z)] >l -0
~o< 7 < o

and

(2.2) H sw ]fZ(z) -f(z)] >ed =0 .
~a< 72 <o

Proof. We will abbreviate (2.1) by fof (UP) and denote convergence

in probability by a = a(P). Define
U (n)(2) = F(z + T (n)(®)) - F(z-rk(n)(Z))-
We show first that
(2.3) {n/(x(a)-1)} U ((2) - 1(up)
By definition of rk(n)(z), the interval [z-rk(n)(z), 7 + rk(n)(z)j

contains exactly k{(n) observations, one of which falls at an endpoint of the

interval. Suppose the order statistic an is the lower endpoint. Then



S

= k(n)-1
. F X . - . <
(2.4) Z {F( q+j,n) F(Xy 43-1,n)] —Uk(n)(z)
J=1
k{n)
< z PX .. ) - F(X_,.
- , { ( q+J,n) ( q+3-l,n)}
J=1
with the conventions F(Xo,n) = 0 and F(Xh+l,n) = 1. Upper and lower bounds

having the same distribution as those in (2.4) exist when an is on upper end-
point. (It is stated in EEJ that Uk(n) has the beta distribution of one.of thel
sums of elementary coverages in (2.4). This is false, since w.p.l only one
endpoint of the interval coincides with an observation; the modifications required
to correct the proof of [ 2] afe trivial.)

It is well known that

F(Xln), F(Xen) - F(Xln),..., 1—F(Xnn)

have the same joint distribution as

1 / sn+l”"’ Yn+l / Sn+l ’

where Y Y are independent exponentisl random variables with mean 1

e Yo

and sn+l = Yl + ... * Yn+l' So the upper and lower bounds in (2.4) will converge

4ol (UP) if we can prove that

i+k(n)
2.5) =2 ¥V v. /15 11l -0 (®) .
( Ofﬁfgﬁi(n)+ll{k(n) ng#l 3 / & Sna)-H (

-1 w.p.l by the law of large numbers, (2.5) will follow

1
if we can show that the sums [k(n)il zi:?(n)Yj

. -1
Since n Sn+
are uniformly near 1 in prob-

ability. For any ¢ >0,



| se(n)
(2.6) P = Pl for some i, l zi (Yj-l)r > k(n) el
| J=i+l
n+l  i+k(n) n+l 1 4%(n)
sy B ) (¥,-1) >k(n)el + 3 B i (Y1) < -k(n)el .
1=l =i+l i=l  j=idl

Using the fact that P[X > O] < EietX] for any random variable X and t >0
such that the right side is finite, we obtain

1+k(n) (s, k(n)-k(n)e)
2| Z (Yj-l) > k(n)el< [e( g ) (e )

=i+l
- -{e't(l+€)/(l—t)}k(n) 0<t<1 .

(Recall that a sum of k(n) Yj's has the gamwma distribution with parameter
k(n).) Choosing the minimizing value t = 1 - (1+e)-l gives the bound

k(n). A similar bound holds for each term of the second sum on the

{(1+e)e™®
right side of (2.6). Therefore P, < (n+1) a(e)-k(n), where a(e) > 1 for
¢ > 0. Since (log n) / k(n) = 0O, P -~ 0 and (2.5) is proved.
It follows from (2.3) that Uk(n) -~ 0 (UP) and hence,since f is every-
vhere positive, that Ty(n) = o (up).
To conclude (2.1) we need only (2.3) and the fact that Uk(n)/zrk(n)q £ (Up).
Since f dis uniformly continuous and rk(n) -+ 0 (UP), this is immediate from

the estimate

U n)(z)

(2.7) ,2rk(n) Z

1 : z+r
- f(z)l = IW fz_rlf(t)-f(z)] dtl

< max {|£(t)-£(z)] : z-rk(n)(z)_s t <z + rk(n)(z)} .



The argument for (2.2) is slightly longer. Let i(z) be the index
such that

Xi(z),n sz < Xi(z)+ 1,n

For any compact interval I, the probability that Xln and Xnn fall

outside I approaches 1 as n- «, by positivity of f£. Thus i(z) is
defined for all z¢I with probability approaching 1 for large n. The
- Glivenko-Cantelli theorem and uniform continuity of F-l on fo, l-ov]

for any o > 0 give that

(2.8) | su | X - z] - 0 (P).

2ol i(z),n

From (2.8) and the fact that Ti(n) 0 (yp}, we can conclude by an

estimate analogous to (2.7) that

sup | Uk(n)(xi(z),n)

zel  2n ) (X3 (5, )

- £(z)| - 0 (P)

- and hence, using (2.3), that for any compact interval I and any ¢ > 0,

(2.9) lim P{sup | f: (z) -£(z)] >el=0
o zel



If we can establish that for any ¢ > 0 there is & compact interval I
e

such-fhat

(2.10) lim Plsup | £%(z) - £(z)] > ¢l = o,

-0 Z
€

this with (2.9) will imply (2.2).
Since f(z) -0 as z- + =, we can choose g compact interval

* = la,b] such that f£(z) < ¢/2 outside I*. Then by (2.1), fn(z) < e
for all =z é I* with probability approaching 1l as n-w. Ilet I = la,b+c]

€
for some c > 0. Then by (2.8) and the fact that P[Xln< a2, X >b e -1,

we have that
1n

P[Xi(z)’n 4 I* for all gz f I with X< <x | -1

Thus with probability approaching 1, fg (z) is either 0 or fn(Xin)

for some X, A T% forall =z 4 I . This establishes (2.10).
: €
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