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1. Introduction and Suwmary. In multivariate analysis we are interested

in testing three hypotheses, namely

1) that of equality of the dispersion matrices of two p-variate
normal populations,

2) that of equality of the p-dimensional mean vectors for k
p-variate normal populations having a common covariance matrix and

3) that of independence between a p-set and a g-set of variates
in a (p+q)-variate normal population, with p < q. We obtain the non-

P
(p)= I (l-ci) in each

i=1l

central distribution of Wilks' criterion A=W

of the above cases, where the ci’s are functions of the characteristic

roots of the appropriate matrices. The density functions for case 2 have
been obtained by Pillai and Al-Ani [8] for p = 2,3,4 and here we obtain
thé dénsity functions for all three cases for general p in terms of
Meijer's G-function [7] with special cases being explicitly evaluated.

In this connection a theorem has been proved using some results on

Mellin transforms [2,3,4]. Also the cumulative distribution function
(e.d.f.) of W(p) is obtained for p =2 in the above three cases. The

densities in all cases may be put in a single general form given by

¥
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See the following sections for definitions of the parameters as well as
the G-function.

2, Preliminary Results. Some results on Mellin transforms [2,3,4] and

Meijer's G-function [7] useful in proving the theorem below will now be given.
Lemma 1. If s is any complex variate and f(x) is a function of a real

variable x, such that

(2.1) F(s) = Im £5-1 f(x) ax
. o



exists, then under certain regularity conditions

ctie

(2.2) £(x) = (2mi)™t J x5 7(s) as.
| .

F(s) is called the Mellin transform of f{x) and f(x) is the inverse
Mellin transform of F(s).

Lemma 2, If fl(x) and f2(x) are the inverse Mellin transforms of

Fl(s) and F2(s) respectively, then the inverse Mellin transform of

Fl(s)Fz(s) is

ctio

(2.3) eri)™ [ %, (s)Ey(s) as = | 2, (e, (0n) aw/u.
Yo

C=1®

Meijer [7] defined the G-function by

m n
I 1r(b.-s)H F(l-aj+s)

8. 58, 500058 . e
(2.4) G (x] Y2 Py o (2ni)-lJ =L 4=l x%ds.
b,q bl9b2,°--:bp P
c n I'(l-b.+s) g TI'{a.- s)
jem+l L e T
m
where C is a curve separating the singularities of I‘(bj- s) from
J=1

n
thoseofIII‘(l—aT_Jrs), 9>1,0<n< p<gqg, 0<m<q; x %0 and
J=1 © -

xl<1 if q=p; x40 if q>p. It is easily verified that



b +a,mb. =b,~1
2,0 . 21°%, _x %ﬁl-X)al 27717 2

(2.5) 6;°, (x| )
2,2 b, b, I'(a,+a,~b

2Fl(ae-bz,al-bz;gl+a2-bl-b2;1-x) O<x<

137Dy =b,)

where the generalized hypergeometric function is given by James [5].

2f1
The Ge-function of (2.4) can be expressed as a finite number of generalized

hypergeometric functions as follows.

m n
II(b.-b, ) I (b -a,)
m j=1 9 Blym h g b

a a -
n l,.u., d . h
P (xib bP) =z i %
P’q l,o'o’ q p
h=l [ F(l+bh-b.) o F(aj~bh)
Jem+l J° j=n+l
. - b e (oy)Pem-n
. PFq.l(l+bh al,o.o,l+bh-ap, l+bh bl’...*lbo’l+bh bq, ( l) x)

where thé asterisk denotes that the number l+bh-bh is omitted in the
seqguence l+bh-bl,.;.,l+bh-bq. Although the following theorem gives a

morevcbmplicated form for expressing the G-function, it is useful in that
expression (2,4) of Consul [4] and Lemma 1 of Pillai and Al-Ani [8] are
special cases.

Theorem 1. If s is a complex variate, ai’bi’ i=1,2,...,p are reals,

then for p=>3
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a ’a ’.oo’a bp - c"l p"3 a’. (bp"i+l+cp"'i+l-bp-i)j.
(2 6) G‘P,O(Xl 1272 P) = -XT—Q.—EL? ™ (Z l)
P3P Pysyseeasbt o Tlegteyres) 5oyt L (5.0
. ;=0 i :
r-3
2 () (b te b)), I EJip3 (g3,
. Ei 1/3'P2%% %'J(l_x) =1 P B Ty
jmo (cl+02+c3)j jt N © 2 F(hﬂ)

o P‘le_z (b3+ C3- bz’fl’fe"",fp_z; gl’gz""’gp_e;l'x) O <x < l

: P 41 2-1.
~ where for notational convenience c¢.=a.,~b., ¢=% e,, f,= % c.,+Z Jj.+ Jj,
i i i . 2. i, i
i=l i=l i=1

L2 2-1 - 4+3 2

gL ¢+Z% Jj.+j,h,=Z c+T J.+3 and (a), = alatl)...(a+k-1).
L= b ogar Tt Loga tga A k

Proof, Using mathematical induction starting with p=3, we see making the

substitution (a,b,c,m,n,p) — (b3,b2,bl,c3,c2,cl) in (2.4) of Consul [3] that

: b ¢, tete =1
81585003 3035y 1 2 3 (ep),(byre,-b, )

bl>b2:b3 a p(cl+32+c3) j=0 jl(cl+°2+c3)j

™8

350,
@n &

(1-x)?

« oF1 (b3+c3-b2, cyteptd; epteytesty; 1-x) 0<x <1

which is (2.6) with p=3. Now assuming (2.6) is true for p=n, we show it

holds for p=n+l. Applying Lemma 2 with S : :



n
I Pls+by) I'(s+b__,)
F.(s) = izl and F.(s) = ntl
1 n 2s+an+l)
I F(s+a )
i=
' % n+l(l.x) n+l-l
we have fl(x) is (2.6) with p=n and fz(x) =
e I"(cn+l)
and it follows that
, n
a bn+l z e, +l
n+l,o 81985500 38py _ n n+l ®n+1 i=1 *
(2.8) Cpe1 n+l( b, ,b b ~ T(e,+c *e,) (e ..) (1-u)*
? 12722 n+l 17273 n+l
n-3
n-3 & Coosn*Cnesi1®n1)s, & ). (b re,0b, ), HE I3 p-3 Megtay)
- I, D ) ot 5T T B )
s s\t c,tcte K -
1 ji=o (Ji)‘ j=0 l 2 3 J !; 1 2’

e pe1¥n- 2(b iR SPE AP SPPPPIN

cn+l-l
3 p_2;gl,g2,"°’gp_2; l-u)(u-X) du.

) bn—bn+l-cn+l ' »
Expanding u in powers of 1l-u when b b

nt1 Cne1” Pno letting

‘u = x+(1-x)t and integrating with respect to t, the result is the same

as (2.6) with p=n+l.

It is easily verified that Lemma 1 of Pillai and Al-Ani 8] is a special

case of (2.6) with p=U4 by making the following substitution

(bl,b23b3’bh,cl:cg,c3:04) - (c,b,a,d,p,n,m,z),



T
It should be mentioned that this theorem doesn't apply when p=1,2. This

is due to the fact that a simplification in the form of the G-function for

p=3 reduces the hypergeometric function involved from 3F2 to 2F1' A

general form for all p can be given as below, but we see it is more

cumbersome 10 use because we have _F_ . rather than F as in (2.6
: p p-1 p-1 p-2 (2.6)

b © (b,+c_=b,
81,82,...,ap) x l(l-x)c-l p—3 — ( 1 cl 1+l)£

. . )
(2.9)  &P0(x] I =]
p,P bl’b2’ LN ] ,bp F(C) i=l L (flp-i-z—)l
' : p-i-2
( ). )R e Ta g
- @« (b +C =b c +C I PN c.t+ ¥ g.4r
. p-2 "p~2 "p-1'r‘p-1l Tp’r i=1 j=i+o J =1 J 5 241
. (1-x)
]
reo r! (c)£+r

. prnl(cp,bp_l""cp-l"bp’fl’ o e )fp_g; cpwl+cp’gl’ so e ,gp-2; l-x) o <X <L l

where
p-3 P p+i-6 D p+i-6 p

£ =.2 £yo%5= Z 3t Z Lytrs g = Z eyt Z bytr, o = 2 €ye
i=1 j:p..i j: j:p..i..l j:l i=l

It follows that letting p=2 we get (2.5) and p=1 gives

a c,-1
69 () = x@ex) T /r(ey)
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3. The Non-Central Distribution of W(p) in Case 1. Let X(pxnl) and
Y(pxna) p <n;, i=1,2, be independent matrix variates with the columns

"~

of X independently distributed as N(O’E’,L) and those of Y independently

= XX' and S$,= YY' are independently

distributed as N(O,&). Hence 8y

distributed as Wishart (ni,p,’}i:i ), i=1,2. Let O < £1< £,<00.< fp< ® be

‘Ehe characteristic (ch.) roots of the determinantal equation
(3.1) | "o lsm g =0

and 0 <A, <A, <...< lp<m be the ch. roots of

1 2

(302) ‘El- ‘Y & ‘ = 0.
For testing the hypothesis H:lA= EP’ A >0 Dbeing given we will use

(3.3) W1 o)

1=

where

A = diag ("1”‘2"“”\;,)’ W, = xfi/(l-xfi) i=1,2,444,5Ps

Khatri [6] has shown that



: -2 #(ny~p-1) #(n_-p-1) -1
(3.4) f(wl,wz,...,wp)= cian| © an g Ep*ﬁlz 2 irij(wi-wj)lFo(—;—n;,:gp-(Aﬁ),ﬂ)

where

W= dlag(wl,wa,...,w ), n=p,+n,s I (t) = ﬂp(p-l)/h n r(t-1j+d)»
~ J=1

2
¢ = £ (dn) (5, (30T, ()T, (3, )17

To find E[W(p)]h we multiply (3.4) by I,:Ep— Wlh [ 1'[ (l—w )] » transform
~ i=1

W-=HVH', where H is an orthogonal and V is a symmetric matrix,

~F

integrate out H and V using (44) and (22) of Constantine [1] and we find

_ (30T (Gny#h) " -3n,

(3.5) e[t - .
I (2n,)T (3n+h)

eFl(%n’ l)2n+h '-Ep "()\A)

Using Lemma 1, the density of f(W(p)) has the form

' 2« (3n), (3n,) | | 3(n,-p-1)
(3.6) f(w(P)) = cpi Z———-—%f—l—‘g CK(,{p-(hﬁ,)-l) {w(p)} 2
k=0 K ¢
c+loo n I"(r+b )
. (omi)™t J {w(]p)}'r l‘l dr
 Ceiw n T(r+ay)

i=l
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where

=3n, + h = 3(p-1), b= 3(i-1), a;= %nlf K _s1* g
T ()  -3n .
G- 'P“::f" h’{\'l w1 (a) I'I r(a-a(l-l)) ) = a(a+l)..(at+ke1),
I, (zn,) i=1 _

z is the sum over all partitions K of the integer k where

K
%1 .
= > > > e
K (kl,k ,...,kp), Ky >k, > ... k 0, )Xk = and
1—1

CK(S) is a zonal polynomial; see James [5].

Noting that the integral in (3.6) is in the form of Meijer's G-function

we can write the density of W(p) as

' 3(n,-p-108 — (3n), (3n,) | gseess
6.1) 1) « e T T ¢ 70y o),

k=o K k! l’bz,c..,bp

Letting p=2 in (3.7) and using (2.5) we obtain

a.+a —b -b l
(2) (2 23X ¢ (), (), L g E
(3.8) £(w*°) = ¢, (W'} EE }; 2R (5 ™) 1
k=0 K : ],"(a 2 l 2)

(2)
. 2Fl(a2-b2, a1-bys 8 +a,=b=b,; 1-W ).
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The probability that W(2)§ Ww(< 1) can be obtained by integrating (3.8)

by parts a, times vhen n, is even. Using the relation [3]

-

. (3.?) (dn/dzn)[zc'lel(a,b;d;z)] = (c-n?n zc'n-lel(a,b; c-n; z),

and recalling that K=(kl,k2), we obtain the c.d.f, of W(a) in terms of
a.'s and b.'s as
i i

B 2 G o (- v
- ) - w
(3.00) er(u@c ) = | 2y § TRe2T Y T
k=0 K ke
ACO[CN i(afaz-bl-bz-r)r

~ wr(l_w)al+a2-b1-b2-r-l
ré(Enz)F(a +8,.,=b -bg

IYRRTYSS
1 %2 "1 r=o{2(n2 l)}r+l

. 1. L
. aFl(aaf-be,al bys &y*a,=b =b,er; 1-W) + Iw(zna, b)}

where a,, b, are defined in (3.6), a=a;-1 and b=a,-b,. When n, is
odd, after integrating (3.8) by parts &, times, the c.d.f, of W(g) is
(3.10) with a=ay-l and b=a,~b,. -

Letting p=3 in (3.7) we have



r.(3 -l 1 _ﬁ
(3.11) 23y - 3(?n) |l 1 {W(3)}2(n2 )
ry(emy)  ~
® .\ (3n)y (n, ) - o,
k=° K k! ~ l’ 2, 3

where a, and b, are defined in (3.6).

1132183)

It is clear G3° O(W(B)lb b
l’ 2!

could be written out in terms of the

hypergeometric function using Theorem 1, for computation purposes.

Also letting p = U4 in (3.7) yields

r (% ) -3 3( ~5)
(3.12) f(w(l‘))--——ﬁ- jan M| %{(u)} i

I, (2ny)
i y Sl ¢ (1,-(m)™) o o w®) f12%0%30%,)
~(AA
Ko él k .J-l* ~ J-l- l,bz,b3,b)+

where ai's and bi's are defined in (3.6).

A

P
}. The Non-Central Distribution of w(P) in Case 2. Let A = w(p) = (1-z )
i=l

where 21,52,...,zp are the ch. roots of the determinantal equation
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(4.1) |s,- 2(s,+ 8,) =0

where El is a (pxp) matrix distributed as non-central Wishart with s

degrees of freedom, € is a matrix of non-centrality parameters and §2

has the Wishart distribution with t degrees of freedom, the covariance

matrix in each case being £ . Pillai and Al-Ani [8] obtained the density

of W(p) for p=2,3,4. Here we obtain the density of W(p) in general

in terms of Meijer's Q@-functions. As in section 3, applying Lemma 1 to the

expression for E[W(p)]h given by Constantine [1] and using (2.4) we find

- (v)KCK Q)

(.2) £wP) =Cp{w(p)}%(t-p-l)z 5 o Gp,o(w(p)\:l,ag,...,a

P)
' PP sDpsesesb
o K k! 1°72 P
where ' ( )' |
I (v
<1 =P ~trQ2 “1fio =1
v=z(s+t), Cp T;T%E) e "~ by 2(i-1), ai’zs+kp-i+l+bi'

The probability that w(z) <w(<1l) can be obtained by using (2.5) in
(4.2), integrating by parts a, times when s is even, then using (3.9)

we get the c.d.f, of W(z) as



‘ ik
(4.3) Pr[W(2)< wl = -trgrz '\/: - i@ 1(t 1) 1"2(\))(\:)
k=0 i}: £ r (—'t)r(a +a2_bl-b2)
a
(a +a_=b. ~b r) a.+a_<b. b mrel
1 %2717 17327°17% ) e ¢-))
. }E (2(6-1)) W (L-w) o2 F,(ay=b,,a,-b,3 aq+a,=by=b,-r;1-W'"")
r=0 -
+ T (3t,0)}

where

a =a,=-1l, b = a_-b and the a.'s and b.'s are defined in
1 2 2 i i

(k.2). When s is odd, we integrate (L4.2) by parts a, times and find '

the c.d.f, is (h.3) with a=a -1, b=a,-b,.

The densities of w(3) and W(h) obtained by Pillai and Al-Ani [8] are
special cases of (4.2) as can be verified by letting p=3,4 in (4.2),

applying Theorem 1 and making the substitution
(al,a3,bl,b3)‘ - (a3’a]_.,b3,bl).

5. The Non-Central Distribution of W(p) in Case 3. Let the columns of

x ’ -
(Eg) be independent normal (p+q) -~ variates (p <q, p*tq <n, n is the

sample size) with zero means and covariance matrix
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_ §12

Py ,\22

(5.1) | z

Let R = diag(ri, rg,...,ri) where r? are_the ch. roots of

(5.2) 1% ()™ 11 - = xx) - o

and Po= diag (pjz_, pg,...,pg) where p? are the ch. roots of

)
(5.3) 1o B Eipm0iEl =0

Constantine [1] obtained the density of ri,rg,...,rg as

2y _ 2130 p213(ap-1) {5 _-2,3(n-q-p-1)
(5.4) f(rl,r ,...,rp) C lips | 15 | lEPB l

(3n) (%n) c (R )e, (P )
’ n (r zz (%q) =

k—o K CK (Ep) k_!

where

2
¢ =™ 1 () (1, (30T (3e-))r (301"
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P |
To £ind EfwPITE, w®) -1 (1-r:2.L), we miltiply (5.4) by |I 2P, proceed
s=1 ~

as in section 3 for case 1 and we find

I, (3L (3(n-q)+h) 21‘%n - 5

(5.5) E[w(P)1h= - F.(3n, 3n; 2n+h; P7).
I, (3(n-q))r (3n+n) ~P o~ ~

21

Noting that (5.5) can be obtained from {3.5) by substituting
- 2

(5.6)  (ngny, WY - (pegn,LF)

(v)

it can be verified that the density of W in this case is

1 2 o (3n), (3n),C, (F°) T
(5.7) f(W(P)) _ CP{W(P)}é(n-QrPflﬁz jz 20/ ;? KK Gg:;(W(P)l:i’:z,...’:z)
k=0 K

_ where
T (2n)

2 ‘;lg‘n 1 1
EJ Tﬁ@m |- 1™ ay= 2ark vy, b= 2(3-1).

The c.d.f. of W(Z) is obtained from (3.10) when q is even by substituting

as in (5.6) and using the a;'s as just defined.
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For q odd the c.d.f. of W(z) follows from that of case 1 for ny

odd by making the substitution (5.6) and using the a,'s just defined,
The densities of W(p) for p=2,3,4 follow from (3.8), (3.11), (3.12)

respectively making substitution (5.6).
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