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1. Inﬁroductién.

In [7], the notion of a spreading partition was introduced ahd under certain
regularity conditions, the pointwise convergence of information ratios was pfo#ed
in the presence of an infinité invariant measure.

In this note, we show that these regularity conditions are satisfied for
any pertition having finite entropy and containing tﬁe first return partition.

We also use this notion of a spreading partition to give a definitiqn of entropy
for sigma finite measure spaces which is at most equal to the Krengel entropy [8];
frequently the two entropies coincide. Our definition of entropy yields the
equivalence of certain conditions of Krengel. We are alsc able to compute the

entropy of a direct product under certain conditions.

2. Preliminary notions.

Tet (Q,C),p) be a sigma finite measure space on which is defined an ergodic
conservative endomorphism T . The following definitions were introduced in 7).
The information of a partition (F) = {F,} of aset Fc, 0<pu(F)<e, is de-

fined by
4\ - Y‘\ .
(2.1) ((®) =-, 1p logu(F,) .
i

The entropy of (:) is

(2.2) H@)-[ «(@®) .



2

The refinement of <:> and (§> is the partition (ED\/(j) of FUG consist-

ing of sets of the form

c c
(2.3) F, NG, Fo NG, FNG° .
This method of refinement extends to any finite number of partitions and is
easily seen to be commutative and agsociative.
Given a partition CED of F and a sigma-field (:) of subsets of G,

the conditional information of (:) given (:) s J((E}I(:)) is

/
(1) - z 1Fi log ”('Fi|‘©) on FNG
n ,
(11) - log p(F|(®) on FNa
(2.4) <
(1i1) - Z 1Fi log w(F, N ¢°) on Fnct
i
(iv) 0 on F° N o
.

’Tﬂis definition coincides with the usual defihition on @& but not on Gc .

In the sequel, we shall use the following notation:
. J
. J _ -k
(2:5) (@) -7 *®, .

when there are no subscripts, we also omit parenthesis. For ergodic conservative

no., -
endomorphisms, the partition (:); of Ur™tr "spreads" over the entire space
i=1

Q . We now state some properties of the conditional information defined in (2.4).



Lems 2.1 Iet (F),(®),(®F be partitions of F,F" end F°. Then

P
(1) (@ ®?) = (Y + (®%|®)

(11) J(®VvE®) = (@HE®V®) + (@ ®)-

(2.6) <
(111) [ @I ®Y <[ A®I@°) teor wle) <= e ©' < @°
G G
(iv) 1im J(®|@§) exists a.e.
\. i

<1
Corollary 2.1l. Let @ and @2 be partitions of F . Then

(2.7) HE®vE?) < 8@ + 1(@) + u(F) 108 ulF) .

Proof. Let @* be the partition consisting of the single set F itself.

Then (2.7) follows from (2.6) (i), (iii) and the relation

[ H@1©Y <] A@A@" - 5 ®) + u(e) 208 u(r) -

3. Main Results.

In {7], a ratio version of the Shannon Breimon McMillan theorem was proved

for partitions @ of F and @ of G which satisfy the regulafity condition

(3.1) j sup J(@]@;) <o,

Q n2l

We shall give a sufficient condition for (3.1) to hold. We first need a
modified version of a result due to Chung [3] (see also [2], [L4]), which we state

here without proof.



Lemma, 3.1 (Chung) For n=1,2,..., let (:)n be an increasing seduence
of partitions of Fn' Let (:) be a partition of F . Then for any Cn € (Ejn
with u(Cn) <®, C CF and H((E) N Cn) < ® , Then there are constants o

and B independent of Cn such that
(3.2) [ s H@|®T) <ulc Mo logp(c)) +2m(@nc,) -
C wn n n f
n

For any set F , the first return partition @DF consists of the following

sets: EO= ¢ and for n = 1,2,...

-n n-1
(3.3) E =(FNT%F) - U E, .
n ' . i
i=0
For ergodic conservative endomorphisms, the first return sets En have the
properties
®» n-1

(3.4) F=UGE =U"8 , F=U u 19 .
n=1 n=1 n=l J=1 b

Moreover, the sets in the double union are mutually disjoint (c.f. [6]) .

Theorem 3.1. let ® = {F ) be apartitionof F. I (Eyc@
and H(® ) <=, then (3.1) holds.

Proof. Let f_= J@|®]) « Ve nave

(3.5) I sup f z 2 I sup T -

- >
j=2 i=1 71 nZl



. n
Fix 1,j, 0<i<y§, j=z2. For n<i, rt Ej C:kgo T-k Fc, Hence, fn

it
(o]

on T & EJ, by case (iv) of definition (2.4), On the other hand, if n > 1i ,

c

-1 n -1 . . . c n
E, e @, , and T B, ©F°, which implies that p(Fl@7]) =1 and

i

0 on T T Ej . Therefore, each of the integrals in (3.5) is 0 . ILet

f
n

P =1 E, s we have
J J

(o]
sup f < E: I sup f 4‘}1 I sup T
n>1 2 1<n<j-1 B 2np>; B

(36)J.supf EJ

Q n>l1

Since each point in Ej "returns” to F for the first time under T Y

n
E% cn vFF for n< j « On the set E? , by definition (2.4)(iii) we have

d k=1

2

o2}
n
-k c
(3.7) fn=-Z]TnE210gu(Fmﬂﬂ'r r)
_ m k=1
m=1
for 1<n<j=-1. Furthermore, on this set, f > T for 2<n<j-1.
We have
( ) J=l -k _¢
3.8) sup f,=-z log p(F._ 0N TOF) <
Ia<i-1 0 llmeg T k=1

- E:lFmﬂ E? log w(®_ N0 E?) .

m=1

Therefore, the first sum on the right of (3.6) is bounded by



(3.9) HEAVEOZ) < @) + 8’ @) + u(F) log u(F)

where @; = {Ei} is the second return partition which has the same entropy as
the first return partition; the inequality follows from corollary 2.1. Since

E§ € @ji for n 2 J , we have by Lemma 2.3

(3.10) [ sw £ <p(E)(ewp log u(&) + K@ N E,) .

J

We sum (3.10) on j and combine with (3.9) to obtain

(3412) jo sup £, < ou(F) ¢ 28((8)) + (2-p)(®)y) +u(F) log u(F) .

Y fee)
We now consider some properties of J J(@ I@l) .
Q
Lemma 3.2. Iet F be a set and let @ be any partition of F . Then for

R o=1,2,0e., T O @F c @: ; in particular, F e @: .

Proof. T - E = S I Lt @z . The first inclusion follows by

induction on Em , since

m-1
(3.12) B B, = (+"FrnsrPmE). U TR E,
i= *
[o0]
The second conclusion holds because F = U T_n Erl .
n=1

By arguments similar to those used in the beginning of the proof of theorem

3.1, we obtain:

Corollary 3.1. J(@I@:) =0 on F°.



Corollary 3:.2. If (F) is any partition of F and H{((F)), H((E).) are
F

both finite, then

(3.13) [ @V O (@VE5)) -] A@1® <=

We may now define the entropy of T in the set F , h*(F,T) by
[so]
(3.14) n¥(E,7) = sw | A@|®7)
® °F

where supremum is taken over all partitions of F which have finite entropy.

The entropy of T , h'(r) is

(3.15) n*¥(t) = sup b¥(F,T) .
p(F )<

Let En be the first return sets of F . The endomorphism T of Q induces

an endcmorphism T, on F defined by

F

(3:16) TF(W) = 17(w) for weB -

For sigma finite measure spaces,Krengel [8] defined the entropy of T as

(3.17) n(r) = sup n(7p)
p(F )<

where h(TF) is the entropy of the induced transformation Tp OR the finite

measure space (F, @ NF, p) .



Theorem 3.2. h*(T) < h(T). Moreover, if there is a set whose first return

partition has finite entropy, then h*(T) = h(t) .

Proof. Let F be any set of finite measure and (E) a partition of F

such that H(@) <@ , We consider

<«

(3.8) v ' ® c v M (@VE®,) -
i=1 i=1 i

o]

v @,

i=

< 8

il

TH@VE )
1

The first inclusion is obvious and the last equality follows from Lemma 3.2. The

relation

(3.19) FN v w'i(@v@F) c v »r;?i(@v@F)
i=1

i=1

has been used by Scheller [9, p. 4h4] (see also [8]). The reverse inclusion
follows essentially from Iemma 5 of [l] where it is assumed that T is an auto-
morphism, however the same proof may be used for endomorphismts. From (3.18) and

Lemma 2.1 (iii), it follows that

(3.20) IF H(®I®D < IF (@ v @) .

We note that the expression to the right in (3.20) is the usual conditional entropy
of the pertition ) of the finite measure space (F,F N (@) p) . Taking

supremum over all partitions (E) of F, H((@)) < ® , ywe obtain

(3.21) n(F,7) <n(rp) <nlr) .



Therefore, h*(T) <h(T) . To prove the second assertion, let F be such that
H((:)F) <@ , To obtain the entropy h(TF) when H(<:>F) <o it suffices to
take supremum over all partitions of the type (EﬁV(E)F R H((:}) < @ , For these
partitions, the inclusion in (3.18) becomes equality as well as the inequality

in (3.20) and we obtain
(3.22) h(F,7) = h(TF) .

Krengel has shown ([8] Lemma 3.1) that for ergodic conservative endomorphisms
h(T) = h(TF) for any set F for which 0 < u(F) <« . Therefore, by (3.22)
n*(t) > h(r) which completes the proof.

Remark. Xrengel does not assume that T 1is ergodic. Instead, he considers
sweep out sets; that is, sets F for which 8 T—i F =Q . For nonergodic trans-
formations, the first assertion of theorem 3%;oremains valid and if there is a
sweep out set whose first return partition has finite entropy, then h*(t) = h(T).

Consider the following conditions:

(1) h(t) =0
(") w¥(r) =0
(11) For every finite partition (:)* of Q of the form

0 .
®*={Fl,...Fn, Q-U PF.} with w(F,) <= i=1..,n0,
j=1 Y

(3.23) @ < v <1 &®*

i=1

(IIr) (3.22) holds for every countable partition CE} of Q of the form

& ={F, Fp.eee, - U F} with p(U P) <= and B(@N U F)<=.
l J'=l J J-=l J jzl J
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Krengel showed that (I) implies (II) and (III) and that if there is a set
F whose first return partition has finite entropy, then (I), (II) and (III) are

equivalent.
Theorem 3.3. Conditions (I'), (II) and (III) are equivalent.

Proof. (I') = (II). The sets F., 1=1,2, ..., n form a finite partition

Il o~
® of UF, . Since h*(1) =0, J(@|@®?) = 0 which implies that & ¢ &),
i=1 i 1 1

let @D* be the partition in (II). Since T is ergodic and conservative,

[e]

U pats (£§= Q and CE): = ((E)*)i .

i=1

(I1) = (III) is trivial.

(II1) = (1) . Let F, 1 =1, 2,... be such that - I p(Fi) log u(Fi) <® , The

Fi form a partition (E) of UFi for which @D € Cﬁ)fw = (E): which implies
that J(G@](jai) =0 . Since this is true for every partition of UFi with
finite entropy, _h(UFi,%) =0 . h(F,7) =0 for every set of finite measure,

hence h*(T) = 0 . In general, the question of computing h*(7) when n*(t) ¥ n(7)
'is open as well as the question of obtaining a maximal invariant sigma field l\T

for which n*(t) =0 .

4. Entropy of a direct product.

We compute the entropy of a direct product of two endomorphisms TX and TY

of the measure spaces (X,X), p) and (Y,(i},k) when h*(TY) =0 and A(Y) <.

Examples of Kakutani and Parry show that if u(X) = A(Y) =« , then Ty < Ty

need not be ergodic.

Theorem 4.1. Let TX > TY be an ergodic endomorphism of the product

(x >< v, Cz) >< (g), p < A) . Let F CX be a set whose first return partition
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has finite entropy; let A(Y) < and h*(TY) =0 . Then

(k1) ¥ () = A(¥) n¥(ry) .

Proof. Ilet En n=1L2,... be the first return partition of F . Then,
the first return partition of F >< Y consists of the sets: En XY, n=12,c00 v

To compute the entropy of the transformation induced on F > Y by

TF>< Y
TX >< Ty 5 it suffices to consider partitions of F >< Y consisting of rectangles
(see [5], p. 277 £.f.). Moreover, it suffices to consider partitions which con-

tain the first return partitions of F >< ¥ . We have equality in (3.20) and

therefore

b2 *(r = su (T o[ (® @) .
(h2)  H(ry >< 1) @>>£©jny<q><Ol<L><O>l>

N
where & = {Fi} partitions ¥, E ¢ (F/, n = 1,2,... and (§>= {Gi} partitions

Y . The partitions
n -3 . n _ n -4
(4.3) T =)@ = @) = (7 @) < (V1 ©)

= -1

generate V (TX >< TY) ((:) >< (@) and the factors on the right are inde-
i=1

pendent sigms fields with respect to the measure p > X . Therefore, the con-

ditional measures multiply

(hol) p >< A (R, >< le.Y
i=1

(TX >< TY)-i(@ x@)) _ U(Fj‘ ®:).)\(Gk| @:)



and we obtain

(3) [ A® =<0 i?l(TX < 1) H@® =< @) =
> i=

A(¥) IF HA@I®)) + w(F) fY (@) -

The last term in (h.5).is zero; we take supremum over rectangular partitions of

F>Y to obtain
by >< 1) = AM(Y) nlry)

The proof of the preceeding theorem indicates that in general, the entropy
of a direct product of two infinite measure spaces is infinite whenever the pro-

duct transformation is ergodic.

5. Concluding remarks.

The case when there is no set F whose first return partition has finite
entropy remains to be investigated. An approximation result is needed to.show
that one need only consider partitions which are dense in a given sigma field.
Such a result would permit the characterization of entropy zero in terms of a
maximal sigma field @BN . The basic difficulty is that known results rely on

the Ii version of the Shannon Breiman McMillan theorem.
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