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1. Introduction and Summary. In the case of complex multivariate normal

distributions (see Goodman [1]), the classical problems concerning MANOVA
model, canonical correlation coefficients and covarianece model were studied
by Khatri [4] and James [3]. The distribution of the i-th maximum characteristic
(ch.) root for tnese situations are given by Knetri [6]. Moreover, we may
note that the tinree types of problems can be summarised in the following way:

Let X: mxn and S; mxm be jointly distributed as
mn n r -1 m ren -1 -1 .
(1) {r lEll lz,1" T ) || 8] etr (-5, 8 - 7 (X-u) L X ']

where El 3 mxm, Eé :mxm and L : nxn are hermitian positive definite,

~ 1 m
g ¢ mxn is a complex matrix, r >m and Fm(r) = ﬁgm(m-l) 0 [(r-i+l).

The usual MANOVA meodel is when El = 22 s L is a fixed matrix and the null

nypotnesis is Ho(p=uo given), the model corresponding to cannonical correlation

coefficients is obtained when . = 5

Z, =% Hb(gfgo (given)) and E is dis-

tributed as

*This researcn was supported in part by Aerospace Research Laboratories,
Contract No. AF 33(615)67CLokk



(2) (@ 5™ 1P etr(-53'),

if p>n and %, is nermitian positive definite; and tne covariance

~3
model is obtained when p = O and Hj (Eﬁ =

~ o~

22). In all the above cases, the

l) and in terms of zonal

test procedures depend on thne cn. roots of (Xﬁ—'S_

polynomialé, the distributions of tuhe cn. roots of ngg'gfl) nave been
given by James [3] and in the integral forms by Khatri [4]. Here, we
establisih lemma 3 (which was conjuctured by Knatri [6] in two particular
cases) and this lemma nelps us in writing the noncentral distributions of
the ch. roots in alternative forms. Tnis is not done nere explicitly, but

we derive tne moments of T = tr(Xﬁi'S_l), T, = tr(XX'S

1 ~~ ~

- = -1
V = tr XIX'(S + XIX') for the three situations mentioned above.

2. Notations and preliminary results.

If A and B are two hermitian matrices such tilat A - B 1is positive

-~ ~

definite, then we shall write it as A > B. Let A be a mxm hermitian

~~ ~

matrix and corresponding to each partition K = (kl,...,km), klz kgz..ﬂz kmz 0,
of integer k into not more than m parts, zonal polynomial: CK(A) as

defined by James [ 3] is given by
(3) Cy (E) = X[k] (1) Xfk) (é)

where X[K] (1) is the dimension of representation of the symmetric group

and is given by



m m
.H.(ki- kj- i+ J)/.H

(ha) X (1) = k!
LK] i<j i=1

-— d ’
(ki+ m i)!

and () (A) is tne character of representation {K} of thne linear group

and is given as a symmetric function of tne latent roots 8158550058 of A
as

kj+mrj e
(ko) %K) (é) = I(ai )!/[(ai ),

|Pl being a determinant of a square matrix P = (pij),i,j=l,2,...,m = order of P..

Iet d4U be tne invariant measure on tue unitary group U(n) normalized

~

to make tne measure unity. Let S be a nermitian positive definite and let

us use the transformation § = UWU' where W = diag(wl,...,wm),wl>..‘>wm? 0

e

U is an unitary matrix such that tne total number of random variables are

~

m(m-1). Then tie jacobian of tne transformation as given by Knatri f47 is

m
(5) J(85w,U) = 0w, - w.) n(u)

wnere n(U) is a function of tne elements of U. Noting one to one
~

~

correspondence between tie integration over tne elements of U subject to
~

Ut = Em and over unitary group U(m), we write



(6) a(v) - m-1) {Fm(m)}'l du.

o~

Hence, tne jacobian of tne transformation (5) is written as

(7) 7,0y = D T ot - v au.
~ o~ m 1< 3 ~

If the unitary matrix U has the total random elements p(m-p) (as for

example in the transformation X = (T QYU whnere X: pxm is a complex random
~ N o~

~

matrix, E: pxp 1is a lower triangular matrix witn tii> 0 and U: mxm is

~

a unitary matrix, p < m), then n(U) in place of (6) will be denoted as

~

(8) n(v) = " {'Fp<m)}'l av.

(Note that n(U) obtained by (5) and that by X = (T O)U are different,

see Knatri [4]).

From James [3], we nave the following results over an unitary space:

co

(9) J etr(XU+X0)dU= £ T ¢, (XX')/k! (n)
k=0 K
U(n)
' m
wiere X, = (X' O)enxn, X: mxn, n>m and (n)K =1 (n—i+l)k ’(X)k= x(x+1). .. (x4 1)
Lol ~ ~ ~ - l i

1:



m

with K = (kl,...,km), k,>...> k>0 and Rz k. = k;
i=1

(10) [ (uss) au =G (8) G (B)/, (1)

U(n)

wnere A: nxn and B: nxn are nermitian matrices, and

~ ~

(11) I etr(- s)'sl - Ek(AS) as = ?;(r,m) [gir 5k<§5>
S>0

~

~

whnere Y: mxm is nermitian positive definite, A: mxm is hermitian and

Tm(r,K) = Fm(r) (r)K = n—m(m—l) 1 F(r+k -i+l). Moreover, let us define
i=1l

the hypergeometric functions as

(12) o = qu(al,...,ap;bl,... ,b ﬁ) _k§0 2"521 (a, )KJ[kJn (b, )KJ lc (4)
and
P ~ ~
o LI ()3 cea) ¢ (B)
(13) F (m) (m)(a & sb.,...,b 3A,B) =¥ T
P q p 1 T N -
{n ()3 & C. (L)

j=1

m m
_ R i+l
Lemma 1. X 1) (Em) izj(ki kj i+ J)/iEl I'(m-i+1) or



¢ (

(T = Ixpey WP T, (mk)/xr T m).

Proof. Let W = diag (wl,...,wm) with w;>...>w . Then by 4y,

m
X{K} (E) = ":Eol/lzj(wl— Wj), PD = (bO,ij)’ bo’ij = Wl

Let us write Wy = Wym Y and take 1limit as y — 0. Then, we get

m

m
2
(1k4) X (W) =|B /{01 (w,-w.)" @ (w,~ w., )}
K ~ - - * . . . !
Y p— — - = pend -—-d
where El = (bl,ij)’ bl,ij = bO,ij for i=1,3,...,m and bl,EJ = Ty bo,lj

for j = 1,2,...,m. Let Wi =Wy -y in (14) and then take limit as y - O,

Then, we get

' m m
3
(15) Xeer (W1 =B A0 (wemw,)? T (wew,,)}(20)
fr}'2 Wis WpS Vg T h=j<it 9 3
where B_= (b ) =b = b for i =1.2.4 m, b = 6-9-)2 b =
~ 2,13 2,1] 1,ij TTETareT MY ,2) dwl 0,1]
4 b . for j = 1,2,..,,m. Thus, proceeding, we get finally
dwl 1,2 - v
m

(16) Xgy (L) = [gl/igl T(m - i+ 1)



T
wnere E: (bij)? blj =1, bij = (kj+ m - J)(kj+ m-j- l)...(kj+ me-j-i+2)

for i=2,3,...,m and j = 1,2,...,m. Tnis establishes lemma 1.

Lemma 2. Let A(w) = (aj(wi)) and B(w) = (bj(wi)) for i,j = 1,2,...5m

and let 9 be a domain given by 9 = :9{O<wm<. . o< Wt< x < Wt-l<' .o < wl< ®},

(17) J‘ lﬁ(‘i)l 'E(}i)! dwy oo duy = I, Hc&.,j)%
)} i

wnere _21 indicates the summation over tne combinations (61<. <6 % l)

and (6t< BiygSeee< Gm), (61,...,6m) being a permutation of (1,2,...,m) and

[-=]
(18) O I aj(y) by (y) dy for i =1,2,...,t-1 and j=1,2,...,m
i? < i .
x
=Jﬂ aj(y) b (y) @y for i =t,...,m and Jj=1,2,...,m
o i

\J

wnien are assumed to exist for all combinations.Wnen t = 1, we rewrite (17) as

(19) J 'ﬂ(zv‘)' ig(z)] vy .eedu = ]E[ :
8

X

where C = (cij)’ e s = I

a.(y)b.(y) dy for i,j=1,2,...,m and

s =29 {o <w <.e<wy< x}.
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Tnis is a generalized result of lemma 4 given by Knatri [6] and tie proof

is exactly parallel to tnat given by lemma 4 after noting tne expansion

m
1)} 1BG)| = | §=lai(w§)bj(w5): = Zﬁ‘(ai(wf’j) bj(waj)l

where Z% indicates tne summation over § = (61,...,6 ), tne permutations of
~ m

~

(1,2,...,m). Hence, tne proof of tuis lemma is omitted.

= i ) = i 1tr > >
Lemma 3. Let A diag ("1""”‘m) and W = diag (wl,...,wm) with Ay>..>

nd > . The
a Wy L n

o -1
cigl{.ﬂ (hi- Xj)(wi- wj)}

(20) pF((lm)(al, c+e383 Bysiansb s AW) 2

where

-m+1,...,bq-m+1;xiwj) for i,j=1,2,...,m

1

and

c = H {T({m-i+1) H (b -1+l):L l/ T (a -1+l)1 l}
i=1 j=1 t=1

In particular, we nave

(21) (m)(A>W) { H M(m-i+1)3{ U (Ki-hj)(wi- wj)}—l|(exp(kiwj))|
-~ i=1 i<y :



and

@) FE(en) = {1 ) T ) e )1 (e T

i=1 igj

We note tnat wnen some of the ki's or wi's are equal, we obtain the
results as limiting cases on tie rigut side of (20) - (22). Tue results (21)
and (22) were conjuctured by Koatri [61.

Proof. It is easy to prove the following result

k,
vee Z [ g {n (a -m+l) / H (b -m+l) }/k %(Aiwj) 1)].

'l=0 k —O i=1l t=1

MS

(23) el =

Note that

ki
l(kiwj) | =0

if any two of kl,...,km are equal. Hence (23) can be rewritten as

k

(24) lcl- T [n {n (a -m+l) /%, i (b ~m1), ,’.((Aiwj) !
~ ——m(m-l)k>k2>...>k i=l t=1 kg 1i=1 kT )
m
with T k, =k
i=1 *

where Zd indicates tne summation over o = (al""’ah)’ tne permutations

o~

of (1,2,...,m). It is easy to verify tnat
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k

% = kd ! kj kj
@) 5, [(Om) D =12 G 9 = 1o 1)),

~ o=1

and
Do ) nm 1w
(26) oo v,-m+ 1 I 0 (v-i+1 v
41 t=1 © A S R K

Obviously changing kl,...,km from inequality kl>"> km >0 to

k. >k, > ... >k >0 (i.e, k

" g " Kt mo- i) and consequently Xk = k + im(m - 1)

and tnen substituting in (25) and (26), we get

(27) R (ag-1+1)%" l/n (b,-i+1)*3] Rt (ay)/ n (b, )}
i=1 t=1 =1 k=0 K t=1 J=
- k. +m=j
[ W (k. +m-1) ] l|(h +m J)H(wiJ J)l.
i=1

s R - s s (m
US1ng,(27) in tue definition of pFé )(al,...,ap; bl""

,bq; A, W) given by
(13), we get tne required result (20).

The generalised Laguerre polynomials in a nermitian matrix, LE (8), and
tne generalised Hermite polynomials in a complex matrix, HK(T)’ are

respectively defined by Hayakawa [2] as under:
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(28) etr(-s) T, () =f {Fm(r+m)?‘101rl(r+m;-5 5) etr(-E)!Efr C,(R) dr
B> 0

and

(29) etr(-T ) B (1) = (-1 7™ [ etxl~/o1(z X+

~

T')-X i'zcx(x X') ax

¢ g ey

wnere S: mxm is a nermitian matrix and T: mxn is a complex matrix.

~

Tne following results were establisned by Hayakawa rel.

(30) EK(T) = (-1)% ch”m (T '3”’) if n>mand T: mn.
(31) I (@) = (rsm)y G (1), 5(0) = (1) (), . (1).

Tne left side of tne equality (32) was proved by Hayakawa [2] in an indirect way.
We prove it directly from definition (28).

Lemme 4. Iet Z:mxm be a nermitian matrix wita the ch. roots zy 2 25 2«00 2 z.

such tnat tne absolute values of z, (i=1,2,...,m) are less than or equal to 1.

Tnen
o ~ ~ ~ | =T=m -1 =,
(32) © TIZ (s)cC, (2)/x! ¢, (Ly) = Iz jetr['igi(ff?,) Ul au
k=0 Kk o~ KT K U(m)

{ ‘IIII (z.-z.)(s.-s.)}"l la(s,2)|{ ?lll"(m-i-rl)}
ig td 1 =1
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wnere the cn. roots of S are s >s >...>s ~ and G(s,2) = {g(z.,s.)) witu
~ 17 J

1-'" 2‘ - ~ o~ oA

(33)  elzyss;) = (l—zi)'r-lexp(-sjzi/(l-Zi)) =k§oL§(sj)ZI;/kf for |z.|< 1,

L;(s) being Laguerre polynomial in s.

Proof. Let us write tne left side of (32) as L. Then, by definition (28),

we nave

- @ ~ "l ~t r~ ~ '~ _l
L = etr (g)kz::O EIRm{Tm(rﬂn)} OFl(r+m,-5§) etr(-E)lg\ CK(E)CK(Z‘,){k'Cqu)} aR.

Interchanging integral and summation sign and using

ve get

(34) L=etr(S){?m(r+m)}'lI j O;l(r+m,-RS)etr(-U(I-Z)TJ'E)!R]r @dRAU.
~ R>0 U(m) - T

Intercnanging the two integrals and tnen integrating over R, we get

(35) L= etr(i) \I-E\’r'm I etr [-U(I-z)“l E Javu

~ A AT ~

U(m)
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because etr (X) = F (X)(35) proves tne first part of (32). Moreover,

(35) can be written as
(36) L= ez M (s, z(a)™) |

Using lemma 3, we get

(37)  F ém)( S Z(I—Z) by < H[(s - s, )(l - i;%—)]'l la}f ﬁ I(m-i+1)}
i< 3 ~ =1

where ﬁ = (aij), aj5 = exp {-sizj/(l-zj)}. Using (37) in (36), we get the

second part of (32). Tnus, lemma 4 is establisned.

Corollary 1. The generalised Laguerre polynomials (28) can be calculated

from

(38) L (8) = xpep(D) 1A L (s)) I/ 1™ )] .
~ fx] ij m=j\"i i

This follows from lemma 4 using the second equality.

Corollary 2. (i) 2 pX L (S)( l) /k! = -m(r+m) etr (3 8) and
k=0 K ~
(i) s IF (8) = Lﬁ(r+m)'l (tr )

Tne proof of (i) is obtained from (32) by putting Z = 'Em woile



1L

that of (ii) is obtained from (32) by putting 2 = z E,m and tien collecting
the coefficient of zk/kf .

Temma 5. Iet ¥: mxm and S: mxm be hermitian positive definite. Tnen

~

(39) [ etr (-28) T (9) 8" a5 = T (oomye) |21 G (357
0 - ~ ~

and

(Lo) J etr(-S) L (s) (s)ls] ds = 0 if N4 K
>0

~

k! I‘m(r+m,;c) Cy (,I.m) if N =

Proof. ILet us define L(S,Z2) be tne left side of (32). Tnen using the first

of the equality of (32), we get

J etr (- 8) |s|” 1(s,2) a s
50

~ I~

|1 -z\'r"mj J etr[- (z:+uz(1-z)'JL U )s] islr au as
s>o U(m)

l-r-m

| L,-2 J' J etr[-(S-1+0(1-2)"L T')s] |s|" as au

U(m) ,\S,>,9,

(r+m) \Zl-r-m (m)(r+m, I-Z Z).
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Collecting tne coefficientiof C,(Z), we get tie required result (39). For

(L0), we nave as before

X etr(-s) |s|* Ef] (s) L(s,z) 4 s
£Q,

lI—Zl_r-mI J' etr[-U(I-z)"* T's] |s|r1;(s) s du
U(m) s>0

T,(rm,n) € (2)  using (39).

Collecting tne coefficient of CK(Z) from tne above, we get (40). Taus,
lemma 5 is established.

Corollary 3. Iet T: mxn be a random complex matrix. Tnen if IT: mxm

is hermitian positive definite,

(1) Jew(ZTT) Hma 1= (1" ™ (), |57 Gozs)
T

and

(42) I etr(-E Tr) ?IIC(E) ?in(T)d T =0 if Kk 4 7
. |

i

, _mn - . .
k' 1w (n)K CK('Im) if K =1,

This follows from lemma 5 by noting (30) and
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r,(n) [ete(-c2T)e(rT)ar= nnmj etr(-L 5) £(s) 4 s.
T 5>0

~e

Lemna 6. let Z and T be arbitrary mxn (n>m) complex matrices.

Then,

03) | ] ew(zZenruzezh T ap an
U(m) U(n)
@ ~ ~ — o d -l
=% T H (T) ¢ (zZ )k (n), C. (1)}
k=0 K K ‘L KYe ~ K K ‘am
where Hl e U(m) and Eé e U(n).

This can be proved in a similar way as tnat of lemma 4 by noting (9)

and (29). This is also given by Hayakawa [2].

Corollary kL.

2 2/kt) B R ()1

i

exp(-mxa) j etr[x(zlg +T.0)avu

_ ~L
k=0 K U(n)
= exp(-mx°) £ T C (T T') x** (k! (n) }7t
where Ei = (T'0): nxn, T: mkn, n > m.

This follows from (43) by taking 2 = (xi:m 0). The following lemma

can be establisned in the same way as that of lemma 3 by using corollary 1.
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o (Ti(a, 5 L (1) c ()

m
() » ¢ &L = e el {0 (e A G- w )}t
k=0 K fd (b)) K G(L) e

j=1 JK UK m
where c¢ is tne same as defined in (20) and G = (gij,l)’ €i3,1 =

P
E {1 (a --m+1)1 Lk (>\ ) w {k! n (b -m+1) 1 for i,j = 1,2,...,m. 1In
k=0 o=1 o=1
particular, wien p =0 and q = O, we get (32).

Now, let us consider E L‘]; (§) wnere S: mxm = \)L;‘, vimen is a fixed

A~ ~

complex matrix and Linxn is distributed as

L

{Fn (P)}-l l El-P LI:lp-n etr ('E-l,{',) for £> 9,’ p > n.

Then, using lemma 4, the generating function of E Lz (s) is given by

O R A AT S
Sl 27T gy ERUEG 27T P
U(m)
Hence, let us write
(46) E Ef; (vLVv') = gép’r)(ﬁl), A = diag (Apseenshy)s

A2 A, are the characteristic roots of v £ v'. Note that tne rigat

hand side of (45) can be written as
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(7) 1z, - 2R s - 20 - 9

and then using lemma 3, (47) is equal to

m m . s .
(48) {DTes)} {1 (1) HOT DD g
i= i=

. - - (1., \p=r=-m - - 1=ptm=1 >0 > >
wnere G (gij) > 8 (L zi) (1 zi(l hj)J s 2222 a2z
are the ch, roots of Z. When m =1 in (46) and (L5), we get the univariate

result. Hence, we can write

—-Tb T e (p~m+1,r)
(59) gy = (12 PP Loz T = B g () 25kt

Using this in (48) and equating tne coefficient of CK(Z), we nave the

following lemma:

Lemma 6. Eép’r)(A) defined in (46) satisfies the following relations:

(50) E glpor) (1) €, (2)/x C (L)
= |7, - 2P ] 5, - @, -Dvzw|Pa
U(m)

]

m . . - )
1 {M(m-i+1)/(p-3+1) " (| (1 ) 1L = g(P'm“’r)()\.)zl.‘/k:)!
i=1 - = k=0 -1
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and

LI )T ()i H 2 17

(1) 5T = 4@ l(gkp;

i=1
where
(2)  g®T) - Eb (-13(%) Tp+3) T(resr1) (T(p) Flregs1))™
J=
or
(52) (1) P &P o/ (149)) = () [oT(1e0) P

3. Moments of T = tr( X LX') and Tl = tr(E-lX X'),

(3.1). Moments of T. We have
(53) ET =73, E csleSE

Using tne following result given by Kanatri [5],

r-m =1 ~ r % o1
_fetr(-g 8)Is|"™ ¢ (a87%) as =T, (r,) [E]° C(Z7A)
S0

where T (r -K) = ﬂ—m(m—l) I T(rem-k, +l) =T (r)/(r)(,c), r2m+ k,
i=1

(r)(K)=iI§l(r-nrki-l)(ki) and (r—m+i-l)(ki) = (r-m+i-l)(r-m+i-2)...(r-m+i-ki),
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we get
(54) E(T) =S EC, (X XLE)/ (r)
ke DS (K).
(3.1.1) Let us assume T =‘§l = Eé and L is fixed. In tnis case, we shall
assume without loss of generality n 2> m, because if n < m, we consider the

i_ 1 1 _1
distribution of L2 X' % 1 X L instead of £ 2 X L X' ¥ 2=R and

~ o~ o~ ~ ~ ~

~ —N __' "'l ] > ~ N
¢, (BR) = ¢ (LX'TX) if k>k>..2k>0,n>m and C (B) =0,
otnerwise. Hence, under the condition El = 22 =% and n > m, the density

function of R is given by

(55) etr(-A-R) {T_(0)V" [R|™™ 7 (n; A B)
-1 - 1
wnere A =Xy L 'Y 2, Then, using tne definition (28) in (54), we get
k X o Them . . .
(56) E(T7) = (-1)" ¢ L (-A)/(r)(m) if r > mtk, n > m and L is fixed.

(3.1.2) 1Let us assume that %, =%, =% and L is distributed as

Wishart whose density function is given by

(57) (T, @ (5] (L™ etr (<531 1), for p2n.
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Tnen, using (46), we get

(58) E(T ) = (- l) Z Q(p’n'm)(-l}l)/(r)(}c) if r>mk, p>2n>mn

and Al is the diagonal matrix witin diagonal elements as tne cn. roots of

-1 -
A

(3.1.3) Iet us assume p = O. Then, using (11) in (54), we get

~ O~

k

(59) E(T")

?c: EK (E&«;l) (n)K/(r)(K) if r> m+k, n>mnm

~ -1
: by o d > mtk, m,
% %(Eé)(MMhhwlfr_mk n<m

(3.2) Moments of Ty

~

Let us assume p = O. Then using Kuatri's result [5, (58) on p. 4771,

we get
(60) E(ill‘). -z G BN C@mEY )/ (0) ) G(L) 1 r>wik, 0>
=20 (L) 0 () M/ () ) C(T) i 2wk, n <m
winen L 1is fixed, wuile

~

(61) BT =2 (51 O (@5 (/L)) ®) () (T

K
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wnere A = (a,.) and
~ ij

k.= -k +j-1

(64) a5 = Efw ¢ (1tw) Y }  woen the density function w is given by

(65) T(ren-mel) {F(nemel) T(r) 627"} 0 P (ray/o Y™ for 0 <y <o

To obtain tue convergent expression for aij’ we shnall write it as

1 ntk.=3

(%)%;{mmmnmﬂumjﬂmmhdéuwmmujx J 7 (1ax)T D
Jd 1 1 0 7
l-x4x 6
ja=rentm-l
(- on ] ax.

Hence (63) can be rewritten as

(63') B G0 1) D (eam )1 (0) (T, ()T () | €T ) 137 (ol
Em'i' 3‘-r-n+m+l ‘B‘

where E = (bij)’

1 k.=J lex+x0,
(64) bi,j = {I‘(n)l"(r-m+l)}-ll"(r+n-m+l) Jo xn+ J J(l-x)r'm[ld-—fi%}:{—-i]'r'n+m'l ax.
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in wiich B = (b,.) and
~ 1]
mtk.=J
(75) bij =Ex 9 wnen tne density function of x 1is given by

(1) (10, P Dlnemd) (DN (em1)) ™ 2 (o)

oFq (r+n=m+l, p=m+l; nem+l; pix).

Noting (69) and (74), we can rewrite tuese expressions in terms of

moment generating function as under:

1) Bemn) = TEPT ) 105D ()]
1=

where G(g@,A) = (gij(¢,xi)) and L is fixed,
(79) gij(w,ki) = E[x™ exp(yp x)], tne density of x is given by (71),

wnile

_nl<p-i+l>i'1 P(e=i1)} (39| 10| Mg, (00015
1= ~ ~

(80) E(exp(¢v)) = {r(x)}" ¢
where El(w,g) = (g§§)(¢,pi)) and the density of L is given by (57);

(81) g§§)(@,pi) = E[xm’jexp(¢x)], tne density of x is given by (77).



(5]

(6]
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