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1. Introduction and Summary. Let S. : pxp (1 = 1, 2) be independently
-1

distributed as Wishart (ni, p,’gi). Let the characteristic roots of Sl§2
-1 , .

and %, %" be denoted by 2 (i=1,2,..., p) and M (i=1, 2,.e., D)

respectively such that zl > by Z+e+> 4 > 0 and Xl = Ay Zeeo> AP > 0.

Then the distribution of £.,.es., £ can be expressed.in the form (Khatri [8])
. ) 1 p

-3 3(n,-p-1) -1 -3(n, +n,)
G0 el T [ogy B a m T P
- -1)/4 -1
mere ¢z 2 ilr:;lm IT (30, + a) {r ()T (a0 (o))
I (t) = elp-1) ﬁ Mt-33 +3), o (L) = 1 (z 2.)
D _. Ll J’:l 2J 27> O!P i< J - i/

L = diag (zi,...zp) » A = diag (xl,..., AP) and (H'dH) is the invariant
measure on the group O(p). However, this form is not convenient for
further development. Also, since
2(n * 0, ) 1 Cyl 'A-l)cx(k)(nl + ne)x
1.2 I-= I I + H =
(1.2) o), + A 2] T = ey 2t xo)

where

= opp(p+1)/b B E
i=1
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and the zonal polynomial CK(E) of any pxp symmetric matrix I is
defined in James [7] , the use of (1.2) in (1.1) gives a power series
expansion, but the convergence of this series is very slow. In the one
sample case G. A. Anderson [1] has obtained a gama type asymptotic ex-
Pansion for the distribution of the characteristicaréots of the estimated
covariance matrix. In this paper we obtain a beta type asymptotic repres.. *
sentation of the roots distribution of §l§él involving linkage factors
between sample roots and corresponding population roots. A study is also
made of the approximation to the distribution of BT --.1gp where

Wy = zi/(l + zi), (1 =1, 2...,p). If the roots are distinct the limiting
distribution as n, tends to infinity has the same form as that of Anderson f1j.
If, moreover, n., is assumed also large, then it agrees with Girshick's

1
result [4].

2. The asymptotic representation of I. The rrocedure used to find the

expansion of (1.2) is an extension of the method sketched below for the

case p = 2. In the asymptotic theory it is necessary to assume zl > 22 >..f,P >0

and Al > ke B > hp 2> 0. For the simplification of notations we let

é'——A’-l, ice- ai=l/ki (i=l,-.c P), O<al<a2 <-.l <8.P<°°, and

B =n, *n,. Thus for p =2, let 0+ (2) = {§e0(2),u5| = + 1} then
.
2
. =2J+ I +AHLE H'aH).

cosé siné ) .
Now let H = -m<8 <7,
-sinb cosb

so that (H'dH) = 48 and



. s .
- = /2 : - 2
(2.2) I= h[(l + alﬂ,l)(l + ag;z,z)] QJ:T/E[l + %012(1 - Cosee)]
where
c,, = (8 - a)(4y - £)
ﬁmlzl) (1+aexz2 )

The integrand has a maximum of unity at 6 = 0 and then decreases to

(1 + 4c ) at e—+§ . Write (2.2) as

2 -2 n/2
(2.3) o (1+ aiﬂi)) 2fn/ exp[- 12‘- log(1l + 012(1 - 00s29)]de

i=1 “.m/2
Since the integral is mostly concentrated in a small neighborhood of the
origin, for large n we can expand the argument of the exponential function
and Cos26 in the wual pover series and set the limit to be + w

(see Erdélyi r3])s Thus for large degrees of ffeedom I 1is approximately

\:11(1+a;zﬂ f exp{-—c ee}de{li-o( )}

i=1

or
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Lemma 1. Let A and L are defined as before then f(H) = |

AHLH
1L, AL LR

HeO(p) attains its identical minimum value Ig@ + AL)| when H is of the

form
(2.4) ]
[ 7. 0
H =9 - lc .
. i
0 +1 /
Proof: ar =

dLIp +AHLHE

i L
alz + Az A2
1z, + & B LR

Y - 1 By a N
=tr (L +ATHLEAD) N AT a gL a A% v AT H L a p A7)
1 1 i _ iy
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Note that H' d H is a ske
1

1 1.4 1
that L H'A(I +AZE LR’ A®) T gz H is a symetric metrix. But

symmetric matrix therefore, df = 0 implies

oj-

b e 31
H L + HLH'
~ ~ AI) ~ ~ N ~

H is itself a symmetric matrix and L is

~

8 diagonal matrix with distinct positive roots,
i
) 1 A® H has to be a diagonal matrix, say D.

~

1 1 1
so H' A°(I + A2 H L[ H' A2
Thus =AZ H(L - D7) H' A2, This can happen only if H is of the form
with ¥ 1 in one position in a column or a row and zero in other positions.

After substituting those stationary values into f(H) we obtain a general

form

D
(2.5) (1 +a

L),
i=1 T

where L, ~1is any permutation of zi(i =1,.es,p). It is easy to see that
i
(2.5) attains its minimum value when Ly = zi(i =1, 2,044,p)s Or f(E)
i ,
attains its identical minimum value | +AL| vhen H is of the form

of (2.4).



The above lemma enables us to claim that, for large n, the integrand
of I is negligible except for small neighborhoods about each of these
matrices of (2.4) and I consists of identical contributions from each
of tlese neighborhoods so that

n
™~ 5P 1‘5
(2.6) 122 [yl vaRLE) @ ap),

where N(I) is a neighborhood of the identity matrix on the orthogonal
manifold. Since any proper orthogonal matrix can be written as the

exponential of a skew symmetric matrix we transform I under

(2.7)

3=+

~

=exp S, S a pxp skew symmetric matrix,

so that N(I) - N(§ = 0). The Jacobian of this transformation has been

computed by G. A. Anderson [1],

It
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(2.8) g =2 4

Direct substitution of (2.7) into (2.6) yields

n
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Lemma 2. For any pxp matrix B and its characteristic roots bi(i = leeep),

if  max |by| <1 then

PEise 2 5 B3
S22, (Lo i~ o~ }
(2.10) [;p + Bl —expl—gtr(g—2 +3....).
Proof:
. a
_ 2 n p
(2.11) |z + B| =expi-5log T (1+b.)t -
~p o~ 2 . i
i=1
If max. .[b!<1then
1l <i1<p
n 2 3

Wiy

o)}

Apply lemma 2 to (2.9) and the maximum characteristic roots of

- O 2
|EP+B~| =exp -5 tr(B-5 *

L g +...) can be assumed to be less than unity.

~ N~ ~

(L +AL)HASL-A
P )
Since we are only interested in the first term we need to investigate the
group of terms up to order of ,§2 which 1s denoted by {§2} . Let

B=(T+41)", then

(2.12)  tr {52} = ’cr[,B(éﬂLfSe -A8L8)

After simplification (2.12) reduces to

~

P
or tr {gg} = % C 2
: <

(213) tf{RALE-45L8 - (LS-SLRALSRAJ



(2.1%) where Cij = (aj - ai)(zi - zj)/(Kl +.§i£i)(l + ajﬂj{>-

Direct substitution into (2.1) yields

(2.15) . I=2F n (1 +a, 45 ) flq(s_o)exp{ g C; 5 132} 1 ds {1 + 0(= )}

i=1 i<j

For large n the limits for each s 13 can be put to T o . We finally

have the following theorem.

Theorem : The asymptotic distribution of the roots, ﬁl > ﬂg >...>£,p > 0,

of r§182ﬁ;'sfor.large degrees of freedom n = ny + n, when the roots

of glgg are A >>\2>..>\ >0 and ai=l/)\i(i=l,...p),

is glven by
= -{n +
p-l . (nl n2)

+n D 3
p 21 2 2n
(2:26)  cea(y 1 [u ) % (e) T Mivag) iy T TRy

The asymptotic formula shows that the distribulisn function of a group of
ad jacent roots is sensitive only to those other roots which are close to

them.

3. A Dual Expansion of. I and Some Remarks. If we let

i = g(g +5)'l in (1.1) fee.w, = f,i/(l + ,ci)(i =1, 2,...p) vhere
1 = diag (wl,...yp) then the joint distribution of w.'s is given by
R N T Y -3
, ° 2
.1 C W I -W wf I +AHLH' HAH
> > See > > 0.
I wi Wy wb 0



Application of lemmas 1 and 2 to (3.1) yields its asymptotic representation

n Y I il -pe -
+ __..].: 2(nl P l) 2(n2 P l) (nl+ 1,

: )
2
(3.2)  cla) Zy L, - W o, (1) ‘Tl(l *(ay- 1w,)

N~

<
i< Cij

(a - a ) (v, -wj)
L1+ (a - l)w ][l + (a - l)wj] :

*
where Cij =

Now let us proceed to look at (2.16) once again. The asymptotic
distribution of characteristic roots of glgél given there can be rewritten

as

- w nl_p-l (nl+ n2)

(3:3)  m W (g -20% e 2 y 2 T
. ML, - 4, £, 1 +a. g, i dﬂ

1 i<j M B | i7i J. o1

where Fi(A) (i =1, 2, 3) depends on a; but not on L, - If we make

g, = 4, /n (i =1, 2,...p) and let n, tends to infinity then (3.3)

2

reduces to the limiting form

3(n,~p-1) -3 z 8,8,
i=1 P
(3.4) F (A) H g; e 1 (g, J) .
i i=1 i<j

Ofi—

*
Moreover, let /. = ng, (i =1, 2,...p), then (3.4) becones

n
( 1) - -
2 nl_P— _lal'el P * * %
(3.5) F3(A) n hy e n(s, -2, )
i=1 * i<y 40

*
Note that Li 's here are, in limiting sense, the characteristic

* - *
roots of §l,2él where '§l is the covariance matrix of the first sample.
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