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1. Introduction. The purpose of this note is to prove a uniform opere

ator ergodic theorem for mean convergence of differences of right eontinuous
stochastic processes, Our result contains a difference version of the
Glivenko-Cantelli theorem for infinite invariant measures. We also state
a pointwise convergence theorem valid in the presence of a positive fixed
point, which generalizes a result of Burke [1].

Let (Q,(:),P) be a probability space; let L, be the class of intee

grable functions on (Q,(:),P) and let LI be the class of non<negative

integrable functions and let T be a Markovian operator mapping Ll into

itself, A set A is closed if for each feLl; £f=0 on A° implies that

Tf = 0 on ,Ac. The class of elosed sets forms the invariant sigma field

(i)i T is ergodic if (:) is trivial., Let T_ denote the (formal)
operator I + T + T2 +.;+.s Hopf's decomposition states that Q =C + D

where for every feLI, Tf=0 ore on C and I, f<e on D. If

0=0C, T is conservative We now state an ergodie theorem required in the

sequel., We use the notation:
(1.1) B (f) = f £ dp.
Q
Theorem 1.1. Let T be a conservative ergedic Markoviah operator.

If feL, and E(f)= 0, then



nel |

1 £)

(1,2) nT(f+TE+ L.+ T

converges to zero in the Ll topology. Theorem 1.l was obtained by Sucheston

[6] and independently by Krengel [5].

2. Main Results. Let X(w,t), Y(w,t) be left continuous nondecreasing
stochastic processes on Q x R such that for each teR EX(w,t) < and
E Y(w,t) <®. We will omit w in X(w,t) for simplicity. Set

x (t) = 1% x(¢) , ¥ (¢) = ™ Y(t) for n=0,1,.... We may and do assume

that Xn(t) and Yh(t) are chosen in such a way that outside a null set
N independent of t and n, they are nondecreasing and left continuous
functions of t. Such a choice is possible by a regularization procedure
as used in constructing regular conditional probabilities,

In [1], it was shown that i T 4is generated by a point transformation
which preserves a finite measure, then the cesaro averages of ™ x(t)
converge almost everywhere uniformly with respect to ¢ on compact intervals.
Here we show that when suitably normalized, X(t) and Y(t) behave

similarly in the mean, uniformly on a rectangle.

Theorem 2.1, ILet O < 01'5(32 < o, 0 < dl < 52< o 3 let
| . = T = . > >
(2.1) c={t: c, > E X(t) > cl} D= {t: d, > E Y(t) > dl}.

et B=Cx D and

X (s k(t)

(2.2) A, = (:?E)GB Eﬁ EX(s) EY(t)




Then Ah converges to zero in the L, topology,

Proof., We may and do assume that c. = inf E X(t), c, = sup E X(t),
teC teC

d; = inf E Y(t), d, = sup E Y(t). For each fixed integer p and each
teD teD

=120 m1, we let Smj’ tmj ‘be the smallest real numbers such that:

E X(smj)_f ¢y + j(cz-‘cl) / m.f'E»X(smj-+ 0)

(2.3) N , .
E Y(tmj) <dp + jld, ~d;) /m<E Y(tmj+ 0)

Further set 8 =inf C, s =sup C, t ., = inf D, t = sup ' D. For each
mo mm mO mm

pair (s,t) eB, we define
(2.4) 8 (s,t) = X (s)/EX(s) —'Yn(t)ﬁ/EY(t‘)‘

It follows from theorem 1.1 applied to 6,(s,t) that for fixed s,t, 5,(s,t)

converges cesaro in the Ll topology to zero. Since positive linear

operators are ord reserving, for s . . <s < s . <t <t
perators are order p ing, m,i-1 by tm,a-l =ty

we have

X (8, a1t ©) <Xk(3)_ < X (s 1)

EX(smi) T Ex(s) EX(sm’i_l+ 0)

(2.5)

(6, 51t 0) <Yk§'t) < oty 5) X

\ EY(t,, ;) TEr(e) T OEY(y, o 4+ 0)

J



and
(s . .+ 0) Y (t )
(2.6) S35 R - E ] < 8,.(s,t) <
EX(smi) EY(tm,j_l+ 0)
X (o) AW Q)
EX(sm’i_l+ 0) EY (tm,j)
From (2.3) it follows that
EX (smi)/ EX(sm,i_l+O) <1+ c/m
EY (tmj_l+ o) / EY(tmj) >1-4d/m
where ¢ = (ce- cl) / s d = (d2- dl) / d, .
Therefore
(2.7) 8, (5,8) < (1 + c/m) 6k(smi’tm,j—l+ 0)

+(c/m + d/m) Y, (tm,j-l+ O)/EY(tm,j-l+ 0).
By similar arguments, we cbtain a lower bound

(2.8) -8, (s,t) < - (1-c/m) 5, (s 0, tmj)

. .t
m,i=-1

+ (¢/m + a/m) ¥, (tm,j_l+ 0)/E¥(t . .+ O).

,j’l



Since T is Markovian, the integral of Y (s . .+ BY{s . .+ i
i ian, the integra k( mjel 0) /EY( m, - 0) is

1
one and it follows that

(2.9) E|a | < E max (Ar(ll), Algz)) + (e + a)/m
where
n=1
(1)_ 1 Z
Ay = (@ C/m)o < ’:aﬁ . & 8y (spsoty, o1t °)
023<m °
(2.10 4
n=1
(2) _ , 1T
R c/m)o <i<m 7 *kCm, 10" Ortny)
02§ % =

Each of the terms over which max is taken in A(l) and A(g) converge

n n
to zero in the Ll topology by theorem 1l.1.

Therefore,

(2.11) ]_:‘Lm.n sup X lAnl <(e+d)/m

and since m is arbitrary, convergence in the Ll topology follows.,

If the operator T admits of a fixed point f € LI, we may obtain

pointwise convergence. In this case, the role of theorem 1l.1. may be

played by Hopf's operator ergodic theorem [2].
Theorem 2.2. Let T1 =1 ;

0<e <g <= C= {t: ¢, <E x(t) < 02}; and
n-1
1 .

(2.12) A = :25 S | Z xk(t) - E x{t)|.



Then for almost every w ¢ Q,
(2.13) lim An = 0.
n— o

The proof of this theorem is similar to theorem 2.2 and is omitted.
For the next theorem, we permit P 1o be sigma finite on (A}, Let T
be a measure preserving, conservative, ergodic point transformation. T
generates a Markovian operator T by means of the relation Tf = f - 7.
This correspondence preserves the notions of ergodicity and conservativity
of an operator. Let Xo’ Yo be fixed real-valued measurable functions

n n

on Q and for n=1,2,..., let Xn = Xo° T, Yn = Yo o 7, If s,x,t,y

are extended real numbers, let

(2.14) P (x) = L(g.x) Ko GE (v) = g )Y, R0SLe-

n

and
(2.15) Fi(x) = B2 (x)), ¢"(y) = B(&) ().

Theorem 2.1 contains thne following difference version of the Glivenko-
Cantelli theorem for infinite invariant measures. A ratio version of this
theorem was proved in [3].

Theorem 2.3. Iet s,t e R (extended real line). Let C and D

be sets in R such that for some positive constants Cl’cz’dl’dQ

(2.16) C

fxie, 2 Fo(x) >

V

D= {y: 4,2 G () 2 4}



Iet B=CxD and

n~1 t
1 | P, (x) 6 (v)
(2.17) A = swp T ) = - =
(x,y)eB ~ |,y T (x) ¢ (y)
Then An converges to O in the Ll topology.

3. The non ergodic case. With suitable modifications, Theorems 2.1 and

2.2 remain valid even though the invariant ¢ -field {:) is non-trivial.
Theorem 1.1 was actually proved under the weaker condition E(f | (:)) = 0,
Therefore, we may how state Theorem 2.1 valid in the case when (:) is not
trivial. This theorem is based on an idea of Tucker [7].

Theorem 3.1. Let cl(w), cg(w), dl(w), d2(w) be (I)-measurable; let

Vv

¢ = {t: e, > B(X_(t)] @) 2 ey)
(3.1)

A

D= {t: 4, > E(Y (t) | @) ¢),

the inequalities holding except on a null set N independent of t. Let

B=CxD and

n-1

) X (s) ¥, (%)

1
(3.2) A, = i g | o EEEND CER ) O)

Then lim S'IAH{ = 0.
I o

Proof. We merely sketch the proof since it is similar to theorem 2.1.



We may and do assume that

c, = sup B (X(t)]| @) crinf B (X(4)|(3))
teC teC
a, = sup E (¥(t)} ) a, = inf E (¥(t)|(3))
teD teD
For each fixed integer @ and each j = 0,1,..m-1, we let

Smj(w)’ tmj(w) be the smallest real numbers sucih that

E (X(Smj)‘(i)) Seq ¥ ,j(cz;- cl)/ms E (X(Smj+ O)‘@)

(3.%4)
B (¥(t,,)| (@) < ap+ 3, aim < B (10t 5+ 0)] @)-
The functions Smj’ tmj are measurable on the sigma field generated by
e . .
&/ and are ordered: Smj-l 5:5mj’ tmj-l < tmj)J = 0,-¢-m- The

arguments in the proof of theorem 2.1 apply with the preceeding changes.
Theorem 2,3 also extends to the non ergodic case except that the

conditional expectation is not defined if (IJ contains an atom of infinite

measure. We may however, compute conditional expectation with fespect to

an equivalent probability measure (see [4]).
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