Some Distribution Problems Concerning Characteristic Roots and Vectors in Multivariate Analysis bу Sabri Radif Al-Ani Department of Statistics Division of Mathematical Sciences Mimeograph Series No. 162 June, 1968 This research was supported by the National Science Foundation, Grant No. GP-4600 and GP-7663. #### CHAPTER I ## POWER COMPARISONS OF TESTING $\delta \Sigma_1 = \Sigma_2$ BASED ON INDIVIDUAL CHARACTERISTIC ROOTS #### 1. Introduction and Summary In this chapter, exact non-central distributions of individual characteristic roots have been obtained first in two and three roots cases in connection with tests of the hypothesis $\delta \Sigma_1 = \Sigma_2$, where Σ_1 and Σ_2 are covariance matrices of two normal populations and $\delta > 0$, known. Powers of tests using individual roots are tabulated for the test of this hypothesis against various one-sided simple alternatives and comparisons of powers made. #### 2. Non-Central cdf of the Largest Root For Testing $\delta \Sigma_1 = \Sigma_2$ Let $S_i(pxp)$, (i = 1, 2) be independently distributed as Wishart (n_i, p, Σ_i) . Let the characteristic (Ch.) roots of $S_1 S_2^{-1}$ and $\Sigma_1 \Sigma_2^{-1}$ be denoted by c_i and λ_i , $i = 1, \ldots, p$ respectively such that $0 < c_1 < c_2 \ldots < c_p < \infty$ and $0 < \lambda_1 < \ldots < \lambda_p < \infty$. Let $g_i = \delta c_i/(1+\delta c_i)$, $i = 1, \ldots, p$; $\delta > 0$ and $G = \text{diag}(g_1, \ldots, g_p)$ and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_p)$, then the distribution of g_1, \ldots, g_p is given by Khatri [14] in the following form (2.1) $$c(p,m,n) \left| \delta \Lambda \right|^{-\frac{1}{2}n_1} \left| \mathcal{G} \right|^m \left| \mathcal{I} - \mathcal{G} \right|^n \underset{i \geq j}{\pi} (g_i - g_j) _{1}F_{0}(\frac{1}{2}\nu; \Lambda_{1}, \mathcal{G})$$, where $$c(p,m,n) = \left[\pi^{p/2} \prod_{i=1}^{p} \Gamma\{\frac{1}{2}(2m+2n+p+i+2)\}\right] /$$ $$\left[\prod_{i=1}^{p} \Gamma\{\frac{1}{2}(2m+i+1)\} \Gamma\{\frac{1}{2}(2n+i+1)\} \Gamma(\frac{i}{2})\right] ,$$ $\Lambda_1 = \frac{1}{2} - (\delta \Lambda)^{-1}, \quad m = \frac{1}{2}(n_1 - p - 1), \quad n = \frac{1}{2}(n_2 - p - 1), \quad n_1 + n_2 = \nu \quad \text{and} \quad \mathbf{1}^{F_0} \quad \text{is}$ the hypergeometric function of matrix argument defined by James [10] as (2.2) $${}_{S}F_{t}(a_{1},...,a_{s};b_{1},...,b_{t};S,T) =$$ $$\sum_{k=0}^{\infty} \sum_{\kappa} \frac{(a_1)_{\kappa} \dots (a_s)_{\kappa} c_{\kappa}(\underline{s}) c_{\kappa}(\underline{T})}{(b_1)_{\kappa} \dots (b_t)_{\kappa} c_{\kappa}(\underline{I}_p) k!} ,$$ where $a_1, \ldots, a_s, b_1, \ldots, b_t$ are real or complex constants and the multivariate coefficient $(a)_K$ is given by (2.3) $$(a)_{K} = \prod_{i=1}^{p} (a-\frac{1}{2}(i-1))_{k_{i}} ,$$ where (2.4) $$(a)_k = a(a+1) \dots (a+k-1)$$ and K is the partition of k such that $K = (k_1, ..., k_p), k_1 \ge k_2 \ge ...$ $\ge k_p \ge 0$ and the zonal polynomials $C_K(S)$ are expressible in terms of elementary symmetric functions (esf) of the characteristic roots of S[10]. Now define by $V(q_p,n;\ldots,x^i,x^i,q_j,n;\ldots,q_1,n)$ the determinant It may be observed that the cdf of the largest root from (2.1) under the null hypothesis $\delta \Sigma_1 = \Sigma_2$ can be thrown into the form $V(0,x;q_p,n;\ldots,q_1;n)$, which for simplicity of notation will be written hereafter $V(0,x;q_p,\ldots,q_1;n)$, multiplied by C(p,m,n) [16], [17], [19]. Further, in view of the fact that the zonal polynomials $C_K(\underline{S})$ in (2.2) can be expressed in terms of the esf's of ch-roots of \underline{S} , by the use of Pillai's lemma on the multiplication of the basic Vandermonde type determinant by powers of esf's, [19], it is easy to see that the non-central distribution of the cdf of g_p in (2.1) can be expressed as a series whose terms are linear compounds of determinants of type $V(0,x;q_p^1,\ldots,q_1^n;n)$, where (q_0^1,\ldots,q_1^n) may differ from term to term. Further, it has been shown that [16], [17] (2.6) $$V(0,x;q_s,q_{s-1},...,q_1;n) = (q_s+n+1)^{-1}(A^{(s)}+B^{(s)}+q_sC^{(s)})$$, where $$A^{(s)} = -I_{o}(0,x;q_{s}, n+1) \ V(0,x;q_{s-1},...,q_{1};n),$$ $$B^{(s)} = 2 \sum_{j=s-1}^{l} (-1)^{s-j-1} I(0,x;q_{s}+q_{j}; 2n+1)$$ $$V(0,x;q_{s-1},..., q_{j+1},q_{j-1},..., q_{1};n), C^{(s)} = V(0,x;q_{s}-1,q_{s-1},...,q_{1};n),$$ $$q_{1};n), I_{o}(x^{*},x^{"};q_{s},n+1) = x^{q_{s}}(1-x)^{n+1} |_{x^{*}}^{x^{"}}, \text{ and}$$ $$I(x^{*},x^{"};q,r) = \int_{x^{*}}^{x^{"}} x^{q}(1-x)^{r} dx .$$ It may be noted that $c^{(s)}$ vanishes if $q_s = q_{s-1}+1$. Using (2.6) in each of the determinants of the linear compounds involved in the series obtainable from (2.2), after the necessary number of reductions, the cdf of the largest root, g_p , can be ultimately reduced in terms of simple incomplete beta functions. #### 3. Non-Central cdf's of Individual Roots In this section we give the non-central cdf's of individual roots, associated power function tabulations and comparisons of powers for testing $\delta \Sigma_1 = \Sigma_2$ against various simple hypotheses. a) Non-Central cdf of g_2 . Now putting p = 2 in (2.1) and using the method outlined in the preceding section the cdf of the largest root is obtained in the following form: $$(3.1) \qquad \Pr\{g_{2} \leq x\} = K\{-I_{0}(0,x;m+1,n+1) \Big[(\sum_{i=0}^{6} B_{i}x^{i})I(0,x;m,n) \\ + (\sum_{i=2}^{6} C_{i}x^{i-1})I(0,x;m+1,n) + (\sum_{i=4}^{6} D_{i}x^{i-2})I(0,x;m+2,n) \\ + E_{6}x^{3}I(0,x;m+3,n) \Big] + 2\Big[(B_{6}+ C_{6}+ D_{6}+ E_{6}) \\ I(0,x;2m+7,2n+1) + (B_{5}+ C_{5}+ D_{5})I(0,x;2m+6,2n+1) \\ + (B_{4}+ C_{4}+ D_{4})I(0,x,2m+5,2n+1) \\ + (B_{3}+ C_{3})I(0,x;2m+4,2n+1) + (B_{2}+ C_{2})I(0,x;2m+3,2n+1) \\ + B_{1}I(0,x;2m+2,2n+1) + B_{0}I(0,x;2m+1,2n+1) \Big] \}$$ where $K = (\delta^2 \lambda_1 \lambda_2)^{-\frac{1}{2}n} c(2,m,n)$, B's, C's, D's and E₆ are obtained from Pillai [24] by making the following changes: In the $A_{i,j}$ coefficients in [24], delete each linear factor involving n_2 in the denominator, each linear factor involving ν in the numerator should be raised only to a single power instead of two and b_1 and b_2 should be changed to $2 - (1/\lambda_1 + 1/\lambda_2)/\delta$ and $[1-1/(\delta\lambda_1)][1-1/(\delta\lambda_2)]$ respectively. In obtaining the cdf of g_2 on (3.1), zonal polynomials of degree 1 to 6 were used. The expression for the cdf of g_2 in (3.1) has been used to compute the power of test H_0 : $\delta\Sigma_1 = \Sigma_2$, $\delta > 0$, known, against $\delta\lambda_1 \geq 1$, $i=1,\ldots,p$, $\Sigma_1 = (\delta\lambda_1) > p$, for various pairs of values - $(\delta \lambda_1, \delta \lambda_2)$ and the results are presented in Table 1. - b) Non-central cdf's of individual roots for p = 3. - i) <u>Largest root</u>: Put p = 3 in (2.1) and using the method outlined in section (2), the cdf of the largest root is obtained in the following form. $$(3.2) \quad \Pr\{g_{3} \leq x\} = K_{1} \left\{ -I_{0}(0,x;m+2,n+1) \left[\left(\sum_{i=0}^{6} B_{i}^{(0)}x^{i} \right) V(0,x;m+1,m;n) \right. \right. \\ \left. + \left(\sum_{i=2}^{6} C_{i}^{(0)}x^{i-1} \right) V(0,x;m+2,m;n) \right. \\ \left. + \left(\sum_{i=3}^{6} D_{i}^{(0)}x^{1-2} \right) V(0,x;m+2,m+1;n) \right. \\ \left. + \left(\sum_{i=4}^{6} E_{i}^{(0)}x^{i-2} \right) V(0,x;m+3,m;n) \right. \\ \left. + \left(\sum_{i=4}^{6} F_{i}^{(0)}x^{i-3} \right) V(0,x;m+3,m+1;n) \right. \\ \left. + \left. G^{(0)}x^{3}V(0,x;m+4,m;n) \right. + H^{(0)}x^{2}V(0,x;m+3,m+2;n) \right] \\ \left. + 2I(0,x;m,n) \sum_{i=0}^{6} \left(B_{i}^{(1)}I(0,x;2m+3+i,2n+1) \right) \right. \\ \left. - 2I(0,x;m+1,n) \sum_{i=0}^{6} \left(B_{i}^{(2)}I(0,x;2m+2+i,2n+1) \right) \right.$$ - $$2I(0,x;m+2,n)$$ $\sum_{i=0}^{l_4} (B_i^{(3)}I(0,x;2m+3+i,2n+1))$ - $2I(0,x;m+3,n)$ $\sum_{i=0}^{2} (B_i^{(l_4)}I(0,x;2m+l_4+i,2n+1))$ - $2G^{(0)}I(0,x;m+l_4,n)$ $I(0,x;2m+5,2n+1)$ where $$K_{1} = c(3,m,n)(\prod_{i=1}^{3} \delta \lambda_{i})^{-\frac{1}{2}n_{1}}$$, and the B_i^(O)'s, C_i^(O)'s, D_i^(O)'s, E_i^(O)'s, F_i^(O)'s, G^O and the B_i^(j) coefficients are obtained from corresponding coefficients in Pillai and Dotson [23] by making changes in the A_{ij} coefficients as described in the preceding section and b₁ = 3 - $\frac{1}{\delta\lambda_1}$ - $\frac{1}{\delta\lambda_2}$ - $\frac{1}{\delta\lambda_3}$, $$\begin{aligned} \mathbf{b}_2 &= (1 - \frac{1}{\delta \lambda_1})(1 - \frac{1}{\delta \lambda_2}) + (1 - \frac{1}{\delta \lambda_1})(1 - \frac{1}{\delta \lambda_3}) + (1 - \frac{1}{\delta \lambda_2})(1 - \frac{1}{\delta \lambda_3}) & \text{and} \\ \mathbf{b}_3 &= (1 - \frac{1}{\delta \lambda_1})(1 - \frac{1}{\delta \lambda_2})(1 - \frac{1}{\delta \lambda_3}) & . \end{aligned}$$ ii) <u>Smallest root</u>: The non-central cdf's of the smallest root for p = 2, 3 are obtained from the corresponding non-central cdf's of the largest root by making the following changes. iii) Median root: In obtaining the non-central cdf of the median root for p = 3, the following changes may be made in (3.2) $- I_{o}(0,x;m+2,n+1) \rightarrow I_{o}(0,x;m+2,n+1)$ $V(0,x;q_{2},q_{1};n) \rightarrow I(x,1;q_{2},n)I(0,x;q_{1},n) - I(x,1;q_{1},n)I(0,x;q_{2},n)$ $I(0,x;q_{j},n)I(0,x;q_{3}+q_{j},2n+1) \rightarrow \beta(q_{j}+1,n+1)I(x,1;q_{3}+q_{j},2n+1),$ j = 1,2 . Tabulations of powers of individual roots for test of hypothesis H_{O} given earlier have been done extensively and in Table 2 are presented powers for selected values of the parameters. #### 4. Power Comparisons For tabulating the powers of the tests of H_o based on individual roots for p=2 and p=3 against simple alternatives such that $\delta\lambda_1\geq 1,\; i=1,\ldots,\; p,\; \sum\limits_{i=1}^p \delta\lambda_i > p,\;$ the upper 5% points for the largest root were taken from Pillai [24] and those of the median and smallest roots from Pillai and Dotson [23]. These were used to compute powers on IBM 7094 for values of m=0,1,2,5 and n=5(5)30,40,60 but in Tables 1 and 2 are presented only the
tabulations for n=5,15 and 40. Now we compare the powers of individual roots for the test of H_0 . Cases p=2 and p=3 may be considered separately. $\underline{p=2}.$ When p=2, the following observations may be made (Table 1). 1) Although the larger root has generally more power than the smaller root, for small values of n, the smaller root has generally greater power for small deviations (except for m=0). - 2) For $\delta(\lambda_1 + \lambda_2)$ = constant and small deviations, the power of the larger root decreases as the two roots tend to be equal while that of the smaller root increases. - 3) The individual root possesses monotonicity property of power with respect to individual population roots but not with respect to their sum or product. - 4) For larger deviations or larger values of n, the power of the largest root is always greater (and more often considerably so) than that of the smaller root. - p = 3. The following observations may be made when p = 3. - 1') Although the largest root has generally more power than the other roots, for small values of n and small deviations, the median root has greater power and sometimes (for m=2 and 5) even the smallest root. But the power of the smallest root is always less than that of the median root. - 2°) For $\delta(\lambda_1 + \lambda_2 + \lambda_3) = \text{constant}$, the power of the largest root seems to attain its maximum when $\delta\lambda_1 = \delta\lambda_2 = 1$ (at least for small deviations) while those of the other two roots when $\delta\lambda_1 = \delta\lambda_2 = \delta\lambda_3$. The power of the largest root decreases as the roots tend to be equal (at least for small deviations) while those of the other two increase. - 3') is the same as 3) above for p = 2. - 4.) For large n, the power of the largest root is generally greater than those of the others except possibly in the case of the median root when the population roots tend to be equal. It may be pointed out that the monotonicity property of the power of the individual roots with respect to individual population roots for the above test was shown earlier by Anderson and Das Gupta [3]. A comparative study of powers of four criteria for this test has been carried out by Pillai and Jayachandran [24]. Table 1. Powers of individual roots for p = 2 for testing | | | . g | ™5
.050112 | .06133
.061 <i>9</i> 2 | .1050
.1225 | .142
183 | | | | | | 1=15 | .050139 | .06508 | 1456 | .165 |) 77. | | | | | |----------------------------|---------------------------|--------------------|---------------------------|---------------------------|---------------------------------|-------------|-------|------------------|----------------|--------------------|-------------------|----------|-------------------|--------|----------------|-------------|----------------------|----------------|--|--------------|--------------| | | • • 05 | 80° | r,2=m
050089 | .05975
.05944 | . 1153 . 105
73 . 1063 . 122 | .239 | 807 | .895 | 206° | , 4 66, | 86.
86.
86. | m=5,1 | .050133 | 04490 | .1630
1434 | .348
255 | .873
.873 | . 945
. 939 | , 45
60
60
60
60
60
60
60
60
60
60
60
60
60 | .997 | 666 . | | for testing | otheses, $lpha$ | யி | $\widetilde{\mathcal{L}}$ | .05945 | .0946
.1073 | 128 | 136 | | | | | 1=15 | .050109 | .06157 | 1181 | 138 | .172
.153 | | | | | | CV
II
PA | alternative hypotheses | 62 | ^î | | 1067 | | | .703
.689 | 692 | 920 | .951 | m=2,n=15 | .050115 | .06234 | .1371 | 262 | 193.
189. | .792 | .792 | 953 | .970
.987 | | al roots for | imple alter | g | 50084 | | .09885 | | | | | | | | .050094
.05930 | .05980 | .0927
.1054 | 124 | .147
.149 | , | | | | | Powers of individual roots | different simple | g
Z | 년. | | .1022 | | | .594
586 | .587 | .833 | . 883
989 | n=1,n=15 | .050106 | .06126 | .1254 | 228 | .1 75
.585 | 269. | 969 | 893
893 | .922
.957 | | . Powers o | against d | g | 29 | 31 |) | | | | | | | | .050072 | .05732 | .0811
.0891 | 104 | .134 | • | | | | | Table 1 | 1, $\delta \lambda_2 = 1$ | 82 | m=0,1
.050073 | .05778 | .0955 | .152 | 378 | 169
169 | 472 | . 669 | .745
810 | m=0.1 | .050093 | .05973 | 1105 | 186 | .151
.456 | 348 | .564
.564 | .716
.769 | .803
.867 | | | δλ ₁ = | ,11,9 | | | | $\delta \lambda_1$ | H | 1.05 | 1.25 | 1 222 | 1. CC | -
-
-
- | _د د | 4.5 | ٦ ٧ | , | н н | 1.05 | 1
1,25 | , | 1.333
1 | н с | ı က | 1.
4.5 | ,
19 | | | £1
n=40 | .050155
.06583
.06695
.1252
.1596
.181
.253 | |-------------|------------------------|--| | | 62
n=5. | .050162 .050155
.06902 .06583
.06786 .06695
.1992 .1252
.1709 .1596
.425 .181
.289 .253
.911
.964
.996
.999 | | | | .050117
.06168
.06239
.1041
.1235
.143
.182 | | <u></u> | 82
S2
E112 | .050134
.06509
.06442
.1556
.304
.223
.304
.837
.837
.947
.967 | | (Continued) | | | | Table 1. | 62
m=1,1 | .050120 .050098
.06332 .05975
.06282 .05029
.1382 .0945
.1280 .1085
.257 .126
.196 .153
.632 .151
.734
.734
.734
.734
.734
.737
.944
.882
.916 | | | $g_1^{g_1}$ | 050073
.05716
.05752
.0818
.0902
.105
.118 | | | ⁶ 2
m=0, | .050102
.06105
.06105
.1179
.1179
.163
.163
.580
.593
.601
.742
.601 | | | 8) ₂ | 1.001
1.1.05
1.5.7
1.5.7
1.5.7
1.5.7
1.5.5 | | | $^{6\lambda_{1}}$ | 11.05
11.25
11.25
11.333
11.5 | | | | g
L | 70 | .05004
.05687
.05733
.05757
.06954
.091
.132
.101
.101
.101
.101 | |----------------------------------|---|--------------------|------------|---| | | against different simple alternative hypothesis, α = .05 | 82 | = 0, n = 1 | .050073
.06110
.06168
.06168
.08577
.09145
.151
.232
.161
.238
.385 | | for testing | | 83 | Ħ | 050083
06432
06344
11012
194
196
177
177
1762
1762
1762
1771
1785
1785 | | 3 | | g
T | = 0, n = 5 | .050048
.05720
.05724
.06928
.07385
.081
.131
.101
.101
.101 | | Powers of individual roots for p | | 82 | | .050069
.06086
.06103
.08398
.08398
.112
.112
.157
.222
.222
.271
.360 | | | | £ | | 050073
06239
06134
06171
10097
172
329
300
1445
424
444
655
653
655
655
727
727 | | | | g | | .050046
.05651
.05691
.05713
.06865
.07291
.080
.128
.100
.140 | | | | g
Cl | | .050061
.05924
.05951
.05964
.08001
.08390
.107
.137
.198
.146
.240 | | Table 2. | = 1,2,3 ag | £ | Ħ | 050054
05868
05868
05868
05856
08482
3668
319
319
319
319
319
319
319
319
319
319 | | | $\delta \lambda_{i} = 1$, i | δλ3 | | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | | | 6λ <u>i</u> | $\delta \lambda_2$ | | 11111111111111111111111111111111111111 | | | | δλ ₁ | | - 50
 | | | 81 | 04 | 050067
05947
06017
06017
08473
093
100
171
103
184
247 | |-------------|-------------------------------|---------------|--| | | 62 | m = 1, n = | 06373
06420
06420
06441
09541
134
134
134
348
521 | | | g3 | | 050094
06662
06576
06533
112376
11351
634
634
634
634
634
634
634
819
819
813
815
815
815
815
815
815
815
815
815
815 | | | g ₁ | m = 1, n = 15 | 050065
05919
05985
06020
07640
08361
167
102
179
236 | | (Continued) | 82 | | 050083
06271
06311
06329
09821
09878
128
166
274
317
458 | | | д
С | | 050080
06392
06392
06899
10834
10834
10834
1776
1776
1778
1778
1788
1788
1788
1788 | | Table 2. | g_{1} | m = 1, n = 5 | 050061
05858
05915
05945
07486
08118
090
098
159
107
168 | | | දිදි | | 050070
06067
06096
06109
08555
09012
1148
1148
144
260
363 | | | g3 | | 050057
05948
05919
05905
08806
08445
145
302
259
466
427
661
661
661
774
774
768
820
886 | | | δλ3 | | 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | | | 8 ₁ / ₂ | | 14111111111111111111111111111111111111 | | | $_{5\lambda_{_{1}}}$ | | | | | 8, | 017 | .050081
.06237
.06287
.09312
.104
.200 | |---------------------|-------------------------|------------------------------|---| | | 8
23 | m=2, n= | .050101
.06582
.06636
.06659
.10336
.11308
.145
.242
.377
.242 | | | С | | 7 050102
06851
06855
13586
12197
273
548
485
770
627
897
877
874
877
874
874
925
925 | | | g | m = 2, n = 5 $m = 2, n = 15$ | 050077
06095
06179
06225
08158
09109
103
192 | | ued) | 62 | | 050092
06435
06435
06498
09855
10640
174
310
204
329
524 | | Table 2 (Continued) | 33 | |
050086
06506
06506
06392
11719
11719
11719
632
6411
6511
6511
865
865
865
865
898
898
898
938 | | | $g_{ m J}$ | | .050069
.05995
.06064
.06101
.07906
.08697
.097
.101 | | | 82 | | 050075
06162
06191
06204
08930
09430
123
123
169
245
250
382 | | | С | | .050059
.05985
.05985
.05936
.05936
.05936
.05936
.05936
.05936
.05908
.05908
.05908
.05908
.05908
.05908 | | | δλ3 | | 1.001
1.15
1.05
1.05
1.05
4
4
6
6
7
7
7
8
8
8 | | | 8 ₁ 2 | | 11111111111111111111111111111111111111 | | | $\delta \lambda_{ m J}$ | | | | • •. | Ŗ | 40 | .050109
.06775
.06806
.06806
.09523
.11244
.124
.191 | |---------------------|--------------------|---------------|---| | Table 2 (Continued) | ట్ట | m = 5, n = | | | | В
33 | | 050120
07288
07108
116730
114235
1377
884
877
884
877
884
877
884
877
895
999
999 | | | Б | m=5, n=5 m=15 | 050101
06454
06580
06649
09246
10703
162
162 | | | 82 | | 050110
06820
06839
11179
112294
158
143
348 | | | 83 | | 050096
06629
06629
13431
11816
330
671
658
658
658
658
975
975
989
999 | | | g_1 | | 050085
06241
06333
06381
06381
08747
09758
138
010 | | | г
С | | 050085
06326
06357
06357
09593
10202
129
129
236 | | | g
C | | 050062
06046
06046
05987
09616
08896
208
208
446
495
495
680
680
680
680
680
983
983
983
999 | | | δλ3 | | 1001
1111
1111
1111
1111
1111
1111
111 | | | $\delta \lambda_2$ | | | | | $\delta \lambda_1$ | | | #### CHAPTER II # NON-CENTRAL DISTRIBUTIONS OF THE SECOND LARGEST ROOTS OF THREE MATRICES AND THE VECTORS CORRESPONDING TO THE LARGEST AND SECOND LARGEST ROOTS #### 1. Introduction and Summary In this chapter, the non-central distributions of the second largest roots in the MANOVA situation, the canonical correlations, and equality of two covariance matrices are obtained. The central distribution of the second largest (smallest) root following the Fisher-Girshick-Hsu-Roy distribution under certain null-hypothesis comes as a special case of the MANOVA situation. Further, the distribution of the second largest root of the covariance matrix is obtained as limiting case. The largest root and its non-central distributions have been considered by Pillai and Sugiyama [25] for the situations stated above. However, in this chapter, the joint densities of the largest and the second largest roots are derived in all the above cases from which the distributions of the largest roots can be obtained, although in more elaborate forms. In the last section the distribution of the characteristic vectors is obtained corresponding to the largest and second largest root of a sample covariance matrix. The three roots-case is dealt with in more detail. ### 2. Non-Central Distribution of the Second Largest Root in the MANOVA Case Let X be a p x n₁ matrix variate $(p \le n_1)$ and Y a p x n₂ matrix variate $(p \le n_2)$ and the columns be all independently normally distributed with covariance matrix X, X = X and X = 0. Then it is known that X X = X is non-central Wishart with X degrees of freedom and X Y = X is central Wishart with X degrees of freedom and X and X is central Wishart with X degrees of freedom and X the covariance matrix X, respectively. Let $0 < l_1 < l_2 < \dots < l_p < 1$ be the characteristic roots of $\sum_1 \sum_2^{-1}$, then the joint density function of l_1, \dots, l_p is given by Constantine [4] $$(2.1) \qquad c(p,m,n) exp(tr-\Omega) |\underline{L}|^m |\underline{I}-\underline{L}|^n \underline{I} (\ell_i - \ell_j) \sum_{k=0}^{\infty} \sum_{K} \frac{(\frac{1}{2}v)_K c_K(\Omega) c_K(\underline{L})}{(n_{1/2})_K c_K(\underline{I})_k};$$ where Ω is the non-centrality matrix, $\frac{1}{2}M^{1}\Sigma^{-1}M$, and $\Sigma = \operatorname{diag}(\ell_{1},\ldots,\ell_{p})$ and c(p,m,n), m, n and ν is defined in (2.1), of Chapter 1, and $c_{K}(\Sigma)$ are zonal polynomials defined in [10]. Consider the transformation $q_{1} = \ell_{1}/\ell_{p-1}$, $i = 1,\ldots, p-2$, and decompose $c_{K}(\Sigma) = \Sigma$ a $\ell_{p}^{k_{1}}c_{\mu}(\Sigma_{1})$ where $\Sigma_{1} = \operatorname{diag}(\ell_{1},\ldots,\ell_{p-1})$ and the summation is over the partitions τ of k_{1} and μ of k_{2} such that $k_{1}+k_{2}=k$, and K is the partition of k_{1} , and k_{2} are constants defined in [8]. Then the joint distribution of k_{2} , k_{2} , k_{2} , k_{3} , k_{4} , k_{5} , k_{5} , and k_{5} , k_{5} , and k_{5} , k_{5} , k_{5} , k_{5} , k_{5} , and k_{5} , k_{5} , and k_{5} , $$(2.2) \qquad q(\ell_{p-1}, \ell_p) |\underline{Q}|^m |\underline{I} - \underline{Q}| |\underline{I} - \ell_{p-1} \underline{Q}_1|^n |\underline{I} - (\ell_{p-1} |\ell_p) \underline{Q}_1|$$ $$\prod_{i \geq j} (q_i - q_j) \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(\frac{1}{2}\nu)_{\kappa} c_{\kappa}(\Omega)}{k! c_{\kappa}(\mathbb{I})(n_1/2)_{\kappa}} \sum_{\tau, \mu} a_{\tau, \mu} \ell_p^{k_1} \ell_{p-1}^{k_2} c_{\mu}(Q_1)$$ where $Q = \operatorname{diag}(q_1, \dots, q_{p-2}), \ Q_1 = \operatorname{diag}(q_1, \dots, q_{p-2}, 1),$ and $q(\ell_{p-1}, \ell_p) = c(p, n_1, n_2) \exp \operatorname{tr} - \Omega \cdot \ell_{p-1}^{m(p-1) + \frac{1}{2}(p-2)(p+1)} \ell_p^{m+p-1} (1 - \ell_p)^n$. By expanding $|I - \ell_{p-1}Q_1|^n$ as well as $|I - (\ell_{p-1}|\ell_p)Q_1|$ and the use of the results from Khatri and Pillai [15] for multiplication of zonal polynomials we write (2.2) in the form $$(2.3) \qquad q(\ell_{p-1}, \ell_{p}) |Q|^{m} |I-Q| \prod_{i>j} (q_{i}-q_{j}) \sum_{k=0}^{\infty} \sum_{k} \frac{(\frac{1}{2}^{\nu})_{k} c_{k}(\Omega)}{k! (n_{1}/2)_{k} c_{k}(I)}$$ $$\sum_{s=0}^{\infty} \sum_{\eta} ((-n)_{\eta} \ell_{p-1}^{s}/s!) \sum_{\ell=0}^{p-2} (c(\ell) \ell_{p-1}^{\ell}/\ell! \ell_{p}^{\ell})$$ $$\sum_{s=0}^{\infty} \sum_{\eta} \ell_{p-1}^{k} \ell_{p-1}^{k} \sum_{\ell=0}^{k} g_{\ell}^{\delta} c_{\delta}(Q_{1}),$$ $$\sum_{r,\mu} a_{r,\mu} \ell_{p}^{k} \ell_{p-1}^{k} \sum_{\delta} g_{\ell}^{\delta} c_{\delta}(Q_{1}),$$ where η and δ ' are the partitions of s and $\ell + s + k_2$ respectively such that $\eta = (\eta_1, \dots, \eta_p)$ and $\delta' = (\delta_1, \dots, \delta_p)$ where $s = \sum_{i=1}^p \eta_i$, $\ell + s + k_2 = \sum_{i=1}^p \delta_i$, $g_{\ell}^{\delta'}$ are constants defined in [15] and $(1, \eta, \mu)$ $$c(l) = \frac{(-1)^{l}(2l)!}{(l!) 2^{l} \chi(1)},$$ $$[21^{l}]$$ where $\chi_{[2l^{\ell}]}$ is the degree of the representation $[2l^{\ell}]$ of the symmetric group on 2l symbols, and such that $\chi_{[K]}(1) = k! \prod_{i < j} (k_i - k_j - i + j) / \prod_{i < j} (k_i + p - 1)!$ and $K = (k_1 \ge k_2 \ge \dots \ge k_p \ge 0)$. Now integrate (2.3) with respect to $0 \le q_1 \le q_2 \le \dots \le q_{p-2} \le 1$ by the use of the lemma in [29], we get the joint density function of ℓ_{p-1} , ℓ_p in the form $$(2.4) \qquad (\Gamma_{p-1}((p-1)/2)/\Pi^{(p-1)^{2}/2})\Gamma_{p-1}(p/2)q(\ell_{p-1}, \ell_{p})$$ $$\sum_{k=0}^{\infty} \sum_{k} \frac{(\frac{1}{2}\nu)_{k} c_{k}(\Omega)}{k!(n_{1}/2) c_{k}(\Omega)} \sum_{s=0}^{\infty} \sum_{\eta} \{(-n)_{\eta}/s!\} \sum_{\ell=0}^{p-2} \{c(\ell)/\ell! \ell_{p}^{\ell}\}$$ $$\sum_{k=0}^{\infty} \sum_{k} a_{\tau,\mu} \ell_{p}^{k} \ell_{p-1}^{s+\ell+k} \sum_{\ell=0}^{\infty} \sum_{\eta} \delta_{\ell}^{\ell} c_{\ell}(L,\eta,\mu) c_{\ell}(L,\eta,\mu) c_{\ell}(L,\eta,\mu)$$ $$(2.4) \qquad (\Gamma_{p-1}((n_{1}-1)/2,\delta_{\ell})/\Gamma_{p-1}((n_{1}+p-1)/2,\delta_{\ell}) .$$ Further, integrate (2.4) with respect to $\ell_{\rm p}$, then the density function of $\ell_{\rm prl}$ can be written $$(2.5) \quad c_{1}(p,n_{1},n_{2})\exp(\operatorname{tr}-\Omega)\ell_{p-1}^{m(p-1)+(p-2)(p+1)/2} \cdot \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(\frac{1}{2}^{\nu})_{\kappa}c_{\kappa}(\Omega)}{k!(n_{1}/2)_{\kappa}c_{\kappa}(\frac{1}{2}p)} \\ \sum_{s=0}^{\infty} \sum_{\eta} \{(-n)_{\eta}/s!\} \sum_{\ell=0}^{p-2} (c(\ell)/\ell!) \sum_{\tau,\mu} a_{\tau,\mu} \ell_{p-1}^{s+\ell+k_{2}} \cdot \\ I(\ell_{p-1},1;m+p+k_{1}-\ell-1;n) \sum_{\delta'} g_{\ell}^{\delta'} c_{\delta'}(\frac{1}{2}p-1)(n_{1}-1)(p-1) / \\ \delta'(1,\eta,\mu)$$ $$(2+s+\ell+k_{2})(\Gamma_{p-1}((n_{1}-1)/2,\delta')/\Gamma_{p-1}((n_{1}+p-1)/2,\delta'))$$ where $c_1(p,n_1,n_2) = \prod^{p-1} \Gamma_p(v/2) \Gamma_{p-1}((p-1)/2) / \Gamma_p(n_1/2) \Gamma_p(n_2/2)$. It may be pointed out that the density function of the largest root can be obtained from (2.4) by integrating it with respect to ℓ_{p-1} over the range $0 < \ell_{p-1} < \ell_p$, however a simpler form has been given in [25]. Let $\Omega = 0$ in (2.5) then the central case is of the form $$(2.6) c_{1}(p,n_{1},n_{2})\ell_{p-1}^{m(p-1)+(p-2)(p+1)/2} \sum_{s=0}^{\infty} \sum_{\eta} \{(-n)_{\eta}/s!\} \sum_{\ell=0}^{p-2} \{c(\ell)/\ell!\} \cdot \ell_{p-1}^{s+\ell} I(\ell_{p-1},l;m+p-\ell-1;n) \sum_{\delta} g_{\ell}^{\delta} c_{\delta} (I_{p-1})((n_{1}-1)(p-1)/\ell_{p-1}) - \ell_{p-1}^{s+\ell} I(\ell_{p-1},l;m+p-\ell-1;n) \sum_{\delta} g_{\ell}^{\delta} c_{\delta} (I_{p-1})((n_{1}-1)(p-1)/\ell_{p-1}) - \ell_{p-1}^{s+\ell} I(\ell_{p-1},l;m+p-\ell-1;n) \sum_{\delta} g_{\ell}^{\delta} c_{\delta} (I_{p-1})((n_{1}-1)(p-1)/\ell_{p-1}) - \ell_{p-1}^{s+\ell} I(\ell_{p-1},l;m+p-\ell-1)/\ell_{p-1}^{s+\ell} I(\ell_{p-1},l;m+p-\ell-1$$ where δ is the partition of $\ell+s$. ## 3. The Distribution of the Second Largest Root in the Canonical Correlation Case Let the columns of $(\stackrel{X_1}{\overset{X_2}{\sim}})$ be n independent normal (p+q)-dimensional variates (p \leq q) with zero means and
covariance matrix $$\Sigma = \left(\begin{array}{c} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{array} \right) .$$ Let $\mathbb{R} = \text{diag}(r_1, r_2, \dots, r_p)$, where r_1^2, \dots, r_p^2 are the characteristic roots of the equation and also $P = \text{diag}(\rho_1, \rho_2, ..., \rho_p)$ where $\rho_1^2, ..., \rho_p^2$ are the characteristic roots of the equation $$\left|\sum_{n=1}^{\infty}\sum_{n=2}^{\infty}\sum_{n=1}^{\infty}-\rho\sum_{n=1}^{\infty}\right|=0.$$ Then, the density function of r_1^2, \ldots, r_p^2 is given by Constantine [4] in the following form (3.1) $$e(n,p,q) \left| \sum_{i=p}^{n-2} |^{n/2} \right| \left| \sum_{i=1}^{n-2} |^{(q-p-1)/2} \right| \left| \sum_{i=n}^{n-2} |^{(n-p-q-1)/2} \prod_{i>j} (r_i^2 - r_j^2) \right|$$ $$\sum_{k=0}^{\infty} \sum_{\kappa} \frac{(n/2)_{\kappa} (n/2)_{\kappa} c_{\kappa}(\underline{R}^{2}) c_{\kappa}(\underline{P}^{2})}{(q/2)_{\kappa} k! c_{\kappa}(\underline{\mathbb{I}}_{p})}$$ where $$c(n,p,q) = \frac{\Gamma_{p}(n/2) \quad II^{p^{2}/2}}{\Gamma_{p}(q/2) \; \Gamma_{p}((n-q)/2)\Gamma_{p}(p/2)}$$ By using the same transformation, namely $q_i = \frac{r_i^2}{r_{p-1}^2}$, $i=1,\ldots, p-2$ and the same method as in section 2, the joint density function of r_{p-1}^2 , r_p^2 can be shown to have the following form $$(3.2) \quad c_{1}(n,p,q)|_{I-P^{2}|^{n/2}(r_{p-1}^{2})}^{\{(q-p-1)(p-1)+(p-2)(p+1)\}/2}$$ $$(r_{p}^{2})^{(q+p-3)/2}(1-r_{p}^{2})^{(n-p-q-1)/2}\sum_{k=0}^{\infty}\sum_{\kappa}\frac{(n/2)_{\kappa}(n/2)_{\kappa}c_{\kappa}(\underline{p}^{2})}{(q/2)_{\kappa}k!c_{\kappa}(\underline{I}_{p})}$$ $$\sum_{s=0}^{\infty}\sum_{\eta}\frac{((p+q+1-n/2)_{\eta}}{s!}\sum_{\ell=0}^{p-2}\{c(\ell)/\ell!(r_{p}^{2})^{\ell}\}\sum_{\tau,\mu}a_{\tau,\mu}(r_{p}^{2})^{k}\}$$ $$(r_{p-1}^{2})^{s+\ell+k}\sum_{\delta'}\sum_{(1,\eta,\mu)}c_{\delta'}(\underline{I}_{p-1})((q-1)(p-1)/2+s+\ell+k_{2})$$ $$(\Gamma_{p-1}((q-1)/2,\delta'))/\Gamma_{p-1}((q+p-1)/2,\delta'),$$ where $c_1(n,p,q) = \prod_{p-1}^{p-1} \Gamma_{p-1}((p-1)/2) \Gamma_p(n/2) / \Gamma_p(q/2) \Gamma_p((n-q)/2)$. Now, integrate (3.2) with respect to r_p^2 then the density function of r_{p-1}^2 can be written in the form $$(3.3) \quad c_{1}(n,p,q) \Big|_{\Sigma = \mathbb{P}^{2}} |^{n/2} (r_{p-1}^{2})^{\{(q-p-1)(p-1)+(p-2)(p+1)\}/2}$$ $$\sum_{k=0}^{\infty} \sum_{K} \frac{(n/2)_{K}(n/2)_{K} c_{K}(\mathbb{P}^{2})}{(q/2)_{K} k! c_{K}(\mathbb{I}_{p})} \sum_{s=0}^{\infty} \sum_{\eta} \frac{(p+q+1-n)/2)_{\eta}}{s!}$$ $$\sum_{k=0}^{p-2} \{c(\ell)/\ell!\} \sum_{\tau,\mu} a_{\tau,\mu}(r_{p-1}^{2})^{s+\ell+k} 2 I(r_{p-1}^{2},1;(q+p-3)/2+k_{1}-\ell;$$ $$(n-p-q-1)/2) \sum_{\delta'} g_{\ell}^{\delta'} c_{\delta'}(\mathbb{I}_{p-1})((q-1)(p-1)/2+s+\ell+k_{2})$$ $$\delta'(1,\eta,\nu) c_{\ell}(q+p-1)/2,\delta') = ((q+p-1)/2,\delta')$$ ## 4. Non-Central Distribution of the Second Largest Root of $S_1 S_2^{-1}$ In this section we consider the distribution of the second largest root of $\lesssim_1 \lesssim_2^{-1}$ as defined in (2.1) of Chapter 1. Then, as before, we can obtain the joint density function of g_{p-1} and g_p in the following form Now, integrate (4.1) with respect to g_p , the density function of g_{p-1} can be written in the following form #### 5. The Distribution of the Second Largest Root #### of a Covariance Matrix The distribution of the characteristics roots, $0 < \omega_1 \le \ldots \le \omega_p < \infty$, of $X \times X'$ depends only upon the characteristic roots of Σ and can be given in the form (James [9]) (5.1) $$k(p,n) \left| \Sigma^{\dagger \frac{1}{2}n} \middle| \underset{\mathbb{N}}{\mathbb{N}} \right|^{m} \left\{ \exp(-\frac{1}{2} \operatorname{tr} \underset{\mathbb{N}}{\mathbb{N}}) \right\} \prod_{i \geq j} \left(\omega_{i} - \omega_{j} \right) \circ^{F_{O}} \left(\frac{1}{2} \left(\underbrace{\mathbb{I}_{p}} - \sum^{-1} \right), \underset{\mathbb{N}}{\mathbb{N}} \right)$$ where $$k(p,n) = \frac{1}{2} \frac{1}{2} p^2 / 2^{\frac{1}{2}pn} \Gamma_p(n/2) \Gamma_p(p/2)$$, $W = \text{diag}(\omega_1, \omega_2, \dots, \omega_p)$. It may be pointed out that the form (5.1) can also be viewed as a limiting form of (4.1), when $n_2 \to \infty$. However, by methods similar to those in the previous sections, the density function of the second largest root $Y_{p-1}=\frac{w_{p-1}}{2}$ can be written in the form $$(5.2) \quad k_{1}(p,n) |\Sigma|^{-\frac{1}{2}n} \gamma_{p-1}^{m(p-1)} + \frac{(p-2)(p+1)}{2} e^{-\gamma_{p-1}} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{c_{\kappa}(\underline{I} - \underline{\Sigma}^{-1})}{k! c_{\kappa}(\underline{I})}$$ $$\sum_{k=0}^{\infty} \sum_{\kappa} \sum_{j=0}^{\infty} \frac{(-1)^{s}}{s!} \sum_{k=0}^{p-2} \{c(k)\gamma_{p-1}^{s+k+k} 2/k!\} \sum_{j=0}^{k} \sum_{\delta} b_{\delta}, v \sum_{\mu} g^{\mu}_{\delta} (\delta, 1^{\ell}, \eta)$$ $$c_{\mu}(I_{p-2}) [\Gamma_{p-2}(n-2)/2, \mu)/\Gamma_{p-2}((n+p)/2, \mu)]$$ $$[\gamma(\gamma_{p-1}, \omega; m+p+k_{1}-j) - \gamma_{p-1} \gamma(\gamma_{p-1}, \omega; m+p+k_{1}-j-1)] ,$$ where $b_{\delta,\nu}$ are constants defined in [15], δ and μ are the partions of i and i + ℓ + s respectively. $$k_1(p,n) = k(p,n) \Gamma_{p-2}((p-2)/2) \Gamma_{p-2}((p+1)/2) / \Pi \frac{(p-2)^2}{2}$$ and $$Y(a,b;c) = \int_{a}^{b} x^{c-1} e^{-x} dx$$. It may be noted that the cdf of the second largest root can be obtained by integrating the corresponding densities over the region $0 \le l_{p-1} \le x$. Hence from (2.6) we obtain $$(5.3) \quad \Pr\{\ell_{p-1} \leq x\} = c_1(p, n_1, n_2) \sum_{s=0}^{\infty} \sum_{\eta} \{(-n)_{\eta}/s!\} \sum_{\ell=0}^{p-2} \{c(\ell)/\ell!\}$$ $$[I(x, l; b, n) x^{a+1} + I(0, x; a+b+l; n)] \sum_{\delta} g_{\ell}^{\delta} (1^{\ell}, \eta)$$ $$c_{\delta} (I_{p-1})((n_1-1)(p-1)/2+s+\ell)\Gamma_{p-1}((n_1-1)/2, \delta^{*}) /$$ $$(a+1)\Gamma_{p-1}((n_1+p-1)/2, \delta^{*})) .$$ where a = m(p-1) + (p-2)(p+1)/2 + s + ℓ , b = m+p- ℓ -1. The individual characteristic root could be very useful in testing hypotheses, for instance, Anderson [2] in testing the null hypotheses that the rank of Ω = r against the alternative that it is greater we reject the null hypothesis if the p - r smallest roots are not sufficiently small. ## 6. The Distribution of the Characteristic Vectors Corresponding to the Largest and Second Largest #### Roots of a Sample Covariance Matrix Let $\mbox{$ U$}$ has the Wishart distribution $\mbox{$ W(p,n,\Sigma)$,}$ the probability elements of $\mbox{$ U$}$ are (6.1) $$K_2 \left| \underbrace{\mathbf{U}} \right|^{(n-p-1)/2} \exp \left(-\frac{1}{2} \operatorname{tr} \sum_{n=1}^{\infty} \underbrace{\mathbf{U}} \right) d \underbrace{\mathbf{U}} ,$$ where $$K_2 = \left| \sum_{n=1}^{\infty} \right|^{-\frac{1}{2}n} / 2^{pn/2} \Gamma_p(\frac{1}{2}n)$$ Now there exists an orthogonal matrix \underline{L} such that $\underline{\Sigma} = \underline{L} \ \underline{D}_{\mu} \ \underline{L}^{\prime}$ where $\underline{D}_{\mu} = \text{diag} (\mu_1, \dots, \mu_p)$ and further make the transformation $\underline{V} = \underline{L}^{\prime} \ \underline{U} \ \underline{L}^{\prime}$, then the distribution of \underline{V} is given by (6.2) $$K_2 |\underline{v}|^{(n-p-1)/2} \exp \left(-\frac{1}{2} \operatorname{tr} D_{\underline{v}} \underline{v}\right) d\underline{v} ,$$ where $$Y_i = 1/\mu_i$$, $(i = 1,..., p)$. Now transform V = H W H' where the orthogonal matrix H is represented in terms of rotations angles. The $p \times p$ orthogonal matrix has only p(p-1)/2 independent elements and every rotation in the p-dimensional space consists of p(p-1)/2 single rotations which is such a rotation in the two dimensional space. Let $R_p^V(\theta)$ be a single rotation matrix defined by (6.3) $$R_{p}^{V}(\theta) = \begin{pmatrix} I_{p-V} & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & I_{V-2} \end{pmatrix},$$ where \mathbb{I}_{ν} is the identity matrix $(\nu \times \nu)$, then H is defined by (6.4) $$\underset{\sim}{\mathbb{H}} = \underset{\sim}{\mathbb{H}}^{p}(\theta_{pj}) \underset{\sim}{\mathbb{H}}^{p-1}(\theta_{p-1,j}) \dots \underset{\sim}{\mathbb{H}}^{2}(\theta_{22})$$ and $$H_{p}^{\nu}(\theta_{j}) = R_{p}^{2}(\theta_{2}) \dots R_{p}^{\nu}(\theta_{\nu}); 0 \leq \theta_{i2} \leq 2\pi; 0 \leq \theta_{i,j} \leq \pi, (j \geq 3)$$ and $$\widetilde{\mathbf{W}} = \operatorname{diag} (\mathbf{w}_{p}, \mathbf{w}_{p-1}, \dots, \mathbf{w}_{1}), \ 0 < \mathbf{w}_{1} < \mathbf{w}_{2} < \dots < \mathbf{w}_{p} < \infty$$. Then the Jacobion of this transformation as found by Tumura [31] will be (6.5) $$\prod_{i>j} (\omega_i - \omega_j) \prod_{i=p}^{3} \prod_{j=i}^{3} \sin^{j-2} \theta_{i,j}$$ where $0 < \omega_1 < \omega_2 < \ldots < \omega_p < \infty$ and h_p is the first column of $\overset{H^p}{\sim}(\theta_{pj})$, and h_p will be of the form (6.7) $$h_{p}^{\prime} = (h_{pp}h_{p,p-1}...h_{p1}) = (\cos\theta_{pp} \sin\theta_{pp} \cos\theta_{p,p-1}...$$ $$p_{-i} \lim_{\nu=p} \sin\theta_{p\nu} \cos\theta_{pi}...\lim_{\nu=p} \sin\theta_{p\nu} \cos\theta_{p2} \lim_{\nu=p} \sin\theta_{p\nu} \sin\theta_{p2}) ,$$ $\frac{H}{h}^{p}(\theta_{pj})$ is an orthogonal matrix with p-1 independent elements θ_{pp} , $\theta_{p,p-1}$... θ_{p2} , θ_{p-1} is the orthogonal matrix of the p-1 dimensional space with (p-1)(p-2)/2 independent elements θ_{ij} , ($i=p-1,\ldots,2$, $j=i,\ldots,2$) denote θ_{p-1} as the $(p-1) \times (p-1)$ matrix obtained from θ_{ij} , θ_{ij} , deleting the first row and column, and θ_{ij} and θ_{ij} deleting the first row and column, column are represented by θ_{ij} deleting the first row and column are represented by θ_{ij} and θ_{ij} deleting the first row and column are represented by θ_{ij} and θ_{ij} deleting the first row and column are represented by θ_{ij} and θ_{ij} deleting the first row and column are represented by θ_{ij} deleting the first row and column are represented by
θ_{ij} deleting the first row and column are represented by θ_{ij} deleting the first row where $\mathbb{H}_{p-1}^{p-1}(\theta_{p-1,j})$ is an orthogonal matrix with p-2 independent elements $\theta_{p-1,p-1}$, $\theta_{p-1,p-2}$,..., $\theta_{p-1,2}$ and is obtained from $\mathbb{H}_{p-1}^{p-1}(\theta_{p-1,j})$ by deleting the 1st row and column θ_{p-2} is the orthogonal matrix of the p-2 dimensional space with $\frac{1}{2}(p-2)(p-3)$ independent elements θ_{ij} , $i=p-2,\ldots 2,\ j=i,\ldots,2;\ h_{p-1}$ is the first vector of $\mathbb{H}_{p-1}^{p-1}(\theta_{p-1,j})$ and is given by (6.9) $$h_{p-1} = (h_{p-1,p-1}, \dots, h_{p-1,1}) = (\cos \theta_{p-1,p-1} \sin \theta_{p-1,p-1} \dots \frac{1}{p-1,p-1} \dots \frac{1}{p-1,p-1} \sin \theta_{p-1,p-1} \dots \frac{1}{p-1,p-1} \sin \theta_{p-1,p-1} \dots \frac{1}{p-1,p-1} \dots \frac{1}{p-1,p-1} \sin \theta_{p-1,p-1} \dots \frac{1}{p-1,p-1} \frac{1$$ and $W_2 = \text{diag}(w_{p-2}, \dots, w_1)$, and D_{p-2} is the $(p-2) \times (p-2)$ matrix obtained from $W_{p-1}^{p-1}D_{p-1}W_{p-1}^{p-1}$ by deleting the first row and column. Hence the distribution of w_1, \dots, w_p , $\theta_{ij}(i=p,\dots,2,\ j=1,\dots,2)$ can be written in the form $$(6,10) \quad K_{2}(\omega_{p}\omega_{p-1})^{\frac{1}{2}(n-p-1)}|_{\mathbb{W}_{2}}|_{\frac{1}{2}(n-p-1)}^{\frac{1}{2}(n-p-1)}\exp(-\frac{1}{2}h_{p}^{i})_{\mathbb{W}_{2}}^{0}h_{p}\omega_{p})$$ $$= \exp(-\frac{1}{2}h_{p-1}^{i}D_{p-1}h_{p-1}\omega_{p-1}) \exp(-\frac{1}{2}trD_{p-2}H_{p-2}\omega_{2}U_{p-2$$ Consider the case, p=3. The joint density of θ_{33} , θ_{32} , θ_{22} , ω_{1} , ω_{2} , ω_{3} can be deduced from (6.10) and is given by (writing K_{2} again for K_{2} , p=3) $$(6.11) \quad K_{2} |_{\omega_{1}\omega_{2}\omega_{3}}^{\omega_{3}}|_{\stackrel{\frac{1}{2}(n-4)}{i^{2}}}^{\frac{3}{11}} (\omega_{1}-\omega_{1}) \sin \theta_{33} \exp(-\frac{1}{2}h_{3}^{*}) \sum_{\gamma} h_{3}\omega_{3})$$ $$\exp(-\operatorname{tr}(\frac{a_{11}}{a_{12}}) (\cos \theta_{22} - \sin \theta_{22})$$ $$a_{12} a_{22} \sin \theta_{22} \cos \theta_{22}$$ $$(\omega_{2} \circ (\cos \theta_{22} \sin \theta_{22}) \cos \theta_{22})$$ $$\circ (\omega_{1} - \sin \theta_{22} \cos \theta_{22})$$ where $$h_{3}^{\prime} = (\cos \theta_{33} \cos \theta_{32} \sin \theta_{33} \sin \theta_{32} \sin \theta_{33}) ,$$ $$a_{11} = Y_{1} + (Y_{2} - Y_{1}) \cos^{2} \theta_{33} + (Y_{3} - Y_{2}) \sin^{2} \theta_{32} \cos^{2} \theta_{33} ,$$ $$a_{12} = (Y_{3} - Y_{1}) \cos^{\theta}_{33} \sin^{2} \theta_{32} / 2 ,$$ and $$a_{22} = \gamma_2 + (\gamma_3 - \gamma_2) \cos^2 \theta_{32}$$ Now (6.11) can be written in the form (6.12) $$K_{2}(\omega_{1}\omega_{2}\omega_{3})^{\frac{1}{2}(n-l_{1})} \prod_{i>j} (\omega_{i}-\omega_{j}) \sin \theta_{33} \exp(-b_{3}\omega_{3})$$ $$\left[\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{i=0}^{k} {k \choose i} b_{2}^{i} b_{1}^{k-i} \omega_{2}^{i} \omega_{1}^{k-i} \right]$$ where $$b_1 = -\frac{1}{2} (\sin \theta_{22} - \cos \theta_{22}) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} \sin \theta_{22} \\ -\cos \theta_{22} \end{pmatrix} ,$$ $$b_2 = -\frac{1}{2}(\cos\theta_{22}\sin\theta_{22}) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} \cos\theta_{22} \\ \sin\theta_{22} \end{pmatrix} ,$$ and $$b_3 = \frac{1}{2}h_3' \sum_{Y} h_3$$. Let $\ell=\omega_1/\omega_2$, then the distribution of $\theta_{33}, \theta_{32}, \theta_{22}, \ell_1, \omega_2, \omega_3$ is given by $$(6.13) \quad k \, \omega_{3}^{\frac{1}{2}(n-4)} \, \omega_{2}^{n-2}(\omega_{3} - \omega_{2}) \, \sin \, \theta_{33} \, \exp(-b_{3}\omega_{3})$$ $$\left[\sum_{k=0}^{\infty} \frac{\omega_{2}^{k}}{\frac{2}{k!}} \, \sum_{i=0}^{k} {k \choose i} \, b_{2}^{i} \, b^{k-i}(\omega_{3}(1-\ell)\ell^{\frac{1}{2}n+k-i-2}) - \omega_{2}(1-\ell)\ell^{\frac{1}{2}n+k-i-1} \right] .$$ Integrate (6.5) with respect to ℓ , then $$(6.14) \qquad K_{2} \ \omega_{2}^{n-2} \ \omega_{3}^{\frac{1}{2}(n-4)} \ (\omega_{3} - \omega_{2}) \ \sin \theta_{33} \ \exp(-b_{3} \ \omega_{3})$$ $$\left[\sum_{k=0}^{\infty} \frac{\omega^{k}}{k!} \ \sum_{i=0}^{k} \ (_{i}^{k}) \ b_{2}^{i} \ b_{1}^{k-i} (\omega_{3} \ \beta(\frac{1}{2}n+k-i-1,2)-\omega_{2}^{\beta(\frac{1}{2}n+k-i,2))} \right].$$ Again make the transformation $t=\omega_2/\omega_3$, integrate with respect to t and then with respect to ω_3 , we can write the distribution of θ_{33} , θ_{32} , θ_{22} in the form (6.15) $$K_2 \sin \theta_{33} \left[\sum_{k=0}^{\infty} \frac{\Gamma\{3n/2\} + k\}}{k! \ b_3^{(3n/2) + k}} \sum_{i=0}^{k} {k \choose i} \ b_2^i \ b_1^{k-i} \right]$$ $$\beta(n+k-1,2) \ \beta(\frac{1}{2}n+k-i-1,2)(1-\frac{(n+k)(\frac{1}{2}n+k-i)}{(n+k+2)(\frac{1}{2}n+k-i+2)}) \ \Big] \ .$$ For any p, integrate (6.10) with respect to $\frac{1}{2}(p-2)(p-3)$ independent elements of H_{p-2} by using Lemma (3.2) of Sugiyama [29], we can write the distribution of $\omega_1, \ldots, \omega_p$, $\theta_{ij}(i=p,p-1;j=i,\ldots 2)$ in the form $$(6.16) \quad k\{\pi^{(p-2)^{2}/2}/\Gamma_{p-2}(\frac{1}{2}(p-2))\} (\omega_{p}-\omega_{p-1})^{\frac{1}{2}(n-p-1)} |_{\mathbb{W}_{2}}|^{\frac{1}{2}(n-p-1)}$$ $$= \exp(-\frac{1}{2}h_{p}^{i}\mathbb{D}_{Y}h_{p}^{\omega}) \exp(-\frac{1}{2}h_{p-1}^{i}\mathbb{D}_{p-1}h_{p-1}^{\omega}\mathbb{D}_{p-1}) \int_{j=p}^{3} \sin^{j-2}\theta_{pj}$$ $$= \lim_{j=p-1} \sin^{j-2}\theta_{p-1,j} \prod_{i>j} (\omega_{i}-\omega_{j}) \left[\sum_{k=0}^{\infty} \sum_{k} \{c_{k}(-\frac{1}{2}\mathbb{D}_{p-2}) - c_{k}(\mathbb{W}_{2})/k! c_{k}(\mathbb{I}_{p-1})\}\right].$$ Now make the transformation $\ell_i^! = \omega_i/\omega_{p-1}$, $i=1,\ldots, p-2$, and using James [10], the distribution of $\ell_i^!$, $\ell_2^!$,..., $\ell_{p-2}^!$, $\omega_{p-1}^!$, $\omega_p^!$, $\ell_{i,j}^!$ (i=p,p-1; $j=i,\ldots, 2$) can be written in the form $$(6.17) \quad K_{2} \{\pi^{(p-2)^{2}/2}/\Gamma_{p-2} (\frac{p-2}{2})\} \quad \omega_{p}^{\frac{1}{2}(n+p-5)} \omega_{p-1}^{\frac{1}{2}(np-p-n-1)} (\omega_{p}-\omega_{p-1})$$ $$|L'|^{\frac{1}{2}(n-p-1)}|_{L-L'}|_{\pi} (\ell_{i}-\ell_{j}) \exp(-\frac{1}{2}h_{p}D_{\gamma}h_{p}\omega_{p})$$ $$\exp(-\frac{1}{2}h_{p-1}D_{p-1}h_{p-1}\omega_{p-1}) \lim_{j=p} \sin^{j-2}\theta_{pj} \lim_{j=p-1} \sin^{j-2}\theta$$ $$\theta_{p-1,j} \left[\sum_{k=0}^{\infty} \sum_{K} \sum_{j=0}^{p-2} \{c_{K}(\frac{1}{2}D_{p-2})c_{K}(L')c_{(1})c_{(1})(L')(-1)^{j}(2j)!\right]$$ $$\omega_{p-1}^{j+k} / \omega_{p}^{j}(j!)^{2}k! \times_{(21^{j})} (1)c_{K}(L)\} \right].$$ Now by multiplication of two zonal polynomials [15] and integrating (6.17) with respect to $0 < \ell_1^* \le \ell_2^* \le \dots \le \ell_{p-2}^* \le 1$, we get the distribution of ω_{p-1} , ω_p , θ_{ij} (i = p, p - 1; j = i,..., 2) (6.18) $$K_{2} \Gamma_{p-2}(\frac{p+1}{2}) \omega_{p}^{\frac{1}{2}(n+p-5)} \exp(-\frac{1}{2}h_{p}^{i}D_{j}h_{p}\omega_{p}) \prod_{j=p}^{3} \sin^{j-2}\theta_{pj}$$ $$\prod_{j=p-1}^{3} \sin^{j-2}\theta_{p-1,j} \left[\sum_{r=0}^{\infty} \sum_{k=0}^{\infty} \sum_{\kappa} \sum_{j=0}^{p-2} \sum_{r=0}^{\infty} \{(-1)^{j}(2j)! \} \right]$$ $$g_{(\kappa,1^{j})}^{\tau} C_{\kappa}(-\frac{1}{2}D_{p-2}) \Gamma_{p-2}\{\frac{1}{2}(n-2),\tau\}(-\frac{1}{2}h_{p-1}^{i}D_{p-1}h_{p-1})^{r}$$ $$C_{\tau}(\underline{I})(\omega_{p}-\omega_{p-1}) \omega_{p+1}^{\frac{1}{2}(np-n-p-1)+k+i+r}/\omega_{p}^{j}(j!)^{2} k! r! \chi_{(2l^{j})}$$ $$C_{\kappa}(\underline{I}) \Gamma_{p-2}(\frac{1}{2}(n+p-1),\tau)\}$$ where τ and $g^{\tau}_{(\kappa,l^{j})}$ and $\chi_{(2l^{j})}^{(1)}$ as defined in section 2. Further let $\omega_{p-1} = \ell \omega_{p}$, integrate ℓ and then ω_{p} , the distribution of $\theta_{i,j}$ (i=p, p-1; j=i,..., 2) in the form: $$(6.19) \quad K_{2} \Gamma_{p-2}(\frac{1}{2}(p+1)) \prod_{j=p}^{3} \sin^{j-2}\theta_{pj} \prod_{j=p-1}^{3} \sin^{j-2}\theta_{p-1,j}$$ $$\left[\sum_{r=0}^{\infty} \sum_{k=0}^{\infty} \sum_{\kappa} \sum_{j=0}^{p-2} \sum_{\tau} \left\{ (-1)^{j} (2j) : g_{(\kappa,1^{j})}^{\tau} c_{\kappa}(-\frac{1}{2}D_{p-2}) c_{\tau}(\underline{I}) \right\} \right]$$ $$\left(-\frac{1}{2}h_{p-1}^{\dagger}D_{p-1}h_{p-1}\right)^{r}
\beta(\frac{1}{2}(np-n-p+1)+k+j+r,2)\Gamma(\frac{1}{2}(np+k+r)) /$$ $$\chi_{(21^{j})}(1) c_{\kappa}(\underline{I})\Gamma_{p-2}(\frac{1}{2}(n+p+1),\tau)(-\frac{1}{2}h_{p}^{\dagger}D_{\gamma}h_{p})^{\frac{1}{2}(np)+k+r}) .$$ When $\sum_{\infty} = \sum_{\infty}$, we get from (6.19) (6.20) $$(\Gamma(p-1)/2^{p} \Pi^{p-1}) \overset{3}{\prod} \sin^{j-2} \theta \overset{3}{\prod} \sin^{j-2} \theta_{p-1,j}$$. #### CHAPTER III #### NON-CENTRAL DISTRIBUTIONS OF THE SMALLEST #### AND SECOND SMALLEST ROOTS OF MATRICES #### IN MULTIVARIATE ANALYSIS #### 1. Introduction and Summary While the second chapter dealt with non-central distribution of the second largest root, this chapter deals with the non-central distributions of the smallest and (second smallest) root of a covariance matrix and those in the case of MANOVA, canonical correlation and test of equality of covariance matrices. #### 2. The Distribution of the #### Smallest Root of a Covariance Matrix In this section we obtain the distribution of $g_1^* = \frac{1}{2}\omega_1$, where $0 < \omega_1 \le \omega_2 \le \dots \le \omega_p < \infty$, has the joint density defined in (5.1) of the previous chapter. Now transform $q_i = g_1^i / g_i^i$, i = 2,..., p, then the joint density of g_1^i and $q_2,..., q_p$ can be written as (2.1) $$K_{1}(p,n)|\Sigma|^{-\frac{1}{2}n} g_{1}^{\frac{1}{2}np-1} e^{-g_{1}^{i} \operatorname{tr} Q_{1}^{-1}} |Q|^{-m-p-1} |\Sigma-Q|$$ Now, by using the results of Constantine [5], namely, $$c^{\kappa}(\widetilde{\mathbb{T}}_{-1}) = |\widetilde{\mathbb{T}}|_{-e^{\mathbb{T}}} (c^{\kappa}(\widetilde{\mathbb{T}}) / c^{\kappa*}(\widetilde{\mathbb{T}})) c^{\kappa*}(\widetilde{\mathbb{T}})$$ where e_1 is any integer $\geq k_1$ and $k* = (e_1 - k_p, \dots, e_1 - k_1)$, and $k = (k_1, \dots, k_p)$. Also expand $\left| \frac{1}{2} \right|^{-m-p-e_1-1}$ as well as $C_K(\underline{I}-\underline{Q}_1)$. Then using the results of Khatri and Pillai [15] on the multiplication of two zonal polynomials, (2.1) can be written as $$(2.2) \quad K_{1}(p,n) \; g_{1}^{\frac{1}{2}np-1} \; \left| \underset{i \geq j}{\mathbb{Z}} \right| \; \frac{\mathbb{I}}{i^{2}j} \; \left(q_{j} - q_{i}\right) \; \sum_{k=0}^{\infty} \; \sum_{\kappa} \; \frac{C_{\kappa}(\underbrace{\mathbb{I}} - \underbrace{\Sigma^{-1}})}{k! \; C_{\kappa}(\underbrace{\mathbb{I}})}$$ $$\sum_{s=0}^{\infty} \; \sum_{\eta} \; \frac{(-1)^{s} \; g_{1}^{*k+s}}{s!} \; \sum_{\delta} \; g_{\eta}^{\delta}, \kappa_{*} \; \frac{C_{\delta}(\underbrace{\mathbb{I}})}{C_{\delta*}(\underbrace{\mathbb{I}})} \; \sum_{t=0}^{\infty} \; \sum_{\tau} \; \frac{(m+p+e_{1}+1)_{\tau}}{t!}$$ $$C_{\tau}(\underbrace{\mathbb{I}}) \; \sum_{d=0}^{t} \; \sum_{\mu} \; \frac{(-1)^{d} \; a_{\tau,\mu}}{C_{\mu}(\underbrace{\mathbb{I}})} \; \sum_{\gamma} \; g_{\delta*,\mu}^{\gamma} \; C_{\gamma}(\underbrace{\mathbb{Q}}_{1}) \; ,$$ where δ , γ are the partitions of k+s and $d+pe_1-s-k$ respectively, and $\delta *=(e_1-\delta p,\ldots,e_1-\delta_1)$ where e_1 is any integer $\geq \delta_1$ and $\delta =(\delta_1,\ldots,\delta_p)$. The constants $g_{\eta,K}^{\delta}$, $g_{\delta *,\mu}^{\gamma}$ are defined in [15], and $a_{\tau,\mu}$ are defined in [8]. Now, integrate (2.2) with respect to $1 \ge q_2 \ge ... \ge q_p \ge 0$, the density function of g_1^* can be written as $$(2.3) \qquad \Gamma_{\mathbf{p}}((\mathbf{p}+1/2) / \Gamma_{\mathbf{p}}(\frac{1}{2}\mathbf{n}) \ \mathbf{g}_{1}^{\frac{1}{2}\mathbf{n}\mathbf{p}-1} \sum_{\mathbf{k}=0}^{\infty} \sum_{\mathbf{K}} \frac{C_{\mathbf{K}}(\mathbf{\Sigma}-\mathbf{\Sigma}^{-1})}{\mathbf{k}! \ C_{\mathbf{K}}(\mathbf{\Sigma})} \sum_{\mathbf{s}=0}^{\infty} \sum_{\mathbf{\eta}} \frac{(-1)^{\mathbf{s}} \mathbf{g}_{1}^{\mathbf{k}+\mathbf{s}}}{\mathbf{s}!}$$ $$\sum_{\mathbf{k}=0}^{\delta} \sum_{\mathbf{K}} \frac{C_{\delta}(\mathbf{\Sigma})}{C_{\delta}(\mathbf{\Sigma})} \sum_{\mathbf{k}=0}^{\infty} \sum_{\mathbf{K}} \frac{(\mathbf{m}+\mathbf{p}+\mathbf{e}_{1}+1)_{\mathbf{k}}}{\mathbf{t}!} C_{\mathbf{T}}(\mathbf{\Sigma}) \sum_{\mathbf{k}=0}^{t} \sum_{\mathbf{k}=0}^{t} \frac{(-1)^{d} \mathbf{a}_{\mathbf{T},\mathbf{\mu}}}{\mathbf{c}_{\mathbf{\mu}}(\mathbf{\Sigma})}$$ $$\sum_{\delta \neq \mu} g_{\delta *, \mu}^{\gamma} (p(p+1)/2 + d+pe_1-s-k) (\Gamma_p((p+1)/2, \gamma)/\Gamma_p(p+1, \gamma)).$$ If $\sum_{\infty} = 1$, in (2.1), then the density of g_1^* can be written as (2.4) $$K_{2}(p,n) g_{1}^{\frac{1}{2}pn-1} e^{-g_{1}^{i}} \sum_{k=0}^{\infty} \sum_{K} \frac{(-g_{1})^{K} C_{K}(\underline{I})}{k! C_{K*}(\underline{I})} \sum_{t=0}^{\infty} \sum_{T} \frac{(m+p+e_{1}+1)}{t!} \tau$$ $$C_{\mathsf{T}}(\underline{\mathtt{I}}) \sum_{\mathsf{d}=\mathsf{O}}^{\mathsf{t}} \sum_{\mathsf{\mu}} \frac{(-1)^{\mathsf{d}} a_{\mathsf{T},\mathsf{\mu}}}{C_{\mathsf{\mu}}(\underline{\mathtt{I}})} \sum_{\delta} g_{\mathsf{K}\star,\mathsf{\mu}}^{\delta} C_{\delta}(\underline{\mathtt{I}}) (\Gamma_{\mathsf{p-1}}(\mathsf{p/2},\delta) / \mathsf{p-1})$$ $$\Gamma_{p-1}(p+1,\delta))$$, where $K_2(p,n) = \prod_{p=1}^{p-\frac{1}{2}} \Gamma_{p-1}(p/2+1) / \Gamma_p(n/2) \Gamma(p/2)$. #### 3. The Distribution of the Second Smallest Root Let $\sum_{i=1}^{n} = \sum_{i=1}^{n} in$ (2.1) and transform $q_i = g_2^i/g_1^i$, i = 3,..., p and by the same method as in section (2), the joint density of g_1^i , g_2^i can be written as $$(3.1) K_{3}(p,n) g_{1}^{im} g_{2}^{im(p-1)+\frac{1}{2}(p-2)(p+3)} e^{-(g_{1}^{i}+g_{2}^{i})} (g_{2}^{i}-g_{1}^{i})$$ $$\sum_{k=0}^{\infty} \sum_{K} \frac{(-g_{2}^{i})^{k} C_{K}(\underline{I})}{k! C_{K}(\underline{I})} \sum_{t=0}^{\infty} \sum_{T} \frac{(m+p+e_{1}+1)_{T}}{t!} C_{T}(\underline{I})$$ $$\sum_{k=0}^{t} \sum_{K} \frac{(-1)^{d} a_{T,\mu}}{C_{\mu}(\underline{I})} \sum_{\ell=0}^{p-2} \frac{c(\ell) g_{1}^{i\ell}}{g_{2}^{i\ell}} \sum_{\delta} g_{(K*,\mu,1}^{\delta}) C_{\delta}(\underline{I}_{p-2})$$ $$(\Gamma_{p-2}((p-1)/2,\delta)/\Gamma_{p-2}(p,\delta));$$ where $K_3(p,n) = 2\pi^{2p-3} \Gamma_{p-2}((p+1)/2) / \Gamma_p(n/2) \Gamma_{p-2}((p-2)/2)$. Integrate (3.1) with respect to g_1^i , then the density of g_2^i is given by (3.2) $$K_{3}(p,n) g_{2}^{i} \stackrel{m(p-1)+\frac{1}{2}(p-2)(p+3)}{=} e^{-g_{2}^{i}} \sum_{k=0}^{\infty} \sum_{k} \frac{\left(-g_{2}^{i}\right)^{k} C_{k}(\underline{I})}{k! C_{k*}(\underline{I})}$$ $$\sum_{k=0}^{\infty} \sum_{k} \frac{(m+p+e_{1}+1)}{t!} C_{T}(\underline{I}) \sum_{d=0}^{\infty} \sum_{\mu} \frac{(-1)^{d} a_{T,\mu}}{C_{\mu}(\underline{I})} \sum_{\ell=0}^{p-2} C(\ell) g_{2}^{i-\ell}$$ $$\sum_{\delta} \sum_{(K*,\mu,1^{\ell})}^{\delta} C_{\delta}(\underline{I}_{p-2}) (\Gamma_{p-2}((p-1)/2,\delta)/\Gamma_{p-2}(p,\delta))$$ $$(g_{2}^{i} Y(0,g_{2}^{i}; m+\ell+1) - Y(0,g_{2}^{i}; m+\ell+2)) .$$ #### 4. Non-Central Distribution of the #### Smallest and (Second Smallest) Roots in MANOVA Case In this section we obtain the distributions of the smallest root ℓ_1 and the second smallest ℓ_2 , when the distribution of $0 < \ell_1 < \ell_2 < \ldots < \ell_p < 1$ is described in (2.1) of the previous chapter. Now transform $z_i = 1-l_i$ and expand $C_K(\underbrace{I-Z}_K)$, then the joint density of $1 \ge z_1 \ge z_2 \ge \dots \ge z_p \ge 0$ can be written as $$(4.1) \qquad C(p,n_1,n_2) \exp(\operatorname{tr} -\Omega) |Z|^n |Z|^n |Z|_{i>j}^{m_{II}} (z_j-z_i) \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(\nu/2)_{\kappa} c_{\kappa}(\Omega)}{(n_1/2)_{\kappa} k!}$$ $$\sum_{k=0}^{k} \sum_{\kappa} (-1)^s a_{\kappa,\eta} c_{\eta}(Z) / c_{\eta}(Z) .$$ Now, from the results of Pillai and Sugiyama [25], the density of ℓ_1 can be written as (4.2) $$c_{2}(p,n_{1},n_{2}) \exp(tr-\Omega) \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(\nu/2)_{\kappa} c_{\kappa}(\Omega)}{(n_{1}/2)_{\kappa} k!} \sum_{s=0}^{k} \sum_{\eta} \frac{(-1)^{s} a_{\eta,\kappa}}{c_{\eta}(\underline{I})}$$ $$\sum_{t=0}^{\infty} ((pn_{2}/2+s+t)/t!) \sum_{\delta^{\dagger},\sigma}^{\infty} g_{\eta,\sigma}^{\delta^{\dagger}} \frac{((p+1-n_{1})/2)\sigma(n_{2}/2)_{\delta^{\dagger}}}{((n_{2}+p+1)/2)_{\delta^{\dagger}}} c_{\delta^{\dagger}}(\underline{I})$$ $$(1-l_{1})^{pn_{2}/2+s+t-1} ,$$ where σ and δ ! are the partitions of t and s+t respectively, and $C_2(p,n_1,n_2) = \frac{\Gamma_p((p+1)/2)}{p} \frac{\Gamma_p(v/2)}{r} \frac{\Gamma_p(n_1/2)}{r} \frac{\Gamma_p((n_2+p+1)/2)}{r}$. Also from the results of Chapter II, the density of \mathcal{L}_2 can be written as (4.3) $$c_{1}(p,n_{1},n_{2}) \exp(tr-\Omega)(1-l_{2})^{n(p-1)+(p-2)(p+1)/2} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(\nu/2)_{\kappa} c_{\kappa}(\Omega)}{k! (n_{1}/2)_{\kappa}} \sum_{s=0}^{k} \sum_{\eta} \frac{(-1)^{s} a_{\kappa,\eta}}{c_{\eta}(\mathbb{I})} \sum_{t=0}^{\infty} \sum_{\sigma} \frac{(-m)^{\sigma}}{t!} \sum_{\ell=0}^{p-2} c(\ell)/\ell!$$ $$\sum_{\tau,\mu} a_{\tau,\mu}(1-l_{2})^{t+\ell+s_{2}} I(1-l_{2},1;n+p+s_{1}-\ell-1,m) \sum_{\gamma} g_{(1}^{\ell},\sigma,\mu)$$ $$c_{\gamma}(\mathbb{I}_{p-1})((n_{2}-1)(p-1)/2+t+\ell+s_{2})(\Gamma_{p-1}((n_{2}-1)/2,\gamma))$$ $$\Gamma_{p-1}((n_{2}+p-1)/2,\gamma)) .$$ #### 5. The Distribution of the Smallest and #### (Second Smallest) Roots in the Canonical Correlation Case In this section, we obtain the distributions of r_1^2 and r_2^2 as the joint density of $0 \le r_1^2 \le r_2^2 \le \ldots \le r_p^2 \le 1$ is defined in (3.1) of the previous chapter. As before, transform $r_i^2 = 1-r_i^2$, i = 1,..., p. Then the density of r_1^2 can be written as (5.1) $$c_{2}(n,p,q) \Big| \underbrace{\sum_{k=0}^{\infty} \sum_{k} \frac{(n/2)_{k} (n/2)_{k} c_{k}(\underline{p}^{2})}{(q/2)_{k} k!} \sum_{s=0}^{k} \underbrace{\sum_{\eta} \frac{(-1)^{s} a_{k,\eta}}{c_{\eta}(\underline{z})}}_{s=0,\eta}$$ $$\underbrace{\sum_{t=0}^{\infty} ((p(n-q)/2+s+t/t!) \sum_{\sigma,\delta} g_{\eta,\sigma}^{\delta!} ((p-q+1)/2)_{\sigma}}_{\sigma,\delta!}$$ $$\underbrace{\frac{((n-q)/2)\delta!}{((n-q+p+1)/2)_{\delta!}} c_{\delta!}(\underline{z}_{p})(1-r_{1}^{2})^{p(n-q)/2+s+t-1}}_{s=0,\eta} ,$$ where $C_2(n,p,q) = \Gamma_p(n/2) \Gamma_p((p+1)/2) / \Gamma_p(q/2) \Gamma_p((n-q+p+1)/2)$. Also the density of
r_2^2 can be written as (5.2) $$c_{1}(n,p,q) \Big| \underset{\sim}{\mathbb{I}} - \underset{\sim}{\mathbb{P}^{2}} \Big|^{n/2} (1-r_{2}^{2})^{\alpha} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(n/2)_{\kappa}(n/2)_{\kappa} c_{\kappa}(\underline{p}^{2})}{(q/2)_{\kappa} k!}$$ $$\sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \sum_{\eta,\sigma} \frac{(-1)^{s} a_{\kappa,\eta}((p-q+1)/2)^{\sigma}}{c_{\eta}(\underline{\mathbf{I}}) t!} \sum_{\ell=0}^{p-2} c(\ell)/\ell!$$ $$\sum_{\tau,\mu} a_{\tau,\mu}(1-r_{2}^{2})^{t+\ell+s} 2 I((1-r_{2}^{2}),1;(n-q+p-3)/2+k_{1}-\ell;(q-p-1)/2)$$ $$\sum_{\gamma} \underset{\gamma}{\mathbb{P}^{2}} (1^{\ell},\sigma,\mu) c_{\gamma}(1_{p-1})((n-q-1)(p-1)/2+t+\ell+s_{2})$$ $$(\Gamma_{p-1}((n-q-1)/2,\gamma) / \Gamma_{p-1}((n-q+p-1)/2,\gamma)) ,$$ where $\alpha = \{(n-q-p-1)(p-1) + (p-2)(p+1)\}/2$. ## 6. Non-Central Distribution of the Smallest (and Second Smallest) Roots of $\underset{\sim}{\mathbb{S}_1}\underset{\sim}{\mathbb{S}_2}^{-1}$ In this section we obtain the distribution of g_1 and g_2 where $0 < g_1 \le g_2 \le \ldots \le g_p < 1$ has the joint distribution described in (2.1) of Chapter 1. Then, as before, the density of g_1 can be written as (6.1) $$c_{2}(p,n_{1},n_{2})|\delta\Lambda|^{-n_{1}/2} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(\nu/2)_{\kappa} c_{\kappa}(\underline{\mathbf{I}} - (\delta\Lambda)^{-1})}{k!} \sum_{s=0}^{k} \sum_{\eta} \frac{(-1)^{s} a_{\kappa,\eta}}{c_{\eta}(\underline{\mathbf{I}})} \sum_{t=0}^{\infty} \sum_{\sigma,\delta} \{(pn_{2}/2+s+t) g_{\eta,\sigma}^{\delta,\sigma}((p+1-n_{2})/2)_{\sigma} + (n_{2}/2)_{\delta}, c_{\delta,\sigma}(\underline{\mathbf{I}}_{p})(1-g_{1})^{pn_{2}/2+s+t-1}/t! (n_{2}+p+1)_{\delta,\delta} \}$$ Also, the density of g2 can be written as $$(\Gamma_{p-1}((n_2-1)/2,Y) / \Gamma_{p-1}((n_2+p-1)/2,Y))$$ #### CHAPTER IV # ON THE DISTRIBUTION OF THE 1TH LATENT ROOT UNDER NULL HYPOTHESES CONCERNING COMPLEX MULTIVARIATE NORMAL POPULATIONS #### 1. Introduction and Summary Khatri [12], has pointed out that one can handle all the classical problems of point estimation and testing hypotheses concerning the parameters of complex multivariate normal populations much as one handles those for multivariate normal populations in real variates. Further Khatri [12], has suggested the maximum latent root statistic for testing the reality of a covariance matrix. The joint distribution of the latent roots under certain null hypotheses can be written as, [11], [12], (1.1) $$c_{1} \left\{ \prod_{j=1}^{q} w_{j}^{m} (1 - w_{j})^{n} \right\} \prod_{i \geq j} (w_{i} - w_{j})^{2}$$ where $c_1 = \frac{q}{n} \Gamma(n+m+q+j) / \{\Gamma(n+j) \Gamma(m+j) \Gamma(j)\}$ and $0 \le w_1 \le w_2 \le \cdots \le w_q \le 1$. We may also note that when n is large, the joint distribution of $nw_j = f_j$, $j = 1, \ldots, q$, $0 \le f_1 \le \ldots \le f_q \le \infty$, can be written as (1.2) $$c_{2} \prod_{j=1}^{q} f_{j}^{m} \exp(-\sum_{j=1}^{q} f_{j}) \{\prod_{i \geq j} (f_{i} - f_{j})^{2} \}$$ where Σ means summation over all permutations $(j_1, j_2, ..., j_q)$ of (1,2,...,q), and |A| means the determinant of A. For Proof, see Khatri [10]. #### Lemma 3. $$\sum_{j=1}^{s} \int_{x_{j}^{1}}^{x_{j}^{1}} \left[x_{j}^{x_{j}^{1}}(1-x_{j}^{1})^{n_{j}^{1}} dx_{j}^{1}\right] = \prod_{j=1}^{s} \left[\int_{x_{j}^{1}}^{1} x_{j}^{n_{j}^{1}}(1-x_{j}^{1})^{n_{j}^{1}} dx_{j}^{1}\right],$$ where $\mathfrak{I}:(x\leq x_1\leq x_2\leq \ldots \leq x_s\leq 1)$, and on the left hand side $(m_s^i,\,n_s^i),\ldots,\,(m_1^i,\,n_1^i)$ is any permutation of $(m_s,\,n_s),\ldots,\,(m_1^i,\,n_1)$ and the summation is taken over all such permutations. Proof is similar to Lemma 1. #### 3. The Distribution of w_{q-1} In this section we obtain first the cdf's of w_{q-1} and f_{q-1} and in the next those of w_i and f_i . Note that (3.1) $$\Pr \{ w_{q-1} \le x \} = \Pr \{ w_q \le x \} + \Pr \{ w_{q-1} \le x < w_q \le 1 \}$$ Khatri [11], showed that (3.2) $$\Pr\{w_{q^{-}} = c_{1} | (\beta_{i+j-2})| = c_{1} \begin{vmatrix} \beta_{0} & \beta_{1} \cdots \beta_{q-1} \\ \beta_{1} & \beta_{2} & \beta_{q} \\ \vdots & \vdots & \vdots \\ \beta_{q-1} & \beta_{q} & \beta_{2q-2} \end{vmatrix}$$ where c_1 is defined in (1.1), $\beta_{i+j-2} = \int_0^x w^{m+i+j-2} (1-w)^n dw$ for $i,j=1,2,\ldots,q$ and (β_{i+j-2}) is a $q \times q$ matrix. Now the determinant in Lemma 2, can be written as (3.3) $$\sum_{1} \text{ sign } (t_1, \dots, t_q) \overset{q-1+t_1}{w_{j1}} \overset{q-2+t_2}{w_{j2}} \dots \overset{tq}{w_{jq}} ,$$ where (t_1,\ldots,t_q) is a permutation of $(0,1,\ldots,q-1)$, sign (t_1,\ldots,t_q) is positive if the permutation is even and negative if the permutation is odd, and Σ_1 means the summation over all such permutations. Then (1.1) can be written as (3.4) $$c_1 \{ \frac{q}{il} \ w_j^m (1-w_j)^n \ \sum_{j_1, \dots, j_{q-1}} \sum_{j_1} \operatorname{sign}(t_1, \dots, t_q) \}$$ $$[w_q^{q-1+t_1} \ w_{j_1}^{q-2+t_2} \ w_{j_2}^{q-3+t_3} \ \dots \ w_{j_{q-1}}^{t_q} + w_q^{q-2+t_2} \ w_{j_1}^{q-1+t_1} \}$$ $$w_{j_2}^{q-3+t_3} \ \dots \ w_{j_{q-1}}^{t_q} + \dots + w_q^{q-1+t_1} \ w_{j_2}^{q-2+t_2} \dots \ w_{j_{q-1}}^{1+t_q}] .$$ First taking summation over (j_1,\ldots,j_{q-1}) , the permutation of $(1,2,\ldots,q-1)$ and integrate \mathbf{w}_q over $\mathbf{x}\leq \mathbf{w}_q\leq 1$, and apply lemma 1, we get (3.5) $$\Pr(w_{q-1} \leq x \leq w_{q} \leq 1) = c_{1} \sum_{1} \operatorname{sign}(t_{1}, \dots, t_{q}) \left[\beta_{q-1+t_{1}}^{\dagger} \beta_{q-2+t_{2}} \dots \beta_{t_{q}}^{\dagger} + \beta_{q-1+t_{1}}^{\dagger} \beta_{q-2+t_{2}} \dots \beta_{t_{q}}^{\dagger} + \dots \beta_{q-1+t_{1}}^{\dagger} \beta_{q-2+t_{2}} \dots \beta_{t_{q}}^{\dagger}\right],$$ where $\beta_{i+j-2}^{!} = \int_{x}^{1} w^{m+i+j-2} (1-w)^n dw$, then (3.5) can be written as (3.6) $$c_{1} \sum_{k=1}^{q} |(\beta_{i+j-2}^{(k)})|,$$ where $|(\beta_{i+j-2}^{(k)})|$ is the determinant obtained from $|(\beta_{i+j-2})|$ by replacing, the kth column of $|(\beta_{i+j-2})|$, β_{α} , by the corresponding β_{α}^{*} 's. So we proved the following theorem. Theorem 1. If the joint distribution of w_1, \dots, w_q is given by (1.1), then (3.7) $$\Pr\{w_{q-1} \leq x\} = c_1 \sum_{k=0}^{q} |(\beta_{i+j-2}^{(k)})|$$ where $|(\beta_{i+j-2}^{(0)})| = |(\beta_{i+j-2})|$, and $|(\beta_{i+j-2}^{(k)})|$ is defined in (3.6), and c_1 is defined in (1.1). Theorem 2. If the distribution of f_1, \ldots, f_q is given by (1.2) then (3.8) $$\Pr\{f_{q-1} \le x\} = c_2 \sum_{k=0}^{q} |(Y_{i+j-2}^{(k)})|,$$ where $Y_{i+j-2} = \int_0^x w^{m+i+j-2} \exp(-w)dw$, (Y_{i+j-2}) is a q x q matrix and $(Y_{i+j-2}^{(k)})$ is defined similar to that of (3.7) and c_2 is defined in (1.2). Proof is similar to that of Theorem 1. #### 4. The Distribution of w_{i} It may be noted here that (4.1) $$Pr\{w_i \le x\} = Pr\{w_{i+1} \le x\} + Pr\{w_i \le x \le w_{i+1}\}, i = 1, ..., q-1$$. To evaluate the second term of (4.1), we may write (4.2) $$\prod_{i \geq j} (w_i - w_j)^2 = \sum_{1} \operatorname{sign} (t_1, \dots, t_q) \sum_{2} \sum_{i_1, \dots, i_{q-i}} w_{i_1}^{\alpha_1} w_{i_2}^2 \dots$$ $$\dots w_{i_{q-i}}^{\alpha_{q-i}} \sum_{y_{j1}} w_{j1}^{\alpha_{q-i+1}} w_{j2}^{\alpha_{q-i+2}} \dots w_{ji}^{\alpha_q}$$ where (i_1, \dots, i_{q-i}) is permutation of $(i+1, \dots, q)$ and $\sum_{i_1, \dots, i_{q-i}}$ runs over all such permutations; (j_1,\ldots,j_i) is a permutation of $(1,\ldots,i)$, and Σ runs over all such permutations; Σ_2 is the summation over the terms $({}^q_{q-i})$ terms of obtained by taking q-i, $({}^\alpha_1,\ldots,{}^\alpha_{q-i})$, at a time of $q-1+t_1$, $q-2+t_2,\ldots,t_q$. Substituting (4.2) in (1.1) and using Lemma 1, and Lemma 3, and as in Section (3), we get (4.3) $$\Pr(w_{i} \leq x \leq w_{i+1}) = c_{1} \sum_{j=1}^{n} |(\beta_{i+j-2}^{(i_{0})})|,$$ where $(\beta_{i+j-2}^{(i)})$ is a q x q matrix obtained from (β_{i+j-2}) by replacing i columns of (β_{i+j-2}) by the corresponding β_{α}^{i} is. Therefore by (4.1), (4.3) and Theorem 1 and reduction process, we can get the distribution of w. It may be pointed out that, [23], (4.4) $$Pr\{w_{i} \le x; m, n\} = 1 - Pr(w_{q-i+1} \le 1 - x; n, m)$$ where on the right side of (4.4) the parameters m and n are interchanged, hence the distribution of w_1 , [11], can be written as (4.5) $$\Pr\{w_1 \le x\} = 1 - c_1 |(\delta_{i+j-2})|,$$ where $\delta_{\mathbf{i}+\mathbf{j}-2} = \int_0^{1-\mathbf{x}} z^{\mathbf{n}+\mathbf{i}+\mathbf{j}-2} (1-z)^{\mathbf{m}} \, \mathrm{d}z$, and $(\delta_{\mathbf{i}+\mathbf{j}-2})$ is a q x q matrix, similarly, if we define $\delta_{\mathbf{i}+\mathbf{j}-2}^{\mathbf{t}} = \int_{\mathbf{k}-\mathbf{X}}^{1} z^{\mathbf{n}+\mathbf{i}+\mathbf{j}-2} (1-z)^{\mathbf{m}} \, \mathrm{d}z$, the distribution of \mathbf{w}_2 can be written as (4.6) $$\Pr\{w_2 \le x\} = 1 - c_1 \bigvee_{k=0}^{q} |(\delta_{i+j-2}^{(k)})|,$$ where, as before, $|(\delta_{i+j-2}^{(k)})|$ is the determinant obtained from $|(\delta_{i+j-2})|$ by replacing the kth column of $|(\delta_{i+j-2})|$ by the corresponding $\delta_{\alpha}^{,}$'s, and $(\delta_{i+j-2}^{(0)}) = (\delta_{i+j-2})$. A similar method gives $$Pr\{f_{i} \leq x\} = Pr\{f_{i+1} \leq x\} + Pr\{f_{i} \leq x \leq f_{i+1}\},$$ $$i = 1, 2, ..., q-1,$$ and #### CHAPTER V ### on the distribution of the sum of the two smallest roots of a covariance matrix and non-central wilks $^{\mathfrak{f}}$ Λ #### 1. Introduction and Summary In this chapter, the distribution of the sum of the two smallest roots of a covariance matrix, studied for p=3, 4 and 5 when $\Sigma=\mathbb{Z}_p$. This criterion is useful for various tests of hypotheses, for example, those regarding the number of independent linear equations satisfied by the means, μ_{it} , $i=1,\ldots,p$, $t=1,\ldots,N$ in N-p variate normal populations with a common covariance matrix ([1], [25]). The distribution of the sum of the two smallest, largest and the sum of the roots are considered
for p=4. In the last section, the non-central distribution of Wilks! A criterion has been obtained for p=2, 3 and 4. In this connection a lemma has been proved using some results on Mellin transform. #### 2. The Distribution of the Sum of the Two Smallest Roots Let $\sum_{i=1}^{n} = \sum_{j=1}^{n} \text{ in (5.1)}$ and transform $g_{i}^{i} = \frac{1}{2} g_{i}^{i}$, $i=1,\ldots,p$, we get the joint density of $g_{1}^{i},\ldots,g_{p}^{i}$ in the form (2.1) $$K_{1}(p,n) \stackrel{p}{\prod} (g_{1}^{im} e^{-g_{1}^{i}}) \prod_{i \geq j} (g_{1}^{i} - g_{j}^{i}),$$ $$0 \leq g_{1}^{i} \leq g_{2}^{i} \leq \dots \leq g_{p}^{i} \leq \infty$$ In this section we will derive the distribution of $M_1 = g_1^1 + g_2^1$ for p = 3, 4, and 5. Case i. Put p = 3 in (2.1) and let $M = \ell_1^i + \ell_2^i$, $G = \ell_1^i \ell_2^i$, where $\ell_1^i = g_1^i/g_3^i$, i = 1, 2. Then the joint distribution of M and g_3^i can be written in the form (2.2) $$K_1(3,n) = \frac{-g_3^*(1+M)}{3} g_3^{*3m+5} \int_0^{M^2/4} g^m(1-M+G)dG, 0 \le M \le 1$$. Further, transform $M_1 = g_3^{\frac{1}{2}}M$ and we get (2.3) $$K_2(3,n) g_3^{m} M_1^{2m+2} \{(g_3^{i} - M_1/2)^2 - M_1^2/(4(m+2))\} e^{-(g_3^{i}+M_1)}$$ where $$K_2(p,n) = K_1(p,n) / \{(m+1)2^{2m+2}\}$$. Now integrating g_3^1 from M_1 to ∞ we get for $0 \le M \le 1$ $$(2.3) \quad K_{2}(3,n) \quad e^{-M_{1}} \quad M_{1}^{2m+2} \left[a_{0} Y(M_{1},\infty; m+3) + a_{1} \quad M_{1} Y(M_{1},\infty; m+2) + a_{2} \quad M_{1}^{2} Y(M_{1},\infty; m+1) \right] ,$$ where $a_0 = 1$, $a_1 = -1$, $a_2 = (m+1)/\{4(m+2)\}$. Now we consider the case when $1 \le M \le 2$. Let $\ell_1'' - 1 - \ell_1'$, i=1,2 such that M'=2-M, G'=(1-M+G), then the distribution of g_3^i and M^i can be written in the form (2.4) $$K_1(3,n) = \frac{-g_3^{1}(3-M^{1})}{g_3^{1}(m+1)} g_3^{1} \frac{3m+5}{(m+1)} \left[\frac{(1-M^{1}/2)^{2m+2}}{(m+1)} \left(\frac{M^{1}}{4} - \frac{(1-M^{1}/2)^{2}}{m+2} \right) + \frac{(1-M^{1})^{m+2}}{(m+1)(m+2)} \right].$$ Integrate (2.4) with respect to g_3^i , from $M_{1/2}$ to M_1 and combine the result with (2.3), then the distribution of M_1 can be written in the form (3.5) $$K_{2}(3,n) e^{-M_{1}} \left[M_{1}^{2m+2} \sum_{i=0}^{2} a_{i} M^{i} Y(M_{1/2},^{\infty}; m+3-i) + 2^{2m+2}(m+2)^{-1} \int_{M_{1/2}}^{M_{1}} g_{3}^{2m+2}(M_{1}-g_{3})^{m+2} e^{-g_{3}} dg_{3} \right] ,$$ Case ii. Put p = 4 in (2.1) and integrate $g_{l_1}^{i}$, then the distribution of g_{3}^{i} and M is given by (2.6) $$K_2(4,n) = \frac{-g_3^*(2+M)}{M^{2m+2}} M^{2m+2} \sum_{r=0}^{m+2} (r+1) g_3^{*4m+7-r} \left[(a-bM) \{ (1-M/2)^2 - M^2/4(m+2) \} + a_2 c M^2 \{ (1-M/2)^2 - M^2/4(m+3) \} \right],$$ where a = (m+2)! / (m+2-r)!, b = (m+1)!/(m+1-r)! and $0 \le M \le 1$, C = m! / (m-r)!. As before transform $M_1 = g_3^*M$, and integrate g_3^* , then the distribution of M_1 , for $0 \le M \le 1$, takes the form (2.7) $$2^{-(2m+5)} K_2(4,n) e^{-M_1} \sum_{r=0}^{m+2} (r+1) \{M_1^{2m+2} \sum_{i=0}^{3} 2^{r+i} M_1^i \}$$ $a_i! Y(2M_1, \infty; 2m+5-r-i) + a_2 CM_1^{2m+4} \sum_{i=0}^{2} 2^{r+i+2} M_1^i b_i Y(2M_1, \infty; i=0)$ $2m+3-r-i)\}, 0 < M < 1$ where $a_0^{\prime}=a$, $a_1^{\prime}=-(a+b)$, $a_2^{\prime}=a(m+1)/\{(m+2)4\}+b$, $a_3^{\prime}=-b(m+1)/4(m+2)$, $b_0=1$, $b_1=-1$ and $b_2=(m+2)/4(m+3)$. Now, when $1\leq M\leq 2$, as before, transform to M' and G' and integrate out G', and further transform to M=2-M' and $M_1=g_3^{\prime}M$ and integrate out g_3^{\prime} between $M_1/2$ and M_1 and combining the result with (2.7) we get (2.8) $$2^{-m} K_{2}(4,n) e^{-M_{1}} \sum_{r=0}^{m+2} (r+1) \left[M_{1}^{2m+2} \sum_{i=0}^{4} 2^{r+i-m-7} c_{i} \right]$$ $$M_{1}^{i} Y(M_{1},^{\infty}; 2m-r-i+5) + (m+2)^{-1} \left\{ (a-c) \sum_{i=0}^{m+2} {m+2 \choose i} (-1)^{i} \right\}$$ $$g(r,i+1) + (c-b) \sum_{i=0}^{m+2} {m+2 \choose i} (-1)^{i} g(r,i) - c(m+3)^{-1}$$ $$\sum_{i=0}^{m+3} {m+3 \choose i} (-1)^{i} 2g(r,i), \quad 0 \le M_{1} \le \infty ,$$ $$i=0$$ where $$g(r,i) = 2^{r-i-2} M_1^{m+3-i} \gamma(M_1, 2M_1; 3m+4+i-r) ,$$ $$c_0 = 4a, c_1 = -4(a+b), c_2 = (C+a)(m+1)(m+2)^{-1} + 4b$$ $$c_3 = -(C+b)(m+1)(m+2)^{-1}, \text{ and } c_4 = C(m+1)/\{4(m+3)\} .$$ Case iii. Put p = 5 in (2.1) and integrate g_5^{\bullet} and $g_{l_4}^{\bullet}$, then the distribution of g_3^{\bullet} and M is given by (2.9) $$K_2(5,n) = {g_3^{i}(3+M) \atop g_3^{i}(3+M)} g_3^{i}(3+M) = {g_3^{i}(3+M) \atop r=0} \int_{r=0}^{6} \eta_r M^r g_3^{i}(2m+7-i-j)$$ where $$\eta_{o} = K_{o,i,j}/(m+1)$$, $\eta_{1} = (K_{1,i,j} - K_{o,i,j}) / (m+1)$, $\eta_{2} = (K_{o,i,j} + K_{3,i,j})/4(m+2) + (K_{2,i,j} - K_{1,i,j})/(m+1)$, $\eta_{3} = (K_{1,i,j} - K_{3,i,j} + K_{4,i,j})/4(m+2) - K_{2,i,j}/(m+1)$, $\eta_{4} = (K_{2,i,j} - K_{4,i,j})/4(m+2) + (K_{3,i,j} + K_{5,i,j})/2^4(m+3)$, $\eta_{5} = (K_{4,i,j} - K_{5,i,j})/2^4(m+3)$, and $\eta_{6} = K_{5,i,j}/2^6(m+4)$ and the $K_{\ell,i,j}$ are defined by (2.10) $$K_{\ell,i,j} = \sum_{j=0}^{2m+7-i-\ell_{\delta}} \sum_{i=0}^{m+k} \frac{i}{2^{j+1}} \left[a_{\ell}^{(1)} (2m+7-i-\ell_{\delta})_{-j} - a_{\ell}^{(2)} (2m+6-i-\ell_{\delta})_{-j} + a_{\ell}^{(3)} (2m+5-i-\ell_{\delta})_{-j} \right]$$ where $$\ell_{\delta} = \begin{cases} \ell, & \text{for } \ell = 0, 1, \text{ and } 2, \\ \ell - 1, & \text{for } \ell = 3, 4, \text{ and } 5, \end{cases}$$ and $$K = \begin{cases} 4 & \text{for } l = 0, 1, 3 \\ 3 & \text{for } l = 2, 4 \end{cases}$$ $$2 & \text{for } l = 5$$ and and (a)_{-i+b} = a(a-1) ----(a-i+b+1); a₁ = 2, a_i = 2m+7-i, i ≥ 2 ; b₁ = 4, b₂ = 4m+8 and b_i = (2m+7-i)(2m+5-i) + i-1 for i ≥ 3 ; c₁ = 2, c_i = 2m+5-i for i ≥ 2 ; d₁ = 2, d₂ = 2m+4 and d_i = (m+2)₂ + (m+3-i)₂ for i ≥ 3 ; e₁ = 4, e₂ = 4m+6, e₃ = $\sum_{i=0}^{3}$ (m+i)₋₂ and e_i = $\sum_{K=0}^{3}$ (m+2-i+K)_{3-K}(m+1)_K for i ≥ 4 ; g₁ = 2, g₂ = 2m+2, g_i = (m+1)₂ + (m+2-i)₂ for i ≥ 3 ; ℓ_1 = 2, ℓ_i = 2m-i+3, i ≥ 2 ; k₁ = 4, k₂ = 4m+4, $$k_i = 4m^2 + 16m = 4im + i^2 - 7i + 14$$ for $i \ge 3$. As before transform $M_1 = g_3^*M$, and integrate g_3^* , then the distribution of M_1 , for $0 \le M \le 1$, takes the form (2.12) $$K_2(5,n) M_1^{2m+2} e^{-M_1} \sum_{r=0}^{6} \eta_r M_1^r \gamma(3M_1, \infty; 3m+10-i-j-r) / 3^{3m+10-i-j-r}$$ Now, when $1 \le M \le 2$, proceeding as before, and combining the result with (2.12) we get (2.13) $$K_{3}(5,n) M_{1}^{m+2} e^{-M_{1}} \left[(3M_{1})^{m} \sum_{r=0}^{6} 3^{i+j+r} \eta_{r} M_{1}^{r} \cdot \gamma(3M_{1}/2,\infty; m+2) \right]$$ $$3m+10-i-j-r) + 2^{2m+2} \sum_{s=0}^{m+2} {m+2 \choose s} (-1)^{s} \sum_{r=0}^{2} p_{r} M_{1}^{r-s} 3^{s+i+j+r}$$ $$\gamma(3M_{1}/2,3M_{1};4m+10+s-i-j-r)$$ where $$K_3(5,n) = K_2(5,n)/3^{4m+10}$$, $P_0 = K_{0,i,j}/(m+1)(m+2) - K_{3,i,j}/(m+2)(m+3) + K_{5,i,j}/(m+3)(m+4)$, $P_1 = K_{1,i,j}/(m+1)(m+2) + (K_{3,i,j} - K_{4,i,j})/(m+2)(m+3) - 2K_{5,i,j}/(m+3)(m+4)$ $P_2 = K_{2,i,j}/(m+1)(m+2) + K_{4,i,j}/(m+2)(m+3) + K_{5,i,j}/(m+3)(m+4)$. ### 3. The Distribution of the Sum of the Two Smallest and (Largest) Roots and Their Sum and Ratio of a Covariance Matrix Transform $M_1 = g_1^1 + g_2^1$, $M_2 = g_3^1 + g_4^1$ in (2.1) and integrate g_1^1 and g_3^1 over the region $0 \le g_1^1 \le M_1/2$ and $M_1/2 \le g_3^1 \le M_2/2$ respectively, then the joint density of M_1 and M_2 can be written as (3.1) $$K_{1}^{\prime}(4,n) = \begin{pmatrix} -(M_{1}+M_{2}) & M_{1}^{2m+1} & \sum_{k=0}^{m} {m \choose k} (-2)^{-k} & M_{2}^{m-k} & \sum_{i=0}^{m} {m \choose i} (-2)^{-i} \\ & \sum_{j=1}^{s} M_{1}^{j} & M_{2}^{5-j} & (a_{j} & M_{2}^{m+k+2} & -b_{j} & M_{1}^{m+k+2}) \\ & & & & & & & & & & & & & \\ \end{pmatrix},$$ where $$K_1^*(4,n) = K_1(4,n)/2^{2m+3}$$, and $$a_{1} = \{(m+1)^{2}+15(m+k+4)\}/8(m+i+1)_{2}(m+k+3)_{4} ,$$ $$a_{2} = -(m+k+6)/2(m+i+1)_{2}(m+k-2)_{3} ,$$ $$a_{3} = -(m+k+6)(m+i)/2(m+i+1)_{2}(m+k+2)_{3}+[(m+i+2)(m+k+1)_{2}]^{-1}-(3m+3i+13)$$ $$\{4(m+k+4)+(m+k+1)_{2}\}/(m+i+3)_{2}(m+k+1)_{4}$$ $$a_{4} = -(m+i+6)/2(m+k+1)_{2}(m+i+2)_{3} ,$$ $$a_{5} = \{(4m+4i+25)(m+3+i)_{2}-8(m+i+1)(m+i+5)_{2}\}/(m+i+3)_{4}(m+k+1)_{2}$$ $$b_{1} = 0, \quad b_{2} = \{(m+k+2)_{3}(m+i+6)(m+i+1) - (m+i+3)_{2}(m+k+4)$$ $$(m+k+1)/2(m+i+1)_{4}(m+k+1)_{3}\} ,$$ $$b_{3} = (m+k+6)/2(m+i+1)_{2}(m+k+3)_{2} - (2m+2i+1)/(m+i+1)_{2}(m+k+2)+(m+i)/2$$ $$2(m+i+2)_{2}(m+k+1)+3/(m+i+3)(m+k+2)+(m+k)/2(m+i+4)(m+k+1)_{2},$$ $$b_{4} = \sum_{i_{1},i_{2}}^{6} c_{i_{1},i_{2}}/(m+i+i_{1})(m+k+i_{2})$$ where $$c_{1,1} = c_{1,2} = c_{2,1} = c_{3,5} = c_{4,5} = c_{5,i_{2}} = c_{b,i_{2}} = 0, \quad \forall i_{2} > 1$$ $$c_{1,3} = -3/2, \quad c_{1,4} = -\frac{1}{2}, \quad c_{1,5} = 5/8, \quad c_{2,2} = 1, \quad c_{2,3} = 3, \quad c_{2,4} = \frac{1}{2}$$ $$c_{2,5} = -5/8, \quad c_{3,1} = \frac{1}{2}, \quad c_{3,2} = -3/2, \quad c_{3,4} = -\frac{1}{4}, \quad c_{4,1} = -\frac{1}{2},$$ $$c_{4,2} = \frac{1}{2}, \quad c_{4,3} = 3/4, \quad c_{5,1} = 5/8, \quad c_{6,1} = -1/8,$$ $$b_{5} = (3m+3k+20)/(m+i+1)_{2}(m+k+4)(m+k+6)+(m+i+2)/2(m+i+3)_{2}(m+k+2)$$ $$+ (2m+2i+9)/4(m+i+3)_{2}(m+k+1) - (4m+4i+25)/8(m+i+5)_{2}(m+k+2) .$$ Integrate (3.1) with respect to M_1 , then the density of M_2 can be written as (3.2) $$K_{1}^{i}(4,n) e^{-M_{2}} \sum_{k=0}^{m} {m \choose k} (-2)^{-k} M_{2}^{m-k} \sum_{i=0}^{m} {m \choose i} (-2)^{-i}$$ $$\sum_{j=1}^{5} M_{2}^{5-j} (a_{j}M_{2}^{m+k+2} \gamma(0,M_{2};2m+j+1)-b_{j}(0,M_{2};3m+k+j+3)).$$ Iy may be pointed out that the density of M_1 can be found from (3.1) by integrating M_2 . Now, let $T = M_1 + M_2$ in (3.1) and integrate M_1 then the density function of T can be written as (3.3) $$\frac{1}{\Gamma(4m+10)} T^{4m+9} e^{-T}$$. Further, transform $R_1 = M_1/M_2$ in (3.1) and integrate M_2 , then the density of R_1 can be written as $$(3.4) \quad K_{3}(4,n)(1+R_{1})^{-(4m+10)} \quad R_{1}^{2m+1} \quad \sum_{k=0}^{m} {m \choose k} (-2)^{-k} \quad \sum_{i=0}^{m} {m \choose i} (-2)^{-i}$$ $$\sum_{j=1}^{s} \quad R_{1}^{j}(a_{j} - b_{j} M_{1}^{m+k+2})$$ where $$K_3(4,n) = \Gamma(4m+10) K_1(4,n)$$. #### 4. The Non-Central Distribution of Wilks' Criterion In this section we shall derive the non-central
distribution of Wilks' criterion, namely $\Lambda = W^{\left(p\right)} = \prod\limits_{i=1}^{p} \left(1-r_i\right)$ where r_1, \ldots, r_p are the characteristic roots of the equation $$\left| \underset{\approx}{\mathbb{S}}_{1} - r(\underset{\approx}{\mathbb{S}}_{1} + \underset{\approx}{\mathbb{S}}_{2}) \right| = 0 ,$$ where S_1 is a (p x p) matrix distributed non-central Wishart with s degrees of freedom and a matrix of non-centrality parameters Ω and S_2 has the Wishart distribution with t degrees of freedom, the covariance matrix in each case being \sum . For this, first we state below a few results on Mellin transform and then prove a lemma. Theorem 1. If s is any complex variate and f(x) is a function of a real variable x, such that (4.1) $$F(x) = \int_{0}^{\infty} x^{s-1} f(x) dx$$ exists. Then, under certain conditions [6] (4.2) $$f(x) = \frac{1}{2\Pi_i} \int_{C-i\infty}^{C+i\infty} x^{-S} F(s) ds .$$ F(s) in (4.1) is called the Mellin transform of f(x) and f(x) in (4.2) is called the inverse Mellin transform of F(s). Now we state another theorem [6]. Theorem 2. If $f_1(x)$ and $f_2(x)$ are the inverse Mellin transform of $F_1(s)$ and $F_2(s)$ respectively, then the inverse Mellin transform of $F_1(s)$ $F_2(s)$ is given by (4.3) $$\frac{1}{2 \text{Hi}} \int_{c-i\infty}^{c+i\infty} x^{-s} F_1(s) F_2(s) ds = \int_0^{\infty} f_1(u) f_2(x/u) \cdot \frac{du}{u}$$. Further we use theorem 2 to prove the following lemma. <u>Lemma 1.</u> If s is a complex variabe, a, b, c, d, m, n, p and & are reals then $$\begin{array}{ll} \text{(4.4)} & \text{I} = \frac{1}{2 \text{Ni}} \int_{\text{c-i}^{\infty}}^{\text{c+i}^{\infty}} \text{X}^{-\text{S}} \, \frac{\Gamma \left(\text{s+a}\right) \, \Gamma \left(\text{s+b}\right) \, \Gamma \left(\text{s+c}\right) \, \Gamma \left(\text{s+d}\right)}{\Gamma \left(\text{s+c+p}\right) \, \Gamma \left(\text{s+d+l}\right)} \, \, \text{ds} \\ & = \frac{\text{X}^{\text{d}} \left(1 - \text{X}\right)^{\text{m+n+p+l-l}}}{\Gamma \left(\text{m+n+p}\right)} \, \sum_{k=0}^{\infty} \, \frac{\left(\text{d+l-a}\right)_{k}}{k!} \, \sum_{r=o}^{\infty} \, \frac{\left(\text{p}\right)_{r} \left(\text{b+n-c}\right)_{r}}{r! \, \left(\text{m+n+p}\right)_{r}} \, \left(\text{1-X}\right)^{\text{k+r}}}{\left(\text{1-X}\right)^{\text{k+r}}} \\ & = \frac{\Gamma \left(\text{m+n+p+k+r}\right)}{\Gamma \left(\text{m+n+p+l+k+r}\right)} \, \, 3^{\text{F}} 2^{\left(\text{a+m-b},\text{n+p+r},\text{m+n+p+l+k+r};\text{1-X}\right)} \, . \end{array}$$ <u>Proof:</u> Let $F_1(s) = \{\Gamma(s+a) \Gamma(s+b) \Gamma(s+c)/\Gamma(s+a+m) \Gamma(s+b+n) \Gamma(s+c+p)\}$, $F_2(s) = \Gamma(s+d)/\Gamma(s+d+\ell)$, then (4.5) $$f_{1}(X) = X^{a}(1-X)^{m+n+p-1}[\Gamma(m+n+p)]^{-1} \sum_{r=0}^{\infty} \frac{(p)_{r}(b+n-c)_{r}}{r! (m+n+p)_{r}} (1-X)^{r}$$ $$2^{F_{1}(a+m-b,n+p+r; m+n+p+r; 1-X)},$$ and $$f_2(x) = \frac{x^d(1-x)^{\ell-1}}{\Gamma(\ell)}$$, $0 < x < 1$, [7]. Now by the use of Theorem 2, we get (4.6) $$I = \frac{X^{d}}{\Gamma(l) \Gamma(m+n+p)} \int_{X}^{l} u^{a-d-l} (1-U)^{m+n+p-l} \sum_{r=0}^{\infty} \frac{(p)_{r} (b+n-c)_{r}}{r! (m+n+p)_{r}}$$ $$(1-U)^{r} {}_{2}F_{1}(a+m-b,n+p+r; m+n+p+r; l-U)(U-X)^{l-l} du .$$ Further, put u = 1 - (1-X)t in the above and by simplifying, we have (4.7) $$I = \frac{\chi^{d}(1-\chi)^{m+n+p+\ell-1}}{\Gamma(\ell)\Gamma(m+p+n)} \int_{0}^{1} \sum_{k=0}^{\infty} \frac{(d+\ell-a)_{k}}{k!} \sum_{r=0}^{\infty} \frac{(p)_{r}(b+n-c)_{r}}{r! (m+n+p)_{r}}$$ $$\sum_{i=0}^{\infty} \frac{(a+m-b)_{i}(m+p+r)_{i}}{i(m+n+p+r)_{i}} (1-\chi)^{k+i+r} t^{m+n+p+k+i+r-1} (1-t)^{\ell-1} dt.$$ Now integrate (4.7) with respect to t, then the lemma follows immediately. The moments of the Wilks' Criterion has been given [4] in the following form. (4.8) $$E\{W^{(p)}\}^{h} = \left[\Gamma_{p}(h+\frac{1}{2}t) \Gamma_{p}(\nu)/\Gamma_{p}(t/2) \Gamma_{p}(h+\nu)\right]_{1}F_{1}(h;h+\nu;-\Omega)$$ where $$v = \frac{1}{2}(s+t)$$, and $\Gamma_{p}(u) = \Pi^{\frac{1}{11}p(p-1)} \prod_{i=1}^{p} \Gamma(u-\frac{1}{2}(i-1))$. By using Kummar transformation, (4.8) can be written in the following form $$(4.9) \qquad E\{W^{(p)}\}^{h} = \left[\Gamma_{p}(h+\frac{1}{2}t) \Gamma_{p}(\nu)/\Gamma_{p}(t/2)\Gamma_{p}(h+\nu)\right] e^{-tr\Omega} \sim {}_{1}F_{1}(\nu;h+\nu;\Omega).$$ Case i. Put p = 2 in (4.9), then $$(4.10) \qquad E\{W^{(\mathcal{D})}\}^{h} = \frac{\Gamma(2\nu-1)}{2^{s}\Gamma(t-1)} e^{-tr\Omega} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(\nu)_{\kappa} C_{\kappa}(\Omega)}{k!}.$$ $$\frac{\Gamma(r) \; \Gamma(r+\frac{1}{2})}{\Gamma(r+\frac{1}{2}s+k_{1}+\frac{1}{2})\Gamma(r+\frac{1}{2}s+k_{2})} \;\;,$$ where $r = h + \frac{1}{2}t - \frac{1}{2}$ and $k_1 \ge k_2 \ge 0$, $k_1 + k_2 = k$, then (4.11) $$f(W^{(2)}) = \frac{\Gamma(2\nu-1)}{2^{S}\Gamma(t-1)} \exp(tr-\Omega) \sum_{k=0}^{\infty} \frac{(\nu)_{k} C_{k}(\Omega)}{k!} .$$ $$\frac{1}{2 \pi i} \int_{c-i^{\infty}}^{c+i^{\infty}} \{ w^{(2)} \}^{-h-1} \left[\Gamma(r) \Gamma(r+\frac{1}{2}) / \Gamma(r+\frac{1}{2}s+k_{2}) \Gamma(r+\frac{1}{2}s+\frac{1}{2}+k_{1}) \right] dr .$$ Now, by the use of the results of Consul [7], we get the density function of $\mathbf{W}^{(2)}$ in the following form $$(4.12) f(W^{(2)}) = \frac{\Gamma(2\nu-1)}{2^{s}\Gamma(t-1)} \{W^{(2)}\}^{\frac{1}{2}(t-3)} \exp(tr_{\infty}) \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(\nu)_{\kappa} c_{\kappa}(\Omega)}{k!\Gamma(s+k)}$$ $$(1-W^{(2)})^{s+k-1} 2^{F_{1}(\frac{1}{2}s+k_{1},\frac{1}{2}s+k_{2}-\frac{1}{2};s+k;1-W^{(2)}).$$ Putting $\Omega = 0$, then the central case can be written in the following form (4.13) $$f(W^{(2)}) = \frac{\Gamma(2\nu-1)}{2^{s}\Gamma(t-1)\Gamma(s)} \{W^{(2)}\}^{\frac{1}{2}(1-W^{(2)})}^{\frac{1}{2}(1-W^{(2)})}^{s-1} {}_{2}F_{1}(s/2,(s-1)/2;$$ $$s;1-W^{(2)}).$$ It may be pointed out that (4.13) can be reduced to $$\frac{\Gamma(2\nu-1)}{2\Gamma(t-1)\Gamma(s)} \{W^{(2)}\}^{\frac{1}{2}(t-3)} (1-\sqrt{W^{(2)}})^{s-1} ,$$ by observing that (4.15) $$_{2}F_{1}(s/2,(s-1)/2;s;1-U) = 2^{s-1}/(1+\sqrt{U})^{s-1}$$ ([28]). Also the density function of $W^{(2)}$ can be written in the following form by the use of the results in [6]. $$(4.16) f(W^{(2)}) = \frac{\Gamma(2\nu-1)}{2\Gamma(t-1)} \{W^{(2)}\}^{\frac{1}{2}(t-3)} \exp(tr - \Omega) \cdot \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(\nu)_{\kappa} C_{\kappa}(\Omega)}{k!\Gamma(s+2k_{2})}$$ $${}_{\mu}^{k_{2}}(1-W^{(2)})^{k_{1}-k_{2}} \sum_{r=0}^{s+2k_{2}-1} {s+2k_{2}-1 \choose r} (-1)^{r} \{W^{(2)}\}^{r/2} .$$ $${}_{2}^{F_{1}}(k_{1}-k_{2}; (r+1-s)/2 - k_{2}; k_{1}-k_{2}+1; 1-W^{(2)}) .$$ Setting r = 0, then (4.16) reduces to (4.14). Case ii. Put p = 3 in (4.9), and by the use of (4.2) the density function of $W^{(3)}$ can be written in the following form $$(4.17) f(W^{(3)}) = \frac{\Gamma_3(v)}{\Gamma_3(t/2)} exp(tr-\Omega)\{W^{(2)}\}^{\frac{1}{2}(t-4)} \sum_{k=0}^{\infty} \sum_{K} \frac{(v)_K c_K(\Omega)}{k!}$$ $$\frac{1}{2!!i} \int_{c-i^{\infty}}^{c+i^{\infty}} \frac{\{w^{(3)}\}^{-r} \Gamma(r) \Gamma(r+\frac{1}{2}) \Gamma(r+1) dr}{\Gamma(r+\frac{1}{2}s+k_3) \Gamma(r+\frac{1}{2}s+k_2+\frac{1}{2}) \Gamma(r+\frac{1}{2}s+k_1+1)}$$ where $k_1 \ge k_2 \ge k_3 \ge 0$, $k_1 + k_2 + k_3 = k$. By (4.5), the density function of $W^{(3)}$ can be written in the form $$(4.18) f(W^{(3)}) = \frac{\Gamma_3(v)}{\Gamma_3(t/2)} \exp(tr - \Omega) \{W^{(3)}\}^{\frac{1}{2}(t-1)} (1-W^{(3)})^{\frac{3}{2}s-1} .$$ $$\sum_{k=0}^{\infty} \sum_{K} \frac{(v)_K c_K(\Omega)}{k! \Gamma(3s/2+k)} \sum_{r=0}^{\infty} \frac{(\frac{1}{2}s+k_1)_r (\frac{1}{2}(s-1)+k_2)_r}{r! (3s/2+k)_r} .$$ $$(1-W^{(3)})^{r+k} {}_{2}F_1(\frac{1}{2}(s-1)+k_3, s+k_1+k_2+r; 3s/2+k+r; 1-W^{(3)}) .$$ Case iii. Put p = 4 in (4.9) and by the use of (4.2) the density function of $W^{(4)}$ can be written in the form $$(4.19) \qquad f(W^{(4)}) = \frac{\Gamma_{4}(v)}{\Gamma_{4}(\frac{1}{2}t)} \exp(tr - \Omega) \{W^{(4)}\}^{\frac{1}{2}}(t-5) \sum_{k=0}^{\infty} \sum_{K} \frac{(v)_{K} C_{K}(\Omega)}{k!}$$ $$\frac{1}{2 \Pi i} \int_{c-i^{\infty}}^{c+i^{\infty}} \frac{\Gamma(r) \Gamma(r+\frac{1}{2}) \Gamma(r+1) \Gamma(r+\frac{3}{2}) \{W^{(4)}\}^{-r} dr}{\Gamma(r+\frac{1}{2}s+k_{4})\Gamma(r+\frac{1}{2}s+\frac{1}{2}+k_{3})\Gamma(r+\frac{1}{2}s+1+k_{2})\Gamma(r+\frac{1}{2}s+\frac{3}{2}+k_{1})}$$ where $$k_1 \ge k_2 \ge k_3 \ge k_4 \ge 0$$, and $\sum_{i=1}^{4} k_i = k$. By using Lemma 1, the density function of $\,W^{\left(4\right)}\,$ can be written in the form $$f(W^{(4)}) = \frac{\Gamma_{l_{4}}(v)}{\Gamma_{l_{4}}(t/2)} \exp(tr - \Omega) \left\{ W^{(4)} \right\}^{\frac{1}{2}(t-2)} (1 - W^{(4)})^{2s-1}$$ $$\sum_{k=0}^{\infty} \sum_{K} \frac{(v)_{K} C_{K}(\Omega)}{k!} \sum_{k=0}^{\infty} \frac{(\frac{1}{2}(s+3) + k_{1})_{j}}{j!} \sum_{r=0}^{\infty} \frac{(\frac{1}{2}(s+k_{2})_{r}(\frac{1}{2}(s-1) + k_{3})_{r}}{r(3s/2 + k - k_{1} + r)r!} (1 - W^{(4)})^{k+j+r} \frac{\Gamma(3s/2 + k + j - k_{1} + r)}{\Gamma(2s+k+j+r)}$$ $$3^{F}_{2}(\frac{1}{2}(s-1) + k_{4}, s+k_{2} + k_{3} + r, 3s/2 + k - k_{1} + j + r;$$ $$3s/2 + k - k_{1} + r, 2s + j + k + r; 1 - W^{(4)}) .$$ It may be pointed out that the non-central distribution of Wilks' criterion could be found for more than p=4 by extending Lemma 1. However the distribution would be complicated. #### CHAPTER VI #### DISTRIBUTION OF RATIOS AND #### DIFFERENCES OF THE ROOTS OF A COVARIANCE MATRIX #### 1. Introduction and Summary While the earlier chapters deal with the studies of individual roots of some matrices in multivariate analysis, this chapter presents first the distribution of differences and ratios respectively of characteristic roots which follow the Fisher-Hsu-Girshick-Roy distribution. In regard to differences, the study has been carried out up to (including) the four roots case while for the ratios, results have been obtained up to five roots. The last section deals with the non-central distribution of the ratios of a covariance matrix which follow (5.1) of Chapter 2. The study has been carried out up to (including) the four roots. The distributions of such ratios are useful in testing the hypothesis $\delta \Sigma_1 = \Sigma_2$, $\delta > 0$ unknown, has been pointed out
where Σ_1 and Σ_2 are the covariance matrices of two p-variate normal populations. ### 2. The Distribution of the Differences of the Characteristic Roots In this section we find the joint and the marginal distributions of of the differences θ_i , θ_j , i > j when p = 2, 3, 4. The joint density of a p non-null roots of a matrix derived from sample observations under certain null hypotheses including that of Chapter 1, can be expressed in the form (2.1) $$C(p,m,n) = \prod_{i=1}^{p} \{\theta_{i}^{m}(1-\theta_{i})^{n}\} = \prod_{i\geq j} (\theta_{i} - \theta_{j}),$$ $0 < \theta_1 \le \theta_2 \le \dots \le \theta_p < 1$, and parameters m and n are differently for various situations described in [22]. Transform $q_i = \theta_i/\theta_p$, $i=1,\ldots,p-1$ then the distribution of $q_1,\ldots,q_{p-1},\theta_p$ can be written as (2.2) $$C(p,m,n)\theta_{p}^{mp+(p-1)(1+\frac{p}{2})}(1-\theta_{p})^{n}\prod_{i=1}^{p-1}\{q_{i}^{m}(1-q_{i}\theta_{p})^{n}(1-q_{i})\}$$ $$\prod_{i\geq j}(q_{i}-q_{j}), 0 < q_{1}\leq \dots \leq q_{p-1}<1.$$ Now consider the transformation $d_i = \theta_p(1-q_i)$, $i=1,\ldots, p-1$. Then $d_1,\ldots,d_{p-1},\theta_p$ will be distributed as $$(2.3) C(p,m,n) | \underset{i < j}{\mathbb{D}} | \underset{i < j}{\mathbb{I}} (d_{i} - d_{j}) \sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!}$$ $$\sum_{k=0}^{\infty} \sum_{K} \frac{(-1)^{k} (-n)_{K}}{k!} C_{\delta}(\underset{D}{\mathbb{D}}) C_{K}(\underset{D}{\mathbb{D}}) \theta_{p}^{mp-d} (1-\theta_{p})^{np-k},$$ where K, δ are the partitions of k and d respectively and $\overset{D}{\sim} = \operatorname{diag}(d_1, \ldots, d_{p-1}). \text{ Now integrate (2.3) with respect to } \theta_p, \text{ then } d_1, \ldots, d_{p-1} \text{ are distributed in the form }$ (2.4) $$c(p,m,n)|D| \underset{i < j}{\Pi} (d_i - d_j) \left[\sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(-1)^k (-n)_{\kappa}}{k!} \right] c_{\delta}(\underline{D})$$ $$C_{\kappa}(\underline{D}) \ I(d_1,1;mp-d,np-k)$$, $0 < d_{p-1} \le ... \le d_1 < 1$. For p = 2, (2.4) reduces to (2.5) $$f(d_{1}) = c(2,m,n) \left[\sum_{j=0}^{m} {m \choose j} (-1)^{j} \sum_{i=0}^{n} {n \choose i} d_{1}^{m+n+1-(i+j)} \right]$$ $$I(d_{1},1; m+j,n+i) .$$ For p = 3, the joint density of d_1 , d_2 can be written in the form (2.6) $$c(3,m,n) \left[\sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(-1)^{k}(-n)_{\kappa}}{k!} \sum_{\tau} g_{(\delta,\kappa)}^{\tau} \sum_{i+j=t}^{\tau} h_{i,j}^{T} \left\{ (d_{1}^{i+2} d_{2}^{j+1} - d_{1}^{i+1} d_{2}^{j+2}) I(d_{1},1;3m-d,3n-k) \right\} \right],$$ where $g_{\delta,K}^T$ is as defined in the previous sections and h_{ij}^T are such that $C_{\tau}(^d1 \ ^O) = \sum_{i+j=t} h_{ij}^{T} \ d_{1}^{i} \ d_{2}^{j}$, τ is the partition of t and O d_{2} t = k+d. Integrate (2.6) with respect to d_2 , then the density of d_1 is of the form (2.7) $$c(3,m,n) \left[\sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(-1)^{k}(-n)_{\kappa}}{k!} \right]$$ $$\sum_{T} g_{(\delta,K)}^{T} \sum_{i+j=t} h_{ij}^{T} \{ \frac{d_{1}^{t+l_{1}}}{(j+2)_{2}} I(d_{1},1;3m-d,3n-k) \} \right] .$$ Again, integrate (2.6) with respect to d_1 , by parts, then the density of d_2 is given by (2.8) $$c(3,m,n) \left[\sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{K} \frac{(-1)^{k}(-n)_{K}}{k!} \right]$$ $$\sum_{d=0}^{\infty} \sum_{\delta} \sum_{k=0}^{\infty} \sum_{K} h_{i,j}^{T} \frac{1}{(i+2)_{2}} \left\{ d_{2}^{t+l_{4}} I(d_{2},1;3m=d,3n-k) + d_{2}^{j+l}((i+2)I(d_{2},1;3m-d+i+3,3n-k)) \right\}$$ $$- (i+3) d_{2}^{j+2} I(d_{2},1;3m-d+i+2,3n-k)$$ Now let $\delta_{12} = d_1 - d_2 = \theta_2 - \theta_1$, then the distribution δ_{12} and d_1 can be written in the form (2.9) $$c(3,m,n) \left[\sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(-1)^{k}(-n)_{\kappa}}{k!} \sum_{T} g_{(\delta,\kappa)}^{T} \sum_{i+j=t}^{h_{i,j}^{T}} h_{i,j}^{T} \right]$$ $$\left\{ \sum_{r=0}^{j+1} (-1)^{r} {j+1 \choose r} \delta_{12}^{r+1} d_{1}^{t+2-r} I(d_{1},1;3m-d,3n-k) \right\} ,$$ $$0 < \delta_{12} \leq d_{1} \leq 1 .$$ Integrating (2.9) with respect to d_1 , we get the density of δ_{12} in the form (2.10) $$c(3,m,n) \left[\sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{K} \frac{(-1)^{k}(-n)_{K}}{k!} \sum_{T} g_{(\delta,K)}^{T} \sum_{i+j=t}^{T} h_{i,j}^{T} \right]$$ $$\left\{ \sum_{r=0}^{j+1} \left[(-1)^{r} {j+1 \choose r} / t + r - 3 \right] (-\delta_{12}^{t+1} I(\delta_{12},1;3m-d,3n-k) + \delta_{1}^{r+1} I(\delta_{12},1;3m-d+t+3-r,3n-k)) \right\} \right].$$ For p = 4, the joint density of d_1 , d_2 , d_3 can be written in the form (2.11) $$c(4,m,n) \left[\sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(-1)^{k}(-n)_{\kappa}}{k!} \sum_{T} g_{(\delta,\kappa)}^{T} \right]$$ $$\sum_{i_{1}+i_{2}+i_{3}=t} h_{i_{1},i_{2},i_{3}}^{T} c(d_{2}-d_{3})(d_{1}^{2}-(d_{2}+d_{3})d_{1}+d_{2}d_{3})$$ $$I(d_{1},1; a,b) \right],$$ where $$a = 4m-d$$, $b = 4n-k$, $c = d_1^{1} + 1 d_2^{1} + 1 d_3^{1}$. Integrating (2.11) with respect to d_1 , by parts, and further with respect to d_2 , we get the density of d_3 in the form $$(2.12) \quad c(4,m,n) \sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(-1)^{k}(-n)_{\kappa}}{k!} \sum_{T} g_{(\delta,\kappa)}^{T}$$ $$\sum_{i_{1}+i_{2}+i_{3}=t} h_{i_{1},i_{2},i_{3}}^{T} d_{3}^{i_{3}+1} \left[-\frac{2d_{3}}{(i_{1}+2)_{3}(i_{1}+i_{2}+5)_{3}} \right]$$ $$I(d_{3},1;a,b) + \frac{I(d_{3},1;e+3,b)}{(i_{2}+3)_{2}(i_{1}+i_{2}+7)} - \frac{2d_{3}I(d_{3},1;e+2,b)}{(i_{2}+2)(i_{2}+4)(i_{1}+i_{2}+6)}$$ $$+ \frac{d_{3}^{2}I(d_{3},1;e+1,b)}{(i_{2}+2)_{2}(i_{1}+i_{2}+5)} - \frac{d^{i_{2}+3}}{(i_{2}+2)_{2}(i_{1}+4)} I(d_{3},1;e_{1}+2,b)}{(i_{2}+2)_{2}(i_{1}+4)} \right] ,$$ $$e = i_1 + i_2 + 4 + a$$, $e_1 = a + i_1 + 2$. Similarly starting with (2.11) we can obtain the density of d₁ as (2.13) $$c(4,m,n) \sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(-1)^{k}(-n)_{\kappa}}{k!} \sum_{T} g_{(\delta,\kappa)}^{T}$$ $$\sum_{\substack{i_1+i_2+i_3=t}}^{T} h_{i_1,i_2,i_3}^{T} \frac{2(i_2+2i_3+9)}{(i_3+2)_3(i_2+i_3+5)_3} I(d_1,1;a,b) ,$$ and the density of do as $$(2.14) \quad c(4,m,n) \stackrel{\infty}{\underset{d=0}{\overset{\infty}{\sum}}} \frac{(-m)_{\delta}}{d!} \stackrel{\infty}{\underset{k=0}{\overset{\infty}{\sum}}} \frac{(-1)^{k}(-n)_{K}}{k!} \stackrel{\Sigma}{\underset{T}{\overset{\sigma}{\sum}}} g_{(\delta,K)}^{T}$$ $$\stackrel{\Gamma}{\underset{i_{1}+i_{2}+i_{3}=t}{\overset{\varepsilon}{\sum}}} h_{i_{1},i_{2},i_{3}}^{T} \stackrel{i_{2}+i_{3}+i_{4}}{d_{2}} \frac{2(i_{1}-i_{3})d_{2}}{(i_{1}+2)_{3}(i_{3}+2)_{3}} I(d_{2},1;a,b)$$ $$\stackrel{I(d_{2},1;e_{1}+2,b)}{\underbrace{(i_{1}+4)(i_{3}+2)_{2}}} - \frac{2d_{2}I(d_{2},1;e_{1}+1,b)}{(i_{1}+3)(i_{3}+2)(i_{3}+4)} + \frac{d_{2}^{2}I(d_{2},1;e_{1},b)}{(i_{1}+2)(i_{3}+3)_{2}} \right].$$ Now make the transformation $$(2.15) d_1 = \delta_1 + \delta_2 + \delta_3, d_2 = \delta_2 + \delta_3, d_3 = \delta_3, \delta_{13} = \theta_3 - \theta_1.$$ Using (2.15), then from the joint distribution of δ_1 , d_2 can be obtained in the form: $$(2.16) f(\delta_{1},d_{2}) = c(4,m,n) \sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{K} \frac{(-1)^{k}(-n)_{K}}{k!} \sum_{T} g_{(\delta,K)}^{T}$$ $$\sum_{i_{1}+i_{2}+i_{3}=t} h_{i_{1},i_{2},i_{3}}^{T} \left[\sum_{r=0}^{i_{1}+1} {i_{1}+i_{2} \choose r} \delta_{1}^{r+1} d_{2}^{t+5-r} \left(\frac{\delta_{1}}{(i_{3}+2)_{2}} + \frac{2d_{2}}{(i_{3}+2)_{3}} \right) I(d_{2}+\delta_{1},1;a,b) \right].$$ Further, integrate d_2 over $0 \le d_2 \le 1 - \delta_1$ then the distribution of δ_1 can be written in the form Similarly the density of δ_2 can be written in the form $$(2.18) \quad c(4,m,n) \stackrel{\sim}{\sum} \frac{\sum_{d=0}^{\infty} \frac{(-m)_{\delta}}{d!}}{\sum_{k=0}^{\infty} \frac{\sum_{k=0}^{\infty} \frac{(-1)^{k}(-n)_{k}}{k!}}{\sum_{T} g_{(\delta,k)}^{T}} \sum_{\substack{i_{1}+i_{2}+i_{3}=t\\ i_{1}+i_{2}+i_{3}=t}}^{\sum_{i_{1}+i_{2}+i_{3}=t}^{\infty} \frac{\sum_{i_{1}+i_{2}+i_{3}=t}^{\infty} \frac{\sum_{i_{$$ $$q(\delta_{2},r,j) = \delta_{2}^{2} \int_{0}^{1-\delta_{2}} \frac{\delta_{3}^{i} z^{+i} z^{+i} - r + j}{\delta_{3}^{i} z^{+i} z^{+i} - r + j} (\delta_{2} + \delta_{3})^{e_{1} + 2 - j} (1 - \delta_{2} - \delta_{3})^{b} d\delta_{3},$$ $$j = 0, 1, 2.$$ Similarly the distribution of δ_{13} can be written in the form (2.19) $$c(4,m,n) \sum_{d=0}^{\infty} \sum_{\delta} \frac{(-m)_{\delta}}{d!} \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(-n)_{\kappa}(-1)^{k}}{k!} \sum_{T} g_{(\delta,\kappa)}^{T} \sum_{i_{1}+i_{2}+i_{3}=t}^{T}$$ $$h_{i_{1},i_{2},i_{3}}^{T} \delta_{13} \left[\left\{ A(r) \delta_{13}^{r} I(\delta_{13},1;a+7+t-r,b) - A(r) \delta_{13}^{t+7} I(\delta_{13},1;a,b) \right\} / t+7-r \right],$$ where $$A(r) = \left[\sum_{r=0}^{i_3+1} {i_3+1 \choose r} (-1)^r - \sum_{r=0}^{i_2+i_3+5} {i_2+i_3+5 \choose r} (-1)^r \right] / (i_2+3)_2$$ $$+ \sum_{r=0}^{i_2+i_3+i_4} {i_2+i_3+i_4 \choose r} (-1)^r - \sum_{r=0}^{i_3+2} {i_3+2 \choose r} (-1)^r \right] / (i_2+2)_2 .$$ ## 3. The Distribution of the Ratios of the Characteristic Roots The ratios of the characteristic roots are useful in various respects, but one immediate use can be seen from Chapter (1), for tests of hypotheses when δ is not known. (3.6) $$c(4,m,n)(m_1m_2)^m(1-m_1)(1-m_2)(m_2-m_1)\left[\sum_{k=0}^{\infty}\sum_{\kappa}\frac{(-n)_{\kappa}}{k!}C_{\kappa}(\underline{M}_1)\beta(c_1,n+1)\right] + \left[\beta(c_2,2)-(m_1+m_2)\beta(c_2+1,2)+m_1m_2\beta(c_2+2,2)\right],$$ $$M_1 = diag(m_1, m_2, 1), c_1 = 4m+k+10, c_2 = 3m+k+6$$. Now let $n_1 = m_1/m_2$ and integrate with respect to m_2 then the distribution of
n_1 can be obtained in the form (3.7) $$c(4,m,n)n_{1}^{m}(1-n_{1}) \sum_{k=0}^{\infty} \sum_{K} \frac{(-n)_{K}}{k!} \beta(c_{1},n+1) \sum_{i=0}^{\infty} \sum_{\delta} b_{(K,\delta)} c_{\delta}(0,n_{1})$$ $$\{\beta(c_{2},2)\beta(s_{1},2) - \beta(s_{1}+1,2)((n_{1}+1)\beta(c_{2}+1,2)+n_{1}\beta(c_{2},2))$$ $$+ \beta(s_{1}+2,2)(n_{1}\beta(c_{2}+2,2) + n_{1}(n_{1}+1)\beta(c_{2}+1,2)-n_{1}^{2}\beta(s_{1}+3,2))\},$$ where $$s_1 = 2m + i + 3 .$$ We may note that the distribution of q_1 can be found from (2.1) as the distribution of the smallest root as in Chapter (1) and that of m_2 by integrating (3.6) with respect to m_1 . For p = 5, integrate (3.2) with respect to q_{1} , the joint density of m_{1} , m_{2} , m_{3} can be written in the form $$c_3 = 5m+k+15$$ and $s_2 = 4m+10+j+k$. Now consider the transformation $n_i = m_i/m_3$, i = 1,2 and integrate with respect to m_3 , then the joint density of n_1, n_2 can be written in the form $$(3.9) c(5,m,n)(n_1n_2)^m(1-n_1)(1-n_2)(n_2-n_1) \sum_{k=0}^{\infty} \sum_{\kappa} \frac{(-n)_{\kappa}}{k!} \beta(c_3,n+1)$$ $$\sum_{j=0}^{3} \frac{(-1)^{j} (2j)!}{(j!)^2 2^{j} \chi_{[21^{j}]}(1)} \beta(s_2,2) \sum_{i=0}^{k} \sum_{\delta} b(\delta,\kappa) \sum_{T} g^{T}(\delta,1^{j})$$ $$c_{\tau}(N_1)\{\beta(t_1,2)-(n_1+n_2)\beta(t_1+1,2)+n_1n_2\beta(t_1+2,2)\},$$ where $$t_1 = 3m+i+j+6$$ and $N_1 = \text{diag}(1,n_1,n_2)$. Further, let $x = \frac{n_1}{n_2}$ and integrate with respect to n_2 , we get the density of x as (3.10) $$c(5,m,n) \ x^{m}(1-x) \left[\sum_{k=0}^{\infty} \sum_{K} \frac{(-n)_{K}}{k!} \beta(c_{3},n+1) \sum_{j=0}^{3} \frac{(-1)^{j}(2j)!}{(j!)^{2}2^{j}\chi} (1) \right]$$ $$\beta(s_{2},2) \sum_{j=0}^{k} \sum_{\delta} b_{\delta,k} \sum_{T} g^{T}_{(\delta,1^{j})} \sum_{r=0}^{i+j} \sum_{\eta} b_{\eta} c_{\eta} (0 \ x)$$ $$\{(1-x)\beta(t_{1},2)\beta(s_{3},2)-(1-x^{2})\beta(t_{1}+1,2)\beta(s_{3}+1,2)$$ $$+ x(1-x)\beta(t_{1}+2,2)\beta(s_{3}+2,2)\} \right],$$ where $s_3 = 2m+r+3$, b_{η} are constants and $\tilde{\eta}$ denote the partition of i + j. We may note that the distribution of q_1 and q_4 can be found from (3.1) as the smallest and the largest roots respectively and m_3 can be found from (3.8) as its largest root. ## 4. The Distribution of the ## Ratios of the Roots of a Covariance Matrix In this section we consider the distribution of the latent roots as in (5.1) of Chapter 2, which can be viewed as a limiting form of the non-central distribution of the latent roots Khatri [13] associated with test of hypothesis $\delta \Sigma_1 = \Sigma_2$, where Σ_1 and Σ_2 are the covariance matrices of two p-variate normal populations, when $n_2 \to \infty$, where n_2 is the size of the sample from the second population. Now if we wish to test instead the null hypothesis $\delta \Sigma_1 = \Sigma_2$, $\delta > 0$ unknown, the ratios of the latent roots would be of interest as test criteria. In this context, in the limiting form (5.1) of Chapter II, Σ should be replaced by $\delta \Sigma_1 \Sigma_2^{-1}$. where $a_k = (3n/2) + k$, $b_{\eta,K}$ are the constants defined [14], and $\hat{\eta}$ is the partition of i into not more than p elements. It may be noted that the distribution of q_1 and of q_2 can be found by writing $C_{\eta}({0\atop 0} q_2) = \sum_{i_1+i_2=i}^{2} a_{i_1,i_2} q_1 q_2$ and expanding $(1+q_2)^{-r-a}k$ then integrating q_2 and q_1 respectively. Let $\mathbf{r}_1 = \mathbf{q}_1/\mathbf{q}_2$ so the distribution of $\mathbf{r}_1,\mathbf{q}_2$ can be written in the form Integrating (4.4) with respect to q_2 , the distribution of r_1 can be written in the form where $b=\frac{3}{2}(n-1)+i+h+r$ and $R_1=\mathrm{diag}(r_1,r_2,1)$. Now, we can find the distribution of r_1 or r_2 by expressing $(r_1+r_2)^r$ in terms of zonal polynomials of $R=\mathrm{diag}(r_1,r_2)$ and using the method outlined in Section (2) and integrating with respect to r_2 or r_1 such that $0 < r_1 \le r_2 < 1$. Now, let $\mathbf{r}_1^t = \mathbf{r}_1/\mathbf{r}_2$, then the distribution of \mathbf{r}_1^t can be written in the form where C = n-2+t+r and the constants $b_{i,T}^{t}$ are defined in [13]. ## LIST OF REFERENCES - (1) Anderson, T.W. (1948). The Asymptotic Distribution of the Roots of Certain Determinantal Equations. Roy. Statist. Soc. 10, 132-139. - (2) (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York. - (3) Anderson, T.W. and Das Gupta, S. (1964). A monotonicity property of the power functions of some tests of the equality of two covariance matrices. Ann. Math. Statist. 35, 1059-1063. - (4) Constantine, A.G. (1963). Some Non-Central Distribution Problems in Multivariate Analysis. Ann. Math. Statist. 34, 1270-1285. - (5) (1966). The distribution of Hotelling's generalized T². Ann. Math. Statist. 37, 215-225. - (6) Consul, P.C. (1966). On Some Inverse Mellin Integral Transform. Bull. Class. Des Sci. 52, 547-561. - (7) (1967). On the Exact Distribution of the Criterion W for Testing Sphericity in a p-Variate Normal Distribution. Ann. Math. Statist. 38, 1170-1174. - (8) Hayakawa, T. (1967). On the distribution of the maximum latent root of a positive definite symmetric random matrix. Ann. Inst. Statist. Math., 19, 1-17. - (9) James, A.T. (1960). The distribution of the latent roots of the covariance matrix. Ann. Math. Statist. 31, 151-158. - (10) (1964). Distribution of Matrix Variates and Latent Roots Derived from Normal Samples. Ann. Math. Statist. 35, 475-501. - (11) Khatri, C.G. (1964). Distribution of the largest or smallest root under null hypothesis concerning complex multivariate normal. Ann. Math. Statist. 35, 1807-1810. - (12) (1965). Classical Statistical analysis based on a certain multivariate complex Gaussion distribution. Ann. Math. Statist. 36, 98-114. - (13) Khatri, C.G. (1965). A test fer reality of a covariance matrix in certain complex Gaussian distribution. Ann. Math. Statist. 36, 115-119. - (14) (1967). Some distribution problems connected with the characteristic roots of S₁ S₂-1. Ann. Math. Statist. 38, 944-948. - (15) Khatri, C.G. and Pillai, K.C.S. (1968). On the non-central distributions of two test criteria in multivariate analysis of variance. Ann. Math. Statist. 39, 215-226. - (16) Pillai, K.C.S. (1954). Son some distribution problems in multivariate analysis. Mimeo. Series No. 88, Institute of Statist., University of North Carolina. - (17) . (1955). Some new test criteria in multivariate analysis. Ann. Math. Statist. 26, 117-121. - (18) (1956). Some results useful in multivariate analysis. Ann. Math. Statist. 27, 1106-1114. - (19) (1964). On the moments of elementary symmetric functions of the roots of two matrices. Ann. Math. Statist. 35, 1704-1712. - (20) (1965). On the non-central distributions of the larget roots of two matrices in multivariate analysis. Mimeo. Series No. 51, Dept. of Statist., Purdue University. - (21) (1966). On the non-central multivariate beta distribution and the moments of traces of some matrices. Multivariate Analysis, Academic Press, Inc. 237-251. - (22) (1967). On the distribution of the largest root of a matrix in multivariate analysis. Ann. Math. Statist. 38, 616-617. - (23) Pillai, K.C.S. and Dotson, C.O. (1967). Power comparisons of tests of two multivariate hypotheses based on individual characteristic roots. Mimeo. Series No. 108, Dept. of Statist., Purdue University. - (24) Pillai, K.C.S. and Jayachandran, K. (1967). Power comparisons of tests of equality of two covariance matrices based on four criteria. Mimeo. Series No. 118, Dept. of Statist., Purdue University. - (25) Pillai, K.C.S. and Sugiyama, T. (1967). Non-central distributions of the largest latent roots of three matrices in multivariate analysis. Mimeo. Series No. 129, Dept. of Statist., Purdue University. - (26) Rao, C.R. (1965). Linear Statistical Inference and the Applications. John Wiley and Sons, Inc. N.Y. - (27) Roy, S.N. (1958). Some Aspects of Multivariate Analysis. Wiley, N.Y. - (28) Snow, C. (1942). The Hypergeometric and Legendre Functions With Applications to Integral Equations of Potential Theory. National Bureau of Standards - (29) Sugiyama, T. (1966). On the distribution of the largest latent root and the corresponding latent vector for principal component analysis. Ann. Math. Statist., 37, 995-1001. - (30) (1967). On the distribution of the largest latent root of the covariance matrix. Ann. Math. Statist. 38, 1148-1151. - (31) Tumura, Y. (1965). The distribution of the largest roots and vectors. Tokyo Rika Univ. Math. 1, 1-16.