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1. Introduction ard Summary

This paper deals with the seme problem and the same conjectured
soluticn to it which wa considered in [1].
In section 2, we restate the problem, the conjecture, and, in
more concise form, some of the preliminary results of the earlier paper.
In sectica 3, we give a simpler rrcof of the conjecture for n < 3

&

and, for the first time, a procf for n

In section 4, we give what is ezsentially a simpler and., we hope
2 H b}

o e

more illuminating proof of Theovren 5.1 cf [17].

In secticn 5, we prove thot the ceonjecture is true for large A.

2, The Troblem

.Choose o positive integer n end n positive numbers, vls...Svn.
Lot C b2 the class cf all random varisbles § = xl-+,,;+xn where
are irdependent and non-negative, and EXi vy (It does no

harm, and is ccnvenient, to a2llow E}L to be less than vi.) For each

*Qesearch supported by Office of Naval Research Contract NONR 1100(26)
at Purdue University. Reproﬂuc icn in whole or in part is permitted

for any purpcse of the United Statss Government.
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A > Vl+"'+\GN 1et'D(x) be the sub-class of C in which each Xi has mean

v: and has not more than two mass points, a, and b,, with
i i i

0 s a; s vy < bi <\ - E;#i aj,

znd let E()\) be the subset of D()) in which each ay is (or may be taken
to be) zero.
The problem is to find

(2.1) ¢y (A) = sup c PG=21).

Se

From [1], we can state

Lemma 2.1. For each ), y()) is attained by a member of D(»). If
y(A) is attained by a unique member of D()), then there is no other
member of C for which it is attained.

Conjecture. For each ) > v1+...+v

n,
(2.2) y(x) = Maxn ren-1 [l'Pk()\)]
where . n
(2.3) Pa0) =4l (1-v;/2)
n k
(2.4) Pk(x) :l1+1(1ivi/(xgéﬂ.vj)> kél5"f’n-l‘

Each of the values l—Pk(x) is attained by a corresponding member
cEEQ): l—Po(x) when each bi = 3, and, for k = 1, l-Pk(x) when
bi = vy (l-vl""‘vk) if 1 ¢« (>) k. . We call these n members of

E()\) the conjectured optimal strategies.
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Lemma 2.2. To prove the conjecture for some n, it is sufficient to
prove first that it is true for m < n, and second that if S ¢ E()) with
each bi strictly between vy and X\, then there is an 8'= Xi
in C such that either P(S' >1) >P(S >1), or P(5' >1) = P(S > 1)

+...4+ X!
n

and Xi = for some 1i.

Vi
This lemma, while not stated in [l], is clearly implied there. Es-
sentially, what we did in [1] was to look for a dominating S' only within

E()), an unnecessary and, as it turns out, unnatural restriction.

3. 'Solution for n < L.

For n =1 +the solution is the well-known Markov inequality:

¥(A) = v /a = 1P (0). )
For n > 1 we shall follow the Prescription given by Lemma 2.2. Ve

use the following notation

(3.1) Zy =X vy, 29 = X - vy,

(3.2) P; =1-q; =P(X; =b)=v/b,
(3.3) I = 20) if X = (#) vy

(3.4) A =P(8" >1) - P(s >1)

Throughout this section we assume that the Xi's are ordered so that

(3.5) by <b, < ... <D .

Solution for n = 2:

o = 4 T 41,



/.
Solution for n =3 when b1+b2< 2

2y =0, zZ,= Zy=7Z

9 = 2Zy> 23 =23+ 2 13,

A= 0.

- Solution for n =3 when bl-%-b2 2 \: This case can only be handled
by breaking it down into at least two sub-cases, One solution is con-
tained in Lemma 4.4 in the next section. We present here a modified
solution,

If we use the S' defined in Case 1 of Lemma 4.4, we find, from (4.19),
= o 2 2
b= (p2q3+q2p3> [1/(2-p1)-p1] -PyP3q1 /(2-pq)

= [af' 7@pp?] [(Hap) (2yaztagey)-pyes).

If p2q3+q2p3zp2p3, this is positive, If not -- which implies q2q3<:p2q3-+
qoP3 -= A is still positive if P(S<)) = q2q3-+q1(p2q3-+q2p3):zp2p3

If the reverse inequality holds, a solution is

»

2} = 1 =
1 22 0

3.6 AR
(3.6) 37 23+ 2

+ Z 13 + zl(l-IBIZ) + 22(1-13) Il
(bz-b1+vl)[1 I,-(1-T,) (1-I4)=(1-I) (I,+I,-I 13)]
A =2 0 (=0 except, e.g., if b3+b2 1 vzzx)

Here z; 2-vg and EZ = -(by-b;+v;) [pzp3 - P(S<:X)] < 0.

Before proceeding to n =4, we mention a fact which sounds very

promising but which we have so far been unable to exploit: For any
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S meeting the specifications of Lemma 2.2 and satisfying (3.5), if, in

addition,
n

iEk p; =z P(S<h),

where k satisfies

then there is a dominating S' with Z; = 0 for i<n, and Z; defined
analogously to (3.6).

Solution for n=4: From (3.5), the following nine cases are exhaustive:

(a) b, + b, =

1 2
- (b) b, + b, <A< by + b3
(c) b1 + b3 <\ < b1 + b4’ b2 + b3
’ (d) by +b, < = b, + b3
(e) by, + by < < by + b4, b, + b, + b3
(£) b1 + b4, b2 + b3 < )\ < b2 + b&’ b1 + b2 + b3
(g) b2 + b4 < ) = b3 + b4, bl + b2 + b3
(h) b3 + b4 < )\ < b1 + b, + b3
(i) b1 + b2 + b3 < \.

Fortunately, cases (c), (d), (£f), (g) and (i) can be easily solved

as follows:



(c) Zi = 0,

N
N -
|

P

3 (2R

L I | S r - | J— .
(d) Zl 0, 22 ZZ’ Z3 Z3, 24 24

(£) zi = 0, zé = zz,.zé =7 + 7.1

Tt .
3 1132 24 = 2

(8)

N
H-.
i
QO
N
[P
]

1 = |
. | | - | - I =

In all five of these cases p = 0.

Cases (a) and (h) are covered by Lemma 4.4, leaving only cases
(b) and (e) to consider. Each of these can be splved by a method
virtually the same as Lemma 4.4 but we préfér to present simpler

solutions here.

Case (b): 1If bl < vl+v2, a solution is

1= ot o -
2] =2y =0, 2y =24, 2} = 2,

= r
b = 414y P3a,tap, ]
Henceforth we assume b, > vy v, which, by (3.5)? implies p;tp, < 1.

Hence we may use the S' of Lemma 4.4, Case 2:

R T "o (12) v (12)
Zy = Z 0, 23 = Z3 + Zq Iy, 2, = 2, +2, I,

(12)

where the distribution of 23(12) and 2y, is given by (4.17). Then

A= [p3q4+q3p4][1/(2-p1-p2)-(l-qlqz)]~p3p4(1eprp2)2/(2-p1-p2)2]

(l"Pl“Pz)z/(z“Pl‘Pz)z[(1+ qqu)<P3Q4+Q3P4)"P3P4]

+[l-(1-p1—p2)2/(2-pl~p2)2](p3q4+q3p4).
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If P39y, + Q3P = pépa, this is positive. If not -~ which implies
4394 < P3dy4 + qsPs -- A 1s still positive if P(S<)) =

A394 ¥ 9792 (P39,7d3P,) = P3Py

If the reverse inequality holds, a solution is

=2y =0

Z, =2, + 231, + (21+2,5) (1-131,)+Z4(1-1,) (T{+1,-1;1,)
-(b3-b1+vl+v2)[1314-(1-13)(1-14)-{13+14-I314)(1-11)(1-Izj
p 2z 0 (=0 except, e.g., when b4+b3-bl-v3 = \).

Here Zz 2 - v, and E ZA== -(b3-bl+vlfv2)[P3P4-P(S<k)] < 0.

Case (e): 1If b1 < vlfvz, a solution is
Z1 = zé = 0, z§'= Zy + 2,15 + 211,51, z& =2,
A = Ph979993-

Henceforth we assume bl > v1+v2 which, by (3.5), implies pl+p2<:l. If

Py < Pg> We borrow the random variable Zz(l) from Lemma 4.4 -- its

distribution is given by (4.16). A solution is

= | J— (1) 1T = |=
Z 0, 2z 22 + 22 IZ’Z3 23, 24 24 + ZlI4

1

1 2
- 2

AT (p3‘P4) qul /(z‘pl) = 0.

If P, > Py, We first introduce the random variable I*, independent of

all others,with

P(I*=1) = Plpz/qqu = 1-P(I*=0).
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I* is well-defined since pl+p2<l is equivalent to P1Py <qq49y A solution is

| I R (-
Zl 22‘ 0, 2 Z

3 3

T - - -
z) =z, + 14[21-4-22 byI;T,+by T*(1-1;) (1 12)]
b = (py~P3)P1Py > 0.

1 1 =
Here Z4 2 = vy and E 24 0.

4, Independent Trials

The crucial result of this section 1s Lemma 4.4, whose proof is made
possible by the 'tricks' of Lemmas 4.1, 4.2, and 4.3. The latter lemma
may be of speciél interest to the rYeader. From Lemma 4.4, Theorem 4.1
follows easily. It is virtually the same as Theorém 5.1 of 1], éhough
the proof we present here is, we feel, much more satisfactory than the

earlier one.

Ed

Suppose S eD()) is of the following form:

(4.1) a; < vy < bi for each 1
(4.2) bl-a1 < b2-—a2 €eeos bn-an
n ’ k+1
%3 L (b.-a) i ) (bi-a)
.-a,) < )\ - a. < . -a,
i=pn-k+1 T % j=1 + i=1 1 1%

for some k = 1,2,,.., or n-1,



We define

(4.4) p; = 1-q; = P(X;=b;) = (v;-a;)/(b;-a;)
(4.5) £(r) = P (exactly r of X;'s = b,).
Then h

(4.6) P(Sz)\) = E: f (x).

- r=k+1
Lemma 4.1. Since ) > vyt...hv,, conditions (4.1)~(4.3) iwply that
ppte .t < ktl. |

Proof: From (4.3)
k+1

n
(;-vy) > ) (vg-a;)
i=1 i=k+2

Hence, by (4.2) and (4.4),

« k+1 k+1
Y (Lepy) =) (Bymv;)/(bs-ay)
i=1 i=1

k+1

=), Ryl O -aiy)
i=1

n

> E: (vi=a3)/(by g3y 4q)
i=k+2

n n

=) (vgmap)/(by-ag) =) by
§=k+2 i=k+2
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We now re-order the Xi’s so that

(4.7) by-a, = min (b,-~-a,)
171 l<i<n 1
(4.8) P, = max p, .
2 2<i<n t

We also define
(4.9) fl(r) = P(exactly r of Xi's, i>2, = bi)

(4.10) flz(ﬁ) = P(exactly r of Xi’s, i=3, = bi)‘

We have then, e.g.,

(4.11) fl(r) = pzflz(r-l) + qulz(r).

Lemma 4.2. The functions £, fl’ and f12 are unimodal, first increasing,
then decreasing. The mddes of £ and f1 are at most k+1 while the mode of
f12 is at most k.

Proof: Since f, fl’ and f12 are distributions of numbers of successes
in independent trials, their unimodality is well known. The second part
of th2 Lemma follows from Lemma 4.1, equation (4.8), and Theorem 1 and

its corollaries in [2].

Corollary 4.1. The following three cases are exhaustive:

Case 1: fl(k) > fl(k+l) >.0.> fl(n-l);

Ccse 2: flz(k'l) < le(k) > flz(k+l)>"'> f12 (n-2)

and Py + Py < 1;

Case 3: flz(k-l) < le(k) > flz(k+l) S glz(n-2)

and Py + Py > 1.
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Proof: From Lemma 4.2 and equation (4.11).

We use the usual notation for binomial probabilities:

X

(4.12) B(rim,p) =) () pI(@-p)".
j=0

It follows that

E: B(r;m,p) = (r+1)(1-p)/p,
m=r+1 '
since both sides of (4.13) represent the mean of the same negative

(4.13)

binomial distribution. By substituting r=k-1 and, respectively,

p=k/(k+1-pl), and.p = k/(k+l-p;-p,), we obtain

Lemma 4.3. In Case 1 of Corollary 4.1,
n-k-1 h

(4.14) )
j=1

£, (k+) B(k-13k+j, k/(k+l-py))

< £100) [Qk/(k+1'P1)>k'Pl]’

-

while, in Case 2,
(4.15) ) £1(k+)B(k-15k+j,k/ (k+1-p;-p,))
371

< £1, ([ (K/ (ct1-py=p,) ) = (1-a3q,) J=£, (k=1)pyp, .

Lemma 4.4. Let S ¢D()) and satisfy (4.1). Suppose that (4.3) is
also satisfied when the Xi's are ordered to satisfy (4.2). Then there
is an S' = xi+...+xé = (vy*+27) +...+(v,+2 ) in C such that p =
P(S'=2)-P(S=p) > 0.

Proof: We henceforth assume that the Xi's are ordered to satisfy
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(4.7) and (4.8) rather than (4.2). We introduce the random variables
Zi(l?, Z.(12>, and 1I%*% which are assumed to be mutually independent

and independent of all other random variables, with the following
distributiocns:

(4.16) P<Zi(1)=(bl-vl)/k>=k/(k+1-p1)=1—P(Zi(l)=-(bl-al)>,

(L.17) 1?( Z; (12)=(bl+az-\)1-v2) /k>=k/ (k+1-p;-p,)

- 1'9<21(12)="(b1"a1)>’

(4.18) P{I%*=1) = q;q,/pyp, = 1-P(I**=0).

Zi(lz) is well-defined

z (1) is always well-defined and has mean zero.
(12)

i

when pytp, < 1 and, By (4.7), EZs only

(12) < 0. We shall use Zi
when the stronger condition, b1+a2 > v1+v2, is satisfied. 1I#** is

well-defined when pytp, = 1, which is equivalent to 4199 < PPy

We now proceed by considering separately each of the three cases
of Corollary 4.1. (In each Case there are "bizarre" choices of the

v:'s, ai’s, and bi's for which p is in fact greater than stated.)

Solution feor Cace 1:
_ - (1) .
Z1 0, Zy 2525 L for i 22,
= < (1 - -
(4.19) A 1\&)B?/<k+1 pl» pl]
n-k-1

{Z fl(k+j)5<k~l;k+j,k/(k+1-p1)> > 0 by (4.14)
5=1
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Solution for Case 2 when bl+a2 < vl+v2:

zy = zé =0, z; = z; for 1 = 3,
(4.20) A=f12(k)q1q2—f12(k-l)p1p2 > 0.

Solution for Case 2 when bl+-a2 > Vl+v2:

zi = zé = 0, zi =2z, * Zi(lz)Ii for i = 3

' k
(4-21) A= flz(k) [(k/(k+l’pl'p2)> -(1-qiq2)]‘f12(k~1)P1P2

n-k-2
-ZJ flz(k+j)3(k-1;k+j,k/(k+1-pl-p9):> 0 by (4.15)

j=1
Solution for Case 3:

| S I o= - - -
zi = 0, 2 Zy 42,0y (1-1;) (1-1,) -b, I#*1, 1,

4.22) A= qlqz[flz(k)-f12<k-1)] > 0.

We now define what we call the independent trials case, denoted

by B()A). 1If we agree that, for any member of D(})), bi = v; whenever
P(Xi=vi) = 1, then B(\) is the subset of D()) in which, for some
k =0,1,..., or n-1, the events {S=x=)} and {Xi=bi for at least k+1

values of i} are equal almost surely,

An equivalent déefinition of B()) is that it consists of those

members of D()) vhich, when the Xi's are ordered so that
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P(Xizvi) = 1 (0) for 1 < (>)r and

b - . b - -

] a‘.’:+l. < LD ar+2 Leee< bn an,
satisfy, for some ¢=0,1,..., or n-1l-r,

n n r+s+1

Z (bi"ai) < x - Vi - 2 ai < Z (bi—ai).
i=n-s+1 i=1 i=r+l i=r+l

~1r

1t should bz noted that B{()\) contains all of the conjectured

Theoren 4.1, max  P(S2)\) = max [1-Pk(k)]-
Se3(\) k=0,1,...,n~1

We can summarize certain resulte from [17 to state

m

Iemma /4.5, To prcve Theowen 4.1 it is sufficient to prove that

vheaever S € B3(\) s=tisfics the hrpothezes of Lemma 4.4, there is an

STeBO) such thoe 2! =y, for scae 4 and P(S'zn) = P(S=2)).

Althouch the 87 s w2 conmstructed in Lemma 4.4 are not members
of B{)\) th2y cen ecsily bz modified to be so in such a way that their
vill, at worst, not fall below
the valucs Zmplie? Ly fownules (4.19) - (4.22), respectively. For

e ~ - Tl T s Al N a ! - - -
~, dm Cone 1, izt iowar all moss of Xs from bi (bl al) to a,;

then transifer euncuga mass ircm a, &0 bi + (bl—vl)/k to restore the
maan of X£ to v, . The modificesicns fcr the other cases are similar.

- “ o s By

There ave ) ailisvenoss boiwesn this theorem and Theorem 5.1 of
[1]. PFivst, in tho corlizr tiizcron 2 vrestricted ourselves to a; = 0,
winlceh we nez2d net haove dono.  Seccennd, the earlier theorem is false as

stated (this won polinted out Ly Maxtin Fox), To correct it one need
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only redefine more carefully what we called "B(vl,...,vn;x)". The correct

definition is exactly that given in this section for B(A).

5. large .

We shall prove the following

Theorem 5.1: There is a A, such that X > A dimplies

0 0

- n
(5.1) y(A) =1 - T (2- v /) 1-P,(»)

i=1

which is attained only when P(Xi =) = vi/x l—P(Xi=O) for each i.
The theorem will follow from three lemmas, the first of which was stated
without proof in [1].
n
Lemma 5.1: lim A ¥(\) = Ej v;
i=1

Ao

Proof': For each )\ > vl tooot vy

-

ML-P(M)] <y (W) < Vs

.
1] =]
i I~

[

since the left side of the inequalities is attained by a member of C, and
the second inequality is simply the Markov inequality. The lemma then

follows, since

A0 Ao

n
n
lim A[1-P . (AM)] = lim A[1- 01 (1-y./2)] = o
5 ] im A i=l( vi/h)] ‘ig; vy
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For each x:>01-+..:Fvn, we know from Lemma 2.1 that y()) is
attained by some member of D()). Let S()) = Xl(x)-+..u+xn(1) be
such a member; let ai(x) and bi(x) be the lower and upper mass

points, respectively, of Xi(x), and let
(5.2) Py (V) = B(X; (W)=b; (1)) = (vy-a; 00)/(by G)-a; )

Lemma 5.2: Let A m=1,2,... be any sequence, increasing to », such
that the limits

Cti = I]r;i{: ai()\m)

6y = Lim by () /ay,

exist for each i. Then ai=0 and Ri=1 for each 1i.

Proof: By Lemma 2.1, bi(km)'sxm’ S0 Ri:sl.

Of course O:sai-svi. For m sufficiently large,

PO )=y) = Z{i=ei=1} Py (L)
+Z{j,k:0<sj,5k<1] Py Op) P () -

Substituting from (5.2) and applying Lemma 5.1, we obtain

n
E:Vi = ;fz ‘m P(S(Xm)zxm>‘S§k1:61=1}(vi-ai)’

which is true if and only if, for each i, ai=0 and Ri=1.
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Lemma 5.3. Under the conditions of Lemms 5.2, for all sufficiently

large m, ai(xm?=0 and bi(xm)=xm for all i.

Proof: From Lemma 5.2 we know that, for sufficlently large m, and for

each i,
n n

(5:3) Oy ) a,(00)/2 <o 00)ma () Sh- ) el
J=1 J=1

(5.4) g, () <y

But Lemma 2.1 of [1] states that, for each i,

P(s(xm) = xmlxi(xm) = b, (»,)) > 0.

Hence, whenever (5.3) holds for each i, we must have, for each i,

n

(5.5) b 0y) - e 0) = as ) e,
5=1

The final step is to apply Lemma 2.3 of [1] which states that if (5.5) holds
for each i, we must have each ai(xm) equal to O or v;e But (5.%) holds for
each i. Thus ai(xm) = O for each i so, by (5.5), bi(km) = A, for each i,

From Lemmas S.é and 5.3 we conclude that, for all A sufficiently large,
the only S in D(\) which attains §(r) -- hence the only S in C which does so --
is the one assertéd in the Theoremn,

If the means are equal, this S is a sum of independent, identically
distributed (IID) random variables. Hence we have an immediate

Corollary 5;1. Among all S = X

1

mean v, and for all )\ sufficiently large,

toooct Xn’ with the Xi's IID, > 0, with

P(s > ) < 1-(1- v/a)"

with equality holding if and only if P(Xi= A = v/a = l—P(Xi=O).

How large is ''sufficiently large''? VWe don't know yet.
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