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CHAPTER I
POWER COMPARISONS OF TESTING 621 = EQ BASED ON

INDIVIDUAL CHARACTERISTIC ROOTS

1. Introduction and Summary

In this chapter, exact non-central distributions of individual char-
acteristic roots have been obtained first in two and three roots cases in
connection with tests of the hypothesis 522 = X%,, where 'Eh. and %,
are covariance matrices of two normal populations and 8 > 0, known.
Powers of tests using individual roots are tabulated for the test 6f this

hypothesis against various one-sided simple alternatives and comparisons

of powers made.

2. NoneCentral cdf of the ILargest Root For Testing 621 = §2

let Ei(pxp), (1 =1, 2) be independently distributed as Wishart

s -1 S—1

(ni, D, Eﬁ). Let the characteristic (Ch.) roots of $, 8, and I, I,
be denoted by c, and hi’ i=1,..., p respectively such that

1 2 1
éci/(l+6ci), i=1,i0.,p; 8§>0 and G = diag (gl,..., gp) and

0<c <c, eee < cP <® gnd 0<A <,..< Ap <o |, Tet

gi =
A = diag (hl,..., kp), then the distribution of 8reees & is given by

Khatri [14] in the following form

1
-3n
(1) clemmletl " HaMlzal® 1o(g- g Fo(dv A)
1~J



where

c(p,m,n) = [np/E TP; P{%(2m+2n+p+i+2)}] /
i=1

[ ﬁ r{i(em+i+1)} M{i(en+i+1)} T (%-)] ,
i=1

-1 .
Ay =1~ (8A)"", m=%(n-p-1), n = 3(n,-p-1), n+ n, =v and F, 1is

the hypergeometric function of matrix argument defined by James [10] as

(2.2) sFt(al”"’ 8. byseees bt;‘§,‘z) =

ii E: (8 )ig-eseee (85 ) Cc(8)0(T)

X T Jg-veeee (B ) Celi k!

where Byseees 8o bl,..., bt are real or complex constants and the multi-

variate coefficient (a) is given by

P
(2.3) ()¢ = 0 (a-3(i-1)),
i=1 i
where
(2.4) (a) = a(atl) ... (atkel)

and K is the partition of k such that K = (kl,..., kp)’ k 2k, > ..

> k.P > 0 and the zonal polynomials C(S) are expressible in terms of

elemeﬁtary symmetric functions (esf) of the characteristic roots of sf10l.



Now define by V(qP,n; ceveeed X', X", Qys Bievesnss ql,n) the

determinant

J qp(l -X ) ax I l(l %o dx ...J qp(1-x )R CENY

p-l

X3 3{'.2
I xg"(l-Xz)?‘ a [ Py e,

(2.5) ceiessimenvssessacceasecacesscsaariieans

1 aq 1 q x" q,

j X l(l—x ™ ax j l (l X, ¥ oax ... j x.l(l-x Yax. ...
x P P pd -1 p-1 xt J 373
p-1 p-2

X3 q q
jo X5 Hax o) ax, I 1l(l‘xl)n dxy

It may be observed that the cdf of the largest root from (2.1) under
the null hypothesis ﬁzh.= Eé can be thrown into the form V(O,x;qp,n;
ceny ql;n), which for simplicity of notation will be written hereafter
V(O,x;qp,...,ql;n), multiplied by C{(p,m,n) [16], [17], [19]). Further,
in view of the fact that the zonal polynomials CKQ§) in (2.2) can be
expressed in terms of the esf's of ch-roots of .§, by the use of Pillai's
lemma on the multiplication of the basic Vandermonde type determinant by
powers of esf's, [19], it is easy to see that the non-central distribution
of the cdf of & in (2.1) can be expressed as a series whose terms are
linear compounds of determinants of type V(O,x;qﬁ,.,,, qi; n), where
(qé,..., qi) may differ from term to term.

Further, it has been shown that [16], [17]

(2.6) V(0,308 _y»--rap5n) = (agtnrl) (Al B4 g o(2)y




where
S
A( ) = - IO(O,qus: n+l) V(O>X5qs_l:~“:ql;n):»
1
3(8) = 2 Z (-1)%"3-1 1(0,x3q, + qy; 2n+l)
J=s-1
S
V(O:X;q seeey Qo 1oa 35000y & §n)» C( ) = V(O,X;q -1,q REAREE
S~1 +1° *j~1 1 S s=-1
q x"
S n+l
cll5n)a Io(x',x";qs,nﬂ.) = x  (1l-x) Ix‘l » and

I(x*,x";q,r) = jz' xq(l-x)r ax .
It may be noted that C(S) vanishes if g = q _;+l. Using (2.6) in each
of the determinants of the linear compounds involved in the series obtain-
able from (2.2), after the necessary number of reductions, the cdf of the
largest root, gp, can be ultimately reduced in terms of simple incofi-

plete beta functions.

3. HNon-Central cdf's of Individual Roots

In this section we give the non-central cdf's of individual roots,
associated power function tabulations and comparisons of powers for test-
ing 521 = 22 against various simple hypotheses.

a) Non-Central cdf of 8- Now putting p =2 in (2.1) and using the

method outlined in the preceding section the cdf of the largest root is

obtained in the following form:



6
(3.1) Pr[ge < x} =‘K{—IO(O,x;m+l,n+1)L( 24 Bixi)I(O,x;m,n)
i=0
6 6
+ (), ot ™To,xm,n) + (), bt )1(0,x5m2,n)
§ =0 i=h

+ E6x3I(0,x;m+3,n)] + 2[(BG+ Cg* Dg* E6)

I(0,x32m+7,2n+1) + (B5+ C+ D5)I(O,x;2m+6,2n+l)

5

+ (Bh+ C),* DM)I(O,x,2m+5,2n+l)
+ (B3+ c3)I(o,x;2m+h,2n+1) + (Bt C2)I(O,x;2m+3,2n+l)

+ BlI(O;x;2m+2,2n+l) + BOI(O,x;2m+l,2n+l)]}

“n,
2) c(2,m,n), B's, C's, D's and E; are obtained
from Pillai [24] by meking the following changes:

vhere X = (62klk

In the Aij coefficients in [2&], delete each linear factor invol-
ving n, in the denominator, each linear factor involving v in the
numerator should be raised only to a single power instead of two and bl
and b, should be changed to 2 - (l/ll+ 1/A,)/6 and
[l-l/(ﬁxl)][l-l/(Ghz)] respectively.

In obtaining the cdf of g, on (3.1), zonal polynomials of degree
1 to 6 were used. The expression for the cdf of g in (3.1) has been

used to compute the power of test HO: 6§l = Eé, 6 > 0, known, against

Ski >, i=1,...,p, & (Gki) > p, for various pairs of values
i=1



(8h,, 8%,) and the results are presented in Table 1.

l?

b) Non=central cdf's of individual roots for p = 3.

i) ZLargest root: Put p =3 in (2.1) and using the method outlined in

section (2), the cdf of the largest root is obtained in the following

form.
6
(3.2) Pr{g3 <x} = Kl{-IO(O,x;m+2,n+l)[( z Bio)xl)v(o,x;mﬂ,m;n)
i=0
6
+ (z c§o)xl-l)v(0,x;m+2,m;n)
i=2
6

# (), D) (0,x5me2,mesm)
i=3

6
(Y 5O 2w (0,x3m3,m3n)

i=lh

6
(Z F§O)X1'3)V(0,xsm+3,m+l;n)
i=5

+

o+

6{O3y(0,xsmrb,min) + 5PV (0,x5m43,mi2;m)

+

6
21(0,x;m,n) z (Bél)I(O,X;Zm+3+i,2n+l))
i=0
6
21(0,x;ms1,m) 3 (B§_2)I(O,x;2m+2+i,2n+l))

i=0

+



L

- 21(0,x;m+2,n) E: (B§3)I(O,x;2m+3+i,2n+1))
i=0
2

- 21(0,x3m+3,n) EZ (Bﬁh)I(O,x;2m+h+i,2n+l))
i=0 :

- QG(O)I(o,x;m+h,n) I(O,X;2m+5,2n+l)} >

where

3 -4n
Ky = c(3mn)( 1 6n) S

i=1
and the Bgo)'s, (0 D(O)'s, Ego)’s, Fgo)'s, @ and the BY) co-
i i i i i i
efficients are obtained from corresponding coefficients in Pillai and
Dotson [23] by making changes in the Aij coefficients as described in

. . _ 1 1 1
the preceding section and bl =3 - S - 5~ 5% s

1 2 3

1 1 1 1 1 1
b (1 - {1 - ) + (1 - (1 - ) + (1 - (1 - =) and
2 6xl 6x2 EXI ng EX; 5x3

1 1 1
by (1- gxz)(l - gx;)(l - 5xg) .

ii) Smallest root: The non-central cdf's of the smallest root for

p = 2, 3 are obtained from the corresponding non-central cdf's of the

largest root by making the following changes.

- I,(0,x3q,m41) = (-1)° I (x,15q,,0+1)
(3.3) 1(0,x3q,r) = I(x,1;q,r)

V(O,x;qp,..., ql;n) - V(qp,n;...;x,l,ql,n) .



iii) Median root: In obtaining the non-central cdf of the median root
for p = 3, the following changes may be made in (3.2)
- IO(O,x;m+2,n+l) - IO(O,x;m+2,n+l)
V(0,%305,9;3n) = I(x,13a,,0)I(0,x350;,0) - I(x,15q,,0)1(0,X3q,,n)
1(0,x3q4,m)T(0,x595% q4,20+1) = B(qy+1,n+1)I(x, 1505+ q5,2n+1),
Jj=1,2
Tabulations of powers of individual roots for test of hypothesis Ho

given earlier have been done extensively and in Table 2 are presemted

powers for selected values of the parameters.

L4, Power Comparisons

For tabulating the powers of the tests of HO based on individual

roots for p =2 and p =3 against simple alternatives such that
P

5ki >1,i=1,..., D, ifl 6Ki > p, the upper 5% points for the largest
root were taken from Pillai [24] and those of the median and smallest
roots from Pillai and Dotson [23]. These were used to compute powers on
IBM 7094 for values of m = 0,1,2,5 and n = 5(5)30,40,60 but in Tables
1 and 2 are presented only the tabulations for n = 5,15 and 4o.

Now we compare the powers of individual roots for the test of HO .
Cases p=2 and p =3 may be considered separately.
p=2. When p =2, the.following observations may be made (Table 1).
1) Although the larger root has generally more power than the smaller
root, for small values of n, the smaller root has generally greater

power for small deviations (except for m = 0).



9

2) For 6(x1+ Kz) = constant and small deviations, the power of the lar-
ger root decreases as the two roots tend to be equal while that of the
smaller root increases.
3) The individual root possesses monotonicity property of power with
respect to individual population roots but not with respect to their sum
or product.
4) TFor larger deviations or larger values of n, the p&wer of the largest
root is always greater (and more often considerably so) than that of the
smaller root.
P = 3. The following observations may be made when p = 3.
1') Although the largest root has generally more power than the other
roots, for small values of n and small deviations, the median root has
greater power and sometimes (for m =2 and 5) even the smallest root.
But the power of the smallest root is always less than that of the median
root.
2') For 6(h1+ Ayt k3) = constant, the power of the largest root seems
to attain its maximum when Skl = 6k2 = 1 (at least for small deviations)
while those of the other two roots when 6hl = Ske = 6K3. The power of
the largest root decreases as the roots tend to be equal (at least for
small deviations) while those of the other two increase.
3') 1is the same as 3) above for p = 2.
k') For large n, the power of the largest root is generally greater than
those of the others eicept possibly in the case of the median root when
the population roots tend to be equal.

It may be pointed out that the monotonicity property of the power of

the individual roots with respect to individual population roots for the



above test was shown earlier by Anderson and Das Gupta [3]. A compara-
tive study of powers of four criteria for this test has been carried out

by Pillai and Jayachandran [24].

10
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CHAPTER II
NON-CENTRAL DISTRIBUTIONS OF THE SECOND LARGEST ROOTS
OF THREE MATRICES AND THE VECTORS CORRESPONDING

TO THE LARGEST AND SECOND LARGEST ROOTS

1. Introduction and Summary

In this chapter, the non-central distributions of the second largest
roots in the MANOVA situation, the canonical correlations, and equality
of two covariance matrices are obtained. The central distribution of the
second largest (smallest) root following the TFisher-Girshick-Hsu~Roy dis-
tribution under certain null-hypothesis comes as a special case of the
MANOVA situation. Further, the distribution of the second largest root
of the covariance matrix is obtained as limiting case. The largest root
and its non-central distributions have been considered by Pillai and
Sugiyama, [25] for the situations stated above. However, in this chapter,
the joint densities of the largest and the second largest roots are de-
rived in all the above cases from which the distributions of the largest
roots can be obtained, although in more elaborate forms. In the last sec-
tion the distribution of the characteristic vectors is obtained correspon-
ding to the largest and second largest root of a sample covariance matrix,

The three roots-case is dealt with in more detail.
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2. Non-Central Distribution of the

Second Largest Root in the MANOVA Case

Let X be a p x n, matrix variate (p < nl) and Y a pXxn,

matrix variate (p < n2) and the columns be all independently normally

distributed with covariance matrix ¥, EX =M and EY = 0, Then it is

~

known that X X' = Sl is non-central Wishart with ny degrees of freedom
and Y Y' = 82 is central Wishart with n, degrees of freedom and the

covariance matrix respectively.

PN
L

Iet 0 < ﬁl < < ... < 2p < 1 De the characteristic roots of

S, Sé » then the joint density function of £ ,..., ﬂp is given by

Constantine [4]

. (?\’)K K(Q)CK(L)
(nl/Q)Kj CK('E)k'

(2:1)  elome)em(er)MzalT (2 -~.>Z
7J k=0 K

where 8 is the non-centrality matrix, %M’E'%M, and L= dlag(zl,...,ﬂp)

~ o~

and c(p,m,n), m, n and Vv is defined in (2.1), of Chapter 1, and

CK(L) are zonal polynomials defined in [10]. Consider the transformation
~ k

. _ 1
q = zi/zp_l, i=1,..., p=2, and decompose K(L) = ZuaT uz c (L )
> 2
where Ll = diag(ﬂl,..., p- l) and the summation is over the partitions T
of kl and p of k, such that k,+ ky, =k, and K is the partition

of k, and a_ , are constants defined in [8]. Then the joint distribu-
>

tion of Qyseves qp-2’ ﬁp-l’ Zp can be written in the form
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(2.2)  a(t .20 lel el lz-e 10 1Plz-(2, 118 )g, |
(%\))KCK(E) kl k2
5147y ’A Z e Gy L et fo (&)

k=0 ¥

sH

where Q = diag(ql,...,qp_z), Q = diag(ql,...,qp 2,l), and
- a  ge-1)+3(p-2)(p+l) mtp-1
q_(,ﬁp_l,,ﬁp) c(p,nl,ng)exp trdd . P" ﬂ, (1-2 ) . By
. n
expanding l£7£p~ﬁ%ll as well as |£—(£p_llﬁp)gl| and the use of the
results from Khatri and Pillai [15] for multiplication of zonal polynom-

ials we write (2.2) in the form

©

(2.3) (e t)la™rel T (g -0) e
. W10 Q Q 15 95795 kL. L ®T (n]_/e);{cic(ﬂ
[ P"2
) ((-n)pty_y/50) ). (c(z)zﬁ_l/,e:zl’i)
s=0 1 =
k. Kk '
z a'T,]JJ zpl '(,'p?]_ z gz C&'(f%l) >
T, §1 (l,n’u)

vhere T and &' are the partitions of s and £ + s + k, respectively

2
7 51 5 g
such that 1M = ("I]l,...,n]p) and = ( l,...,5p) where s = ijl 'ﬂi 5
D 51
L+ s+ ky = T Gi, g, are constants defined in [15] and
i=l ~
(1,M,m)

c(L) = (- l) (21")'
(o1) 2* x(l)
[21%]



20

. 2
wvhere ¥ ) is the degree of the representation [217] of the symmetric

[217]

P
group on 2% symbols, and such that X[K](l) = k! Il (ki-kj-i+j) /
] 1<3 ,

P
I (k,+p~1)! and ¥ = (k> k2 vee 2 k> 0) . Now integrate (2.3) with
i=1 R

respect to O < qlf qu cee < qp_2 <1 by the use of the lemma in [29],

we get the joint density function of zp_lj 4 in the form

2
@) (T (02 B yedate  a)

p-2

) [Cm)y/sid ), Le(a)/2:4)
1 £=0

; o (3@ o
— 2‘ kl(nl/E)CK(Ej L

k. s+i+k

1 2 61
fep Bty S L gy ep(T ) (L)1) /
T’“‘ 5! (lsT])p‘)

[

2sttac,) (T ((ny-1)/2,8")/T_ ) ((n,+9-1)/2,8")

Further, integrate (2.h) with respect to ﬂp, then the density function

of 4 can be written
p=1
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-1 -2 1)/2 K
(2.5) cl<p>nl=n2>e@<tr-8”§f§ e go >K" = /2ey)

p-2 s+£+k
LUt} @ Loty
g L=0 T,p

E 1 8

T(4,_y»1smépHi -4-13n) z: g%' cg1(T,1)(m-1)(p-1) /
6! (lpﬂ:u)

sty )T,y ((0y-1)/2,81)/T_, ((ny4p-1)/2,8"))

where . (pny,ny) = Hp'lr‘p(\’/z)lp_l((P'l)/E)/Fp(nl/E)Fp(n2/2) . It may
be pointed out that the density function of the largest root can be obe

tained from (2.4) by integrating it with respect to £ over the range

p-1
0 < Ep-l < zp » hovever a simpler form has been given in [25] .

Let Q=0 in (2.5) then the central case is of the form

© p-2
(2:6) g (pyny,myJAREIIHRRNOI2 5 Ty yan) Y fe(ay/a) -
s=0 T £=0
E;fi I(ﬁp_l,l;m+p—£—l;n) E:gi' 6,(NP l)((nl-l)(p--l) /
61(1,1)

2rs+)T ) ((1=1)/2,8)/T__ ((n +p-1)/2,6"))

where 0' 1is the partition of Z+s .
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3. The Distribution of the Second Iargest Root

in the Canonical Correlation Case

X

Let the columns of (;}) be n independent normal (p+q)-dimen-
N2

sional variates (p < q) with zero means and covariance matrix

no. X
Q,Vl]_ ~12
%= J -
Zﬁ2 252

. 2
Let R = diag (rl, Tpseees rp), where r,,

cees ri are the characterig=-

tic roots of the equation

-1 2
1 1 L U
% % X)X - nxl=o
. 2 2
and also E = diag (Pl, 92,..., Pp) where Dl,..., pp are the character-
istic roots of the equation

|5 57t e

- b =
210 Zop Ziom P Zpl = 0

Then, the density function of r2

Lreees ri is given by Constantine [4] in

the following form

(3.1)  con,p,a)|1-p2| V2 |52 (4P-1)/2 |1 g2 (n-p-a-1)/2 g (ri'r;zj)

)

k=0

o (/2)(w/2); o (8) o)

where
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2
I (of2) TP /2
ML X TR =V N TR

2
T,
By using the same transformation, namely q; = ; s i=1,..., p-2 and

I‘p_l

the same method as in section 2, the joint density function of r2 r2

p-1° "p
can be shown to have the following form

(3.2) cl(n,p,q)|I-P2|n/2(r12o_l)[(q-_p-l)(p-l)+(p-2>(p+1>}/2

® 2
(ri)(q+P'3)/2(1-r§)(an’qu)/z ¥ :w(n/Z)K(n/Z)KcK(E )

R YW )

LoL a2 Y Ly Y e
Ll

rp-l)‘ : E: gif cﬁ,(zp_l)((q—l)(p-l)/2+s+2+k2)
&' (1,M,m)

(Fpp ((a-1)/2,8")/F_ _ ((ap-1)/2,8%)

where Cl(n:P’Q) = Hp-l Fp_l((i)'l)/e) Fp(n/a)/ FP(Q/E) r'p((n"Q.)/z)' . NOW:

integrate (3.2) with respect to ri then the density function of ri_l

can be written in the form



2k

(3.3) Cl(n,p,q)lz.f’zln/2 (ri_l){(Q'P-l)(P-l)+(P'2)(P+l)}/2

o (8/2)¢(n/2)ge () iz (ptarl-n)/2),
4; (@72 ke (T) ; 5]

>~ 8

k=0 s=0 T

P:? s+i+k

_Z, {e(e)/0} z aT,u(ri_l) 21(1"12,_1,1;(q+p-3)/2+kl-ﬂs
2=0 T,u

(n-p-q-1)/2) Z gi’ Cg 1 (Ep_l)((q—l)(p-l)/2+s+£+k2)

6' (19'“)\))

(T ((2-1)/2,8M)/T 1 ((atp-1)/2,8"))

4. Non-Central Distribution of the

o -1
Second Largest Root of El §2

In this section we consider the distribution of the second largest

root of 8, Sél as defined in (2.1) of Chapter 1. Then, as before, we

can obtain the joint density function of and in the followin
€p-1 % .

form
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2y g§5§-l)+%(p-2)(p+l)

(1) cq(p.my,my)lenl
0 1 -]
-1 TV (é'v)chc(E'(éﬁ) ) T ,

e S L (D) L 2, Lm)y/st)
k=0 K s=0 Tj

p-2 K b s+ltk \

ZJ {c(ﬂ)/ﬂf} aT,M gpl gp-l 2 E: gi Cﬁ'(Ip-l)

£4=0 T, 6% .(1,M,1)

((ny=1)(p-1)/2 + s+heiey) (T, ((ny-1)/2,67) /

Fp_l((nl+p-l)/236i)

Now, integrate (k.1) with respect to 8y the density function of 8,1

can be written in the following form

_%n 1 Vo . « (%V) ¢ (I_(QQ)—l)
(h2)  eypmymp)lonl ~ gfélfli Hre-2) /ey Y i:KcK 63
k=0 It
j \' B? o s+L+k
), 2, Lem)/sty ) {e(e)/e} ), S 2
=01 4=0 T, b

I(g,_p Lsmp -4-15n) ), & eg 1(Ty_1 ) ((ny-2)(p-1)/2

87 (1,M,1)

+ s+£+k2)(rp_l((nl-l)/2,6’)Fp_l((nl+p-l)/2,6’))
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\ 5. The Distribution of the Second Largest Root

of a Covariance Matrix

The distribution of the characteristics roots, 0 < wii “os f_wp < e,

of X X' depends only upon the characteristic roots of ¥ and can be

given in the form (James [9])

1
(5.1) k(p,m) |21 | |™ fexp(-3trw)} 0 (w,- 0,) F (X1 -=Y), w)
~ ~7 i>j 1 J O O NP ~ ~

3%, don
where k(p,n) = II2¥ /22 Fp(n/z) Fp(p/z), W = diag(w,,0,,..., wp) .

It may be pointed out that the form (5.1) can also be viewed as a

limiting form of (k.1), when n, <.

However, by methods similar to those in the previous sections, the
density function of the second largest root Yp = Bl can be written

in the form

1 m(p-1) + (p=2)(pt1) _y ;. i (I-
(5.2) kl(P,n)l§| =1 Yp-l ° Z4 E: k! CK
k=0 K
® s 4 k 2
S+L+
Z%NZZhLZwm 53 T e
T,V s=0 T 1=0 6 (6 t )

0 (T, )T, _p(n-2)/2,0)/T, ,((niD)/2,1)]

v (v po=smiptle =3) - Y3 Y(Y,_,@mipHe -3-1)1

p-1 p-~-1’

where b6 y are constants defined in [15], 6 and B are the partions
: 2

of i and i+ £ + s respectively.
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p-2)°

k (p0) = k(p,n) T, ,((2-2)/2)T, ,(()/2)/0 2

and

Y(anb5c) =

.b
J L e ax .

a

It may be noted that the cdf of the second largest root can be ob-

tained by integrating the corresponding densities over the region

0 f-ﬂb—l < x. Hence from (2,6) we obtain
o P'2

(530 Prle; <x) = o (mompung) ) L(ndy/std ) (e(a)/at)
s=0 M £=0

Tt
+ I(0,x;a+b+l3n)] 7, g ,
o, (%)

LI(x,1;b,n) x2*L

g1 (Zpoy ) ((2y-1) (p-1)/24s4 )T ((m,-1)/2,8") /

(a+l)rp_l((nl+p'l)/2,6'))

where a = m(p-1) + (p-2)(p+l)/2 + s + L, b = m+p=-L~1 . The individual
characteristic root could be very useful in testing hypotheses, for in-

stance, Anderson [2] in testing the null hypotheses that the rank of

Q = r against the alterhative that it is greater we reject the null hy-

pothesis if the p - r smallest roots are not sufficiently small.
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6. The Distribution of the Characteristic Vectors

Corresponding to the Largest and Second Largest

Roots of a Sample Covariance Matrix

Let U has the Wishart distribution IW(p,n,Z), the probability

elements of U are

(6.1) K, |l (0-p-1)/2 oyp (<dtr 271 u)avy ,
where

g = 17 2Y2PY2 1)

Now there exists an orthogonal matrix I, such that Z = I, EM L' where

E“ = diag (ul,..., up) and further make the transformation V = L' U L,

then the distribution of V is given by

(6.2) &Iyl P2 g (e, v v

~r

where Y, = 1/u,, (i =1,..., p)

Now transform X = E E E‘ where the orthogonal matrix E is repre-
sented in terms of rotations angles. The p x p orthogonal matrix has
only p(p-1)/2 independent elementé and every rotation in the p-dimen-
sional space consists of p(p-1)/2 single rotations which is such a ro-

tation in the two dimensional space. Let 5;(9) be a single rotation ma-

trix defined by
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zp-v o 0 0
o cos B -sin 6 o
\) -
0 =
(6.3) Bp( ) o sin © cos 6 o ?
0 o} o Ev-2

vwhere I, is the identity matrix (v x V), then H is defined by

~V
-1 )
6.k =800 )P He ) ... H(®
(6.4) H Np( pJ)Np (p_l,J) H(8,,)
and
H(9.) = R2(8,) R(8,); 0<8 <om 0<6, <m(j>3)
DY pr 27 "7 Tptv? - i2~ 2 - ij— 7 -
and
W = diag (wp,w _l,...,wl), O<a<wu<,, < 2y <o

Then the Jacobion of this transformation as found by Tumura [31] will

be

3 3 .,
(6.5) I (w~-w,) O T sind™ 6
S i=p §=i
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o .
. =1 ~(0 ©
(6.6) tr D,V = tr by H ( PJ) 1 o b, )
-1
o} Ep-l o) "'wl
1 o} 4 / 1 (o}
1 1
H =1 b ho+tr2® p P
© Ep-l °© ,I:I,p-l
/
% oO 1 0]
p-1
© wl 0 E@-l

where 0 < wl < w2 < ... < Up < ®© and hp is the first column of

HP(6_.), and h_ will be of the form
~ P P

6. h! = (b _h vsee N = (cos & sin O s 0 ves
(6.7) by = (b by ogeee Byy) = ( D pp °°% “p,p-1
e 7 7 0 )
sin 8 cos O_..,.. sin ©_ cos 8, II sin ©__ sin s
v=p v i —p v 2V=P pVv p2

HP(GPJ) is an orthogonal matrix with p - 1 independent elements QPP’

ep,p-l"' 9p2’ E@-l is the orthogonal matrix of the p -~ 1 dimensional

space with (p-1)(p-2)/2 independent elements eij’ (i =7p-1,..., 2,
Jj = i;..., 2) denote Dp-l as the (p-1) x (p-1) matrix obtained from

1 .
H® D, HP, deleting the first row and column, and W) = diag(e_i,...,0)

~ Y o~

then (6.6) can be written
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i = ht O+t H W H
(6:8) DY = By By * 8 Dpn Bpetaflpn

: -1
B'D.h w + tr D . HO (0 X
~Y PP ~p-1 ~p-l( p-l,a)

e

p-
. H 9 .
; ~p-1 ( p-l,a)

Ep-2 © ¥y © Ep-2

=h!'Dhw+h' . D _h - _+trD ,H W.H'
PAY PP p-lp-l p-l p-l T <p-2~p-2~2<p-2 °

where Hg-i(ep 1 J.) is an orthogonal matrix with p-2 independent ele-
~ - -4,
-1
0 8 cees © ; i Ll I
ments pe1,p-1° Opo1,peeiters %po1,2 and is obtained from H ( p-l,J)

by deleting the lst row and column HP o is the orthogonal matrix of the

p-2 dimensional space with %(p-2)(p-3) independent elements 6, _,

id
i=p-2,...2, J=1i,0.., 23 hp-l is the first vector of Egzi(ep—l,j)
and is given by
(6.9) hp-l= (hp-l,phl""’hp—l,l) = (cos ep-l,p—l sin ep-l,p-l ceeee

p-i-1 ' 3
ces v=g-1 sin ep-i,v cos Gp_l,i.....v=g_l sin © 1,v
3
cos ep-l,2 v=g-1 sin © 1,V sin ep-l,E)

and W, = diag (wp-Q""’wl)’ and Dp_2 is the (p-2) x (p-2) matrix
- ' -
obtained from HY L D il L by deleting the first row and column.
Np-l ,\p-l ~P-l
Hence the distribution of wl""’wp’ eij(i = Dyeses2y, J = Xi,...,2) can

be written in the form



1 1 ]
o yE@-p-1)y y3(n-p-1) 1
(6,10)  Ky(w o )Z IAK (-3, Dybgy)

Lyt _L ' '
exp( 2hp-12p-lhp-lwp-l) exp( 2tr2p_2Ep_2W2Hp_2

3 3 . 3 . 3 .
. 1 I sinJ-2 Gi.° II sinJ_ze . I sinJ—ee 1.
i=p-2 j=i J 5=p PJ o1 p-1,J
I (w,-w,)
i>j * Y

Consider the case, p = 3. The joint density of 633, 932, 922, Wy5 Wy,

w3 can be deduced from (6.10) and is given by (writing K, again for

K2>P=3)
6.11) K |owo |F@8) § (0, -0.) sin 0. exp(-%n! D h.w.)
: 2!%1%5%3 >3 13 33%7P7203 2y3%s
exp(_tﬂ: aqq al%) <;cos 922 -sin 92%)
215 2o sin 922 cos 922

in ©
Qw‘? o \( cos 922 sin Oy,

o ® —sin O

1 op €08 O

where

hé = (cos 9, cos © o sin C,, sin 6__ sin ©

33 3 33 32 33) ’
2 . 2 2
ay; =Yy + (Y - Yl) cos 933 + (Y3- Y,) sin 932 cos 633 ,

12 = (Y3 - ¥,) cos 933 sin 2 932/2 ,

32



and

2
= [ - 8
Bpp = Yp * (Y3 - ¥p) cos” O,
Now (6.11) can be written in the form

1
5 o Y2(n-H) . : ,
(6.12) Kz(wlm2w3)2 iEj (wi-mj) sin 933 exp(-b3 w3)

i
i=0
where
a a. o~ sin 9
- llcin 6 . (11 127 227
bl 3(sin op = COS 922) /Q . j s
810 By  TCOS P,
a a cos ©
1 . 11 12N s 222\
b, = -3(cos O, sin 0,,) Q J N ’
alE a22 sin 922
and
b, = 4h! D h .
37232y 73

= q ' . . . e Ww
Let £ wl/w2 » then the distribution of 33° 932, 922, ﬁla o)

given by

w

3

33

is
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ks
(6.13) % w§(n‘”) BB, - w,) sin @

5 exp(-b W

33 33

b

k
Uk o i ked, Int+k-i-2
Z_‘ (1) b2 b ((»J3(l—,@)fz

S~ 08
7o

0 i=0

s -l
_ w2(1-£)£2n+k i l)] .

Integrate (6.5) with respect to £, then

n-2 &(n-k) , ) ,
(6.1k4) K, u, w§ (w3- wz) sin 933 exp(-b3 U3)
© HE kK
[2 1—{-2; z (li‘) b; bli-l(% B(%n+k—i—l,2)-w2;3(%n+k-i,2))] .
=0 i=0

Again make the transformation t = w2/m3, integrate with respect to t

and then with respect to © we can write the distribution of 933, 932,

3’
922 in the form
«@ k
. rYy  Mf3n/2)+xl Tk, Liokei
e S \
(6.15) Ky sin 85| ), o o EE L (3) Py b]
k=0 7" 73 i=0

B(n+k-1,2) B(dntk-i-1,2)(1- (éﬁﬁf§§%§;f£f£+z)) I

For any p, integrate (6.10) with respect to Z(p-2)(p-3) indepen-

dent elements of H - Dby using Lemma (3.2) of Sugiyama [29], we can

p-2

write the distribution of wl,...,wp, eij(i=p,p-l;j=i,...2) in the form
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, ,
(6.16)  x{n(®-2) /2/F o(% (P_z))}(u - )?<n'p'1)lw |5(n-p-1)

3 .
I h © Ly I sind=2 o
exp(-2h Dyh0p) exp(-gh) Dy (@51 j;p SR P
B i !
Bsin 0 .z. (05-05) [ 24 Ce (~3D,,. 2)
J“p"l 1 k=0 K

Cyo (W) /! CK(Ep_l)}] .

Now make the transformation z{ = wi/wp-l’ i=1,..., p~2, and using
James [10], the distribution of 21, 8hseee, ﬁé_z, ©pa1s Ops
Glj(i = PP -1 J =i,.e., 2) can be written in the form

2
(6.17) Ké{n(p—2) /2/Fpn2 p—Z)} w;(n+p -5) ;Eip-p-n-l)(wp up_l)

1
1| 3(n=p-1) Tt 1ot 1y 1
|zt l1-1 |i2j (ﬂi Ej) exp(~-ih Dyh wp)

- 1B o= 12 b~ l) ‘H sinJ-Zepj I gind™2

exp(-%h' D
Jj=p J=p-1

=) p-2

g L1 L D fodtig e, 5 0
k=0 K j=0

oI/ w30t (lj)mc,c(g)}]

Now by multiplication of two zonal polynomials [15] and integrating

(6.17) with respect to 0 < 41 <4

<A <1 we get the dis-

1
2 = p-2 = >

tribution of RNET © eij(i =P, P =13 F = d5eee, 2)



T

g(K,lj) CK(—%DP-2) Ioold(n-2), (- Eh! ~12pa1p- 1)r
0 -n-p-1)+k G2 vy oy
CT(AIJ)(up'wp-l) ula)(ip n-p-1)+ +1+r/ ug(;;.) k! r! X(glj)(l)

Ce(D) Ty _p(3(ntp-1),7)}]

36

T
vhere T and g . and X (1) as defined in section 2. Further

(1c,19) (219)
let ® = fw , integrate £ and then w the distribution of
p-1 P p’

eij(i =p,P~-1;J=31i,..., 2) in the form:

3, 3 .‘
(6.19) K, I ,(3(p+1)) T ‘sind e . 0 sind @ e
3=p PJ jep-1

[=-] p_2

[L LY ) b et e ( ) C(-3D, o) € (T)

r=0 k=0 K j=0 T

( 1 P lqp l - l) B( (np-n-p+l)+k+3+r E)F{ (np+k+r)} /

X(213)(l) CK(E)Fp-z{%(n+P+l)>T}(-%hégwhp)%(np)+k+r}]



When T =1, we get from (6.19)

3 -
(6.20) (T(p-1)/2° P71y 11 gind2 o
J=p

37
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CHAPTER III
NON-CENTRAL DISTRIBUTIONS OF THE SMALIEST
AND SECOND SMALLEST ROOTS OF MATRICES

IN MULTIVARIATE ANALYSIS

1. Introduction and Summary

While the second chapter dealt with non-central distribution of the
second largest root, this chapter deals with the non-central distribu-
tions of the smallest and (second smallest) root of a covariance matrix
and those in the case of MANCVA, canonical correlation and test of equal-

ity of covariance matrices.

2. The Distribution of the

Smallest Root of a Covariance Matrix

1

In this section we obtain the distribution of gi = 30, where
0 < w, <o, <. S'DP < ® ., has the joint density defined in (5.1) of

the previous chapter.
Now transform g, = g} / g/, 1 =2,..., p, then the joint density
of gi and Qoseess qp can be written as

-g! tr Qil

“in Anp-1 "B -m-p-1
(2.1) K (p,n)|g|ER g1FP e H L b5

i omly g -1
I o(aymay) GF((Z-27)s &) @7 )
1>
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Now, by =msing the results of Constantine {51, namely,
-1 1
CK(,E ) = ‘5' (CK(E,)/CK—X-(,\I,))CK*(,{",)

. s > Kx = - -
where e. is any integer > k, and (el kp""’el kl), and

1 1
-m-p-e, -1

K = (kl""’kp)° Also expand [%ll as well as CK(E-gl)' Then

using the results of Khatri and Pillai [153 on the muitiplication of two

zonal polynomials, (2.1) can be written as

2021 |1 g] @ oy G-z
(2.2)  K/(p,n) g I-q s (45-9;) /, %4 TEL Cy(T)
k=0
o o (- l) gl " Cs(I) ¢ oy (el
Ez L T T EZ K% I) Lo L t.
s=0 1 6 =0 T

(- l) a.
oD L L _ﬂfr- Loy N&)

d=0 | Y

where 6, ¥ are the partitions of k +s and d + pe; - s - k respec=-

i * = - * 0w - ] i >5
tively, and & (el ép, > € 61) where e, is any integer > 1

and 6 = (61,...,

and a are defined in [8] .
T,

8 Y
5 ). The constants are defined in L1
o) &1, 11 8o,y 51,

Now, integrate (2.2) with respect to 1 > s Z el > 1, > 0, the

density function of gi can be written as



© =1 @ s _kits
1 c (I"Z ) ('l) g'
L 2np-1 ALY DO it S
(2.3) Fp((P+l/2) / Pp(an) 81 L R ck(z) L ST
k=0 K s=0 T
- 5 Cs (5) ; T (m+p+el+l)f %-'-. T (-l)daT "
Lok T - e SO L Lo
- 9 6* = = . ~ - IJ’ Yool
b t=0 T d=0 u

Y (p(p+1)/2 + atpe-s-k)(F ((p+1)/2,Y)/ T (p+1,Y)).

If ¥ = I, in (2.1), then the density of gi can be written as

~

<«

bpn1 "8 v v (8) G(D) O o (wpre 1)
e

k=0 K ~ =0T
t a
_l) a .
v e\ 8
c(D) ) LTI L St OoD) (T (0/2,8) /
4=0 ¥ ~ )

Fp-1(P¥1:8))

where Kg(p,n) = UP—% Fp_l(P/szl) / Fp(n/g) T(p/2) .

3. The Distribution of the Second Smallest Root
Let E =I in (2.1) and transform q; = gé/g{, i=3,.40, p and
by the same method as in section (2), the joint density of gi, gé can

be written as



L1

-(gl + ')
(3.1)  K(p,n) g” gém(p-l)+%(p-2)(p+3) A

;‘ Y* (“gé)k Cy (}J) ;: T (m"'P"'el"'l)T
L 4 4
K T

) c. (I
L ke Cy, (I) L t! 7(Z)
k=0 £=0
£ d p-2 4
- J) '
D GO (1,.2)
L@ b T L g(K* 12y 82
d=0 p ~ 2=0 &2 5 ot

(Fp_z((p—l)/Q,é )/Fp_e(.paé)) 5

where Ky(p,n) = 2P T ((pe1)/2) / T (/2) T _,((3-2)/2). Integrate

(3.1) with respect to gl, then the density of g2 is given by

@ K
- - ~&5 (-83) ¢ (T)
G2)  yem) gy PEHEREE) SR T A
k=0 K ~
-  (mtp+e +1) t - (-1)% s P2
Z ér T C (I) ; L T-f%’ﬁ L C(E)gé'z
=0 d=0 b~ 4=0
Le 6o (L) (T o ((0-1)/2,8)/F. _ (,6))
?i“w;% 6lmp-2/ p-2t P 7 p-2lPs

(83Y(0,8); m+l+l) - ¥(0,g8; me+2)) .

4., Non-Central Distribution of the

Smallest and (Second Smallest) Roots in MANOVA Case

In this section we obtain the distributions of the smallest root £

and the second smallest £y, when the distribution of 0 < fxl< £2<..-.<ﬂ: <1
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is described in (2.1) of the previous chapter.
Now transform z, = l—Ei and expand C(I-Z), then the joint

density of 12> 2, >z,> ,.. > Zp > 0 can be written as

o (Y2)0(@

n 1,
(h"l) C(Pﬁnlﬂnz) exP<tr"g)l%| HE"EIE (Zj'-zi) Lyl (nl]z)K K
17d k=0 K

(-1)% ay g 0q(2) / op(2)

ngV<lw
=

Now, from the results of Pillai and Sugiyama [25], the density of ﬂl

can be written as

oo (2) (@ & o (1%
(k.2) Cy(p5ny,n,) exp(tr-Q) E; Z; n/2) k& L z; Cq (1
k=0 K s=0 M ~
- v ((p+l-n,)/2)o(n,/2),,
z;((pn2/2+s+t)/tl) Ly g%’o ((n2+;+l)72)6% 6 Cay(l)
£=0 8,0

pn2/2+s+t,1
(l-ﬁl) >

vhere O and &' are the partitions of t and s+t respectively, and
Co(psnymy) = T ((p1)/2) T (v/2) / T (my/2) T ((ny*p+1)/2). Also from

the results of Chapter II, the density of 32 can be written as
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(k.3) ¢, (p,ny5n,) exp(tr-Q)(l-zz)n(P'1)+(P-2)(p+l)/2 Z Z

k=0 K
p=-2

GOV
2=0

(\)/E)K CK (Q)
(nl/z)K

(‘l)s aK,n
CniI5

'~

a1

1o
=1
g) i I

t

< t+ﬂ+se
Ly

a'T’p,(l"Q’?_) I(l'*’eal n+p+s "e"l)m) Zg

T,“' -Y (l O-)p')

Cy(Zp1) ((p=1)(p-1)/24t+24s, ) (T, ((ny-1)/2,Y) /

1 ((p#0-1)/2,Y))

5. The Distribution of the Smallest and

(Second Smallest) Roots in the Canonical Correlation Case

In this section, we obtain the distributions of ri and rg as the
2

joint density of 0 < ry f_rg < ... < ri < 1 is defined in (3.1) of the

previous chapter.

1
As before, transform ri = l-ri, i=1,..., p. Then the density of

2 .
r can be written as

1
. (0/2)¢ (1/2) () & o (-1)%
(5.1) CQ(n,P>Q)|Eff?| /2 2; 2; (z/z)x k? K }; z;-—-fﬁr-y——
k=0 K s=0 T
L (m-a)/2esit/el) ), g g ((emat1)/2),
t=0 cg,b?

b

B o



where Cy(n,p,q) = T (n/2) T ((p+1)/2) / T (a/2) T ((n-qtp+1)/2) .

Also the density of rg can be written as

2
oin/2,. 2 © T (8/2)c(n/2) Ce(B)
6o geealpr e | L gy

$ T v (D aeayee B
b L L Cﬂ(I) t! Lo v
s=0 t=0 M,0 ~ £=0

t+z+32

N 2
L a%’p(l-ra)

N (I ) ((n-g-1)(p-1)/2+t+L+s,)
i(:' %lz,o,u) voeed R 2

(P ((n-a-1)/2,Y) / T ((m-grp-1)/2,0))

where o = {(n-q-p-1)(p-1) + (p-2)(p+1)}/2 .

6. Non-Central Distribution of the Smallest

-1

(and Second Smallest) Roots of 8.8,

In this section we obtain the distribution of =0 and g5 where

L

I((l-rg), 1;(n-qtp-3)/2+k ~4; (a-p-1)/2)

0<g g ... 8 g, < 1 has the joint distribution described in (2.1)

of Chapter 1. Then, as before, the density of =9 can be written as



nl/2

] 8

=]

(v/2) Ce(z-(3M)™) &
La

(6.1)  cy(p.ny,ny)|ehl =

s

k=0 s=0

s [ee]
(L) v v

6'
C'nZI’ Lo /_—/-_l {(pn2/2+s+t) gﬂ,c((Pﬂ"ng)/z)o
~ t=0 0,6*

pn,/2+s+t-1
(ng/z)ét Csl(Ip)(l"gl) /4! (n2+P+l)6 '3

Also, the density of g, can be written as

-n. /2
(6.2) o (pomp,n)lon] Y (1-gy)R (2 L)g(p-2) (2r1)/2
[+ - k o
o o (2) o(T-BANTT & O o (A1) e plem),
e k! Ly Lo L 80 Cy(T)
k=0 X s=0 t=0 M,0 ~
p-2
t+d+s

AN 2
zz C(,@)/ﬂv. L/-‘ a,r,u(l—gz) I(l“ggal;n+P+Sl-z-l;m)
=0 T’“,
Ty
%J g(lng’u) CY(Ip_l)((n2-l)(p-l)/2+t+2+se)

(Pp-l( (1’12-1)/2 >Y ) / Fp_l( <n2+p"l)/29v) )

: s



CHAPTER IV
ON THE DISTRIBUTION OF THE 1TH LATENT ROOT
UNDER NULL HYPOTHESES CONCERNING

COMPIEX MULTIVARTATE NORMAL POPULATIONS

1. Introduction and Summary

Khatri [12], has pointed out that one can handle all the classical

problems of point estimation and testing hypotheses concerning the para-

meters of complex multivariate normal populations much as one handles

those for multivariate normal populations in real variates. Further

Khatri [12], has suggested the maximum latent root statistic for testing

L6

the reality of a covariance matrix. The joint distribution of the latent

roots under certain null hypotheses can be written as, [ll], [12],

q ,
(1.1) e 0 WP (@ -w )™ I ()
j=1 J‘ J i>j J
q
vhere ¢, = [ I'(ntmtq+j) / {T(n+3) T(m+j) T(3)} ana o< WS WS Ll
J=1
<w f 1. We may also note that when n is large, the joint distribu-

q
tion of nw. = f. j
3 357 J

1

q
q 2
5 El f? exp( - z; fj)[igj (fi-fj) }

(1.2) c
j=1

lpu,q,OEff.“ffq<@,cmbewﬁmn%
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where ¥ means summation over all permutations (jl>jg’°"> jq) of
(1,2,..., ), and |A| means the determinant of A.

For Proof, see Khatri [10].

Lemma §.

< s m! n't s 1 m, n.
L I [x9@-x.)dax]= 1 ‘Fj x9(1x.) 9 ax.] ,
g )9’ le J J J j=l x J J J

where 8':(x < X S%, S eee Sx S 1), and on the left hand side

s
(m;, n;),..., (mi, ni) is any permutation of (ms, ns),..., (ml, nl) and
the summation is taken over all such permutations,

Proof is similar to Lemma 1.

3. The Distribution of Wq_l

In this section we obtain first the cdf's of Wq-l and fq_ and.

in the next those of wi and fi. Note that

; < x} = < <x<yw <
(3.1) Pr {Jq < x} = Pr {wq < x} + pr {wq Sx<w 2 1}

-1 -1

Khatri [11], showed that

B By eee By
. B, By

(3.2) Pr{wqf_ x} = cll(si+j_2)| =c |- . ' ,
By Pq Bog-z




k9

where c., is defined in (1.1),B,

X _
1 jrje J wm'l+3-2(l~w)n aw for
0

i,j=1, 2,..., ¢ and (Di+j-2) is a q x g matrix. Now the deter-

minant in Lemma 2, can be written as

q-1+t g-2+t

. 1 2 tq
(3.3) z;'S1gn (tl,...,tq) Wiy Wi PeeeedWS
where (tl,...,tq) is a permutation of (0,1,...,9-1), sign (tl,...,tq)
is positive if the permutation is even and negative if the permutation is

odd, and Zl means the summation over all such permutations. Then (1.1)

can be written as

4 n n X
(3.4) cl{jzl wj(l—wj) /.

£

sign(tl,...,tq)

Jlﬁ"')Jq_l

q-l+tl q-2+t2 q-3+t3 tq q--2+t2 g-1+t
wq w W + W

1
. ses V. w.
Jji je Jg~1 q Ji

q-3+t3 t t q-l+tl q~2+t2 1+t

W, veew o+ v w T, W ces W,
je

q_]'
Jja-1 qa Jl Ja

Ja-1

First taking summation over (jl,..., J -l)’ the permutation of

q
(1,8,+..,9-1) and integrate Wq over X <'wq <1, and apply lemma 1, we
get
N < < < = il 28} A
(3.5) Pr(wq__l Sx <w, 1) c112;-s1gn (tl,...,tq) [Bq~l+tlsq-2+t2
".B +B B’ DOOB +0.-D }'3 'OOB' ] 5
tq q-l+tl q-2+t2 tq q—l+tl q—2+t2 tq



1 s »
where ﬁ£+j42 = J Wm+l+'3-2(l-w)n dw, then (3.5) can be written as

q
.T s(k) ]
(3.6) o ) lE 1
k—l
where |(S(k) )| is the determinant obtained from ‘(B )| by re-
i+j- 2 i+j-2 ‘

placing, the kth column of I(Bi+j42)l’ Py> by the corresponding Bl's.
So we proved the following theorem.

Theorem.i. If the joint distribution of w

1oeees Wq is given by (1.1),
then
3
(3:7) Pr{wq_l < x} = e; [, l(ﬂ(+J 2)|
k=0
where I(B(+J 2)] = I(Di+j-2)|’ and |(3(+J 2)] is defined in (3.6),

and c, is defined in (1.1).

Theorem 2, If the distribution of fl,..., fq is given by (1.2) then

(3.8) Pr{fq_l f;x} I(Yifg 2)| s

k—O

X .
B _ mi+j~2 . .
where Yi+j-2 = Jo W 97 exp(-w)aw, <Yi+'42) is a g X ¢ matrix and
(Y (+J 2) is defined similar to that of (3.7) and c, is defined in

(1.2). Proof is similar to that of Theorem 1.

50



4, The Distribution of W,

It may be noted here that

(h.1) Pr{Wi < x} = Pr{wi+ < x} + Pr{wi 5 x < w, },i =1,.0.,0-1 .

1 i+l

To evaluate the second term of (4,1), we may write

— o o
2 < . N N 1
I - N ,
(k.2) > (wi wj) Lj sign (tl,...,tq) Zﬁ L Wi WT e
L ERLTEL
7 2 o . o4 ] o
oo w471 Ez w 37 a-ive g
lq-i - = jl je ji
le"'JJi
where (il""’ iq—i) is permutation of (i+l,...,q) and z
dpseensiy g

runs over all such permutations; (jl,...,ji) is a permutation of

(1,000, i), and b runs over all such permutations; 22 is
: dl,e.e,di
the summation over the terms (q%i) terms of obtained by taking g-i,

(dl,..., ), at a time of q~1t+t , @-24ty, 0., o

a
Substituting (4.2) in (1.1) and using Lemma 1, and Lemma 3, and as

o .
g-1

in Section (3), we get

(k.3) Pr{vy Sx<wyq)=cy '[:‘2 “Biw‘-e I

(1)

n O R . . -
where (pi+j_2) is a g x g mnmatrix obtained from <Bi+j-2) by repla-

51

cing i columns of (Si+j-2) by the corresponding 8! 's. Therefore by

(k.1), (4.3) and Theorem 1 and reduction process, we cen get the



distribution of Wi.

It may be pointed out that, [23],

(k.h) Pr{wi <x; mn) =1 - Pr(wq_i+l S1-x; n,m)

where on the right side of (L.4) the parameters m and n are inter-

changed, hence the distribution of LPE [ll], can be written as

(k.5) Pr{wl <x}=1- cll(6i+j-2)l >

1-x -
5 - I n+i+j-2 . am 5 .
vhere i+g-2 = z (1=z)" dz, and ( i+j92) isa qxq
1 n+i+j-2 m
matrix, similarly, if we define 5{+j—2 = J z I (1-2) dz, the

distribution of wg can be written as

Q
Y k
(4.6) prliy <ad =1 -y 168D ),
k=0

where, as before, §(5§E§_2)' is the determinant obtained from

l(éi+j-2)l by replacing the kth column of |(6i+j

s I | (O) — . N
ding 8} 's, and (ai+j-2) = (6i+j-2)' A similar method gives

) < x} = < <
(4.7) prif; <xb=pelr,  <x} + el <x £..43

i=1,2,0.., g-1, and

_2)l by the correspon-
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CHAPTER V
ON THE DISTRIBUTION OF THE SUM OF THE TWO SMALLEST ROOTS

OF A COVARIANCE MATRIX AND NON-CENTRAL WIIKS® A

1. Introduction and Summary

In this chapter, the distribution of the sum of the two smallest

roots of a covariance matrix, studied for p = 3, 4 and 5 when Z =T .

This criterion is useful for various tests of hypotheses, for example,
those regarding the number of independent linear equations satisfied by
the means, pit’ i=1,e4e, P, t=1,..., N in N-p variate normal popu-
lations with a common covariance matrix (L1], [251). The distribution of
the sum of the two smallest, largest and the sum of the roots are consid-
ered for p = 4, In the last section, the non-central distribution of
Wilks' A criterion has been obtained for p =2, 3 and 4. In this con-

nection a lemma has been proved using some results on Mellin transform.

2. The Distribution of the Sum of the Two Smallest Roots

Let T = I, in (5.1) and transform g; = 20,

5> i=1,..., P, Wwe get

the joint density of gi,..., gé in the form

t

g 11 ! 1 1
(1)  Kom) T (e 1) I (g -g),
i=1 > J
< gt € gt ¢ | & gt <
O gl g2 — e gp .
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In this section we will derive the distribution of Ml

= ! 1

=g *& for

p =3, 4, and 5.

Case i, Put p =3 din (2.1) and let M = Li + zé, G = Eiﬁé, where

3{ = gi/gé, i =1, 2, Then the joint distribution of M and gé can be

written in the fom

-
g3(l+M) g=,3m+5 Me/h

J

O

(2.2) K (3,n) e ¢ (1-M+G)aG, 0 <M <1

Further, transform -Ml = ggM and we get
?

I ~(gl,)
(2.3)  K,(3,m) &l" W {(es - 1/2)° - Mo/ (b(mi2))} e R

where

2m+2}

Ké(p,n) = Ki(p,n) / {(m+1)2

Now integrating gé from Ml to ® we get for 0 <M f 1

/ M onre
(2:3) k,(3,n) e Mo Lagy (M, m+3) + ap MY (M ,®;5 m2)

+ a, MiY(M ,@; mtl)]

where a_ =1, a, = -1, a, = (ml)/{k(m2)}.
Now we consider the case when 1 <SM<2. Let L; -1 - E;,
i=1, 2 such that M' = 2-M, G' = (1-M+G), then the distribution of gé

and Mi can be written in the form
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~g!(3-M") 1o 1o ent2 .2 1Mt /2 2

e o IO e [ ol
m+2

1-M' _

M %m+l§i‘m+2)] :

Integrate (2.4) with respect to gé , from M1/2 to Ml and combine

/
the result with (2.3), then the distribution of M. can be written in

1
the form
-M 2
1], 2mt2 i .
(3+5) K,(3,n) e [Ml’“ Z a, M Y0y o5 me3-1) |
i=0 j"
Y
Ml ‘g
2m+2 -1 2m+2 m+2 3
+ 2 (m+2) IM g3 (Ml"' g3) € dg3] s
1/2

O<Ml<co

Case ii. Put p =14 in (3.1) and integrate gﬁ, then the distribution

of gé and M is given by

m+2

~g1(2420)
(2.6) Kby e 3 PR L (o) g™ [ (amo{ (1a/2)?

r=0

- Me/h(m+2)} + a20M2 {(1-M/2)2 - MZ/h(m+3)}] ,

where a = (m+2)! / (m+2-r)!, b = (m#l)!/(m+l-r)! and 0<M <1,

C=m!/ (m-r)! . As before transform M, = géM, and integrate gé R

then the distribution of My, for 0<M<1, takes the form



m+2 3

-M .

) 2B gam et ) ) BEME ) 2Ty
r=0 1=0

2
a{Y(2M ,®3 2m+5-r-i) + a om+h XU jr+i+2

i=0

Pm+3-r-i)}, 0 <M <1

201v1 L2 M b, Y(2

o7

where aé = a, ai = -(a+b), aé = a(m+1)/{ (m2)43+b, al = -b(m+l)/b(m+2),

3

by =1, b, =-1 and b, = (m+2)/4(m+3). Now, when 1<M<2,

fore, transform to M' and G' and integrate out &', and further
2

transform to M = 2-M' and M

Ml/2 and M; and combining the result with (2.7) we get

m+2 L
M, kit
- 2 2 Y ] -l
(2.8) 2P (m)e Ty (1) [Mlm+ PRl
r=0 i=0

m+e

M Y(M ,®; 2m-r-i+5) + (m+2) {(a-c) v (m+2 ) (-

L
i=0

m+2

g(r,irl) + (e-b) ) (MP)(-1)* glr,1) - c(m3)™

i=0
m+3
N
L, T3y ((0)f 2g(r,1),  o<m <=
1=0

where

1 g3M and integrate out g3 between
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g(r,i) = 2"71°8 Nf’lﬁ‘%'i Y(M,, 2My5 3mhei-r)

l,

[
]

ba, = -b(asb), c, = (C+a) (m+1) (m+2) ™" + Ub

€1

~(c+b) (m+1) (m+2) 7T, and ¢ = C(mrl)/{h(ms3)]

e}
1i

Case iii. Put p =5 in (2.1) and integrate gé and gﬁ, then the dis-

tribution of gé and M is given by

6
g3(3+) bl
(2.9) K2(5,n) e 3 é3m*5 M2m+2 \ M? g32m+7 i-j
r=0 :
where T = Kﬁ,i,j/(m+l)’ ﬂl = (Kl,i,j- Ko,i,j) / (mi1)

My = (K 5 5% K3 g )/h(me2) + (K 5 5= K 5 )/ (wil)

0519J

=
|

= (K )/h(m+2> - Ky 4 /(m+1) ,

1,i,5" %3,1,;7 &

(Kz,i,j- Kl;’i’j)/u(m'*-e) + (KB,i,j-l- Ksji,j)/El’L(m+3) s

=3
=
I

ﬂ5 = (Kh,i,j' K5, )2 (m+3), and ﬂ6 = K i /2 (m+l)

and the Kz . . are defined by
=3
2m+7-1-,66 ik
=V Vo3 [ () -
(2.10) Kﬁsi,j =/ L 23+l [az (2m+7-1-£6)_j
Jj=o0 i=0

a§2)(2m+6-i-26)_j + a£3>(2m+5-i—£6)_j]

where



L
and

K =
and
(2.11) agl) = (m+3)__i+l

) @)

1 o

LD o)
a§l) = (m+l)_
(@

(h 2

1 3
o)~ o)

and (a)—i+b = a(a-1) ~~-=(a-i+b+l); a., =2, a,

1 2

i+3°

b. =4, b, = 4m+8 and b, = (2m+7-1)(2m+5-1)

, for £ =0, 1, and 2,

" 4-1 for £ =23, 4, and 5 |,

b for £ =0, 1, 3

, a£2) = —ai(m+2)_i+2, a(3) = (m+2) P41

s aie) = bi(m+l)-i+3 , a§3) = -cl(m+l) 141

’ aée) = -e; (1) 1o aé3) = (1) ;40
a§2) = 'Ci(m)—i+h > a§3) = gi(m)-i+3

> a£2) =k (m) 5. a£3) = =4 (m) ;40
@) _ (3) 23 _

> 75 L > 75 -i+1

It

1 i

2m+7-i, i i 2;

+i-1 for i~ 3;

29

c, =2, c, =2m5-1i for 1~ 2; d, =2, d,=2mt and d; = (m+2)2 +

1 i

(m#3-1), for i 3; e

3
Y, e, = limt6, e, = T (m+i)__2 and

1 2 3 s
3
= - s > . = = —
e, KEO (m+2 1+K)3_K(m+l)K for i 7 kj g =2, g =2m2, g = (m+1),

+ (m+2~-i)2 for i~ 3; 14

1

=2, 4, =2m-i+3, 1 > 25k

1

=L, k, = Ym+ly
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2 - .
ki = km”™ + 16m = bim + 17 - 71 + 14 for i~ 3,

As before transform Ml = géM, and integrate gé, then the distri-

bution of M for 0 <M< 1, takes the form

6

Y, LMY (3M,,%5 3mbl0-i-j-r) /
r=0

on2 -M

(2.12) K2(5, n) M

1

4 3m+10-1--r

Now, when 1 <M <2, proceeding as before, and combining the result with

(2.12) we get

(2.13)  K(5,m) M e N (a)™ ) ML - v /2,

m+2 2
.. m+2 N n+2 s -s ,s+it+j+r
3mH10-i-j-r) + 2 L U0 ) e 3
§=0 r=0

Y(3Ml/2,3Ml;hm+lO+s-i-j-r)]

vhere K3(5,n) = K2(5’n)/3hm+lo >
o /(m+l)(m&2) - K3 (m&E)(m+3) + K5 . /(m+3)(m&h),

=
i

p, = Kl,i,j/<m+1><m+e> . <K3,i, 3 5 (02)(me3) - 2K o o/ (e3) (aeh)

g
PO
|

1,j/(m+l)(m+2) + Kﬁ’ /(m+2)(m+3) + K 5 /(m+3)(m+h)
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3. The Distribution of the Sum of the Two Smallest and

(Largest) Roots and Their Sum and Ratio of a Covariance Matrix

= ! 4 gt = gl 4+ gt : 1
Transform M) =g teh M g3 + g in (2.1) and integrate e

and gé over the region 0 < g! < Ml/2 and Ml/2 < gé < M2/2 respec-

tively, then the joint density of Ml and M2 can be written as

-(M +M,, ) N i
" 2”‘1}:()(2 L()(z)

k=0 i=0

(3.1) K’(h n) e

s
XU g 5= +k+2 +k+2
LMy M (aj Mg ~by MT ) s

i
where
KI(4,n) = K (4,n)/273

and

ay = {(m+1)%415 (meicr )} /8 (mritl ), (meke3),

a, = -(m+k+6)/2(m+i+l)2(m+k_2)3,

ag = -(m+k+6)(m+i)/2(m+i+l)2(m+k+2)3+[(m+i+2)(m+k+l)2]-l—(3m+3i+l3)

{h(m+k+h)+(m+k+l)2}/(m+i+3)2(m+k+l)u
2, = -(m+i+6)/2(m+k+l)2(m+i+2)3,
ag = {(hm+hi+25)(m+3+i)2-8(m+i+l)(m+i+5)2}/(m+i+3)u(m+k+l)2

b= 0, b, = {(m+k+2)3(m+i+6)(m+i+1) = (m+i43), (mtleth)

(mtk1)/2 (m+i+1)), (mte1) ),



62

b, = (m+k+6)/2(m+i+l)2(m+k+3)2 - (2m+2i+l)/(m+i+l)2(m+k+2)+(m+i)/

2(m+i+2)2(m+k+1)+3/(m+i+3)(m+k+2)+(m+1«:)/2(m+i+h)(m+k+1)2 s

6
Y g )
by = ), Cilﬂig / (m+1+1l)(m+k+12)
11oto
where
= = = = i >
°1,17 %12 % %2,17 %3,5 7 %5 7 %51, T %p,1, 70 ¥ T
= - = ~L = = = = i
;3= -3/2, ¢y =5 ¢ 5=5/8, ¢ =1 ¢ 9=3, ¢ =3
- . -1 - . Y Y
Cp 5 = 5/8, ¢y 1 =% O35 3/2, c3 ), ooy 1 55

®hp = O3 = 3 o5 =58, oy =-1/8

by = (3m+3k+20 )/ (m+i+l) 5 (mHkth) (mtle+6) +(mi+2 ) /2 (m+i+3 ), (mtk+2)

+ (em+2i+9) /b (m+i+3) 5 (k1) - (bm+hi+25)/8(m+i+5) o (m+k+2)

Integrate (3.1) with respect to Ml’ then the density of M, can be

written as

m m
(3.2)  K](4n) e Y Oy2)™ ™ (@)
k=0 i=0
>
E; MZ'j(ajM2+k+2 Y(O’M2;2m+j+l)fbj(O,M2;3m+k+j+3)).
j=1 '
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Iy may be pointed out that the density of M. can be found from (3.1) by

1
integrating M,. Now, let T =M +M, in (3.1) and integrate M; then

the density function of T can be written as

1 Lm+9 e-T

(3.3) T(Tmii0) T

Further, transform Rl = l/M2 in (3.1) and integrate M2, then the

density of R can be written as

1
(3.4) 16, (tm) (1my )~ 0D 2L 5y pyk My gy
' k=0 i=0

where

K3(u,n) = [(km+10) K;(4,n) .

4, The Hon-Central Distribution of Wilks' Criterion

In this section we shall derive the non-central distribution of

P
(°) - 7 (1-r,) where r
. i
i=1

 the characteristic roots of the equation

Wilks' criterion, namely A =W are

lj.i., T,
s, - x(s, + )l =0,

vhere El is a (p x p) matrix distributed non-central Wishart with s

degrees of freedom and a matrix of non-centrality parameters Q and 82
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has the Wishart distribution with t degrees of freedom, the covariance
matrix in each case being E . For this, first we state below a few re-
sults on Mellin transform and then prove a lemma,

Theorem 1. If s is any complex variate and f(x) is a function of a

real variable x, such that

(4.1) F(x) = jm x5t f(x) dx

JKe)

exists. Then, under certain conditions [6]

.C+ie
(4.2) £(x) = 5o |  xp(s) as .

cmiw

F(s) in (k.1) is called the Mellin transform of f(x) and £(x)

in (4.2) is called the inverse Mellin transform of F(s). Now we state
another theorem [6]
Theorem 2, If fl(x) and fz(x) are the inverse Mellin transform of
Fl(s) and FE(S) respectively, then the inverse Mellin transform of
Fl(s) Fz(s) is given by

c4ico =)
(k.3) 5%3 Ic_iw x5 Fl(s) Fy(s) ds = JO fl(u) fe(x/u) . %? .

Further we use theorem 2 to prove the following lemma.
Lemma 1. If s 1is a complex variabe, a, b, ¢, d, m, n, p and £ are

reals then



65

c+i®
1 -8 F(s+a) F(S+b) F(S+C) F(S+d)

(L) 1=5m jc-im X U(s+a+m) 1'(s+b+n) L' (s+ct+p) I'(s+d+l) o
(. gyl o (ard-a) z; (p), (bta-c), (1) ET
= I(m+n+p) Ly k! ri (),

k=0 =0
I'(min+pt+k+r)

Tminipriiar) 37 o (@Hm=b,n¥pr minpcr;

min+p+r ,mintp+likir; 1-X) .

Proof: Let F(s) = {T'(s+a) I'(s+b) ['(s+c)/T(s+a+m) [(s+b+n) D(s+cip)} ,

Fy(s) = I'(s+d)/T(s+a+£), then

(1-x)°

o (p), (b+n=c)
(4.5) £,(X) = X110 P (minip) 17 ), o l{m+n+p)rr

r=0

2Fl(a+m-b,n+p+r; min+ptr; 1-X)

and

Now by the use of Theorem 2, we get

d

X I < (»), (vim—c)
) Twmw) J, u

L r!(mtn+p)
T
r=0

a~d-4 m+n+p-1

(4.6) 1= (1-0)

(1-u)* 2Fl(a+m-b,n+p+r; m+n+p+r; 1-U)(U-x)z"l a
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Further, put u =1 - (1-X)t in the above and by simplifying, we have

(p), (bn=c)_
r! (m+n+p)r

[==]
mn+p+L-1 Il « (d+£,-a,)k

Ly Kt
k=0

d
(5.7) I-= XI‘&)Xlz(m+p+n)

ir-s

o (atm-d), (mptr),

)k+1+r min+ptk+itr-l

(1-x (1-’c)’5'l dt.

L TI{mmtpir).
. 1
1=0

Now integrate (4.7) with respect to t, then the lemma follows immediately.
The moments of the Wilks' Criterion has been given [4] in the follow-

ing form.
.8)  muPR < [T nede) T (9)/F (8/2) T (av) || (nsnevs 0]

1, - p
where Vv = 3(s+t), and Tp(u) - mp(p-1) C(u-3(i-1)).
i=1

By using Kummar transformation, (4.8) can be written in the follow-

ing form

_trQ
(k.9) E{W(P)}h LF (h+it) T (v)/F (t/2)r (h+v)] Fl(v;h+v;§) .

Case i. Put p =2 in (4,9), then

(4.10) Ew@h o L(2v-1) e-tri' Y __._"E.,_(;Ql .
25T (4-1) o f; k.

I(r) (r+3)
T+, 75T (rEs+k,)
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where r = h+it-3 and k) i_kz Z 0, k, +k, =k , then

e a v Q
oy o) - e § 7 O
20 (1) k=0 K )
§]ﬁi— Jc+3j {W(2)}-h-l\:l"(r)?(r%)/f'(r%mkz)I‘(r%s.%_pkl)]dr )
c-i%®

Now, by the use of the results of Consul [7], we get the density funcition

of W(2) in the following form

(haz) @) - HEED (I3 gy TV (M@

Lo L kT (s+k)
27T (t-1) k=0 K
(1-'w(2))s+k'l 2Fl(%s+k1,%s+k2-§;s+k;1;w(2)) .

Putting = O, then the central case can be written in the following

~

form

(4.13) f(w(z)) - 2(av-1) {W(g)}%él w(z))
2°T (t-1)T(s)

JF. (5/2, (s-1)/2;
s;l4W(2)) .

It may be pointed out that (4.13) can be reduced to

1 8-1
(4.1k) m%%’f%—iy w(@3(e-3) (. (@), ,

by observing that



68
(5.15)  oFy(8/2,(s-1)/25551-0) = 2577/ (14 yT)° ([28])

Also the density function of W(2) can be written in the following form

by the use of the results in [6].

1 e v) Q
) r®)) = ZREL R0 g0y L Y Y (—T'{;é—kz)

k—O K
s+2k, -1
k k. -k s+2k, -1
L 2(14w(2)) 172 Zi ( rz )(_l)r{w(Q)}r/2
r=0

2
2Fl(kl—k2; (r+l-s)/2 « k_; K, -k, +1; 1—w( ))

Setting r = 0, then (4,16) reduces to (L4.1h).

~

Case ii. Put p =3 in (4.9), and by the use of (4.2) the density
(3)

function of W can be written in the following form

[o+]

I,

1 Q
(ar) o)) = 7y ew (b)Y z v )KCK( )
3 I,
| =

L (OB R Ted) Ten) ar
oI ® f(r+§s+kéj'r(r+§s+k2+§) T(r+fs+k,+1)

c=-i

> =
where kl k2 - k3 0, kl + ké + k3 =k .

By (L.5), the density function of W(3) can be written in the form
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3
Es-l

I_(v 1
a8y w3y - 3£ ; exp(tr-0) (w(3)32(4- 1) (15(3))
T5(%72)

(M@ o (Be) (B(s-1)+k,)

o=}

~ N

L L ETGEsEE) L T1(3s/2¥K)_
K r=0

(1-w(3))r+k F. (%(s-1)+k, ,s+k, +k, +1;3s 2+k+r;l-W(3)) .
271 3 172

Case iii. Put p =4 in (4.9) and by the use of (4.2) the density func-

tion of W(u) can be written in the form

| L, () R A

(h19)  e™)) = L (D) 0 LT

) 0 K

- o T r 1y 7 Pload { (“)}‘T

1 c+i (r) T(r+3) T(x+1) s(r+§Q W dr
am Tc-i® T(r+%s+ku)F(r+%s+%+k3)F(r+%s+l+k2)F(r+%s+%+kl)
) L
where ky 2k, >k 21X, 20, and ;s Kk =k
i=1

By using Lemma 1, the density function of W(h) can be written in

the form



.20) ey =

Io(v .
I‘;%';) exp(tr-0) [w*)E(82) (15 (4))2s-1
o v M@ o Gs3)) o
L) - Y,
k=0 K =0 J ol

F(3s/2+k+j-kl+r)

(%(s+k2)r(%(s-l)+k3)r

l'(3s/2+k_kl+r)r: (l-W()'l'))k.“"J'l'r 1_'(2S+k+j+r)

3F2(%(s-l)+ku,s+k2+k3+r,3s/2+k-k +j+rs

1

3s/2+k-kl+r ,28+j+k+r; l—W(LL) )

70

It may be pointed out that the non-central distribution of Wilks' criter=-

ion could be found for more than p = 4 by extending Lemma 1.

However

the distribution would be complicated.
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CHAPTER VI
DISTRIBUTION OF RATIOS AND

DIFFERENCES OF THE ROOTS OF A COVARIANCE MATRIX

1. Introduction and Summary

While the earlier chapters deal with the studies of individual roots
of some matrices in multivariate analysis, this chapter presents first
the distribution of differences and ratios respectively of characteristic
roots which follow the Fisher-Hsu-Girshick-Roy distribution. In regard
to differences, the study has been carried out up to (including) the
four roots case while for the ratios, results have been obtained up to
five roots. The last section deals with the non-central distribution of
the ratios of a covariance matrix which follow (5.1) of Chapter 2. The
study has been carried out up to (including) the four roots. The distri-
butions of such ratios are useful in testing the hypothesis 621 = 22;

& > 0 unknown, has been pointed out where X, and §2 are the covari-

~L

ance matrices of two p-variate normal populations.

2. The Distribution of the Differences

of the Characteristic Roots

In this section we find the joint and the marginal distributions of
of the differences ei" ej’ i>3j when p =2, 3, 4. The joint density
of & p non-null roots of a matrix derived from sample observations

under certain null hypotheses inecluding that of Chapter 1, can be



expressed in the form

p
(2.1)  c(p,m,n) igl {o7(1-0, )"} igj (8;- 0)

< <06 <
0<8, <8, <...

various situations described in [22].
Transform ¢, = ei/ep’ i=1,..., p~1 then the distribution of

Qyseees U1 ep can be written as

mp+(p-1)(1+ £)

-1
. {

P
(1-6 )" 1
.

(2:2)  c(p,mn)0 €(1-0;9 ) (1-q;)]

hE

Now consider the transformation di = ep(l—qi), i=1,..., p=1. Then

dl,..., d_ ., 8 will be distributed as
p-1 P
o < (-m)
— {(=m
5
(2.3)  cleamn)lp] T (4-a,) ), ),
l<J d=06

® k

o v (1)), » -
Lg L_, k! C5 (R) CK (R) enplp (l"ep )np. ’
k=0 K

where X,8 are the partitions of k and d respectively and

D = diag(dl..., dp_l). Now integrate (2.3) with respect to QP’ then

dl,..., dp-l are distributed in the form

i - < g.< <
>J(qi q,j), o q'l—"'f-q'_p-l l.

72

f ep < 1, and parameters m and n are differently for



o]

<-m> o o (-1 (-n),
(2.)  clomm)l T (a-a) [}, L oL %)
i<J d=0 & k=0 K

Ce(D) I(dl,l;mp-d,np—k):\, 0 < dp_l <... < 4 <1

For p =2, (2.4) reduces to

m n
(2.5) £(d;) = c(2,m,n) [ L( )(-1)? L( ) dm+n+l (i+3)
J=0 i=0

I(d;,1; m+,j,n+i)]

For p =3, the joint density of 4., d2 can be written in the form

@ k
(2.6) c(3,m,n) [ - E; L k! L g26 k) L
4=0 15 k=0 K T i+j=t

h {(dl+2 dg+l d::1l'_-+l dj+2

) I(dl,l;3m-d,3n-k)}]

where gg k 1s as defined in the previous sections and h?. are such
2
J . _
that CT(dl 0 )= % h%j dl d2 , T 1is the partition of + and
it+j=t
0] d2
t = ktd

Integrate (2.6) with respect to dy, then the density of 4, is of

the form



® k
S o (R,
(2.7)  c(3,m,n) [L ) — Y -
d=O 6 k::o K
t+l+

nga,lc) z {T_T 1(d,,153m-d, 3n-k)}]
T

i+j=t

Again, integrate (2.6) with respect to 4
of d2 is given by

<o

(2.8) c(3,m,n) [ z; E;

a=0 &

("m)a T
] Ls
K

@ -1 8

N nT

T
Lag(B,K) L 13 i1+2;
T

i+j=t

lD

by parts, then the density

( l)k('n)K

{dt+h1(d2>ls3m=d93n‘k)

+ ™ ((1+2)1(,,1;3n-a+143,3n-k)

- (i+3) dg+2 1(d,,1; 3m-d+i+2,3n-k))}]

Now let &6 ., =d.-d, =96, -0 then the distribution 512 and dl

12 1 2 2 1’

can be written in the form

v (oo
(.9)  eGmn) [ ), ) —a L4
d=0 6 k=0 K
J+1
< r j+1 grrlgt+e-r
L, (e ey
r=0

I(d; l;3m-d,3n-k)}:\

< <
0 612 < dl 1

4
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Integrating (2.9) with respect to dl, e get the density of 612 in the

form
[~ @ k
— - — (-1 n .
(2.10) c¢(3,m,n) [ R ™ N (1) () TﬂgT 31 nt
: 3T L L a: Ly L ki L (8,6) L iJ
d=0 ) k=0 K T i+j=
J+l
r,J+1 t+h
(), L0/ oe-31(-653 18, 153m-4,30-k)
r=0
+ 6§+lI(512,l;3m-d+tf3-r,3n—k))}] .
For p =4, the joint density of dys Ay, d3 can be written in the
form
[ev] o] k
voolms oo e o g
(2.11)  e(hm;n) [ Lo LT3 L4 KT L &(s,k)
d=0 & k=0 K T
z; By e(d,-d. ) (d°-(d,+d, ), +d,d. )
il,i2,13 273/ N T e T3/ M e
1l+12+13=t
I(dl;l; a,b)] >
where
i 4l i+l i+l
- _ _oa L 2 3
a =bm-d, b=ln-k, c= d; d, dg

Integrating (2.11) with respect to dl, by parts, and further with
respect to d2’ we get the density of d3 in the form
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© © k

o - (m)g (-1)7(-n)¢

VR OV KA T

(2.12)  e(omn) 4, ) =3 L 4L TR L8(s,K)
=0 & k=0 K T
1 +i,+T

o . 141 20t ©
ok 1153533 E [- (1;32)5(1,#,%5)3
1ptipHig=t

I(d,15€+3,b) 2d,I(d3,15e+2,b)

I(d3,138,0) + (1430, (5, H,77)  (3,#2) (3 (3 #1,%6)

, 1,43
d31(d5,1;e+1,Db) d 1(d3,15e,+2,0) ]
R EPT N EREE T ) I VDN ERERD) ’

vhere

e=1l+12+)++a, el=a+ll+2

Similarly starting with (2.11) we can obtain the density of dl as

o o k

T (—m)6 T ('l) ('n)K < T
(2.13)  ellomn) 4 7, —m \Z, k! Lo B(s,K)

d=0 & k=0 K I

- T 2(i2+213+9)

. ™ 1(d;,1;8,0)
' 1osig,in, (Ao42)(i,t1a15) 12438 »
il+12+i3=t 1mers 3773TR T3

and the density of d2 as



7

m k
o v (Dm)e g
O L4 T ! &(5,K)
k=0 K

NS

1l+h
N T 12+i3 h[2(11-13)d
' h, ., . 4d 1(d,,13a,b)
L ip,1p,1g 2 (1 +2)3(1 ¥*73 2

1l+12+13~t

2
I(d2,15e1+2,b) ] 2d2I(d2,l;el+l,b) . dEI(d 1; el,b):l
) (E572), ~ A 3)(E52) (i)~ (1,92)(5543);

Now make the transformation

= =8 = § o) =9 -
(2.15) dl 6l+ 62+ 63, d2 ot 63, d3 3> %13 3 Gl

Using (2.15), then from the joint distribution of 6., d, can be obtained

in the form:

o o (m)y o o (-1) (-n)
(2.16)  £(8,4,) = c(k,m,n) ) 3T Ly~ Zg(é ©)
d=0 & k=0 K

+

< [ v* 11+1 ) §THL gb+5T 5,
o L{ 1,12,1 2 1,72,
1l+12+13=t

2d2

+ T551§75) I(d2+6l,1;a,b)]

Further, integrate d2 over 0 < d2 <1- 61 then the distribution of
&

1 can be written in the form
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i,,i,,1 J
s e e 1°72°73 3 2 0
1l+12+13—t

141

R ] ¢

N 1 r+l _t+6-r a b

{ Lo O )87 dg (046, )7(1-dy-8,)
r=0

%

2
(t+6-r * (i3+4)(t+7-r))/t+6'r dd2]

Similarly the density of 62 can be written in the form

(2.18)

C(h‘,m’n)

k

:’('l) (“n)K §1 ) Yﬂ T
L k! L 8(5 k) Lo

K

h’ . .
L i ,i.,1
I L TE
T 1l+12+13—t
ll+12+6. ‘ i +i +5. - i+ +4. o
N R~ T 1T AP e~
C(YEY 2 Y (v E Y (R

[j { r=?il+3)2 - (izSZ)(ilIE) * ?gl+2)2 }

i +2 i+l
: \é 12+2 3 12+1
6r6t+8-r L(r)-é(r)
2 3 a b r=0 r=0
S (8590,)%(1-5,-5)°as .+ T )
i +3 1,41
o ipt3 R Al
LR -0 (%)
“r=0 r=0
a(s,,7,0) - (3 3 ) als,,r,1)
i 43 i +2
R% 1,*3 ’% i+2
4; ( r ) = ZJ ( 2 )
= r=0 N
AN i 72 -/ q(52,r,2):l >
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where
i +i,ther+]
, (15, 632 3 e +2-] .
1(®psr53) = 9 Jo Loy (23 (1-65-05)" a4,
3
j=0,1, 2 .
Similarly the distribution of 513 can be written in the form
o ©« (-mg T Y1(_n)K( 1) T .
(2'19) C()‘*:msn) L__, Z_, ar i e "'"“"é,g(ép;c) L
a=0 § k=0 K T il+i2+i3=t
T
. . . O
iys35,15 713 [{A(r) 5§3 I(5l3,l;a+7+t-r,b)
t
- A(r) 5 +7 1(513,l;a,b)}/t+7~r] .
where
i +1 i +i,+5
31 13+l r 51 3 +13+5 r
A =] g 3T - ) (BT i,
r=0 r=0
i +i,+h i +2
273 3 .
. 12+1 +h N i +2
vy (PO - ) OGO e,
r=0 =0

3. The Distribution of the Ratios of the Characteristic Roots

The ratios of the characteristic roots are useful in various respects,

but one immediate use can be seen from Chapter (1), for tests of hypotheses

vhen & is not known.



82

o)

N ("n)
(3°6) C(ll'am:n)(m]_m2)m(l'ml)(l"mg)(mz- l)[ L‘_;, Q"E:—K' CK(Ml)B(Can—*-l)
k=0 K

e—

{B(c2,2)—(m1+m2)3(c2+l,2)+mlm25(c2+2,2)}] s

where

M o= diag(ml,mz,l), c, = bm+k+10, c, = 3m+k+6 .

Now let n, = l/m2 and integrate with respect to m

5 then the distribu~

tion of nl can be obtained in the form

k
v oo (m)yg o 10
(3.7) c(h,m,n)n?(l-nl) L % B(cl,n+l) L Z; b(m,a) Ca(o nl)
k=0 K i=0 &

[B(c52)5(51,2) = £(s;+1,2)((n+1)B(c,#1,2)m,B(cy,2))

2
+ B(sl+2,2)(nlﬁ(c2+2,2) + nl(nl+l)ﬁ(02+l,2)—nlB(sl+3,2))}

>

where

Sl = 2m+i+3 .,

We may note that the distribution of q; can be found from (2,1)
as the distribution of the smallest root as in Chapter (1) and that of
., by integrating (3.6) with respect to m .
For p =5, integrate (3.2) with respect to gy, the joint density

of My, My, m3 can be written in the form
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& o ()
(3.8) c(5,m n)lMl |I-M| II (m.—m ) [ /, 24 k;K 9(03,n+1)
) k=0 K

S () (23): v

L (.,;22jx ! -(1) 2)(L L_.b(é,K)Lgc (M))]

g=0 \J° (2197 i=0 §
where

cy = Sm+k+l5 and s, = Ym+10+j+k

Now consider the transformation n, = mi/m3, i=1,2 and integrate with

respect to m3, then the joint density of n b1, can be written in the

1
form
wl (_n)
(3.9)  e(5ym,n)(nyny )™ (1on ) (1o, ) (mymn)) ), ), —pr— B(cg,mtl)
k=0 K
3 k
Vw7V Ty
LG m el L e Le (6,1%)
12191 i=0 T

cT(gi){B(tl,z)-(nl+n2)a(tl+1,2) + nlneB(tl+2,2)} ,

where
Ty o= 3m+i+j+6 and N, = diag (l,nl,nz)
!
Further, let x = == and integrate with respect to n,, we get the
2

density of x as



8l

:: - (-—n)K é ( 1)3(2-):
(3.10)  c(5,mn) ¥ (1-x) | ;. o 5(cq ,n+1) d/
k i+j
DA N T AN 10
M%’)Llﬁmkgiéﬂ Ldéﬂﬂ% x)
i=0 8 T > o T

{(1-x)ﬁ(tl,2)ﬂ(s3,2)-(1-x2)3(tl+1,2)ﬂ(s3+1,2)

+ x(1-x)D (t +2 2)8(3 +2 2)}] s

where s

3

= 2m+r+3, bﬂ are constants and T denote the partition of
i+ j.

We may note that the distribution of 9 and g, can be found from
(3.1) as the smallest and the largest roots respectively and my  can be

found from (3.8) as its largest root.

4, The Distribution of the

Ratios of the Roots of a Covariance Matrix

In this section we consider the distribution of the latent roots as
n (5.1) of Chapter 2, which can be viewed as a limiting form of the non-
central distribution of the latent roots Khatri [13] associated With test
of hypothesis 62 Lo s where Zl and EE ara the covariance matrices of two |
p~variate normal populations, when n,” @, where n, is the size of the sam~
ple frem the second population, Now 1f we wish to test instead the null
hypothesis 621 Eb, 820 wunknown, the ratios of the latent roots would be

of interest as test criteria. In this context, in the limiting form

(5.1) of Chapter II, & should be replaced by GE sl .
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(3.3)a K (3,0)|Z] "%n(ql qg)an'h)(qg- q;)(1-q;)(1-q,)

I; ) o ST e B

! w L L Lo Pn,x vn

kL:O K % 13) i=0 1 0 %
5} _ .
VOO & ey E]
r=0

vwhere a, = (3n/2) + k, by are the constants defined [14], and T is
2
the partition of i into not more than p elements.

It may be noted that the distribution of 94 and of 9, can be

4 0 i 1
found by writing ¢ = & a, . and expanding
mo i.,d
L iwm 12t %
-l -
1+g then integrating g, and respectively.
2 2 4

Let ry = ql/q2 so the distribution of r{sdp can be written in the

form

1 1 Fla,) — ¢(I Tg-l)
(B4)  x(3m)lE L2 g (1ry) | ), L 52(13) '
k=0 K -

-jk) rli Z (-h- “)

h=0

(

ir~1s

© rl 0
L b’ﬂ,K Cﬂ(o 1)
i

L

n-2+i+r+h
a3 (1-q)(1ra,) |

Integrating (4.4) with respect to 9y, the distribution of r, can be

written in the form
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where b = %(n-l)+i+h+r and R, = diag(rl,rz,l). Now, we can find the
distribution of ry or 1, by expressing (rl+r2)r in terms of zonal
polynomials of R = diag(rl,rz) and using the method outlined in Sec-

tion (2) and integrating with respect to r, or r, such that

2 1

O0<r f r

<
1 1.

2

Now, let ri = rl/re, then the distribution of ri can be written

in the form

2]

m . 3(n-5) T [(2ntk) T (= & o
-z, 3(n- J \
(4:8) g (om) [ e () L =% L Sl )
k=0 K i=0 1
i oy
e 1 T ,-2n-k r
Pe,m E E bl r Crlom 1) L Oy ()
t=0 T =0
¥ (-2n-k-r : : .
L T (M,2)8(c,2)+r1[B(c+2,2)8(0+2,2)
h=0

-8(C+1,2)8 (b,2)1+(14r] ) (b+1,2) (15(0+2,2)

-B(C+l,2))-r2iﬁ (b+2,2)B(C+3,2)}

where ( = n-2+t+r and the constants bi . are defined in [13] .
b
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