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INTRODUCTION

et f(x) = (fo(x),...,fm(x))T be a vector of linearly independent con-
tinuous functions on [a,b]. We assume that for each x or ''level'! in
[a,b] an experiment can be performed whose outcome is a random variable
¥(x) and that for any x, var Y(x) = 1. Also assumed is the existence of
8 = (60,...,9m)T such that E Y(x) = (£f(x), 6). The functions  FPRRRPS
are called the regression functions and assumed known to the experimenter.
The basic problem 1s the estimation of functions of the vector ) by
means of a finite number N of uncorrelated observations, [Y(xi)]g;l. Thus,
given a criterion of what a good estimate of a certain g(g) is, the problem
is one of selecting the xi's at which to experiment.

An experimental design i1s a probability measﬁre‘ B that has mass
Pys+-+sP, On the points x,,...,x, respectively, where p; Nen

i
teger., An experimental design determines the points at which the experi-

, an in~

ment takes place, namely the X5 i=1,...,r, and the number of experiments

at each level, namely ng at X,

Definition 1: ILet p be an arbitrary probability measure on [a,b].

M(s), the information matrix of u, is defined as ||m, ,(u)|{T . .s where
1) i,3=0
mid(u) = _[[

Notice that the information matrix is clearly non-negative definite.

a,b]fi(X) fj(x)du(x).

The information matrix plays an important role in determining the ac-

curacy of estimates to certain g(g). Consider the problem of unbiased



estimation of (535), where ¢ is some m+l vector of constants. let a
design p = [xi’pi}§=l be given, where piN =n,. The experimenter has N

random variables to work with, Yi(xl)”°"Ynl(xl)""’Yl(xr)""’an(xr)' It

is known (see e.g., Karlin and Studden, 1966a) that if there exists a linear
unbiased estimate of (2;6) in terms of these random variables, there exists
one of minimum variance and that this minimum variance is precisely

% sup , _ (e, 3)2/(E;M(u)a) where Uu= {d|M(u)3=0}. The crucial quan-
dev, , dto

tity in this expression is V(c,u) = sup _ (3;3)2/(5;M(u)3). Assume that
deU:-, dfo

there is a p' such that M(p')-M(1) is non-negative definite. Then it is
also known that there is p' concentrated on a finite set of points in [a,b)
with this property (see Lemma 1). For this u', V(c,u') will be at least as
small as V(E}u). This follows because the existence of a linear unbiased es-
timate of (c,8) with respect to u is equivalent to ¢ being in U; (see
Kerlin and Studden, 1966s) and thus in U:L-,, Ut being contained in U;-,. If
p' 1is not an experimental design, i.e., if p' has irrational weight at

some point, it can still be viewed as an approximate experimental design for
large N. With this outlook we can think of p' as giving a better best
variance than p for linear unbiased estimates of (3;5).

Definition 2: Let p and u' be probability measures on fa,p]. We

say p <u' or M(u) <Mup') if the matrix M(u') -M(un) is non-negative
definite and unequal to the O matrix.

Definition 3: A probability measure p is said to be admissible if

there is no probability measure u' such that p! > . Otherwise p is

inadmissible.



Because inadmissiblé designs give bigger varjances than their dominating
designs and because every inadmissible design is dominated by an admissible
design (see Iemma 3), we are interested in determining the cless of admissible
designs.

Definition 4: ILet u be a probability measure on [a,b] concentrated on

{xl,...,xr} such that u(xi) > 0,i=l,...,r. Then the set {xl,...,xr} is
called the spectrum of u, written S(u).

It is known that admissibility is a property of the spectrum of a meas-
ure (see Iemms 2), that is, if Hy and Ho have the same spectrum théy are
either both admissible or both inadmissible. Thus we can speak of admissible
or inadmissible spectra.

When f(x) = (l,x,...,xn)T it is known that a spectrum in [a,b] is ad-
missible if and only if it contains no more than n-1 points in the open in-
terval (a,b) (see Theorem 2). Many other results are known in this case.
For example, if we let C = fcle = (l,x,...,xn)T for x ¢ [e,b]}, then the
design concentrating equal mass on the zeros of (l-xa) Pa(x) (Pn(x) is the

nth Legendre polynomial) is minimax in the sense that it minimizes

sup V(c,u) (see Kiefer, 1959). Hoel and Levine (1964) have investigated
ceC

the design which minimizes V(c,u) for ¢ = (l,xo,...,xg) and xoé [a,b],
an extrapolation problem. Extensions and modifications of this problem are
considered in Kiefer and Wolfowitz (1964, 1965) and Studden (1968).

The problem attacked in this thesis is that of characterizing admissible
designs when the regression vector f(x) is in the following form

n~k

(l) (l:xJ .o ':xni (x'gl)i-k: ) (x—él)i’ R (x—gh)+ IEERN (x'gh)i)T



where a < §,< +-<E<DH, 0 <k <n-1 and where

0, x<E
(X-g )1:—_'— F) m=l,2,-oc

(x".E)m; X 2

A polynomial in the component functions of E(x) is called a polynomial

spline function with knots at ¢ A function has this form if and

T
only if it is a regular polynomial on (a,gl), (El,gg),...,(Eh,b) and n-k-1

times differentiable at the knots El,...,gh

have received considerable attention from mathemsticians working in numerical

(see Lemma 4). Spline functions

. analysis, interpolation and approximation theory. (See Schoenberg, l96h and
‘Karlin, 1968 for further references).

Chapter I will start off by discuséing some of the basic results upon
which this work is dependent. Section 1 has general Lemmas about information
metrices, spline polynomials, and admissibility. It also reviews what is |

_known in the polynomial ;ase. The rest of Chapter I deals with the problem
of determining the admissible_specfra in the case of one knot, i.e., when
£(x) = (l,x,...,xn, (x-g)i_k,...,(x-g)i)T. Section 2 gives necessary and
sufficient moment conditions for admissibility. Section 3 uses a result.
by Karlin and Ziegler to get some properties of spline functions for lster -
use. Section 4 starts by applying what is known about the polynomial case
to the spline polynomial case to determine a large class of inaamissible-

designs. Thén the results of Section 3 are used to classify another large

class of spectra, leaving only a few cases undetermined. In Section 5
these undetermined designs are classified by theorems that overlap some of

the theorems of Section 4. The final result is that a design is admissible



relative to f(x) = (1,x,...,xn,(x-s)ﬁ'k +,...,(x-g)ﬁ)T if and only if

(1) 8(pn) has fewer than n points in (a,f) and (E,b) and

n+k

5~ boints in (a,b).

(2) s(p) bas fewer than n+

In Chapter II we consider the case of h knots, where the regression
vector is f(x) = (l,x,...,xn,(x-gl)i-k,..., (x-gl)i yenes (x-gh)i-k,...,
(x-gh)i)T. The first section generalizes Theorem 3, again giving admissi-
bility in terms of moment conditions. Section 2 contains a generalization
of Theorem 4, using what is known about the problem for fewer than h knots
and applying it to the case of h knots. We see that if u is inadmissible
with respect to fewer than h knots, then u can't be admissible for h
knots. In Section 3, we see that a design is admissible if it is subadmiss-
ible (i.e., admissible for fewer than h knots) and has few enough points
in [ﬁ,gl) or (gh;b]. We -also give some examples in Section 3, one of
which classifies all des%gns in the cage when k = n-l.In this case, where
the regression function is such that it need only be continuous at the knots,
a design is admissible if and only if it has no more than n-1 poihts in
each of the intervals (a,gl), (gh,b) and (gi,gi+l), i=l,...,h=1. In
Section 4 we consider the case of a second differentiable regression func-
tion, i.e., where k = n-2, and succeed in characterizing a large class of
designs as inadmissible. We show that designs with n+h(n-1) or more points
in (a,b) are inadmissible. We also show that subadmissible designs with
(h+1)(n-1) or fewer points in (a,b) are admissible when none of these
points are at the knots. Section 5 conjectures that the remaining subadmis-
sible designs with (h+l)(n-1) or fewer points in (a,b) are admissible.

It also offers a conjecture for the general solution of the problem, that



‘'a design is admissible if and only if it is subadmissible and has fewer
than n + h(E%E) points in (a,b) - unless it is subadmissible and has

k-
E—g—l or fewer points in (gh,b) or (a,gl); then it is admissible.'®

Section 6 mentions how Theorems 3 and 10 and Lemmas 8 and 16 can be general-

ized for the case where the regression function is arbitrarily differenti-
n-k
able at the knots, i.e., where f£(x) = (l,x,...,xn,(x-§1)+ ,...,(x-gl)i seees
n-k
h n,\T
(x'gh)_,_ ’.“’(x-gh).+)



CHAFTER I
CHARACTERIZATION OF ADMISSIBLE DESIGNS

IN THE CASE OF ONE KNOT

1. Some Background Lemmas

In this section we present some fundamental results that are relevant
to this thesis, the first lemma describing some basic properties of informa-
tion matrices.

ILemma 1. Iet f(x) = (fo(x),...,fm(x))T and let M(u) be as in Defi-
nition 1. Then

(1) M(p) is non-negative definite;

(2) det M(u) = 0 if all the mass of u is concentrated on fewer
than mtl points;

(3) the family of matrices {M(n)}, for p a probability measure, is
a convex compact set;

(4) for each u there is a probability measure p' concentrated on

r points, r < @%@ﬁﬂ + 1, such that M(u) = M(u').

Proof: See Karlin and Studden (1966a, p. 787).

The far reaching part of this lemma is part (4) which permits us to
restrict attention to measures concentrated on a finite set of points when
dealing with information matrices. Since our criterion of admissibility is
given in. terms of information matrices, we henceforth restrict consideration

to measures on a finite set of points.
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lemma 2. Let pu be an admissible measure concentrated on {xl,...,xr}
with'weight Py >0 at X, - Then if ' is a measure concentrated on

{x.,...,x 1 with weight q., >0 at x,, p' is admissible.
1 T’ i - i
Proof: See Karlin and Studden (1966a, p. 809).

This lemma tells us that any measure concentrated on a subset of the
spectrum of an admissible spectrum is admissible, or that a subspectrum of
an admissible spectrum is admissible. It also tells us that if p is in-
admissible, a measure whose spectrum is a superspectrum of S{(u) is inad-
missible, or that a superspectrum of an inadmissible spectrum is inadmissible.
Thus we can talk of admissible and inadmissible spectra from now on.

The next lemma is the one that guarantees that we get best linear un-

?
biased estimation results by staying in the admissible class of designs.

lemma 3. Iet p be an inadmissible measure. Then there is an admis-

sible p' such that u' >pu.

Proof: We start by noting that any M(p') Z'M(u) has its main diagonal
elements greater than or equal to the corresponding diagonal terms of M(u)
and that at least one must be strictly bigger (see Lemma 7). ILet

Q, = sup (mll(u')). By compactness of {M(u)} (Lemma 1) there is a

1 p! 2
1 1 — 1 ] . . .
M(ul) such that mll(ul) = and M(ul) > M(u). If uy is adm;551ble we
are done. If not we let Qé = sup (m22(u')) and notice there is a
' R 2 g
] H s ? —_ 1 . . -
M(uz) > M(ul) with m22(u2) = Q,. If u) is admissible we are done. Pro

ceeding in this way we either arrive at an admissible M(ui), for i < mtl,

, . . . _ .
or we arrive at an M(um+l) with the properties that aj- mjj(“m+l)’

j=l,...,m+l and M(pl;l_'_l) > M(pl;l) > 2 M(ui) > M(un). By the preliminary



remark, if there is a [ > “é#l’ mkk(ﬁ) > mkk(“$+l) for some k contradict-

ing the meaning of Thus M(pI;I +l) must be admissible.

CVk .

The next lemma is a formal characterization of the type of regression

function we are interested in.

Lemwa 4. A function P(x) on [a,b] can be expressed in the form

(2) P{x) = Zb X+ E Ea (xl:‘)ﬁ'J

i=1 j=0

if and only if

(1) P(x) is a regular polynomial in each of the intervals
[a,gl),(sl,sz), . .,(Eh_l,sh),(eh,b] and

(2) P(x) is of continuity class n-k-1 at each €5 i.e., it has

n-k-1 continuous derivatives at g

Proof: BSee Karlin and Ziegler (1966, p. 518).
Sometimes in the ensuing analysis it will be easiest to work with a

linear transformation of the regression vector (1).

Lemma 5. Let g(x) = Af(x) where A is non-singular and where Ff(x)
is given in (l). Then a design p 1s admissible with respect to E(x) if

and only if it is admissible with respect to f(x).

Proof: Notice that for any v,

M (v) = J AF(x) TXx) ATav = aM_(V
g [a,b] £

let p be admissible with respect to f(x). Then if y 1is not admissible

with respect to E(x) there exists a v such that v >y with respect to
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g(x) or AM (v) at z.AM_ﬁu)AT. Since A 1s non-singular, this implies
f £

M (v) >M (p). So p must be admissible with respect to g(x). The ''only
T f

if'' part follows from the same argument upon noting f(x) = A-lg(x).

Remark. If we aré only considering the case of one knot €, where
(x) = (L,%,...,%5, (x-g)i-k+.,,,.(x—§)2)T, we can define (x-g)?=(x-§)m-(x-§)f,
m=1,2,... and let g(x) = (l,x,...,xn,(x-g)?-k,...,(x-g)?)T. It can be ob-
served that g(x) is a non-singular linear transformation of f(x) and thus
that a measure is admissible with respect to one vector if and only if it is
admissible with respect to the other.

We now state a result due to Kiefer (1959, P. 291) that is instrumental
in characterizing the admissible spectra in the ordinary polynomial case,
when f(x) = (l,x,...,xn)T. We will use a generalization of his theorem to

attack the spline polynomial case.

Theorem 1. Iet T(x) = (1,x,...,x")7 and let g(x) = (1,x,...,x2° 4T,

Then ' >p if and only if

(2) ‘{ 2 afu'-n) > o.
fa,b]
Proof: See Karlin and Studden (1966 b, p. 352).
Following closely after Kiefer's '‘momentous'' result is the theorem

that characterizes the admissible spectra.

Theorem 2. Let E(x) be as above. A probability measure p on [a,b]
is admissible if and only if its spectrum has fewer than n points in the

open interval (a,b).



1l

Proof: See Karlin and Studden (1966b, p. 353).

The proof essentially depends upon recognizing the fact that xzndu

[a,b]
is maximal subject to the prior moments being fixed if and only if pu is a
measure with fewer than n mass points in {a,b). The method of approach
used in the spline polynomial case is similar, only the analysis more delicate
and complicated. The result is similar, that a design is admissible if and
only 1f its spectrum has fewer than a certain number of points in certain in;

tervals.

2. A Necessary and Sufficient Condition for Admissibility

We now develop a generalization of Kiefer's theorem, again showing ad-

missibility related to certain moment conditions.

Lemma 6. If
M = (:a ti)) -
. b b

M>0 if and only if 0 { a >b > 0.

Proof: This can be observed after noting

(x,3) M) = x*(a-b)b(x+y)?.

Lemma 7. Suppose M is symmetric and M > 0. If a diagonal element

m, = 0, then mij= 0 for all j.

Proof: Iet v be the vector with 1 in the ith place, B in the jth

place, and O0's elsewhere. Then for all B,
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-7 = 2
vIMY=o2pm,, . > 0.
Pu; g+ myy 2

Thus for all B > 0,

2n. . + ) > 0.
(2mg 5 + pmyy) 2
Letting B ! O we have Emij > 0. Also for all B <O,

(om, , + ijj) <o.

13

Ietting B t 0 we get 2m.i < 0. Thus mij= o.

J
= n n-k n,T
Theorem 3. Iet f£(x) = (1,X,...,x ,(x-‘g‘)+ ,...,(x-§)+) . Let

2n-l)T

+ . Then with respect to the re-

8(x) = (L%, 00 x™ 7, (x-0)27K, L, (x-6)
gression vector f(x), M(u')-M(n) >0 if and only if
(1) J\E(X) d(u'-p) = 0 and

(@ o4 [« a(u-w) > [(x-9)2" aur-u) 2 o.

Proof: Ilet mij be the (i,j) element of the symmetric matrix
M= M(u')-M(n). Assume M > 0. We will show (1) holds by repeated applica-

tion of Lemma 7. Since

Jldu=f1dp'

or m = O, the first row and column of M are 0. That is,
(a) fxl d(p'-p) =0, i = 0,...,n and
(®) [ (=03 alu'=u) = 0, 5 = n-k,.0epm.

Statement (a) tells us moy = J x° d(p'-p) = 0, so that the second row

and column are O, or
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I Xl d(u'-u) = O, i = l,o-o,n+l

and

[ x93 au'-w) =0, 5 =nk,eeom.

Continuing this way we finally arrive at
(C) J Xl d(u"u) = O, i = O,...,Qn-l and

i j s X
(d) j X (X-g)i d(u'"“) = O, 1 = O,-'n)n'l, J = n'k,---,n-

Since for i =0,...,n-1 and j =n-k,;...,n
i
5 . X X
[k -0)d aur-n) = ) o, [0l atur-w) = o,
k=0

by (d), we get

J(x—g)i d{u'-u) = 0, i = n-k,...,2n-1.

Thus M >0 implies (1).
We notice that when (1) holds M has its first n and then its

n+2, ..., n+k+l st rows and columns O. That is, (1) implies the elements
= [x2n ~ 2n
of M other than mn+l,n+l" Ix a(p'-u), mn+k+2,n+k+27} (x—§)+ a(u'-u),

and nm

n n
n+l,n+k+2=mn+k+2,n+l= Jﬁ (x-§)+ d(ut-p) are 0. We notice that (1)

also implies
[ e0? aurn) = Je-0)2 agur-n)

since
n-1 n-1
F-0)] = () -0 ) 8 (x8) (x-8)S=(x-8)2 ) & (x-)TE.
k=0 k=0



2!

Thus M 142, ntco™ Tnad, nekse™ Ptk ntl”

(1), M>0 if and only if (2) holds. This completes the proof.

Finally, by lemma 6, assuming

Corollary. If p is admissible when k = m, u is admissible when

k >m’ m = l,-oo,n-2, m<k£n_l.

Proof: One need only observe that if p' dominates u for k >m, %J
dominates p for k = m. o

We now state Theorem 3 in an equivalent but slightly more general and
usable way.

En—l)T

Theorem 3'. ILet Ei(x) = (l,x,...,x2n-l,(x-g)?-k,...,(x—ﬁ)_ and

2n-1 n-k

,(x-§)+ yoees(X=F)

in—l)T' Then with respect to

le* Ez(X) = (l,x, LEC ] ,x

the regression vector fl(x) = (1,x,...,xn,(x-E)ﬁ'k,...,(x-g)ﬁ)T or

fé(x) = (l,x,...,xn,(x-i)?-k,...,(x-g)f)T (see Lemma 5 and Remark)

M(pn') > M(u) if and only if

(1) :_g'l(X) d(u'-p) =0  or
:éa(x) d(p'-p) =0 and

(2) :(x-E)En a(p'-p) >0 and

:(x-g)?n d(ut-p) >0
and one of the inequalities is strict.

Proof: Notice that conditions (1)' and (1) are equivalent and that
given (1)', condition (2)' is equivalent to condition (2).

Lemma 5 and Theorem 3' show some of the symmetry that is inherent in the

situation. Later we shall prove certain things by showing one case and claim-

ing another case is true by symmetry.
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3. BSome Characteristics of Spline Functions

In this section we present two lemmas dealing with spline polynomials
that will permit us to ''weave'' polynomials through questionable spectra. .
First we paraphrase a result of Karlin and Ziegler (1966, pp.519-22).

Let o (t,x) =(t-x)}, m = 1,2,... and let B0 X5 1,3 = 1,250 0,1,

satisfy conditions (1), (2), and (3):

(1) e<t;<.en <t <4,
CS]_S . erSd;

(2) o +pB<s+2 (s >1) whenever & of the xj's, 1 € @, coincide,
say equal to g, ¢ <g<d, and B of the ti’s, 1l < B, agree with the same
point g. |

(3) No more than s+l consecutive t's (or x's) coincide.

et M(s,t,x) be defined as follows: If X.< X.< ceos < x, and

1" 72
Ty ; r

5<t< e <, M(s,t,x) is the matrix Hips(ti,xj)lli,j:l. Ir
x30'1< xjo= xj0 417 e = xjo +n-1< x‘j +p ¥e replace the j +i th column

5(1) | N
vector, 1 <i <h-1l, of Hq: (t ’ X, )Hl ,3=1 by [;xT Cps(tv,x) ]v=l'

X=X,
o

A similar adjustment is used on the rows of the resultant matrix when t

values coincide, any sth derivative being taken from the right. M(s,f,x) is
the remaining matrix. We let D(s,t,x) be defined as det M{s,t,Xx). The re-
sult of Karlin and Ziegler is that under conditions (1), (2), and (3)

i- (ss+l)< X<ty
i=1,2,ve4,r, where for i< s+l only the right hand inequality is relevant.

D(s,t,x) >0 always and D(s,t,x) >0 if and only if t,

Definition 5. Let T(x) be a vector of functions (fl(x),. ..,fh(x))T
T
)

where t.<t < ...<t

and let t be a vector of constants (tl,...,t 1S 88 Sty

h
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Then for ;< t,<... <t, we let M(F,t) be a matrix M = (f(tl),...,f(th)L

Otherwise, if t values coincide, say tio-l< tio= tio+l="'

=t. . <t. F)
10+J 1 1o+j

we let M(%;%) be the matrix obtained by replacing the io+k th column,
2(k)
tk

k=1,.00,3-1, of M.O by the vector [ f(t)l ], where all derivatives
d t=t,

(e}

are from the right.
We now apply the Karlin-Ziegler result with r=s+g+2, 0< ££ 8-1, c=a-¢,

d=b, X = eee =X 0= 8-€, and X ,.S...= We notice D(S,E;E) + 0

s+ 542 * Xgagap™ 5

if and only if ¢, .< E and ts+2 > E,

2+1

Lemma 8. Iet T(x) = (1,X,...,%x", (x-g)i-z,...,(x-g)i)T. Let

aStS"'St

1

no more than (s+l) t values coincide. Then M(f,t) is non-singular if and

s+£+2§'b where no more than (s-g+l) t values are E and where

only if there are no more thun (s+l) t values in both [a,b] and [£,b].

Proof: We need only note

7o — M O
(3) M (f,t) = M(s,t,x) [ ]
0 M2
where My is an (s+1)x(s+l) non-singular lower right triangular matrix of

constants and where Mé is an (4+1)x(4+l) non-singular non-principle diago-~
nal matrix of constants. Then det M(f,t) £ O if and only if D(s,t,X) 4 0

or if and only if t .< & and ts+2 > E.

241

lemma 9. Iet 2 <s and a<t.<...<t < b, where ts+

1 S+g+1—- 1
t£+l< €. Then there is a non-trivial polynomial unique up to a multiplica-

> E and

tive constant in the components of f(x) = (l,x,;..,xs,(x-g)i~£,...,(x-g)i)T

with O's at the ti's. (If h ti's agree with some point, we mean the 0 at



17

this point will have multiplicity h.) Furthermore this polynomial has no
other 0's in (-w,®).

Proof: Iet t = b+l and let T = (t),...,t )T

s+4+2 - By

s+z+1’ts+z+2

Lemma 8, M(E;F) is non-singular and there is a unique @ such that
M?(f'f'a'- (0,044 ,O,l) Thus there is a unique polynomial P(x)=(Ff(x),a

with O's at t.,...,t such that P(t = 1. Notice that the condi-

1’ s+g+1 s+£+2)

tion that 't .<E and t__ ; > € implies at most (s-£-1) t's fall on E

z+l
and that we need not worry about an extended definition of Vimultiplicity'!
(see Definition 8). We now show that P(x) has no other O's on (-w,®). As-
sume there is some other O, say to. let % be the vector with components
to’tl""’ts+z+l in monotone non-decreasing order. Then no matter where t
is, M(T,t) is still non-singular by Iemma 8. Since M:(f t)@ = 0 has a uni-
que solution o = 0, we note that the only polynomial with O's at to""’ts+£+l

is the trivial one.

h. Weak Bounds on the Spectrum

We start this section by applying what we know about the regular poly-
nomial case (Theorem 2) to the spline polynomial case. Then we prove two
theorems giving bounds on the number of points in admissible and inadmissible
spectra. These theorems are later superceeded by other theorems which give
better bounds from independent arguments; but the theorems of this section
are interesting because they help one see why p is inadmissible if S{u)
is too big and admissible if S(u) is small enough. AT

Theorem 4. ILet £(x) = (l,x,...,xn,(x-g)i-k,...,(x-g)i)T. I S(u)
has more than n-1 points in either (a,E) or (&,b), then u is inadmis-

sible with respect to f(x).
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Proof: First consider the case when S(u) has more than n-1 points
in (a,£). Let i = Etg—gj on [a,€]. By Theorem 2, i is inadmissible on
2
[a,€] relative to the regression vector E(x) = (l,x,Q..,xn)T. Thus there

is a {i' on [a,g] such that M(i') >M(1) (relative to g(x)). Let

la,€] 4" on [a,§]

“ =
on (E,b] .
We notice
up) = [ T TR awr [ F@) F ) a
[a, E] (gab]
and
M(p') = f flx) T T(x) dp '+ j f(x) T T(x) dp.
[a,€] (g)b]
Sinée

J o Fo T e 2] Fx T
[a,£] (a,€]

M(p') >M(u) and u is inadmissible.

In the case where S(u) has more than n-1 points in (E,b) the re-
sult follows from a symmetric argument.

The next definition is motivated by Theorem k.

Definition 6. Iet I(u) = +o if S(u) has more than n-1 points in

either (a,E) or (&,b). Otherwise let I(u) be the number of interior

points of [a,b] in S(u) plus one-half the number of end points of [a,b]
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in 8(u), if any. I{u) will be called the index of .
As suggested above p will be inadmissible if I(n) is too big and p
will be admissible if I(u) is small enough.

- -k -
el ()R, (6002 T ana

assume I(p) < «. Then if rg(t) dp'-p) = 0 eand S{u') <s(u), p' = u.

LY

Lemms 10. Let g(t) = (1,%t,...,t

Proof: Consider the elements of S(u) as being ordered from a to b and
suppose S(u') €S(u). Then let © be the vector of weights of u, the ith
component of ) being the p weight of the ith element of S(p)- Let 8
be the vector whose ith component is the pu' weigh£ of the ith element of
S(u). Let M be the matrix whose ith column is E(ti) where t, is the
ith element of S(u). Then JE(t) d(p'-p) = 0 implies M(6 - 8') = O.
Since, by Lemma 8, the colums of M are independent, 6 - 8' = 0 and p'=p.

Theorem 5. If I(u) < i&i%:l, then p is admissible.

Proof: Case 1, I(u) = iﬁi%:l and there are fewer than n points of

S(u) in (a,€] and [g,b). Then with s = 2n-1 and £ = n+k-1, Iemma 9

2n-1

tells us there is a non-trivial polynomial P(x) in 1,X;...,% s
(x-g)ﬁ-k,...,(x-g)in—l with a single O at each end point of [a,b] in

S(u), a double O at each interior point of [a,b] in 8S(u), and no other
0's, so that P(x) has constant sign on [a,b]. If there were a p' >y,
Theorem 3, part 1,tells us Jf(x) du' = J}(x)dp = 0 and thus that S(u')cs(p).

Iemma 10 shows us this is not possible. So pu is admissible.

Case 2, I(p) = 321%:£ and S(u) has n points in (a,£]. It can be
observed without too much trouble that there is a non-trivial polynomial P(x)
in (x-g)ﬁ_k,...,(x-g)in-l with double O's at each point of 8(u) in (&,b),

with a single O at b if beS(u), and with no other O's in (E,»). If p' >,
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IP(x) dpt = jP(X)dp = 0, by Theorem 3. If S _(u) and s.(n') are respec-
tively the points of S(u) and S(u') that are greater than £, we must
have S (u') C:S+(u). Let 5; and 51 be respectively the u and the u!'

vectors of weights for the points of S+(u) considered as ordered from €
to b. ILet é;(x) = ((x-g)i—k,...,(x-g)in_l)T and let M_ be the matrix
with columns é(ti), where ti is the ith element of S+(p). The columns

of M+ are independent and thus the relationship necessary for p' >y, that

M, 9+ = M+ 9;, implies

©
]
D
o]
X
5
C"'
=
il

u' on (E,b]. Thus the only

T(x) dpt > f fx) T T(x) du.
' [a,E]

Foi

way u' can dominate p is if f F(x)

But this can't happen because by Theorem 2, since I(u) <, p is admissible

relative to l,x,...,xn on [a,€]. So p is admissible.

3ntk-1
2

reasoning parallel to that of case 2, showing any dominating measure must

Case 3, I(p) = and p has n points in [E,b). We use
agree with u on [a,g)v and noting that p is admissible with respect to
the regular polynomial regression vector on [£,b].

The proof is completed by noting that if I(un) is smaller than 3512323

S(k) is a subspectrum of some admissible spectrum S(po), where I(uo)=§E:%:lu

Thus by Lemma 2, p is admissible.

Theorem 6. If I(u) > i&%ﬁi@ then p is inadmissible.

Proof: By Theorem 4 we need only prove this in the case when I(u) is

finite or when S(p) has no more than n-l points in (a,€) or (g,b). We

show p is inadmissible if I(u) = 39—;"51’?- . Tt will follow from Lemma 2 that
b is inadmissible if I{u) > 33'12‘13 )

. 2n
Let ”§n+k+2 be the moment space of the functions 1,x,...,x ,

(x—g)ﬁ-k ,...,(x-g)in. That is, is the set of all (3n+k+2) vectors

77‘3n+k+2
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- - — - 2n n-k 2n,\T

¢ where c¢ = jé(x) dv for g(x) = (1,X,...,X% ,(x-§)+ ,...,(x-§)+ )

and for v o finite measure on [a,b]. Then W§n+k+2 is a convex cone in
E3n+k+2. It can be seen from Theorem 3 that if p is admissible, fg(x)du

is a boundary point of This means there is a non-trivial a

7)?31'1+1\:+2'
such that (a, jg(x)du) =0 and (q, fg(x)dv) <0 for all v f u. This im-
plies that P(x) = (@, g(x)) is a non-trivial polynomial with O's on S(u)
and that P(x) <0 off 8(u).

Case 1, that S(u) does not have n+l points in [a,8] or [E,b].
Then with s = 2n and ¢ = n+k, Lemma 9 tells us there is no non-trivial
polynomial with double O's at the points of S{u) interior to fa,b] and
with single O's at a or b if they are in S(u). Thus p is inadmis-
sible.

Case 2, that S(u) has n+l points in [a,€]. Then it is immediate
that the first on+l coefficients of & must be O or that P(x) is a
polynomial in (x-g)ﬁ-k,...,(x-g)in. But for this polynomial to have the
described property of being O on S(p) and non-positive off S(u), it
must have (n+k+l) O's in (E,b]. The only way this can happen is if
P(x) is also the trivial polynomial in (x—g)ﬁ'k,...,(x-g)in. So again p
is inadmissible.

Case 3, that S(u) has n+l points in [g£,b]. This is covered by

argurents parallel to those of case 2.

5. naracterization of Admissible Designs, One Knot

From Theorems 5 and 6 we see that the only designs not yet classified

3ntk 3n+k+1
2~ o T2

section, by independent arguments.

are those whose index is . These will be handled in this
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Definition 7. Let o = {fl(x),...,fr(x)} where each fi(x) is a

)T

continuous function on [a,b]. Let a <ty <... <t <b, t = (tl,...,tr ’

and let f(x) = (fl(x),...,fr(x) )T. Then o is called a Tchebycheff system
or T-system if for all such E, det M(f,-f) has a constant strictly positive
or strictly negative sign. o/ is called a Weak Tchebycheff system or WT-

system if the functions of o/ are linearly independent and if for all such

%-, det M(f,-f) is either always non-negative or always non-positive.
. s s-£ s
Lemma 11. The system of functions {1,x,...,x, (x-8), 7).+ -5 (x-8)13,
0<4£<s, is a WI-system on [a,b].

Proof: From relation (3) of Ilemma 8 we observe
det I\IF(E,E) = D(s,t,x) det M, det M,

and thus that det M({f,t) has a constant sign, since D(s,%t,x) > 0.
The next lemma gives the existence of a measure p' which we will later
show dominates p in the cases considered.

Iemma 12.

3n+k
2 .
is a p' with S(u') &€ S(u) such that if El(x)=(l,x,...,xen-l,(x-g)r_:'k,...,
2n-1,T 2n-1.T
(x‘§)+n ) )

J‘Ei(x) d(p'~p) = 0, i=1,2.

(1) Let n+k be even and I(p) = Then if S{u) < (a,b), there

xen-1 » (x-€) I_l-k , then

and By(x) = (1,%,..., seees(x-€)

(2) Iet n#k be odd and I(u) = R . hen ir S(u) < (a,D),
there is a ' with S(u') ¢ S(u) such that if El(x)=(1,x,...,x2n°l,

k-1 2n-1.T - 2n-1 -k-1 2n-1
(X-g)i ,"o’(x-§)+n ) and. gz(x)=(l,x, o-o,x n ,(x"g)lj ] nou,(x-g)-

then jgi(x) au'-u) = 0, i=1,2.

)T,
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Proof: We proceed along the lines of the proof in Karlin and Studden

(1966b, pp. 138-9). Iet n+k be even, I(u) = 3otk , and S{u) < (a,b).

2
(%) be respectively l,x,...,xen-%(x-g)z-k,...,(x—g)in-l.

3ntk bte
By Lemuma ll,{ui(x)} is a Wr-system on [a,b]. ILet vi(t,5)=j Ga(x,t)ui(x)dx,
a-e

let ul(x),...,u

i=1,...,30+k, where Gs(x,t) = exp[- 1/2(5%3)2]. Then for fixed § >0

2nd
it is known that {vi(t,a)} is a T-system and that v, (t,6) —» w,(t) uni-
formly on [a,b] as & | 0. Let c = Jui(x)dp(x) and ci(s) = Ivi(t,ﬁ)du(t),
i=l,...,3n+k. Then ci(s) = ¢;. Since {vi(t,a)} is & T-system, Theorem
2.1 and Corollary 3.1 of Karlin and Studden (1966b, Chap. 2) tell us there
is a measure EG with positive mass precisely at a,b and 3212:2- points
of (a,b) such that ci(a) = jvi(t,s)dﬁs(t), i=l,...,3n+%k. Iet u' be a
weak limit of {Eé} with mass on precisely < 3555:2- points of (a,b). Then
w' £ since p has mass on 3B%£ points of (a,b). Also
ey = fui(x)du = jhi(x)du'. By Lemma 10, S(u') ¢ S{u). It is easy to see that
Jermatut-n) = o implies [E(x)a(u'-u) = o.

The proof for the second part of the lemma is essentially the same and
omitted.

Because polynomial spline functions are not infinitely differentiable
it is necessary to make a special definition for the multiplicity of a O.

Definition 8. Iet P(x) be a polynomial in the functions l,x,...,xr,

(=€) 7%, .o, (x-8)T™, where r > 1 and 0 < 4 <r. Assume P(x) is not

identically O on any interval and that

p(®(5)pM(g,)-p M) (g )= 2®) (g, ) () (g )0 ana pU) (g )it ).
(1) ¢ P () is bounded away from O in some neighborhood of

€ and doesn't change sign at £, we say P(x) has a 0 of order k+l at €.
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(2) 1f P(k+l)(x) changes sign at £, we say P(x) has a O of order
k+2 at E.

(3) £ P(k+l)(§+)=0 or P<k+l)(§_)=0 and if P(k+l)(x) does not
change sign at €, we say P(x) has a O of order k+3 at €. Multipli-

city of a O at points other than § 1is defined as usual.

Lemms 13. Let P(x) be a polynomial in the functions 1,%,...,x",
(x-E)i-z,...,(x-g)£+l, r>1 and 0 < p <r, which is not identically 0
in any interval. Then

(1) P(x) can have at most (r+g+2) O's.

(2) If P(x) has an even order O at a point, then P(x) does not

change sign at that point.

Proof: We start the proof of part (1) by showing the result true for
all r and 4 = r-1. P(x) restricted to [E,») is a regular polynomial
P, (x) and P(x) restricted to (-=,E] is the regular polynomial P_(x).
If there are no O's at §, the result is evident because P_(x) can have at
most (r) O's and P (x) at most r+l for a total of 2r+l = r+(r-1)+2. If
there is & O of order h >1 at E, one can observe that the polynomials
P+(x) and P _(x) can not have more than a total of (r+(r-1)+2-h) O's in
(g,2) and (-w,£), for a total maximum possible number of r+(r-1)+2. Iet
us assume thé first part of the lemma true for all r and g=r-1,...,r-j+l,
I J €£r. We show it true for g=r-j. Assume P(x) has more than (2r-j+2)
O's. Then by Rolles Theorem P'(x) has more than (2r-j+l) O's. This follows
since Definition 8 tells us P(x) has a O of order i at £ if and only if
P'(x) has a O of order i-1 at €. But that P'(x) has more than (2r-j+1)

O's contradicts the induction hypothesis since P'(x) is a polynomial in
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l,x,...,xr-l, (x_g)iréD-(r—j)’..‘,(x_§+)r and can have at most
(r-1)+(r-j)+2 = {(2r-j+1) 0O's.

For part (2) we observe from Definition 8 that if P(x) has an even
order O at E and h is the first integer such that P(h+l)(§_) and
P(h+l)(§+) are not both 0O, then h is even if and only if P(h+l)(x)

changes sign at &. Noting that the Taylor Formula expression for P(x) is
h+l h+l
P( )(xl)(x-g)

P(x) = (n+1)!

» where x. 1is between £ and x, we see that

1
P(x) does not change sign at € if the order of the O &t £ is even.
If P(x) has an even order O at a point other than £ it is well known
that P(x) does not change sign at the point.

The next lemma exhibits the existence of certain polynomials instrumen-

tal in showing which designs are inadmissible.

Lemua 1l
(1) let n+k be even, I{u) = 327k and S(u) < (a,b). Then there is

2n~-1

a P+(x) in 1,X,...,X% ,(x-g)i’k,...,(x-g)in such that the coefficient

of (x-g)in >0, P(x) =0 on S(u), P (x) 20 on [a,b], and P(x) >0

on the points of [g,b] not in S(u). There is a P_(x) in 1,x,...,x2n'l,

(x-g)?'k,...,(x-g)?n such that the coefficient of (x~§)€n >0, P_(x)=0
on S(u), P_(x}) 20 on [a,b], and P_(x) >0 on the points of [a,£] not
in s(p).

(2) Iet n+k be odd, I(u) = 35¢§il

2n=-1 n-k-1
:(x'§)+

and S(u) < (a,b). Then there

is 8 P+(x) in 1,Xy...,X% ,...,(x-g)in such that the coeffi-

cient of (x-g)in > 0, P+(x) =0 on S(u), P+(x) >0 on [a,b], and

P+(x) >0 on the points of [g,b] not in S(u). There is & P_(x) in
2n=-1 n-k-1

2 (x-€)7 ,...,(x-g)?n such that the coefficient of

1yXyeee,x
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(x-g)?n >0, P(x) =0 on S(u), P(x) >0 on [a,b], and P (x) >0 on

the points of [a&,€] not in 8(u).

Proof: We merely establish the existence of P+(x) for the first part.
The existence of the other polynomials follows from similar arguments.

Case 1, that there are n points of S(u) in (a,g]. Let

2n-1 n-k 2n-1.T
P

F(X) = (l,x,--.,x ,(X-§)+ ,o-o,(X'g) and let rl,---,r3n+k be the

2

points of 8(u) ordered from left to right. Let tl=t2=rl""’t3n+k-l =

t3n+k= Yanek * By Lemma 8, M(f,t) is non-singular. Thus there is an «
2
such that
Py = = 2n 2n-~-1 2n
M (f,t) O! = (O,.-.,O,-(r2n+l'§) ,‘2n(r2n+l"§) .’100,-(r3n+k-§) ]
2 2 2
2n-1.7
Y -2n(r3n+k-§) ) .
2

Let Mi(f;%) be the matrix consisting of the last n+k columns of M?(EZE).
It can be seen that the first 2n rows of Mi(f}%} are 0O and that the
lower right (n+k)x(n+k) submatrix is non-singular. Thus & has its First
2n components O. Then P+(x) = (aﬁka»+(x—§)in is a non-trivial polynomial
in (x-g)f-k,...,(x-g)in with (n+k) O's in (&,b). BSince P+(x) can't have
any other O0's in (£,*), since P+(x) t © ags x ~ ®, and since P+(x) =0
for x < €, it is clear that P+(x) satisfies the conditions of the
lemma,

Case 2, that there are fewer than n points of  S(u) in (a,E]). Again

M(f,t) is non-singular. If & is the solution to
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in'l,---,—(r3n+k-§)§n,-2n(r3n+k-§)
2 2

2n-1 )T
+

b4

M?(E;E)al= (-(rl-g)in,—en(rl-g)

P+(x) = (F(x),q) + (x-g)in is the polynomial we seek. We note that if
P+(x) were identically O am [a,E], it would be a polynomial in (x-g)i-k seses
(x-g)in having more than {(nt+k) O0's on (&,b) and thus trivial there too.
So P+(x) is non-trivial on [a,§] and on [£,b]. From ILemma 13, with
r=2n-1 and 4 = n+k-1, we get P+(x) can have at most (3n+k) O's. But
P+(x) is defined so that it has a double O at each of the ﬁgiE points

of 8{u). Since P+(x) ~® as x - and since, also by Lemma 13, P (x)

can't chenge sign, P+(x) >0 for all x and satisfies the conditions of

the lemma.
+
The next theorem classifies some of the spectra of indices 3255‘ and
B a5 inadmissible.
Theorem 7.
(1) If n+k 1is even, a measure g of index Jutk is inadmissible if

2
S(n) doesn't include a and b,

(2) If n+k is odd, a measure u of index 39i§ii is inadmissible
if S(u) doesn't include a and b.
(Note that the indices in parts (1) and (2) are integers, so that either

both or none of a and b are in S(u).)

Proof:
(1) Consider the p' from Lemma 12, part (1). Consider the P+(x)

and P_(x) from Lemma 14, part (1) and write

P, (x) (x-§)fn + P (x)

P_(x) = (x-8)2" + F_(x)
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2n-1 (

where §;(x) is a polynomial in the functions 1,X,...,x s x-g)i-k,...,

2n-1

(x- g) . The measure u' satisfies f P (x)du' j} (x)dp. We notice

jP (x)du= o, IP (x)dp' >0 and IP (x)du* >0 if S(u') has a point in
[€,2] not in S(u), and that fP_(x)du' > o and fP_(x)du' >0 if s(u')
has a point in [a,§] not in S(u). Thus j(x-g)ind(u’-u) >0, I(x-g)?nd(p’-u)zp
and at least one inequality is strict. By Theorem 3" ' > e

(2) Here we use the p' of Lemma 12, part (2) to dominate u. We show
u' >p as we did in part (1), using P+(x) and P _(x) from Lemma 1k, part
(2).

3ntkrl

> is inedmis-

Corollary. If ntk is e#en, a measure of index >
sible.

Proof: This follows because the spectrum of such a measure is the super-
3n+k
2

spectrum of a measure of index whose spectrum is contained in (a,b).

The only remaining unclassified designs are those of indices 3E§E
and §Eigil that are not covered in the above theorem or corollary. The

next theorem shows them admissible.

Theorem 8.

(1) If n+k is even, a measure “, of index 3Eg£ is admissible if
S(u) contains a and b.

(2) If n+k is odd, a measure p of index 3EE%ii is admissible if
S(u) contains a and b.

Proof':

(1) Case 1, that there are not n points of S{n) in either (a,£]
or [E,b). Assume p is inadmissible. By Lemma 3, there is an admissible

p' >pe By Theorem 7, S{u') can have at most Jutk points in (a,b).
- 2
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Thus there must be two consecutive points of S(p), say r, and X, with

)
no points of S{u') between them. By Lemma 9, wherever rz and rz+l may
. - . . 2n-1 n-k
be, there is a non-trivial polynomial P(x) in 1,X,...,X ‘,(x-§)+ seney
(x-g)in—l with single O0's at T, and T4l double O's at the other points

of S{u) in (a,b), single O's at a and b, and no other O's in [a,b]. We
can take P(x) to be negative between r, and r£+l and non-negative else-
where on [a,b]. By Lemma 10, 8(n') ¢ S(u). Thus all points of S(u') will
lie in regions where P(x) >0 and some will lie where P(x) > 0. This con-
tradicts the condition necessary, by Theorem 3, for p' >p, that

fP(x) d(u'-p) = 0 since fP(x) du = 0 and jP(x) du' >0. S0 u is ad-
missible.

Case 2, that there are n points of S(u) in (a,E]. Then the points

of S(u) to the right of £ are b and E*le‘—'a—’ points of (g,b). Assume
u' 2. First we show that p' must agree withp on (E,b]. Notice that
there is a polynomial P(x) in the functions (x-g)f_'k,...,(x-g)in'l with

a single O at‘ b, a double O at each point of S(u) in (€,b) and no
other O's in (g,b]. Since jf(x) d(nu'-p) = O there is no point p in
(E;b] that is in S(u') and not in S(u). Arguing as we did in the proof
of Theorem 5,we get p' =p on (gDb] and also, since b is admissible
with respect to the regular polynomial regression vector on [2,€], that
p' =p on [a,E]. Thus there is no p!' >l

Case 3, that there are n points of S(u) in [E,b) follows from
symmetric arguments.

(2) Case 1, that s(@) does not have n points in (a,E] or in
[E,b). Assume an admissible u' dominates p. Then ' can have at most

3n+k-1 . .
5 points in (a,b). Iet rl""’r3n+k-l
2

be the points of S(p) in
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(a,b). We now show that S(u') must have a point in each of the open inter=-

vals (ri,ri+l), 1=1,..., n+§- + For assume not; assume that there is no
point of S(u') in (ri,ri+l). Then by Lemma 9 there is a polynomial P(x)

2n-l)T

+ with

in the components of g(x) = (l,x,...,xzn-l,(x-g)ﬁ-k,...,(x-g)
single O's at a,b,r;,r; 1, double O's at the other points of 5(u) in (a,b),
and no other O's. Then as in the first case of part 1, jf(x) d(u'-u) + o

and u' Pu. We cen thus assume that either (a,rl) or (r -1, »b) does

2
not contain a point of S(u'). Without loss of generality we assume there
. . ‘N 4 = T _
is no point of S(u') in (a,rl). let t = (tl""’t3n+k) where t= &,
N . 3 Ty L _eyen _pyan _pyen
by= Tps ta= s Tpreeestapg= be Let h(t) = ((t,-8)5 s (657607 ,(t3 E)S »

-1 -1
200ty 8)" e (g o8 2ty 0P, (b33 By Lemma

8, M(g,t) is non-singular. Iet & be the solution of M?(E;E)aé-ﬁ(f).

Let P(x) = (x—g)in+(§(x),a). Then P(x) has & O at each of the t, and
can't have any other O's, by Lemma 13. Also P(x) <0 for all points of
S(u'), P(x) <0 for some points of S(u'), and f(x) =0 on S(u). Thus

ve get f(x-g)in d(u'-p) < 0. S0 u is admissible, because this last in-
equality contradicts p! > uy by Theorem 3.

Case 2, that S(u) has n points in (2,€] and thus b and Ei§:£
points of S(u) in (g,b]. Assume ' 2 u. Theorem 1.1 of Karlin and
Studden (1966b, Chap. 3) tells us that if g(x) = ((ng)i"k,...,(x-g)fn'l)T,
then subject to jg(x) d(v-p) = 0, I(x-v)in dv 1is uniquely meximized for v
on (E,b] by v =y and thus, by Theorem 3, that p' =u on (g,b]. We

Proceed as before from this point, case 3 following from symmetric arguments.

Corollary. If nt+k is odd, a measure of index < 3255 is admissible.
Proof': We merely note that the spectrum of such a measure is the sub-

spectrum of an admissible spectrum of index iﬁigil.
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From Theorems 7 and 8 we get that if n+k is even, then designs of in-

dex < 3otk are admissible, that designs of index otk are admissible if
2 2
3n+k
2

and only if they contain s and b, and that designs of index > are
lnadmissible. We get that if n+k is odd,. then designs of index < &I;{L
are admissible, that designs of index 311_+1§+_1 are admissible if and only if
they contain a and b, and that designs of index > M;Ll are inadmissible.

We put these facts together in the finsl theorem of the chapter.

. -k
Theorem 9. Relative to f(x) = (l,x,...—,xn,(x-g)ﬁ ,..‘.,(x-g)i)T
(or £(x) = (L,%,.00,x", (x-g)x_l'k,...,(x-g)il)T) B is admissible if and only
if
(1) s(u) bas no more than n-1 points in either (a,€) or (g,b) and

(2) s(u) has fewer than n + g_é-l;lg points in (a,b).
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CHAPTER II

THE CASE OF MORE THAN ONE KNCT

1. Necessary and Sufficient Moment Conditions

Now we are concerned with the case of h knots, i.e., the case where

the regression vector F(x) = (1,X,...,x (x-gl)ﬁ-k,...,(x-gl)i,...,

(x-gh)ﬁ-k,...,(x-gh)i)T, n>1, 0<k <n-1, h > 1. We start by giving a

generalization of Theorem 3, giving necessary and sufficient conditions for

admissibility. The following lemms is a generalizetion of Lemma 7, which

was used in the proof of Theorem 3.

Iemma 15. ILet M be a square matrix of the form

Then M >0 if and only if O+Alz...ZA£ZO.
Proof: We need only notice that
£
(x . X ) M (x cesegX )T= Z(A -A )(x +40etX )2
1717y 1’ '’} i i+l i
i=1

= e e - 2
where A,., = 0. Then for X,= Xy=...=X = 0,(A;-Aj)x; >0 for all
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e o - 2 - 2
X) @Ay 2 Ay For = xp=..esx = 0, (4, Ay )x] +(A2 A3)(xl+x2) >0 for all
Xy and X, = Ay Z.AQ Z.A3. Proceeding in this way we arrive at
T = .
X Mx" >0 for all xéAlZAQZ...zAEZAZ_HL- 0. Noting that M

non-negative definite and A, = 0 M = 0, we are done.

1

n-k

Theorem 10. ILet T(x) = (1,%X,...,%x", (x-gl)+

,...,(X-gl)i,-..,

(x-gh)i-k,...,(x-gh)i)T, where a <§ <...<g <b and 0 <k <n-l.

- 2n~1 n-k 2n-1 yh=k
Let g(X) = (l,X,---,X ,(x-gl) ,--.,(X-gl) ,...,(x~§h)+ sy
(x-gh)in-l)T. Then p' >p with respect to f£(x) if and only if

(1) fE(X) d(p'-p) = 0 and

(2) 0 ¢ fien A’ -u) 2|I(x-§l)fn au'=p) > ... 2‘f(x-§h)in d(u'-p) > o.

Proof': The proof is essentially like that of Theorem 3 and so we only
sketch it. ILemma 7 is used to show (1) holds if M = M(u')-M(u) > 0. Lemma

15 shows that given (1), M >0 if and only if (2) holds.

2. Subadmissibility

In Section 4 of Chapter I we showed that if p is inadmissible on
either [a,§] or [E,b] with respect to ﬁhe regular polynomial regression
vector f(x) = (l,x,...,xn)T then p is inadmissible with respect to the
spline regression vector f(x) = (l,x,...,xn,(x-g)i-k,...,(x-g)i)T. In ef-
fect we showed that a design inadmissible with respect to O knots was in-
admissible with respect to 1 knot. Now we will show that a design inad-
missible with respect to 4 knots is inadmissible with respect to £+1

knots. First we give some definitions.

Definition 9. Iet §O= a and gh+l = be By an interval of length g,

0 < £ < h, we mean one of the intervals [gi, i+z+l]’
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Note that an interval of length 4 1is characterized by the fact that it

has £ knots in its interior.

Definition 10. Let go= a and §h+l= b. A measure uy that is admis-

sible on all intervals of length £ < h, say [[g ,gl +£+l]}’ relative to
the regression vectors f(x) = (1,x < (x-g, ) k (x-€ B
28 = 1Xyeee X i +l PR RN io+l yeee,
: n-k n,\T R . R e s
(x-E, ) I ¢ 2 - )7)" respectively, is said to be subadmissible (h).
10+£ 1O+£

Theorem 11. ILet p be admissible for h knots. Then 1 is subad-

missible (h).

Proof: Assume that p is not subadmissible. Then for some iO and

some 4 <h, p is inadmissible on [gi ] relative to f(x) =

51 e

(l)x:°":xn’(x'€i +l)2 soees(x= gl +l) poees(x- §1 +£)2 k:--':(x‘gi +£)2)T-
o] (o]

Thus there is a {i on [g such that { >p on [g

J_ +z+_]_-.J 1 +£,+l]

or such that

(v | g(x) a(i-u) =0 and
g1o’§io+z+1

@ o[ < a(in) 2 | (-8, )3 a(-w)
giO, gio'l'ﬁ.'*'l] [gio, gio+£+lj o

2 e 2 (x-8; )5 i) 20,

- 2n-1 n-k 2n-1 n-k
where go(x) = (1,%;000,x ,(x-gio+1)+ seees(x- glo+l) :'°')(x'§io+£)

2n- l)T

seve,y(x- ~&; +£) . Let u' be defined as [ on [gio,gio+z+l] and p
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[2,0]-[€; »E; +ge1]s Them if g(x) is as in Theorem 10, conditions (1) and
o] (o]
(2) just above imply

(3) f[ . g(x) d(u'-u) = 0 end
a,

(1) o4 [

Q) 2 e 2 J"[a . (x-8,)2™ a(u’-1),

[a,b]

which, by Theorem 10, implies u' > .

3. Some Particular Results

Without too much new theory we are able to classify some subadmissible
designs as admissible. Roughly speaking, if a subadmissible design doesn't
have too many points in (§h,b] or [a,gl) it will be admissible. ILet
£(x) = (l,x,...,xn,(x-gl)ﬁ-k,...,(x-gl)ﬁ,...,(x—gh)ﬁ-k,...,(x—gh)ﬁ)T and
let p be subadmissible (h), which means, in particular, that u is admiss-
ivle on [a,g ]. ILet 8(u) bhave r points in (gh,b) and s points at

orve and let g, (x) = ((x-g )07, ..., (x-g )20 )"

b (s =0orl). Let V(u) .
Notice that by Theorem 10, if u' >p then IE;(X) d(u'=p) = 0. Assume

w' >p. Now if V(u) < ntk it follows from Theorem 2.1 of Karlin and

Studden (1966b, p. 42) that u' agrees with p on (gh,b]. This theorem

says that if V(u) is smaller than the number of functions in a Tchebycheff
system whose integrals are to be fixed, then there is no other measure '

that fixes the integrals at the same values. If V(u) = ntk and n+k is

odd (i.e., b e 8(u)), then by Theorem 1.1 of Karlin and Studden (1966b, p. 80)
12 [6,(0) a(u'w) = 0, [(x-g)%" a(u'u) <0 wmless u'=p on (5,01
Since the negativity of the last integral contradicts ! >u (by Theorem 10)

we get ' =pu on (gh,b]. Thus in the two cases: V(u) < n+k and V(p) = n+k
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when nt+k is odd, we get p =p' on (gh,b]. But since p is admissible
on [a,gh] we must also have u = p' on [a,gh]. Thus p' >pu  is impossible.
We state these results as a theorem, including also the similar case when S(u)

has a small enough number of points in [a,gl).

- Theorem 12. ILet pu be subadmissible (h). Let S(p) have T, points
in (gh,b) and s, points at b (s O or 1); let S(u) have r_ points
in (a,gl) and s_ points at a (s_=0 or 1). Iet V+(u) =r,+s,_ and

let V. (p) =r+s_. Let V(u) = win(V, (1),V_(n)). Then if V(u) < ntk

or if nt+k is odd and V(u) = ntk, p is admissible.

Example 1. Iet k be as large as we permit, i.e., k = n-l, We let
go =a and gh#l_ b and show that s de51gn is admissible if and only if it
has fewer than n points in each of the 1ntervals (E ’§1+1)’ i-= 0,...,h.
We observe from Chapter I that this result is true in both the case of 0
knots and fhe case of one knot. So we assume it is true for h-1 knots
and show it true for h knots. Iet pu be a design with fewer than n
points in each open interval. Then by the induction hypothesis it is sub-
admissible (h). By the theorem it is admissible since n+k is odd. If
w has n or more points in an interval it is clearly not subadmissible
(h) and thus not admissible. So we are done.

Notice that when k = n-l a polynomial in the components of the re-
gression vector is a regular nth degree polynomial on each [gi’“i+l] and
needs only be continuous at the knots.

In the case when n=1, the above result tells us that pu is admissible

if and only if S{u) c:{a,gl,...,gh,b}.



37

Exemple 2. ILet n =3, k=0, h=2. Then a design is subadmissible
(2) if and only if it has fewer than 3 points in (a,gl), (El,ge), (§2,b)
and fewer than 5 points in (a,gz) and (gl,b). It follows from the theorem
that a design that is subadmissible (2) and has a single point in (ge,b)
(in (a,gl)) and a single point at b (at a) is admissible. The only de-
gigns still undetermined in this case are among those that are subadmissible

(2) and have two points in both (a,gl) and (ge,b).

Example 3. n =4, k = 0, h = 2, Here the subadmissible (2) designs
are those with fewer than 4 points in (a,gl), (gl,ge), (ge,b) and fewer
than 6 points in (a,ge) and (gl,b). Notice that any subadmissible (2)
design with only one point in (a,gl) or (ga,b) is admissible. The de-
signs undetermined are among those subadmissible (2) designs with more than

1 point in both (a,gl) and (gz,b).

4., The Csse of a Second Differentiable Regression Function

In this section we assume that k = n-2 (n >2) and classify many de-
signs for h knots. In other words, we work under the assumption that the
regression polynomial has at least a continuous first derivative at the knots,
The techniques of this-section will be generslizations of techniques used
mainly in Section 5 of Chapter I. First we generalize Lemma 8 which was a

handy tool throughout most of Chapter I.

Lemma 16. Let a <ty <... < bngeneyS P where there are no more
than (s+l-¢) t's at a point g, and where no more than (s+1) t's coincide

s =y S 8~ -
anyWhere- Then lf f(x) = (l,x,ono,x ,(X-§1)+ z,.oo,(x'gl)i,-oo,(x‘gh)i z,--o,

(x-gh)i)T, 0 <L <s-1, M(E;E) is non-singular if and only if
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(1) tr(£+l) <Eg., and

(@) &, <t ipy(pa1)(ger)r T = Loeeeshe

Proof: This result follows from the Karlin and Ziegler result mentioned
before Lemma 8 in essentially the same way Lemmas 8 followed.

We now define a concept which, aefter an induction later on, will be
shown related to subadmissibility (h). We define this concept of !'‘permis~
8ibility'' for the case when n+k is even, but in this section use it only

when k = n-2.

Definition 12. Iet n+k be even. A design p is said to be permis-

sible (h) if S(u) bhes at most (n+ % (n+k)-1) points in the interior of
each interval of length 4, for 0 < g4 <h. Otherwise p is said to be non-
permissible (h).

Next comes a lemma that generalizes Iemms 14 and leads to the determina-

tion of a large class of inadmissible designs.

Iemma 17. Iet n >2 and k = n-2. Let p be a permissible (h) de~
sign with precisely n+ g (n+k) points in S(u), all in {(a,b). Then there

exists a set of polynomials {Pi(x)}?;o where Pi(x) is a polynomial in

the components of g(x) = (l,x,...,xen-l,(x-gl)ﬁ-k,...,(x-gl)in’l,...,
n-k 2n=-1.T
(x'§h)+ ,...,(x-gh)+n )” and fi(x), where

£ (x) = ¥ (x-g)2",
2n 2n
fi(x) = (x-gi)+ - (x-§i+l)+ > i=1,...,b-1, and

fh(x) = (X-gh)in,

such that
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(1) The coefficient of £,(x) =1 and
(2) Pi(x) =0 on S(u), Pi(x) >0 everywhere,
and P, (x) > 0 on the points of [g 18 431 mot in s(u).

Proof: It will be observed that a permissible (h) design u with S(u)
having precisely n+ E (n+k) points, all in (2,b), must have (n-1) points
in (a,gl) and (gz,b), one point at each of the h knots, and (n-2) points
in each (g s l), for i =1,...,h-1.

For 1 =0 or h the result follows lmmediately as in the proof of
Lemma 14, case 1. Ph(x) will be 0 on [a,gh] and Po(x) will be O on

[gl,bj. For 1 =1,...,h-1, the technique is essentially the same. We show

)2n -1

there is g non-negative, non-trivial polynomial in (x-gi)i,,..,(x §i + 2

2n-l

(x: §1+1) ,...,(x El+l ; and £, (x) with double O's at the points of

S(u) in [g yE, +l] that is O on the complement af[g s€ Using Lemms 8

1+lJ

as was done in Lenms 14, it is not too hard to see that there is a polynomial
. 2n-1 2 2nJ. 20 2n

P(x) in 1,x,...,x ,(x—grﬂ)+, o (x- "€ 1) -(x-§i+l) that has

double O's at the points of S(u) 1in (&, ’§1+l] and is identically 0 to

the right of €41+ P(x) has no other 0's on (&, 1285471 and P(x) >0

)211

there if the coefficient of 2 -(x &40

is 1. If we let

P(x), 'x 2§1

0, x < §i

then Pi(x) satisfies the conditions of the lemma.

Next we generalize Lemmas 10 and 12,
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- 2n-1 = (=K 2n-1
Lemme, 18. ILet g(x) = (1,%,:::5% ,(x-g’l)+ ,...,(x-gl)+ seess
(x—gh)i'k,...,(x-gh)inél)T, let n+k be even, and let p be permissible (h).

1t [e(x) a(u'-u) = 0 and s(u') ©5(u), then u' = p.

Proof: The proof of this follows from lemma 16 in the same way the

proof of ILemma 10 followed from Lemma 8.

Lemma 19. Iet n+k be even and let S(u) have precisely n+ g (n+k)

points, all in (a,b). Then if g(x) ='(l,x,...,xgnpl,(x-gl)iik,...,
2n-1 ' -k 2n-1,T R
(x-gl)+ ,...,(x-gh)2 ,...,.(x-gh)+ )", there is a ' such that

JZ(X) d(u'-p) =0 and S(u') € 5(w).

Proof: The proof of this is essentially the same as the proof of Lemma
12, using the fact that the component functions of 'é{x) constitute a WT-
system and using Lemma 18 where ILemma 12 used Lemma 10.

We are now in a position to give a generalization of Theorem T, showing

certain designs besides those not subadmissible (h) are inadmissible.

Theorem 13. ILet n >2 and k = n-2. Then a design pu such that
. h . . . s
S(u) has precisely n + 5 (n+k) = n+h(n-1) points, all in . (a,b); is inad-

missible.

Proof: We show this result by induction: First note that it is true in
the polynomial case (O knots) and also in the case of 1 knot. 8o assume it
is true for 1,...,h-1 knots. If this be the case, a non-permissible (h)

 design is not subadmissible (h) and so we need only consider permissible (h)

2n-1 2n-1 n-k

designs. ILet g(x) = (1,X,..0,% ,(x;gl)i'k,...,(x-gl)+ ,.;.,(x-gh)+ seeis

(x-g, )3T

of lemma 17. Then.fPi(x) Au'p) = jfi(x) a(u'-p) >0, and ffi(x) a(wi-u) >0

. Consider the p' of Lemma 19 and the polynomials {Pi(x)]?=o

for some i. Also Jé(x) d(pn'-p) =-0. The conditions for Theorem 10 are
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satisfied and thus p' > p.

Corollary 1. If u is non-permissible (h), then p is not subadmis-

sible (h).

Corollary 2. If S(u) bhas n+h(n-1) or more points in (a,b), then p

is inadmissible.

Using Theorem 12 we see tﬁat the admissible designs must lie in the
class of designs that are permissible (h). In addition we can say that an
admissible design can bave at most (4+1)(n-1) points in any interval of
length £, for £ < h. We are able to classify many designs with these pro-

perties as admissible.

Theorem 14. ILet n >2, k = n-2, and p be a permissible (h) design
with points of S(u) at a, b and at precisely (h+l)(n-1) points of (a,b),

none of which is a knot gi’ i=1,.e.,he Then u is admissible.

Proof: Note that the condition of permissibility (h) and the fact that
S(n) misses the knots imply that S(u) has precisely n-1 points in each

open interval, (gi,g.

), i = O,l'l,ht ASSU.me lJ.' > s Where 'J.' is PeI'miS-
i+l -

sible (h). Also assume the result is true for fewer than h knots. Thus
without loss of generality we can assume p! + . on (gh,b], for then p'
would have to dominate p on [a,gh], which by the induction hypothesis is

impossible. Let g, (x) = ((x-gh)f,--«,(x-gh)in_l)T

« It follows from Theorem
1.1 of Karlin and Studden {1966b, p.80) that p' can't have all of its mass
points in (gh,b] concentrated in the subinterval [Bl,b], where Bl is

the first mass point of p in (gh,b], because of all measures vy on

[By,b] such that jE;(x) d(v-p) = 0, p uniquely maximizes I(x-gh)in dv.

It follows from Theorem 2.1 of Karlin and Studden (1966b, p.4k2) that p’
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must have at least n-1 points in (gh,b) and, since u' is permissiﬁle,
it follows that p° mustihave precisely n-1 points in (gh,b). Lemma 3.1
of Karlin and Studden (1966b, p.47) tells us that the mass points of p and
g'!' are interwoven, or in particular that there is no mass point of u' be-
tween the last point of S{p) in (gh,b) and b. Define the vector

)T

t = (tl,...,t as follows: Let t,=t,=a, t3= t)= the first

2n+2h{n-1) 1
point of S(u) in (a,b),..., (2 t,'s for each point of S(pu) in (a,b) up

to and including the next to last one), t2n+2h(n-l)-l= the last point of SO;)

in (a,b), and t2n+2h(n-l)= b. Then
ton-2 < &y €1 < tone1?
Cynel < &y § < t2n+1+(2n-2)’
' and '
ton(n-1) < Sw Sn < Pon+1+(h-1)(2n-2) .

- 2n-~-1 n-k 2n-1 n-k
Let g(x) = (l,x,oc-,x ,(x—§1)+ ,...,(X-gl)+ ,...,(X-gh)+ ’voi,'
(x-gh)in-l)T._ Then by Lemma 16, M(g,t) is non-singular. Let < be the so-

lution to M?(ELE) a = (O,l,O,...,O)'II and let P(x) = (g,(x),a). Then
P(x) has a single O at a, b, and the last point of S(u) in (a,b) and
P'(a) = 1. We now show P(x) is not O anywhere else on [a,b]. Assume
P(x) has another O point at -to. Iet t be the vector with components
to, t2’t3’°"’t2n+2h(n-l) arranged in monotone non-decreasing order. Then
wherever to is, M(é;ﬁ) is still non-singular. Since the solution to
NF(EL%) Q=0 is Q= 0, we see that only the trivial polynomial can have a

0 at all the components of . so P(x) has the property that it is 0 on
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S(u), positive off S(u) in the interval [a,Bn_l],.where Bn-l is the last
mass point of p in (gh,b), and negative on (Bn_l,b). Thus all points of
S(u') 1lie where P(x) >0 and some lie where P(x) > 0. But if p' >yu

it is necessary that J?(x) d(p'-p) = 0. Since j?(x) dp' >0 and ff(x) du= 0,
we have our contradiction and pu is admissible.

We now know that designs with more than (h+l)(n-1) points in (a,b) as
well as non-permissible (h) designs are inadmissible. We know that designs
that are permissible (h) and have (h+l)(n-1) or fewer points in (a,b) and
miss the knots are admissible. If we could show that any permissible (h) de-
sign with (h+l)(n-1l) or fewer points in (a,b) is admissible, we would
have the following theorem- "Lef n>2, k = n-2. Then a design p is ad-
missible if and only if p is permissible (h) (or equivalently subadmissible
(b)) and S(p) has (h+l)(n-1) or fewer points in (a,b).'' Unfortunately,
even though we suspect it is true, we cannot prove it. Instead we sum up the

results of this section so far with

Theorem 15. Let n > 2, k = n-2.

(1) Then if a design p has (b+l)(n-1)+1 or more points of S(u)
in (a,b) it is inadmissible. Consistent with this, if u is not permis-
sible (h), p is not subadmissible (h).

(2) If p is permissible (h) and has (h+l)(n-1) or fewer points of
S{u) in (a,b), none of them at a knot, then u is admissible.

Notice that the class of admissible designs is contained in the class of

permissible (h) designs with (h-1)(n-1) or fewer points in (a,b).

Example 4. Iet n =2, k =0, h = 2. Then we find all admissible de-
signs by showing that any permissible (2) design p with a,b and 3 points

of (a,b) in S(u) is admissible. If p is such a design with no points
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in (a,gl) or (§2,b), Theorem 12 tells us p 1is admissible. So we can re-
strict consideration to those p with a point in both (a,gl) and (ge,b).
If the third point of S{ug) in (a,b) is in (§l,§2), Theorem 15 tells us

p is admissible. So we need only consider the case when the third interior
point of S(p) is at one of the knots, say gl to be specific. Assume

p' >pe Let a be the mass point of p in (a,gl) and B be the mass
point of p in (gg’b)' By Iemma 9, there is a polynomial P(x) in
(x-gl)i,(x-gl)z,(x-gg)f_,(x-§2)i that is 0 on [a,§] and at the points of
S(p) in [§lb] and >0 off 8(u) in [gl,b] (see proof of Lemma 17).
If u' >u, S(u') would have to have a point in (ge,b) to the left of B
(see proof of Theorem 14). Thus JP(x) du' >0 and jP(x) dp = 0. This
contradicts up' > u. The case where ge € S(u) is similar. Thus when
n=2, k=0, h=2 we can say ''A design p is admissible if and only if

it is permissible (2) and has fewer than & points in (a,b)."’

Example 5. n =2, k = 0, h = 3. Here arguments similar to those in
Example 4 give us that if u is permissible (3) and has L points in (a,b),
then p 1is admissible-except in the case where the points of S(p) 1lie in
(a,gl) and (53,b) and at €, and g5+ In this latter case we don't know

if p 1is admissible or inadmissible.

5. Discussion and Conjecture

In this section we review some of the results we have, consider where
generalizations breakdown, and offer a conjecture for the general solution
to the problem.

First we reconsider the case where n > 2, k = n-2. It was mentioned

that a permissible (h) design with (h+l)(n~-1l) points in (a,b) is admissible
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if none of these points lie on knots. Notice that any permissible (h) de-
sign with (h+l)(n-1) points in (a,b) and some points at knots is the weak
limit of a sequence of these admissible designs. It seems heuristically true
‘that if one has a sequence of ''unbeatable'' designs, then the limit should
be ''unbeatable.'' Unfortunately the analysis is not evident. In all the
examples we have done no weak limits of admissible designs were known to be

inadmissible. 8o we offer

Conjecture 1. Let n >2 and k = n-2. Then a design is admissible

if and only if it is permissible (h) and has fewer than (h+l)(n-1)+1 points
in (a,b).
In the case where n >2 and k = n-2 we were able to show, for each

permissible (h) design p with precisely n+ igiklh points in S{(u), all

2
in (a,b), the existence of a set of polynomials {Pi(x)}?=o in 1,Xyee0,
2n-1 n-k 2n-1 n-k 2n-1
S €159 IFRTTPY € S0 PP RRRPY € 310 BRRPRPRYL € 53 90 by and £, (x)
where
_.en 2n
f°<x) =X “(x'gl)_l, ’
2n 2n X
fi(x) = (x-gi)+ - (x_gi+l)+ 3 1= l,t'o,h'l,
and
(g R
fh(X) - (x §h)+

with the properties

(1) P;(x) =0 on S(u) and P, (x) £ 0 on the points of (€58 4]

not in s(u),
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(2) the coefficient of fi(x) is 1,

(3) Pi(x) 20 or P/(x) <0, end

(%) P,(x) >0. (see Lemma 17)
In the gase when n+k is even we are able to use Lemma 16 (as Lemms 8 was
used to prove Lemma 14) and a generalization of Lemma 13 to get the existence
of a set of polynomials for which we can presently verify all but property
(4). If property (4) is true, analysis similar to that in Theorem 13 could

be used to show

Conjectures 2. La% n+k be even. Then a design with n+h LEEEL polnts

in (a,b) is inadmissidle.

If Conjecture 1 and 2 are true, I suspect that the next conjecture is

also true.

Conjectures3. ILet n+k be even, Then a design is admissible if and

only if it is permissible (h) and has fewer than n+h (E%E) points in (a,b).

Notice that Comjecture 3 includes Conjectures 1 and 2.

We are now left with the problem of saying something about the case when
n+k 1is odd, having little but Theorems 9 and 12 and Example 1 to drqw from.
We notice in Theorem 12 that it is slightly ''easier'' for a design to be ad-
missible when ntk dis odd than wvhen n+k is even, because the spectrum can
have relatively more points in the end subintervals. Keeping this in mind,

we make our finsl conjecture, which includes all the others.

Conjecturelh. A design is admissible if and only if it is subadmissible
(h) and has fewer than n+ ELEEEL points in (a,b), unless it is subadmis-
+ke
2 g 23 or fewer points in either (a,gl) or (gh,b). In

this case it is admissible.

sible (h) and has
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Note that for this latter case to apply n+k must be odd and h > 2.
Recall Example 2, where n = 3, k = 0, h = 2, and where a design with 6
points in (a,b) could ﬁ; admissible. We suspect that some permissible (2)
designs with 6 points in (a,b) are inadmissible, in particular those that

have O mass at all the knots.

6. A Related Problem

In this section we discuss a generalization of the problem we've been

considering. We have been trying to classify designs when the regression
; = n n-k n n-k

vector is f(x) = (1,X,...,x ,(x—gl)+ ,...,(x-gl)+,...,(x—§h)+ yeess

(x-gh)i)T. Two of the basic results we've used readily generalize for the
n-k n-kh

= n 1 n
case where f(x) = (1,%X,¢..,x, (x-gl)+ ,...,(x-gl)+,...,(x-gh)+ seves
(x-gh)i)T, i.e., the case vhere the regression function is n-k -1 times dif-

ferentiable at the knot gi. We state the results now.

Theorem 16. Let f(x) be as above. ILet E(x) = (l,x,...,xgn-l,
n-k . n-k
1 2n-1 2n-1,T
(x'gl).'_ ,'..,(x-gl)'i' ;0-':(x'§h)+ J""(x_gh)+ ) . Then I‘L' .>_H

with respect to f(x) if and only if
(1) [&(x) a(ur-w) = 0 and

(2) o4 f X2 a(p ) z-j(x-gl)i“ a(u'-p) > .00 > J(X~€h)in d(p'-p) > 0.

8by
- s s
Lemma 20. Iet f£(x) = (1,X,.e0.,X ,(x-gl)+ ,...,(x-§1)+,...,
s-4 h
i h o 8T _ - T
(x gh)+ seens(x gh)+) » Let £= T 2. let t= (tl,...,ts+l+£+h)

i=1
where no more than (s-Li+l) t wvalues are g;» where no more than (s+l) t

values cofncide. Then M(f,f) is non-singular if and only if



tz +1 < gl’

z (zi+l)

<&
(2;+1)

WM
W, ™

t(s+2) > &

and t(S+2)+(,zl+l)> EE’

t n-1

(s+2)+ = (a,+1)
i=1 1t

>. gh'
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