On an Asymptotic Representation of the Distribution of the Characteristic Roots of $\mathbb{S}_1\mathbb{S}_2^{-1}$

Ъy

Tseng C. Chang *

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series No. 165

July 1968

^{*} This research was supported by the National Science Foundation Grant No. GP-7663.

On an Asymptotic Representation of the Distribution of the Characteristic Roots of $S_1 S_2^{-1}$

bу

Tseng C. Chang *

l. Introduction and Summary. Let S_i : pxp (i = 1, 2) be independently distributed as Wishart (n_i, p, Σ_i). Let the characteristic roots of $S_1S_2^{-1}$ and $\Sigma_1\Sigma_2^{-1}$ be denoted by ℓ_i (i = 1, 2,..., p) and λ_i (i = 1, 2,..., p) respectively such that $\ell_1 \geq \ell_2 \geq \ldots \geq \ell_p \geq 0$ and $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p \geq 0$. Then the distribution of ℓ_1 , ..., ℓ_p can be expressed in the form (Khatri [8])

$$(1.1) \qquad C|\underline{\lambda}|^{-\frac{1}{2}n_{\underline{1}}} |\underline{L}|^{\frac{1}{2}(n_{\underline{1}}-p-1)} \alpha_{\underline{p}}(\underline{L}) \int_{O(p)} |\underline{L}_{\underline{p}} + \underline{\lambda} |\underline{\underline{H}}\underline{\underline{H}}|^{-\frac{1}{2}(n_{\underline{1}}+n_{\underline{2}})} (\underline{\underline{H}},\underline{\underline{d}})$$

where
$$C = 2 \frac{-p}{\pi} \frac{p(p-1)/4}{!!!} \frac{p}{\Gamma(\frac{1}{2})} \Gamma_p(\frac{1}{2}n_1 + \frac{1}{2}n_2) \left\{ \Gamma_p(\frac{1}{2}p) \Gamma_p(\frac{1}{2}n_1) \Gamma_p(\frac{1}{2}n_2) \right\}^{-1}$$
,

$$\Gamma_{p}(t) = \pi \prod_{j=1}^{\frac{1}{4}p(p-1)} \Gamma(t-\frac{1}{2}j+\frac{1}{2}), \ \alpha_{p}(\underline{L}) = \prod_{i < j} (\ell_{j} - \ell_{i}),$$

 $\underline{L}=\mathrm{diag}\;(\ell_1,\ldots\ell_p)$, $\underline{\Lambda}=\mathrm{diag}\;(\lambda_1,\ldots,\lambda_p)$ and $(\underline{H}^!\mathrm{d}\underline{H})$ is the invariant measure on the group O(p). However, this form is not convenient for further development. Also, since

(1.2)
$$I = \int_{O(p)} |I_p + \bigwedge_{k=0}^{-1} |I_k|^{\frac{1}{2}(n_1 + n_2)} (I_k dI_k) = c' \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{k=0}^{\infty} \frac{C_k(-\Lambda^{-1})C_k(I_k)(n_1 + n_2)_k}{C_k(I_p)}$$
where
$$c' = 2^p \pi^{p(p+1)/4} \prod_{i=1}^{p} \Gamma(\frac{1}{2}) .$$

^{*} This research was supported by the National Science Foundation Grant No. GP-7663.

and the zonal polynomial $C_K(\mathbb{T})$ of any pxp symmetric matrix \mathbb{T} is defined in James [7], the use of (1.2) in (1.1) gives a power series expansion, but the convergence of this series is very slow. In the one sample case G. A. Anderson [1] has obtained a gamma type asymptotic expansion for the distribution of the characteristic roots of the estimated covariance matrix. In this paper we obtain a beta type asymptotic repressible tween sample roots distribution of $\mathbb{S}_1\mathbb{S}_2^{-1}$ involving linkage factors between sample roots and corresponding population roots. A study is also made of the approximation to the distribution of $\mathbb{W}_1, \dots, \mathbb{W}_p$ where $\mathbb{W}_1 = \mathbb{I}_1/(1 + \mathbb{I}_1)$, $(i = 1, 2 \dots, p)$. If the roots are distinct the limiting distribution as \mathbb{N}_2 tends to infinity has the same form as that of Anderson [1]. If, moreover, \mathbb{N}_1 is assumed also large, then it agrees with Girshick's result [4].

2. The asymptotic representation of I. The procedure used to find the expansion of (1.2) is an extension of the method sketched below for the case p=2. In the asymptotic theory it is necessary to assume $\ell_1 > \ell_2 > ... \ell_p > 0$ and $\lambda_1 > \lambda_2 > ... > \lambda_p > 0$. For the simplification of notations we let $A = A^{-1}$, i.e. $a_1 = 1/\lambda_1$ (i = 1,...p), $0 < a_1 < a_2 < ... < a_p < \infty$, and $a_1 > a_2 > ... > a_n > 0$. Thus for $a_1 > a_2 > ... < a_n > 0$. Thus for $a_1 > a_2 > ... < a_n > 0$. Thus for $a_1 > a_2 > ... < a_n > 0$. Thus for $a_1 > a_2 > ... < a_n > 0$. Thus for $a_1 > a_2 > ... < a_n > 0$. Thus for $a_1 > a_2 > ... < a_n > 0$. Thus for $a_1 > a_2 > ... < a_n > 0$. Thus for $a_1 > a_2 > ... < a_n > 0$.

(2.1)
$$I = 2 \int_{0^{+}(2)} |I_{p} + A H L H'|^{-\frac{n}{2}} (H'dH).$$

so that $(H'dH) = d\theta$ and

(2.2)
$$I = 4 \left[(1 + a_1 \ell_1)(1 + a_2 \ell_2) \right]^{-\frac{n}{2}} \int_{-\pi/2}^{\pi/2} \left[1 + \frac{1}{2} c_{12} (1 - \cos 2\theta) \right]^{-\frac{n}{2}} d\theta$$
 where

$$c_{12} = \frac{(a_2 - a_1)(\ell_1 - \ell_2)}{(1 + a_1 \ell_1)(1 + a_2 \ell_2)} .$$

The integrand has a maximum of unity at $\theta=0$ and then decreases to $(1+\frac{1}{2}C_{12})$ at $\theta=\pm\frac{\pi}{2}$. Write (2.2) as

(2.3)
$$4\left(\prod_{i=1}^{2} (1 + a_{i} l_{i})\right)^{-\frac{n}{2}} \int_{-\pi/2}^{\pi/2} \exp\left[-\frac{n}{2} \log(1 + C_{12}(1 - \cos 2\theta))\right] d\theta$$

Since the integral is mostly concentrated in a small neighborhood of the origin, for large n we can expand the argument of the exponential function and $\cos 2\theta$ in the usual power series and set the limit to be $\pm \infty$ (see Erdelyi [3]). Thus for large degrees of freedom I is approximately

$$4\left[\frac{2}{1}\left(1+a_{1}\ell_{1}\right)\right]^{-\frac{n}{2}}\int_{-\infty}^{\infty}\exp\left\{-\frac{n}{2}C_{12}\theta^{2}\right\}d\theta,\left\{1+o(\frac{1}{n})\right\}$$

or

$$I \sim 4 \begin{bmatrix} 2 \\ \Pi \\ 1 = 1 \end{bmatrix} (1 + a_1 \ell_1)^{-\frac{n}{2}} \frac{\frac{n}{2}}{nC_{12}} \left\{ 1 + o(\frac{1}{n}) \right\} .$$

<u>Lemma 1.</u> Let $\overset{A}{\sim}$ and $\overset{L}{\sim}$ are defined as before then $f(\overset{H}{H}) = |\overset{L}{\searrow}_p + \overset{A}{\wedge} \overset{H}{\searrow} \overset{L}{\searrow} \overset{H}{\searrow}'|$ $\overset{H}{\sim}$ $H_{cO}(p)$ attains its identical minimum value $|\overset{L}{\searrow}_p + \overset{A}{\wedge} \overset{L}{\searrow}|$ when $\overset{H}{\sim}$ is of the form

$$H = \begin{pmatrix} \pm 1 & & & \\ & \pm 1 & & \\ & & &$$

Proof:
$$\begin{aligned} & \text{df} = \text{d} \big| \mathbb{I}_{p} + \mathbb{A} \, \mathbb{H} \, \mathbb{L} \, \mathbb{H}' \big| \\ & = \text{d} \big| \mathbb{I}_{p} + \mathbb{A}^{\frac{1}{2}} \, \mathbb{H} \, \mathbb{L} \, \mathbb{H}' \mathbb{A}^{\frac{1}{2}} \big| \\ & = \text{tr} \, \left(\mathbb{I}_{p} + \mathbb{A}^{\frac{1}{2}} \, \mathbb{H} \, \mathbb{L} \, \mathbb{H}' \mathbb{A}^{\frac{1}{2}} \right)^{-1} \left(\mathbb{A}^{\frac{1}{2}} \, \text{d} \, \mathbb{H} \, \mathbb{L} \, \mathbb{H}' \, \mathbb{A}^{\frac{1}{2}} + \mathbb{A}^{\frac{1}{2}} \, \mathbb{H} \, \mathbb{L} \, \text{d} \, \mathbb{H}' \, \mathbb{A}^{\frac{1}{2}} \right) \\ & = 2 \text{tr} \, \mathbb{L} \, \mathbb{H}' \, \mathbb{A}^{\frac{1}{2}} (\mathbb{I}_{p} + \mathbb{A}^{\frac{1}{2}} \, \mathbb{H} \, \mathbb{L} \, \mathbb{H}' \, \mathbb{A}^{\frac{1}{2}})^{-1} \, \mathbb{A}^{\frac{1}{2}} \, \mathbb{H} \, \mathbb{H}' \, \text{d} \, \mathbb{H} \, . \end{aligned}$$

Note that $H' \to H$ is a skew symmetric matrix therefore, df = 0 implies that $L H' \to A^{\frac{1}{2}}(L_p + A^{\frac{1}{2}} H L H' A^{\frac{1}{2}})^{-1} A^{\frac{1}{2}} H$ is a symmetric matrix. But $H' \to A^{\frac{1}{2}}(L_p + A^{\frac{1}{2}} H L H' A^{\frac{1}{2}})^{-1} A^{\frac{1}{2}} H$ is itself a symmetric matrix and L is a diagonal matrix with distinct positive roots,

so \mathbb{H}' $\mathbb{A}^{\frac{1}{2}}(\mathbb{I}_p + \mathbb{A}^{\frac{1}{2}} \mathbb{H} \mathbb{L} \mathbb{H}' \mathbb{A}^{\frac{1}{2}})^{-1} \mathbb{A}^{\frac{1}{2}} \mathbb{H}$ has to be a diagonal matrix, say \mathbb{D} .

Thus $\mathbb{I}_p = \mathbb{A}^{\frac{1}{2}} \mathbb{H}(\mathbb{L} - \mathbb{D}^{-1}) \mathbb{H}' \mathbb{A}^{\frac{1}{2}}$. This can happen only if \mathbb{H} is of the form with \mathbb{H}^+ in one position in a column or a row and zero in other positions. After substituting those stationary values into $f(\mathbb{H})$ we obtain a general form

(2.5)
$$\prod_{i=1}^{p} (1 + a_i \ell_{\sigma_i}),$$

where $\ell_{\sigma_{i}}$ is any permutation of ℓ_{i} (i = 1,...,p). It is easy to see that (2.5) attains its minimum value when $\ell_{\sigma_{i}} = \ell_{i}$ (i = 1, 2,...,p). Or f(H) attains its identical minimum value $|H_{p} + A_{m} L|$ when H_{m} is of the form of (2.4).

The above lemma enables us to claim that, for large n, the integrand of I is negligible except for small neighborhoods about each of these matrices of (2.4) and I consists of identical contributions from each of these neighborhoods so that

(2.6)
$$I \stackrel{\text{def}}{=} 2^p \int_{\mathbb{N}(\underline{I})} |\underline{I}_p + \underset{\text{def}}{\mathbb{A}} \underline{H} \underline{L} \underline{H}')^{-\frac{n}{2}} (\underline{H}' d \underline{H}),$$

where N(I) is a neighborhood of the identity matrix on the orthogonal manifold. Since any proper orthogonal matrix can be written as the exponential of a skew symmetric matrix we transform I under

(2.7)
$$= \exp S$$
, S a pxp skew symmetric matrix,

so that $N(I) \to N(S = 0)$. The Jacobian of this transformation has been computed by G. A. Anderson [1],

(2.8)
$$J = 1 + \frac{p-2}{24} \operatorname{tr} g^2 + \frac{8-p}{4x6!} \operatorname{tr} g^4 + \dots$$

Direct substitution of (2.7) into (2.6) yields

<u>Lemma 2.</u> For any pxp matrix \mathbb{B} and its characteristic roots b_i (i = 1...p),

if
$$\max_{1 \le i \le p} |b_i| < 1$$
 then
$$(2.10) \quad |\mathbf{I}_p + \mathbf{B}|^{-\frac{n}{2}} = \exp \left\{ -\frac{n}{2} \operatorname{tr}(\mathbf{B} - \frac{\mathbf{B}^2}{2} + \frac{\mathbf{B}^3}{3} \dots) \right\}.$$

Proof:

(2.11)
$$\left| \underbrace{\mathbb{I}_{p}} + \underbrace{\mathbb{B}} \right|^{-\frac{n}{2}} = \exp \left\{ -\frac{n}{2} \log \prod_{i=1}^{p} (1 + b_{i}) \right\}$$
.

If $\max_{1 \le i \le p} |b_i| < 1$ then

$$\left| \underbrace{\mathbf{I}_{\mathbf{p}} + \mathbf{B}} \right|^{-\frac{\mathbf{n}}{2}} = \exp \left\{ -\frac{\mathbf{n}}{2} \operatorname{tr}(\mathbf{B} - \frac{\mathbf{B}^2}{2} + \frac{\mathbf{B}^3}{3} \dots) \right\}.$$

Apply lemma 2 to (2.9) and the maximum characteristic roots of $(I_p + A_L)^{-1}(A_S_L - A_L_S + ...)$ can be assumed to be less than unity. Since we are only interested in the first term we need to investigate the group of terms up to order of S^2 which is denoted by $\{S^2\}$. Let $R = (I + A_L)^{-1}$, then

(2.12)
$$\operatorname{tr}\left\{\mathbb{S}^{2}\right\} = \operatorname{tr}\left[\mathbb{R}(\mathbb{A} \perp \mathbb{S}^{2} - \mathbb{A} \otimes \mathbb{L} \otimes)\right]$$

$$-\frac{1}{2}(RALSRALS+RASLRALS-RASLRALS - RASLRALS - RASLRASL)].$$

After simplification (2.12) reduces to

(2.13)
$$\operatorname{tr}\left[\mathbb{R}(\mathbb{A} \perp \mathbb{S}^{2} - \mathbb{A} \stackrel{\mathcal{S}}{\otimes} \mathbb{L} \stackrel{\mathcal{S}}{\otimes}) - (\mathbb{L} \stackrel{\mathcal{S}}{\otimes} - \stackrel{\mathcal{S}}{\otimes} \mathbb{L})\mathbb{R} \stackrel{\mathcal{A}}{\wedge} \mathbb{L} \stackrel{\mathcal{S}}{\otimes} \mathbb{R} \stackrel{\mathcal{A}}{\wedge}\right]$$
or
$$\operatorname{tr}\left\{\mathbb{S}^{2}\right\} = \sum_{i < j}^{p} c_{ij} s_{ij}^{2}$$

(2.14) where
$$C_{ij} = (a_j - \bar{a}_i)(\ell_i - \ell_j)/((1 + a_i \ell_i)(1 + a_j \ell_j))$$
.

Direct substitution into (2.1) yields

$$(2.15) \qquad I = 2^{p} \prod_{i=1}^{p} (1 + a_{i} \ell_{i})^{-\frac{n}{2}} \int_{\mathbb{N}(s=0)} \exp \left\{ -\frac{n}{2} \sum_{i \leq j}^{p} C_{ij} s_{ij}^{2} \right\} \prod_{i \leq j} ds_{ij} \left\{ 1 + O(\frac{1}{n}) \right\}.$$

For large n the limits for each s $_{i,j}$ can be put to $\pm\,\infty$. We finally have the following theorem.

Theorem: The asymptotic distribution of the roots, $\ell_1 > \ell_2 > \cdots > \ell_p > 0$, of $\sum_{i \ge 2}^{-1}$ for large degrees of freedom $n = n_1 + n_2$ when the roots of $\sum_{i \ge 2}^{-1}$ are $\lambda_1 > \lambda_2 > \cdots > \lambda_p > 0$ and $a_i = 1/\lambda_i (i = 1, \cdots p)$, is given by

$$(2.16) \qquad C2^{p} \alpha_{p}(L) \prod_{i=1}^{p} \left((\ell_{i})^{\frac{n_{1}-p-1}{2}} (a_{i})^{\frac{+\frac{1}{2}n}{2}} (1+a_{i}\ell_{i})^{\frac{-(n_{1}+n_{2})}{2}} \right) \prod_{i \leq j}^{p} \frac{2\pi}{C_{1,j}(n_{1}+n_{2})}^{\frac{1}{2}}.$$

The asymptotic formula shows that the distribution function of a group of adjacent roots is sensitive only to those other roots which are close to them.

Application of lemmas 1 and 2 to (3.1) yields its asymptotic representation

$$(3.2) \quad C|A| + \frac{n_{1}}{2}|W| \quad |I_{p} - W| \quad \alpha_{p}(W) \prod_{i=1}^{n} (1 + (a_{i} - 1)w_{i})$$

$$\frac{1}{2}(n_{1} - p - 1) \quad \alpha_{p}(W) \prod_{i=1}^{n} (1 + (a_{i} - 1)w_{i})$$

$$\frac{p}{n} \left(\frac{2\pi}{x}\right)^{\frac{1}{2}}$$

$$i < j C_{1,n}$$

where
$$C_{i,j}^* = \frac{(a_j - a_i)(w_i - w_j)}{[1 + (a_i - 1)w_i][1 + (a_j - 1)w_j]}$$

Now let us proceed to look at (2.16) once again. The asymptotic distribution of characteristic roots of $\mathbb{S}_1\mathbb{S}_2^{-1}$ given there can be rewritten as

(3.3)
$$F_{1}(A) \prod_{i < j} (\ell_{i} - \ell_{j})^{\frac{1}{2}} \prod_{i=1}^{p} \left[\ell_{i} - \ell_{i} \right]^{\frac{n_{1}-p-1}{2}} (1 + a_{i}\ell_{i})^{-\frac{(n_{1}+n_{2})}{2}+p-1} \prod_{i=1}^{p} d\ell_{i}$$

where $F_i(A)$ (i = 1, 2, 3) depends on a_i but not on ℓ_i . If we make $g_i = \ell_i/n_2$ (i = 1, 2,...p) and let n_2 tends to infinity then (3.3) reduces to the limiting form

(3.4)
$$F_{2}^{(A)} = \begin{cases} p & p \\ \frac{1}{2}(n_{1}-p-1) - \frac{1}{2} \sum_{i=1}^{p} a_{i}g_{i} & \frac{1}{2} \\ p & p \\ \frac{1}{2}(n_{1}-p-1) - \frac{1}{2} \sum_{i=1}^{p} a_{i}g_{i} & \frac{1}{2} \\ p & p \\ p & p$$

Moreover, let $\ell_{i}^* = n_1 g_i$ (i = 1, 2,...p), then (3.4) becomes

(3.5)
$$F_{3}(A) \prod_{i=1}^{p} \ell_{i} e \qquad i=1 \qquad \prod_{i< j} (\ell_{i} - \ell_{j}^{*})^{\frac{1}{2}}$$

Note that ℓ_{i}^* 's here are, in limiting sense, the characteristic roots of S_{1}^* S_{2}^{-1} where S_{1}^* is the covariance matrix of the first sample.

References

- [1] Anderson, G. A. (1965). An asymptotic expansion for the distribution of the latent root of the estimated covariance matrix. Ann. Math. Statist. 36, 1153-1173.
- [2] Anderson, T. W. (1963). Asymptotic theory for principal analysis. Ann. Math. Statist. 34, 122-148.
- [3] Erdelyi, A. (1956). Asymptotic Expansions. Dover, New York.
- [4] Girshick, M. A. (1939). On the sampling theory of roots of determinantal equations. Ann. Math. Statist. 10, 203-224.
- [5] Hsu, L. C. (1948). A theorem on the asymptotic behavior of a multiple integral. <u>Duke Math</u>. J. 15, 623-632.
- [6] James, A. T. (1954). Normal multivariate analysis and the orthogonal group. Ann. Math. Statist. 25, 40-75.
- [7] James, A. T. (1961). Zonal polynomials of the real positive definite symmetric matrices. Ann. of Math. 74, 456-459.
- [8] Khatri, C. G. (1957). Some distribution problems connected with the characteristic roots of S.S. Ann. Math Statist. 38, 944-948.