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I. INTRODUCTION
In 1954, Baxter 1] considered certain continuous, l-dimensional
mechanical systems undergoing Brownian motion. The physical systems were

assumed to have the kinetic and potential energies in the forms

T = %—fb r(x) <§§>2 dx

“a
b .
(1) V = % Eg(a) + %ja {p(x)’ <a§-§>2+ q_(x)gz}dx + % gz(b)

where ,% > O are constants, p(x) 1is B positive continuous differen=
tiable function on [a,b], q(x) is a continuous non-negative function on
[a,b], and r(x) is a positive continuous function on [a,b]. The system
was assumed also to be immersed in a viscous medium and was subjected to
certain type of random forces which will be given later. He did not pube
lish his results and we will give a description of the methods he used and
some of his results here. First, he gave a lemma which is in some sense
a. proper extenéion of the Kolmogorov consistency theory. The statement of
the lemma is;

Let T be a bounded linear set and suppose that for n =1, 2, 35004

and any choice of n points +t., t

1> Bossees b Of T there is given an

n-variate distribution function F (A;5+4650._ )« For any fixed
tl).n‘,tn l n

integer k and points s,,s,,.s0,5 of T let Gsl,..i,sk(hl"“’lk)



2
be a (possibly) multiple-valued function whose values for any xl,xe,...,xk
are the values of k-variate distribution functions which are implied Dby

some n-variate (n > k) distribution function F (Ays+es5\_) whose
- tl’an.,tn l n

parameter values include If', for every positive integer

Sl,se,...,sk .
k and every choice of k points 8158550005 8 of T, the limit

max mlan$~t -0 Gsl""’sk(xl,...,Kk)
teT t i
exigts uniformly in xl,he,...,xk, then the class of the limiting functions
gives rise to a stochastic process.
Then he considered four types, and discussed only one type because
of similarity, of density functions which are, crudely speaking, formed

by using a Riemann sum approximatien to V as the exponent of a Gaussian

density function. The type he discussed is

n+l E -1 )
/ n+l I xp{ —{ { (t k) K k + q(tk)gi(tk-tk_l)]

* B §i+1]} 4841

where go = 0 and An+l is the matrix in the quadratic form appeared in
the integral. This corresponds to the case that the boundary condition
g€(a) = O for the system. There is a restriction to be placed so that the

differential system corresponding to (2)



& {060 8 - ale = 0
(3)

B.C's (The corresponding boundary contitions for the physical

system)

has a Green's function K(x,y) which can’be separated into u(x)v(y)(x < y)
on account of the boundary conditions (which will be given later). ILet k
fiied points (sl,sz,...,sk) on {(a,b) be subset of (tl,te,..;tn) ;

where tj = a + j/(n+1), and let A; be the matrix in the quadratic form
appearing in the exponent of the implied density function, which is implied

. . ¥ -1
from (2), associated with parameters If we set (Ak) =

S155550 00,8,
(bij)’ then he proved that bij = K(Si’sj) +0(L) as n- o . Hence bij
ténds to K(si,sj) as n tends to infinity. This implies the convergence
of the eharacteristic function of the implied distribution associated with
Sq58g50e 058, . Hence the limit of the implied distribution associatéé

with s exists as n -« ., And, by the lemma, the class of

1250200055y
llmltlng dlstrlbutlon functions gives rise to a stochastic process which,
obviously, has K(x,y) as covariance function. But the stochastic process
is defined only on the set of rational numbers in (0,1). The c&ntinuity
of K(x;y) in square [a,b] x [a,b] 1mp11es that the process can be de-
fihed 6n every parameter in {a,b] in the sense of mean square convergent
The process is Markovian since K(x,y) = u(x)v(y)(x<y) on account of the
boundary conditions considered. (See [2]);

When applying the preceding result to the Brownlan motion of continu-~

ous, l- d1mens1onal sysnems he dlscretlzed the system so that it became a

finite system of coupled harmonlc osc1llators type and satisfied the



conditions of Wang and Uhlenbeck [37] which will be given later, then he
applied the result of Wang and Uhlenbeck, the covariance function of the
stationary state was'then D A;il where D 1is a constant, hence the
density function for tl,tz,...,tn was the same type as (2), preceding
result implies that the clasé of limiting functions, as n — o , gives
rise to a Markov process which has, now, D K(x,y) as its covariance func-
tion. Hence the covariancé function of the stationary state is. D times-
the Green's function of (3).

In this paper, we will give a different approach to analyse the
Brownian motion for ﬁhe same continuous l-dimensional mechanical system,
First use the same method as Baxter used to analyse string vibfation with

fixed ends, the result justifies, in some sense, the main result of this

paper. And we will point out the difficulties for higher dimensional case.



IT. STRING VIBRATION WITH FIXED ENDS
Let us consider a uniformly flexible string with fixed end points O

and 1. Assume its kinetic and potential énergies are of the form
1 3E.2

(1) r=3[ (&) a
o

(5)

<
i

1
@ e .

We assume also that the string is immersed in a viscous medium and is sub-

Jected to Gaussian random forces F(x,t), t > 0, with

J(F(X:t)> AV 0

(6) _
L<F(x,t) F(y,8)) 5, = 2(20)K T 8(x~y) §(t-s)

where 2y 1is the damping coefficient of the system, K and T are

constants which can be interpreted as Boltzmen's constant and the tempera-

ture of the gas if tﬁe string is placed in a rarefield gas and the random

forces are induced from the colisions of the gas molecules with the string.
Before we start to discuss this mechanical system, we like to mention

some results for the coupled harmonic oscillator system treated by Wang

and Uhlenbeck. In the electrical notation, the couple system is



; 1 dzya‘ 5 - ,

i iLij 2 " Rj_j i F Gij Yj} / Eij i=12,..., 1
dt .

J=l J:l

where the random forces {Eij} form a Gaussian process satisfying

(B Dpy = O
<E13( )E (S)>Av

<Eij(t) Eij(s)>AV = 2|Rij!K T §(t-s)

i

2Ry 5 K T 8(t-5)
(7) <

<EijEkz>Av=O if either k$ i, k% j or zfi,ﬂ,{:j .

\ ¥

where (Li,j) is a non-singular matrix and the roots of

2

Det ({Lij)\ + Rijx + Gij}) =
have negatlve real parts. Then the 2n variables (yl, ey ,yl,... yn)
form a Gaussw.n Markov process whose transition proba.blllty density func-

tion is the solution of the Fokker-Planck equation.

2n 2n o
3P _ 1 —
3 = Zag (agp) + % ) 3ot Oyt
j=1 jok=1 Y
V.
E. = V., =y ,@__Q_ l1<j<n .

in which



2n
<
= 1< 2 .
87 L %k Sk Jz e
=1
( 0
I
A = (aij) = -1 -1 (2n x 2n)
| ~-L "G -L "R ,
(0 o0
D = (Dij) = 1 -1 (en x 2n) .
0 2¢TL ™ RL

Let Ei(t) denote the mean of gi(t), l<i<®2n and C be the
matrix which diagonalizes A. Then the mean vectors and covariance matrix

are given by

[ x(t) = & x_
(8) 1
B(t) = (by;(£)) = ¢ (e
6, (6] £, (o)
where X(t) = ; and X, = § is the vector
Eén(t) \ Eén(o)

of initial wvalues.
b5 (8) = L5 (8) - B (8)] [g5(8) - §5(£)T) 1S ijgen

and

T. .
TR 1] L - exp()\iﬂj)t] l<i,j<2n
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in which ¢ = (cij) = ¢.D-CT and \;'s are the 2n eigenvalues for the
matrix A.

Armed with above results, we are able to analyze the Brownian motion
of the string. Partition first the interval [0,1] into n equal subin-
tervals {xo =0<x <, <x = 1}. fhen the "Riemann sum" approxima-

tion of (k) and (5) are given by

(9) To= b e Gy -x )

(10) V! =

[\

Apply the Hamilton's principle (see Appendix II), then
(T' - V') =0, to (9) and (10), and by considering the damping

and the external forces, we get the Lagrange's general equation of motion.

. . B47E g Ei-Eio
(-2 5) 85+ 2u(xy-x; ;) §; + ot -;. = F; (%)
i7i-1 i+l 71
or
B TR vn(egug g ) = By (6) tsizn-d
X.
where F, (t) = L{l F(x,t) dt

i-1
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From the properties of F(x,t), we see that {Fi(t)}i are Gaussian

random process satisfying (7) with Eij(t) = 6.j Fi(t), since

i

L= (1) =3 (65,) =51 .

(Rij)=-n—"(5..)=-’- . I

os}
i

2n, -n, 0,...
-n, 2n, -n, O,...

ij t e e e e e s

O....0, -n, 2n J

and

X.
CAG [Xl (F(x,8)p, d¥= 0
i-1

X.
<Fi(t)_Fk(s)>Av = [ + ka <F(x,t) F(y,s))AV dx dy

i-1 k-1

kT & (t-5) fxi ka
X. 1 X

1~

§(x-y) dx dy = hokTs (t-5)5,, ka ax
k-1 Xl

20)
2 (F) KT 6(t-s) 65,

Hence, the method of Wang and Uhlenbeck applies, then (gl,...,gn_l;

gl,...gn_l) forms a 2(n-1) dimensional Gaussian Markov process with mean

vectors and covariance matrix in form of (8).
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The eigenvalues for A are the roots ef Det(aij— A8..) =0, or of

ij
Det (L xg +R.)N+G.) = O
ij ij ij
A +20) +20° |
-_—-—.I-l—-.— 9 -n> O, s ® o 2 s o e e
2 2
A F2o) +2n
--r]_j —-‘———-——-)\' 3 ‘-n, 03 - . - . » »

1

. e o o o .

A +20x+2n2

. e = « s 8 ¢« . o, =ilg n

Let (x2+2wk+2n2) / o2 = a, then they become the roots of

If we set D_ =1, the it is easily checked that {D,} satisfies
the equation Dk = aDk_l - Dk-2 with Do =1, Dl = a, In order to solve
this equation, let E Dk = Dk+l’ k=0,1, 2, 3,,.. . Then we have the

following difference equation.

(11)

The solution of (11) is given by



rk+l rk+l
B k k_ "1 T~ 2
Dy =Py ¥y +Pp Tp = T - T,

11

where rl, r, are the solution of the quadratic equation y2- ay + 1 =0

and Pys P satisfy the initial value

P, tp, = 1

Pyry TRy = @

It risTs

if and only if r) = r,, or the same, if and only if

1

2kr
a +a -4 n

= e 1l <k <n-1
a - Ja2-lh

kn

We find that a = 2 cos o for k=1, 2, ..., n-1 .

of a, the eigenvalues are then given by

are not real, then r, + ry, this implies that D, =0

From the definition

A= o ig/éz - 2ﬂ2(l - cos %?) 1l<k<n-l
Let
Ay = Tn-l+j = - + ﬁoe-2n2(l-cos ‘lnﬂ)
M1+ =‘Ij = - - J@2—2n2(1-cos %?) 1<j<gn-l
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The best way to find the matrix C which diagonalizes A is to find
the matrix which is formed by using the d%mp%nents %f tﬁe eigeuvecf%rs
corresponds to A‘as its row vectors. Now, to find the eigenvectors for

Aj's, we start from the equation

{
e ' —y
-AjI i I

0= X(A - AJI) = (Xl""’XEn-2) _______ e e e D
' —2n2,n2,0, . :
n2,-2n2,n2,0 :

. . . 1 =(20+0 )T
2 ! J

. . O,n7,-2n"
{

bnte. I hae

Multiply by a non-singular matrix xII g from the right, and note
J
2 2 2 . ~
that A+ Ewhj + 2n° = 2n° cos (jm/n), Ayt Ay = -2,, then we have
- ' po

1354 2n_2) R e
<2n° cos(jm/n),n",0, )

n2,42n2cos(jn/n),n2,0,

O,ne,—Engcos %?

¢ ¢ o o @

This is equivalent to the following equations

(

J X 4,1 = 2 cos (jm/n) X

(12)

t_xn+k = 2 cos (ju/n) Xn-1+k " Fp-oax
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(13) Xop.3 = 2 cos(jm/n) X oo

(1) X, = = is X

J n-1+j

If we set x = sin _-;gf_ , then (12) becomes the difference equations

(D2 - 2 cos %g D+ 1) X =0 k=2, 3,...,n-2
(15)
L initial values x_ = sin QE, X = sin 90 2 cos IO
n n n+l n n

With a = 2 cos ¥, (15) is the same as (11) except that both the
n
initial values of (15) have a factor sin (jm/n). So, if we let
43,4 = cos %F-i i sin %F be the roots of y2- 2 cos(n/n) y +1 =0 .

Then the solutions are given by

ISR NS (elljn 3 . (stdn

q. . n - n .
Xk = —l;———:-g——- sin %F =2 — = . — 3 Sin %?
4G -9 Jui  _dm
n n
€ -
= sin (k+1) jm/n k=2, 3,..., n-2

One can check easily that the above solutions satisfy also (13) as it

should be. The eigenvector corresponding to Kj is then, by (14)

- %, sin 4O Y gin {n-1)dm
( kj sin £ ..., lj sin =

cee sinﬁg:%giﬂ)



1h

The matrix C which diagonalizes A is

C C
o = (Ci ) - 1L 12
J 21 22
wthere
= = sij __.lJ.TT
Clp.= Cpp = (sinTp
sint sin2L vae SinLn_—l)E
n n n
- sin=t mn—lﬁr— die sin-e-g-r%m
sin(n"l)rr sinz(n-l)rr sin(n-l) T
n n
and

In order to find the inverse of C, we use the formula 2,‘1;_1 cos kx =

sin(%x-) cos(%ix) / sing; to get

n-1
; T ckjm . kig _n
(16) L, SIo sinTE = 5 by .
k=1
Then, ¢t s easily to find to be
¢! c!
-1 -1 2 11 12
c (c.l) ==
IJ n Cl C!
21 22

where
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1l

~ -1
C1 = Copl(ai23) 78, 5)

~oaL
t
Cp = Cop((As-23)778, )

)5 )

1J

A

Co1 = Copl (==
i
X

C2’2 ,— C22((~_l)6- ) .

1J
hi-li

The matrix o = (¢,,) 1is, by using (16)

i
T 7
p f%1 Cp | |0O 0 €11
c=CDcCt = T T
Coy  Cop O lhogTn I Clo  Cop
L ] T L ] T
C12" G2 C10" O , |11
= logTn T T = 20KT n .
Cop® Cip Cppt € T

. Do s o vas itn-l=j iff 4. kO .
Hence A $0 iff i=j3 or i =n-1+j or i+n-1 Jj if By ¥

From (8), we have

2n-2 2n-2

T -1 -1 T -l -1

bij(t) =L Cip bpgle )sj T L Cir Mys s
r,s=1 r,s=1

where c;i is the elements in ¢~ .

For 1 <1, j<n-1, note that x, = i/n, x; = j/n



n-1 _ ~

20 t 2)n t
v 1 -1
(17) (t) 8(,)KT __‘ { ,J:, s 2i‘ (]_..e r ) + s <% (l-e I‘)
o1 (AAL) r (A=) 2
(A, ) . .
-1 -1 ; r . rig . Yamw
+ 2 = = [1l-e ]} sin == sin ==

2
(xr—xr) A A

n-1 ~

~ 2\t 2)t 5
= 8oy T V"‘ -—-—}-J—-—- (}\ e T + ) e r _ A - A )
SR r r
p=1 AL AR,
- “-———éé—jg— (l—engwt)} sin rx.nr sin T
rr)(?xr-?\ )
n-~1
o] Mm (l-COS':T) [n"-2n"(l~-cos 7;)]

<20t 2 \/wz-zne[l_cos(z‘nﬂ)]t -2 /J —21'1 [l COS( )]JG
G + e

2V/J _2n° (l-cos——) t

/;2+2n2(l+cos%¥) e-QWt

=2 Jg2—2n2(l-cos——)t -

-2wt
- e )‘_ ..

o1 -
. 2
olo -2n (l—cos—-)]

-}

2 sin rxin sin ern

n-1 2 w2-2n2(l-cos——)t _2VAD -2n (l-cos?r

=2+ -Ewt
(t) = ok | { S S _ !

r=1 eru -2n (l COS )]

(18)

bi,n-l+j

x 2 sin rxin sin rxjn
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%;} { 1 2n2(l-cos%F) e—2wt
(19) b (t) =T ) 4 =+
-1+i,n-1+j L 2 .2
nNe- 1 J . [N (3] [(') -2n (l-COS——I;T)]w

2 [y2-2n(1- cos-——-) t -2\/w2—2n2(l—cos—x%-r—) t

2[Q —on® (1- cosr”)]
- Pt 2/;2-2n2(l—co&€F)t —2/&2-2n (1- cos——)t
\/& 20 (1-cos== Tr) e Y ( -e

E[U -on° (1- —cos X )]

X 2 sin rxin gin ijn

The above covariances are corresponding to Xi = i/n, Xj = j/n.
Since we want to pass n +to infinity, let us fix i/n=x, j/n=y . We
. o _
shall discuss (17) first. For convenience, we assume ¢ < n2 and set

22

c, = Jam - w2 , then we claim that the limit of bij(t), as n - o ,

has the form

2 2ot

e—EQt w €  cos 20rt
(20) b(xsy))—KTY{ge' 5 + 55 D
' r=1 cr Cr rom
o c, e sin 2 o "
- 555 } 2 sin rxm sin rynm
c.r

To show this, let N be any large integer, n > N . It is trivial
that for r < N, the r-th term in (17) converges to rth term in (20). We

need only to show that the summation of terms for r > N in (17) has

)
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order o(]l) wuniformly in n. If this is the case, then (17) tends to (20)
as n tends to infinity. We note that each term appearing in (17) is

bounded, say by M, uniformly in n and that

[=o] (<]

T T o1 _
L 22~ L 2~ oD
r=N m r=N "r

hence the summation over N < r <n has order 0(J) uniformly in n.

This implies that (17) tends to (20) as n - » . From the above procedure,
we see that for each pair of rational parameters (x,y), the corresponding
limiting covariance b(x,y;t) is independent of n except that x,y are
integral multiple of 1/n so that the covariance can be defined at (x,y)
for each n, as n- o . Hence the limiting covariance b(x,y;t) is well
defined at each pair of rational parameters. We note also fhat the series
(20) is dominated by some absolutely convergent series which has order

equivalent to z;% . Now since each term in (20) is continuous with res-
n

pect to x,y, series (26) is continuous for (x,y) ¢ [0,1] x [0,1] ,
hence we can extend the limiting covariance function to each pair of
(x,¥) ¢ fO,l] X EO,l], (s,

If we let t - o, then the limiting covariance becomes the covariance

of the stationary state. It appears to be

[==]

T2 sin rxm sin rym

/, 2 2 ’
r=1 n

(21) | K T




Let us consider now the

(22)

which is normally associated

string. We see that the eige

no

it

Pn

Applying Mercer's theory

19

Strum~-Liouville Boundary Valued Problem

2
Bex FAE=0

g(o) = g(1) =0

with the classical problem of the vibrating

nvalues and eigenfunctions are

22
nTm

/2 sin npx

(See Appendix I) [5], we have then

o < ( ) )

U 2 sin rpx sin rpy _ O P\ ¥ an(y _

L 5 2 =/, 5 = K(x,¥)
r=1 rm r=1 xn

where K(x,y) is the Green's

function of the stationary state is

the differential system corre

with the result of Baxter.

Now let 4. .(t) =D
i,3 i

dij(t), eij(t) tend to, say,

-
\\

(23) - d(x,y3t) = KT

r=1

-1+ 382y

lecos 2 ¢ t
R A

function for (22). Hence the covariance

KT +times the Green's function of

sponding to (4) and (5). This coincides

(t)=b (t),then,as n - »

n=-1+i,n-l+j

d(X>Y5t): e(x)y;t) respectively, where

-20t . .
o € 2 sin rxy sin rym
c
r
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2

(o] 2

. €08 2¢ t + ¢y c_sin 2c_t - o

o -20t -2
(2k) e(x,y3t) = KT { — e (1-e 2ut)}

r=1 Cr

X 2 sin rxm sin ryg

= 2 . , 2
. © cos 2c_tHw ¢ sin 2c_t-w
A T r r -2t . .
=T 5 e 2 sin rxm sin ryg
r=1 Cr

kT (1-e"2) 5 (xmy)

+

As we treated for b(x,y;t), we can extend the definition of d(x,y;t)
from pair of rational numbers to pair of real numbers in [0,1] x [0,1] .
We see that d(x,y;t) - O when t — «, this means that the correlation
between velocity at point x and displacemeﬁt at y falls off exponenti-
ally. Hence the velocity and the displacement become uncorrelated as
t =+ ® . As to e(x,y;t); we know immediately that it does not converge,
but we can regard it as a generalized function and then extend it in the
nétural way to all pair of real numbers (x,y) ¢ [0,1] x [0,1] .

The initial vélues -gl(o),..., gzn_e(o) in (3) are defined by
gj(o) = g(xj,o) and gn—l+j(o) = gt(xj,o) for 1< j<n-1, where
g(x,0) and gt(x,o) are the initial displacement and initial velocity
of the string. The vector X(t) = eAt XO is a vector whose components
are function of +t ‘vhich are ﬁot random functions, hence X(t) coincides
with its mean vector X(t). We note that the mean vector X(t) depends
only on the systematic part of the system and tends to O exponentially
as t - o due to the damping of the system. (In fact, all the eigenvalues

of A has negative real parts implies the conclusion),
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IITI. GENERAL APPROACH
In this section we shall give a different approach, apply it to the
general problem, and the precise form for the position and velocity -
functions will be given. We restrict ourself to the physical system
which has constant density and it ig no loss of generality to assume

that the density equals 1. The kinetic and potential energies are then

)
(25) 1= 3] &

'z N
(26) Vo= £6°(0) + 37 to0x) ()% + a(m)e®y ax + BP(y)

where ,8, p(x),; q(x) are the same as in introduction, and the system is
assumed to be immersed in a viscous medium with damping coefficient 2
and is subjected to random force F(x,t) which i Gaussian and satis-
fies.condition(6).

If wé apply variation principle to (25), (26) and considering the
damping together with the external force, then we have the general equa-~

tion of the motion.

By = {PO0EN, - alx)g - 20g, + F(x,t)

(27)
B.C. and I.C.



where B.C. is the boundary conditions from one of (28), and I.C. is the

initial condition for g(x,t), say g(x,0) and gt(x,o).

/

(a) g(o,t) =0 g(g,t) =0

(®) g(o,t)

1

(28) 4

]

\ (d) CYE_(Oat) - P(O)EX(O>t)

Let us consider first the problem

u,, = fp(x) uxlx -g(x)u-2wu

(29)
B. C.

0 pe(s,t) + p(g)g (4,8) = 0O
(c) O!§<O;t) - p(o)gx(o,t) =0, E,(!ﬁgt) =0

0, 98(s,t) + p(s)e (s,t) = O

22

Separate the time and coorinate variables u(x,t) = q(t) v(x), then

(29) becomes

a(t) -209(t) _ fp(x) v (N = qlx) v(i)

a(t) v v(x)

(B. ¢.)1

The ratio is known to be non;positive, say _h2

(p(x) v'(x)1 = a(x) v(x) + \v(x) = 0

(30)
(B. C.)!

(see [5]).

We have
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where (B.C.)' is the corresponding boundary condition from one of the

following

il

0, V(ﬂ) =0

(a') v(o)
(b') w(o) =0, av(g) +p(g)v'(y) =0
(c') @v(o) - plo) v'(o)

(a') gv(e) - p(o) v'(o)

0, V(ﬂ) =0

0, av(g) +p(p)vi(y) =0 .

This is one of the well known type of Strum-Liouville boundary prob-
lem. Of course, we are géing to assume that ) = 0 is not an eigenvalue
so that the Green’s’function exists. We note that the assumption on p(x),
q(x) are so nice that the Green's function is square summerable and the
Mercer's Theory applies, also Green's function can be separated into
u(x) v(y) (x <y) on account of the boundary conditions considered, Let
0 < Kl < *2 < ... Dbe the eigenvalues and D12 Opsees be the corresponding
complete normalized eigenfunctions.

Consider sequence of independent Gaussian random functions {An(t)}n,

which are identically distributed for each fixed t, with zero means and

E{An(t) Am(s)] = 2(2w)KT 8 s(t-s) .

Then the covariance function of ¥y An(t) wn(x) has the form



ok

] o) o] [V ae) o] = Ve (e (v 5a (t) A ()]
n=1 '

n=1 n=1

18

= JakD 8(t-5) ) (%) @,(¥) = BoKT 6(t-8)8(x-y) = B{F(x,8)F(y,5)}

n=1
B( ) A,(8) gx) ) =0 .
n=1

Hence X An(t) wn(x) satisfies (3), and since it is Gaussian, we can

express

2]

Pix,t) = ), A(6) 9,(x)
1
In order to solve (21), substitute u(x,t) = % bn(t) Qn(x) into (29),
note that since we are considering continuous physical system, &(x,0),
§t(x,o) are assumed to be continuous, we can express E(x,0) = Zs(o)¢n(x)

and § (x,0) = Zé(o) ¢n(x) . We have

L ba(8) @) = /b (8) {p(x) @100} = ) b_(8) a(x) ¢ (x)
n=1 n=1 n=1
- 2w ) B8 wux) ¢ ) A (8) e () .
n=1 ’ n=1

Then we get a sequence of differential equations

B(8) (1) = b (8){p(x)g, " (1)} - b_(6)a(x)e, (x)-2ub_(t)p, (x)4_(t)o, (x)
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or

By (8)4200 (8)- (5)  {p(x)ol (0} ' a(x)e,(x)
b () ) 9, ()

Since [tpn(x)} are solutions of (30). The right hand side is equal

2
to -/\n s, S0 we have

b_(6) +20b_(6) + A2 b (t) =4 (t)

(31) . .
bn(o) = s(o), bn(o) = sn(o) .

Then (bn(t), bn(t)) forms a Markov Gaussian process with (see [3])

() Sn(o) -wt )\i -t
<bn(t)> Ay = —E;—-— e (cn cos ¢ t - o sin cnt) - = sn(o)e sin ¢ t
Sn(o) 0% sn(o) -0t
<bn(t>>Av = ——e sin ¢ t + -é—n——- e (e, cos c t +o sin c t)
(32) ¢ (b (t)-b (£))? = KT{ % e (cE+20°sinZc_t-2uc_si % £)}
y n v, >Av = - -Cz c, faw sin"e t-20c sin ¢ t cos ¢
n
=20t
o KT e 2 _ 2 2 _ .
<(bn(’t)- nft} >Av = ;E' {1- —-(-:—2—-—(cn+2u sin"c t+2w c sin c t cos cnt)}
n n
- T —t—
S . _ ZUKT “2(,'.)t . 2
<(bn(t)-bn(b))(bn(u)—bn(t5)) Ay = e sin” ¢t

\\ cn

where o = ‘/}\2%:)2 , and b_(t), b_(t) denote the means of b _(t) and
n n n n
bn(t). The formula is given only for the under damped case; for the aperi-

odic case, let \:;n - 0, &and for the over damped case, put (:n = icr'l .
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Under Wiener's assumption, some people like to rewrite (31) in the

form of
L) ) L] 2 3
d bn(t) + 2ubn(t) at + A bn(t) at = dBn(t)

where, for each n, Bn(t) is a Wiener process with variance LwfT, and
for different n, they are independent. The solution is given by the

following stochastic integrals.

-
--lc'—r-l-, I e-w(t—n) sinh crl(t-'l])dBn(1]) if o> )\n
< I
(33) b (t) =s (t) + JO e (t-1) aB (M) o=\
1 .t
k.é—r; JO e-u(t-Tl) sin Cn(t-n) dBn(ﬂ) 0 < }\n
(% (1) 5 [ w(t-m)
J e """ Veosh ¢! (t-M)aB (M)- E@-J e N Wsinn c! (t-M)ae_(7)

o} n o

* . r\t . t 1
bn(t) = Sn(t)+< J e—t)(t-'n) dBn(T]) -0 J\ 'e'(-.)(t"n)(t_‘n) d.Bn(T])
o o}

T 5 (Y o(tem)
j e-u(b_ﬂ)cos c (t-M)as (M) - C—L')'j e o(® n)s’in c (t=M)aB, (M)
o n o

\

for ©>AX or o = A or <A\
n n n

R . . _a .
vhere c= Kn -0, cl=de  and sn(t), sn(t) =3 sn(.t) are solutions

t
n -
of

y(8) + 20y(t) +12 y(t) = 0
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with the same initial values as in (31). Hence sn(t), sn(t) are the

systematic part and not random functions, - It is well known that sn(t),

)
t) tend to O in order e bt as t 7 ® for sufficiently large n,

sn(
and for small n, they tend also to zero exponentially as t = ®, They
will play no important roles.

Let us now investigate the process {bn(t), bn(t)} . We will make

calculation only for the case © < Xn. Assume t < s, then,

t

(3) ]

0N sin ¢ (s-1)ap, (1) jo e sin o (s-t)ap_(0)}

Jt rs e-w(t+s-ﬂ-g)
J

G O

]

sin cn(t-ﬂ)sin cn(s-Q)dd‘E(Bn(ﬂ)Bn(Q))

v .
= YK J e~u(t+s-2ﬂ) sin cn(t-ﬂ) sin cn(s-ﬂ)dﬂ
0

T
= 2oKT J e-u(t+s—2n) {cos cn(s—t) - cos cn(t+s-2ﬂ)}dﬂ
o

-] ' . s+t
. . , e (-0 cos ¢ _N+c_sin ¢ 1)
= KT cos cn(s-t)(e-w(s-t)-e-w(s+t))-wKT*” ;ﬁvvngr‘n B S-b
w +'cﬁ'

- KT cos o (s-t) {e-w(s—t)_e—w(s+t)}

WKT
+ —=  -0(s+t) ¢, ‘
ki e {v cos c (s4t) - c  sin cn(s+t)}
wKT -0 (s=t) ¢ .
- ~;§ e {w cos c (s-t) - c sin cn(s-t)}
n
o2
= Ky 5 - Kpe TP, WET 20T £ 05 oc tec sin 2e t} if s =t .
l2 KZ n n n

n n
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Also,

ot s
(35) Eif e—w(t-n)cos cn(t-ﬂ)dBn(ﬂ) J e'u(s-g>cos cn(s-g)dBn(Q)}

o}

= KT cos ¢ (s—t){e-w(s-t)—e-w(s+t)}

kT  -w(s-t)¢ .
+ 2 e {o cos c (s-t) - c  sin cn(s-t)]
n
T -w(s+t) .
- —I§ e {w cos cn(s+t) - ¢ sin cn(s+t)}
n
2.2
A+
= KT n2 e ~20b_ WKL e—zwt{w cos 2¢_t - c_sin 2¢_t} if s
A AQ n n n
n n

The following computations are similarly made.

(36) E{ft e@(t-Mgip e_(t-T)ap, (1) Jse_w(s-g)cos e, (s-¢)aB_(¢)}

OKT  -0(s
—= e

A
n

't){u sin cn(s_t) + ¢ cos cn(S-t)}

_ KT sin cn(s_t){e-m(s-t)_e-w(s+t)}

KT

XQ
n

~(s+t .
e~ ){w sin ¢ (s+t) + ¢ cos cn(s+t)}
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o

% \ oS
(37) E{J e 01 oo ¢ ,(t-1)dB (ﬂ)J (5-C)gin o o (s=C)aB (g)}

ofT -0(s-t .
===e ( ){u sin cn(s-t)+cncos cn(s-t)}

A
n

+ KT sin cn(s_t){e‘w(s‘t)_e-w(s+t)}

wkT  -o(s+t)y .
- —IE e {o sin cn(s+t) + ¢, cos cn(s+t)}
n
w c KT
N n kT ~20t, . . _
pivaniiay- e (0 sin 2¢c t + c  cos 20nt) if s =1
n n
t “ S .
(- . . -o(s- .
@) ] P man,m [t e o)

= BT (st (aue)e Ly canp o008 E) (g 520 L L

ot

© ) 20

(39) E{f oM (¢ q)ap_(n) J o5 ap(0)}

_ kT ~w(s-t) ~o(s+t),, 1
=5 e - 2KT e (t + 55)

oy 5] et My () [° e (epyan (o))

= anr e (5B sty + %] Il CAL VP .2.]:&.))
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(41) { E{Jt e—w(t-ﬂ)dBn(n) Js e-w(s—C)dBn(g)}
o o

_ 2KT{e-w(s-t)_e-w(s+t)}

t ~
(42)  B{] e Msinn o2 (e-n)ar_(n) Jse-w(s-g)sinh ¢! (s-C)aB_(C)}

(s+6)(cfm0) (s-t)(c}0)] “(s-t) (cpm) =(s%) (clm)]

+ wkTLe -e
’ -
E(En w) »2(c£:+ w)

_ okTle

+ KT cosh Cé(s_t)[e-w(s+t)_e~w(s-t)]

t 8
(43) E{J efw(t-n)sinﬁ cﬂ(t~ﬂ)dBn(ﬂ) f e—w(s—g)cosh c&(s—g)dBn(Q)}

Q

(s+t)(c£-w) (s-t)(cﬁ-w)]

2(6; -w»)

—(S+t)(?£+®)‘ —(s-t)(c£+w)]

wkTle

K
_wkTle +

T
, ng(cn.f )

+ KT sinh cn(s_t)[e-w(s+t)_e-m(s_t)]

s t
(L) E{J e_w(s'n)sinh cé(s-ﬂ)dBn(ﬂ) Jé e-w(t-g)cosh cé(t-g)dBn(C)} .

WkT [;(s+t)(cﬂ-w)-e(s-t)(cﬁ-w):l

oK T [j(s+t)(c£+w) (s-t)(cé+wi]
R CDI -

- KT sinh cg(s-t)[e-w(s+t)—e_w(s-t)]
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t s
(45) E{j == oan e (t-Maz_(1) | e (5=C) oen e (s-C)ap_(C)}
o] (o]

oy (50 (e0)_(s)(c}-0)

ok T -(s-t)(c£+w) -(s+t)(c£+m)

+ 22c'+w5[e -€
n

+ KT cosh cé(s-t) [e-w(s-t)_e-w(s+t)]

We can check that the covariance function of bn(t), bn(t) are the
same as (32) if we use Fformulas (34) - (45) by putting t = s .

Consider now the solution of (27) E(x,t) = j:—l bn(t) wn(x) . Let

2} = {n: Ki = w}, N, = {n: Kﬁ > wz} note that for

2
= . <
Nl {n: kn ® 3

> N,

n e N3 5
én(o) + wsn(o)

C
n

sn(t) = e-wt[sn(o) cos c t + sin cn(t)] .

Hence & si(t) converges and in fact continuous in t since
N
3
z si(o) <®o 3 éj(o) <® , Also, from (34), we find that

z E(bn(t) - sn(t))2 <® for all %, and in fact continuous in t.
N
3

Hence Z bi(t) < ® | in probability term, almost everywhere. And E(x,t)
is then well defined by the series X bn(t) @n(x). The covariance function

of E(x,t)
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(b6) e{[g(x,t) - E(x;8)] [§(v,t) - E(7,E)]}

Y E(,(6) - 5,607 9,00 @,

n=1

oo

KT
2 ¢, (x) @, (¥)

n=l n

-2(m—cﬁ)t -2(w+c£)t

-2wt
KT fe- e
+>: :'2 { w T 2] T 2(w+cr’17} o, (%) @, (v)

Nl n
< -20t 2 t 1
' -L 2KT e (t +5+—-§)%(X) (700(%)
N 2m
2
ok e-2wt 1 w cos 2cnt cn sin 2cnt
L S G T %) )

N3 n n n

It is clear that the series converges uniformly in t. The covari-
ance function of stationary state is then, by letting t = « , and
applying Mercer's theory,

[==]

) % e (x) ¢ (¥) = €T K(x,¥)
A
n=l n
where K(x,y) is the Green's function of (30). Thus we give a different
approach to the Baxter result, The Markov property of the process will

be discussed in Appendix III.
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Let us consider here some examples:
Example 1,
In section II; the covariance functions bp(x,yit); a(x,y;t) and
e(x,y;t) are defined by extending the defirition from a pair of rational
numbers to a pair of real numbers in [O,l].- In that case

cpn(x) = /2 sin nmx , )\121 = none for n=1; 25 sss

hence

[eo]

E(x;t) = Z b (t) /2 sin nmx
n=1

where bn(t) is defined by (33). Using formulae (3%) - (37), we see

that (w2 < 112)

EE(x,t) - BEE)] [E(,t) - TTED

@ 2
= Z 2 sin nmx sin nmy = (KT —me = KT ~2wt
2 2.2
(e nmno
n=1 n
wkT ~2wt . ;
+ :2;-2- e (v cos 2cnt - ¢ sin 20nt)} = b(x,y;t)

B{(E(x,t) - E(5,8)] [5,(:t) - E(3,0) 1}

@
o wc
1 n W =2ut .
= KTZ {E—- [—2—§ - —=5 € (0 sin 2cnt + ¢ cos 20nt)

- 2‘!1'2
] n n
c2
- —g— [~§n—§ - eTewb —éw_g' e-2w’t(w cos 2¢ t-c  sin 2c )1}
c, nm nm

2 sin nmx sin nmy = d(x,y3t)
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and
E[[Et(X,t) - %th,t)J [gt(y,t) - €t(y,t)]}
@ 2
w2 °n -2wt ®w =20t
= KT E: {—§ [—§—§ - e + > e (w cos 2c t-c  sin 2cnt)]
c. nw nom
n=1 n
22 2
nom b ~20% 61 ~2wt , .
tmm— - e - > - (w cos 2e t - c sin 2cnt)
nm n“m
20 ¥ % o ~2pt . } . :
- == - -5 e (e cos 2¢c t+w sin 2cnt)] 2 sin nmx sin nmy
n nw nof
= e(x,y;t) .
Example 2:

Suppose a uniformly flexible string with constant mass density p
having a constant tension T 1is immersed in a viscous medium with damping
coefficient 2w and is subjected to the random forces as considered in
the last section. Assume also that one end is fixed and one end is free.

The equation of the motion is then

PU, = TU - 20 Ut(x,t) + F(x,t) 0<x<4

U(o,t) = 0, Ux(ﬂ,,t) =0

and the corresponding Strum-Liouville boundary valued problem is



% v’;(x) + sz(x) =

(47) .
v{o) = 0 vx(z) =

The eigenvalues and the corresponding eigenfunctions are

22
2 T 2n+l1
32 o1 (Bntl) T o, (x)

n p h£2 4
U(x,b) = Z. _2_ . (t) g2n+1)rrx
n=1

The covariance function of the stationary state is then

Bu(x,°) - 505°)] [U(y,=) T3,°)1} = Elu(x,») u(vs=)}

Z: " p 422 2 £2n+l)ﬂx . (2n+l)my

= T 3 i YY)

iy T(2n+l) T

_ bKTp z 1 (Pn+l)m(x=y) . (2n+l)TTXX+y)
=T {cos o7 3

T
L (2n+1)

JKTP [ gnm (2 gﬂm)] it y<x

81 ﬂ

KTp
= —%ﬁz if y<x

K )
= _%EE if x f v

= KT K(x;¥)

where K(x,y) is the Green's function of (47) .
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IV. THE DIFFICULTIES IN HIGHER DIMENSIONAL CASE
One may consider higher dimensional mechanical system undergoing
Brownian motion analogous to what is discussed before, but the result turns
out to be unbelievable. If we apply the method in section III, the equa-

tion of motion will be

Bt = PLEg + Byt + 2,8 + B8 oma § - b+ F(x,y58)

B. C.

where F(x,y;t) is Gaussian process with zero mean and
(48) {F(x,y3t) F(N,058)) 5, = 2(20)T6 (x=1)8 (y-L)8 (t-5) .

By separating the time and coordinate variables for E§, one gets

the solution

o
§(x,y3t) = ) b_(t) ¢ (x,¥)
n=1
where bn(t) is defined in (33) and {wn(x,y)} is the complete ortho-

normal system which satisfies the equation

2
p(UXX+ Uyy) + p U+ pry - gU +ANU=0

(49) . .
(B. C.)?
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Then the covariance function of E&(x,y3;t), say r(x,y; W,{3t), is
the same as (46) except that we have to replace @h(X),@n(y) by @n(x,y),
@n(n,g). It is divergent when (x,y)=(E,T), since the Green's function of
(49) diverges when (x,y) = (§,M). This gives the trouble,

If we apply the method of Wang and Uhlenbeck, a similiar disappointing
result occurs, ILet us consider a simple case; a continuous 2-dimensional
mechanical system for 0 <x, y < 1. E(x,y3t) = 0 if either x=0 or
x=1 or y=0 or y=1. The kinetic and potential energies are

assumed to be

1 1 >
r =] | gl aa
o e .
(50) .
1 1
2 2
vo= 3 (5, +§,) ax dy
o o
k
Set X =V = 3T for k=0, 1, 2, ..., ntl, then
- n+l
T o= 3 Z gi. l"é
2 (n)
p i,j=1
n+l
. 2 2
V"=lz o= B o )+ (B, .- B, .
\ 2 {(glJ gl"’l,J) (gl,J gl,J"l) }
i,j=1

where gij =0 if either 1 =0 or i =n+l or j=0 or J = n+tl.

The Lagrange equation is then
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1 + 2w

(n+1)2 13 (n+1)

D g'j + f(gij- gi_l ') + (g- . gi"'l,j)}

1 5d 1,J

(51)

X Vs
(g -8 ) (85,57 8,540t = Fy5(0)(= f I
.1 Y51

F(x,y;t) dx dy)

By (48), we have

2w
) KT6(t-s) 6., &
(n+l)2 ik

<iFij(t) sz(51>Av = 2(

We note that {Fij(t)} should be independently identically distributed so

3L

that F(t) = T j Fij(t) is the random force acting on the whole drum
>

(say) with covariance function

) F(s)>Av = ¢ - 8(t-s)

and then

c
—s 6., 8.
(n+l)2 ik "j& 5

p <:Fij(t) Fkﬂ(si> o = (t-5)

is a reasonable result.
Thus applying to Wang and Uhlenbeck model;then the covariance function

Fn+l(i,j;k,£) of the stationary state is equal to the inverse of %E G
where G 1is, from (51), of the form
ABO.
BABO.
2
G = OBABO. . (n” x n7)

.0BA

where B = -I dis nx n matrix and
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b1 0 . . . . . B
-1 k-1 0 . . .
A= 0-1 -1 0 . . . | (n x n)

Note that the system (50) is continuous, and equals to zero at
boundary, it is reasonable to assume that the covariance funtion tends
to zero if any variable tends to O or 1. Hence Fn+l(1,1; 1,1),

Fn+l(l,l; 1,2), Fn+l(l,l; 2,1) all tend to zero as n ~ ® . But
(T (1,33 k,4)) = ¢ = I
nLi 25 K KT :
Hence
uCo(1,15 1.1) - T (1,15 1,2) = T (1,15 2,1) = (K1) § 0.

The right hand side of the above equality remains constant, Hence at
least one of the Fn+l's in the left hand side does not tend to zero.
Thus one gets a contradiction. The method of Wang and Uhlenbeck still

doesn't apply.
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APPENDIX I

We want to show Mercer's theorem here, but we give some definition
and properties first. A (complex-valued) continuous kernel K(x,t) on
a<s, t <b is positive definite if

No

(K £,5) >0 ¥ fe¢L(ab) where K(£)(s) =] K(s,b) £(t) db
a,

then KX(s,s) >0 % s e La,b] and K(s,t) is Hermitian symmetric, i.e:,
K(s,t) = K(t,s) .

Mercer's theorem: A positive definite kernel K(s,t) can be expanded in

a series

[se]
L2 '
K(s,t) = Ao, (s (T
(s,8) = ) Ao (s) 35(8)
J=1
which converges absolutely and uniformly on a < s, t <b, where {A;g}
{@n} are the eigenvalues and the corresponding orthonormal eigenfunction,
A >0.
n
Proof:

The Fourier expansion of (Kf)(s) is

@© [o-)

(K,05)05(2) = ), (Ex03)05() = ), A P(5,0,)0,(5) -
i=1 j=1

(a)

D)8
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Set, for each n ,

n _ _
-2
K (s,8) = K(s,8) - ) AT%p.(s) §(8)
n d d J
J=1
then
T L2 :
(£ () = 1 MFy(e)(Eey)
J=n+1
Since K% is positive, we have
d
- ) —
= )
(K f,f) Lory (5.9)(5ey) Z0
j::.nH'l

which shows that Kn(s,t) is positive definite. Hence

n .
N 42

Ky(8,8) = K(s,8) = ) AT @y(s) §5(8) 2 0
J=1

implies that Z§=l K52 |cpj(s)|2 converges and is not gfeater than K(s,s).

Now set

S(s,t) = E: 132 ¢j(s) ¢jit5 .

J=1

Then we obtain; by Schwarz and Bessel inequalities, that
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m m m
(PP e o) <( 2@ () 2 Ple, (01%)

J J=n J

=]

LAE o o)l® x(e0)

J=n

Hence, the series S(s,t) converges absolutely and uniformly with respect
to t for fixed s and also with respect to s for fixed t.

- We set now
R(s,t) = K(s,t) - S(s,t)
Then for any continuous function f(s), we have

b b b
(v) J K(s,t) £(t) at =I S(s,t) £(t) at +f R(s,t) £(t) dt
a ' a a
the left hand side is (a). On the other hand, since S(s,t) converges

uniformly with respect to t, we obtain, by term by term integration,

that the first term on the right hand side of (b) is equal te
®

2§=l kgz(f,@)¢j(s). Hence

b
(c) | RGs,t) £(t) at =0 .

a
Since the series S(s,t) uniformly converges with respect to t for
fixed s, R(s,t) is continuous function of t for any fixed s. Hence,
by setting f£(t) = R(s,t) in (c), we have R(s,t) = 0 for fixed s;

hence R(s,t) = 0 . Thus we have



[+]

K(s,t) = ), A3 oy(s) 500

J
J=1

To show that the series converges uniformly, we recall that

o]

K(s,s) =2 kfele(s)lg is positive continuous in s, gn(s)=K(s,s) -

J=1 3
Z?_l k32|(¢j(s)|2 is positive continuous and {gn(s)} is a sequence of
monotone decreasing positive continuous function converges to 0 every-

where, hence the convergence is uniformly, i.e, for any ¢ >0 . 3

N = N(¢) s.t. for any s € [a,b]

N
€ > X(s,s) - 2 >~52 |CPJ(S)|2 .
3=1

Now by Schwarz inequality, for all a <s, t<b ,

m

,m . 2 m ‘
(2 WFlegt) 350 = Y 4 Play@l ) A Pley)l? <
j=n : .

j=n j=n

Thus, we prove the uniformly and absolutely convergent for all

m>n >N .with respect with respect to t,s of the series

SENORN

.
J=1 ]
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APPENDIX II

Variation principle and Hamilton's principle: Consider

X

1
(a) Myd = Feoyyt) ax

*o

where the values Xys X5 y(xo), y(xl) are given. The functien F 1is
twice differentiable w.r.t. its three arguments x, y, y'. ¥y'' is
assumed also to be continueus. The variation principle is to determine
the minimum of J{y]. Suppose y = y(x) = £f(x) is the desire extremal
function yielding the minimum, TLet M(x) € Ce[x s xl] St ﬂ(xo) =0,
ﬂ(xl) = 0, We censtruct y =y + ¢ N(x) =y + 8y, where € is a
parameter. The quantity 6y = € T(s) is known as the variatien ef the
function y = f(x)., If € is small then, ¥ 1ies in a small neighbor-
hood of y. Therefore the integral J(¥y] = Jly + € 1], which may be
regarded as a function @(¢) of € , must have a minimum at € = O

relative to all values of € in a sufficient small neighberheod of O,
*1
hence &'(o) = O, Now if we differentlate the integral &(¢)= J F(x,y+eN,
X
0

y' + en') dx w.r.t, € under the integral sign we cbtain as a necessary

condition the equation

Xy

< (Fyﬂ + Fy.ﬂ') dx =0 ,

(&) 8'(0) = |

0]
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which must hold for all T(x) which satisfies the above requirement.
Use partial integration, note that ﬂ(xo) = ﬂ(xl) = 0, then (b) becomes

X

1 a
[ 7, - e ax=o
*o

for any twice differentiable T with ﬂ(xo) = N(x,) = 0, This implies

1)

a
-[F]y--&- Fy,-Fy—O .

We called this the fundamental differential equation of Euler. Now
we state the Hamilton's principle: Between two instants of time to a tl
the motion proceeds in such a way that for the functions qi(t) the
.integral

J=f (T - U) dt

%o

is stationary (minimum) in comparison with the neighboring functiens Ei(t)
for which qi(to) = qi(to) and qi(tl) = qi(tl)' Where T is kinetic

. n ' .
energy and is assumed to be T = Zi,ksl Pik(ql’qz""’qn,t) q,q, Wwith

constent p,,, and U= U(ql...qn‘t) is the potential energy, Hence
3

variation principle implies the Lagrange's general equation of motion

a 9 d .
-dT gg-—s?!-;(T-U)=o l=l,2,coo’ n .
43

If we consider (a) but no longer impose conditions on ¥(x) at x = X5y o

Then the necessary condition for J to be stationary is that

X
X

O



L
vanish, It is clear that Euler equation [F]y = 0 must be satisfied.
For, if J is stationary w.r.t. variations which do not have prescribed
boundary values, then it is certainly stationary w.r.t. the smaller class
of variations for which &y = O on the boundary, hence Euler's equation
holds. Because of the arbitrariness of 6y at the boundary, we obtain

‘as a necessary condition the "natural boundary condition

Fy, =0 for x = Xy and X = Xy -

We discuss now the variation problem for two independent variables, for

more variables the discussion is similar. Consider the integer

(c) J = J I Fx,y,1,u_,u ) dx dy
G Y

to find wu(x,y) € CE(G) satisfies the prescribed values on boundary G.
Introduce arbitrary function T(x,y) € CQ(G), N(x,y) = 0 on boundary of G.

As a necessary condition for an extremum, then

&6J

€ (é% 2(e) g = e(é% Jlu + en]) _,

6J

GJI (Fuﬂ+Fuﬂx+Fu.ny)dxdy=o .

G X ¥ :

Use partial integration, assuming that the boundary case ' of &
has a tangent which turns piecewisé continuous. Then according to Gauss'

integral theorem, we have



k9

APPENDIX IIT

We will give here an informal prove that {E(x,t), gt(x,t)} is a

Markov process. Note that E(x,t) = %

1 b(8) g (x), B (x,8) =

- - .

En=l bn(t) @n(x) where {bn(t), bn(t)} forms a Markov process and for

different n, they are independent. Also {¢n(x)} is an complete

orthonormal basis for the Hilbert space Lz[o,l], hence we consider

E(x,t), Et(x,t) as elements of infinite dimensional space with components
) , < (v) o(v) -

bn(t), bn(t) respectively. Let t < s <, Ep %, Fo 7, for n=1,2,...,

v = t,s,u, be measurable sets of real numbers and except for finite num-

ber of n, they equal to the whole set of real numbers. Then
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bn(u) € Eéu) .bn(t) € Eét) bn(s) € Egs)

Bn(u) ¢ Fiu), n=1,2,... én(t) ¢ Fﬁt), ﬁn(s) ¢ Fis), n=1,2,...

m

. ‘J’bn(t) e 5{*), v (s) ¢ 8{*), b_(u) ¢ (W)
mop

) = -\én(t) e Fi#), én(s) € Fés), én(u) € Fgu)

o [P (t) e Eét), b (s) e Eés)

I p¢ . . -

=1 b_(t) e Fét>, b_(s) € Fés)

\

- b (s) e Eés), b (u) e Eéu)

L
3 n=l én(s) € Fés), gn(u) € Féu)

m e {o(s)erl®), 5 (s)er(*)}

n=1

bn(u) € Eéu) bn(s) € Eﬁs)

= P

. u : s
bn(u) € Fr(l ), n = l,g,ida bn(s) € FI(] )’ n= 1,2,...

The above equality is true for cylinder sets in HZ:l(Rn X Rn),
where Rn denotes the real line, then it is true for all measurable sets
in the o-field which is generated by the cylinder sets. Thus
{E(x,t), §t(x,t)} is Markovian.

] 2 [« <] * .
If we know that & _ bn(t) <, Zn=lbn(t) <® ae, (or, for fixed

1

t, the sample functions §&(x,t), €t(x,t) are continuous in x), consider

the o-field generated by the open sets of weak star topology in Lg[a,b]
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(or c[a,bl, apply the preceding arguments, then we see that
E(x,u) e K3 E(x,t) ¢ Kl’ E(x,s) € X,

gt(x;u) e M

3 §t(x,t) € Ml’ E(x,s) € M,

§(xu) € K | §(x,5) € K,

€t(x,u) e M3 E(x,8) evM2

where K., Mj are measurable sets in Le[a,b] (or c¢la,bl). The defini-

tion of Markov process and the discussion are then valid.



