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1. Introduction and summary. Ogawa [4] obtained the asymptotically

minimum-variance linear asymptoticélly unbiased estimator (ABLUE) for loca-
tion or scale from a chosen set of sample quantiles. It was soon observed
(Tischendorf [8]) that the reciprocal of the asymptotic variance of Ogawa's
estimator (propefly normalized) is essentially a Riemann sum for the infor-
mation integral for the parameter being estiﬁétéd; Thus under mild regularity
conditions, the ABiUE approaches asymptotic effiéiency as larger sets of more
élosei& spaced qnantiles are chosen for use. We Will call a class of estimators

agymptotically nearly efficient (ANE) if for every e >0 there is an estimator

in the class with asymptotic efficiehéy >1-¢. Ogawa's estimators’are thus
ANE,

In thé present paper we deécribe three classes of ANE estimators for multi-
‘§ariate location parameters. The first two consist of linear estimstors, and
represent multivariate generallizations of Ogawa's ANE class. Our three classes
are as follows: (1) Choose a set of marginal sample quantiles in each direction
from a continuous r;variate location parameter distribution. These quantiles
generate a random partition of Euclidean r-space R, end for r >1 the ob-

served cell frequencies contain additional information, We obtain the ABLUE's

lThis is a revision of part of the author's Ph.D. dissertation at Cornell
University. Research supported in part by the Office of Naval Research under
Contract No. NONR 401(50). Reproduction in whole or in part is permitted for
any purpose of the United States Government.



in terms of ‘the sample quantiles and the observed cell frequencies for r = 2
and show that they are ANE. (2) For all = >1 , linear ANE estimators are
obtained by choosing a single sémple quantile in each direction and partition-
ing Rr by marking off fixed distances from these. The ABIUE's in terms of
the r chosen quantiles and the observed cell frequencies are ANE. These
estimators have much simpler coefficients than do those of class (1), (3)
Finaslly, ANE estimators can be obtained by exploiting analytic propérties of
RBAN estimators (Neyman [3]) for a sequence of multinomial problems related
to the given locetion paraméter_famil&; These estimators are usually not ex-
pressed in closed form.

Ogawa proceded by applying least squares theory to the asymptotic distri~
bution of his chosen set of sample quantiles. The ABLUE's of classes (1) and
(2) are here derived by the same method, but establishing the joint asymétotic
distributioﬁ of the marginal sample quantiles and the observed cell frequencies
is non~trivials Our method is to reduce the problem to one involving the multi=
nomisl distribution. A similar idea was used by Weiss [9] to obtain the joint
asymptotic distribution of the quantiles alone; but the present problem requires
more elaborate arguments. |

Section 2 contains a preliminary result for the multinomial distribution.
The ABLUE's of classes (1) and (2) are discussed in Section 3, while Section k4
presents the third ClaSSb. Througﬁout, K denotes a generic positive constant,
#{X} is the probability law of the random variable X, and :Z{Xn} - 2(X)
designates convergence in law. N(u,%) is the normal law with mean p aﬁd
covariance matrix ¥ (which may be i x 1):

2. A preliminary lemma. We require a limit theorem for the conditional

distribution of multinomial random variables given certain linear restraints.

This result has often been used in the literature on conditional chi-square tests;



but that literature does not seem to contain a proof. The lemma below can be

shown to folqﬁw from the very general theorems of section 2 of Steck [7], but

we will give a more direct proof based on the uniform local limit theorem.
let {ni: is= O,.‘...,M} be multinomial random variables with parameters

(n,{Pi}), where 0 <P, <1 for all i, and set Q; = /n (ni/n - Pi).

i
CZi: i = 0,e0.,M} are random variables having the jointly noermal asymptotic

distribution of the Qi * {bi}* will denote the set of objects b, having

i
indices in a stated subset of {0,...,M}.

&

Lemma., Let I RTE L be_constants such that

arb————

a, = for each 1 <i<m
in —————— - -

and

P ZA Q = appeees ) @ = o] >0

1 Ay

for all n , where Ajsees,A  are subsets_of the ipndex set {O,«ss,M} « Denote

by {Qi}* g set of M-m Q;'s which have o non-degenerste distribution given the

n specified linear restraints. Then

(2:3) = (81" ZA Q = 8qpreees ZA Q= oy}
1 ‘ m

e (7] ZA 2 = apseeer ) By =)
. ,

Proof. For the sake of notational simplicity we give the proof for the case

of a éingie linear restraint, Q, = a_ , where 8, —a. {Qi}* will be

k

Lico0 % T %n

chosen to be {Q)sees5Q, 1} « It is well known that the multinomial n, have the
distribution of M + 1 independent Poisson random variables with means nPi »
conditional on :?;O ni =n « Regarding the ni as Polsson allows the use of

a univariate local limit theorem. We must find the limit of



2 {o;1" IZ‘T ™ o 24 Q; =0} = {9, 1] ®}
1=

where R denotes the linear restraints.

Let pO(x),...,pM(x) be the probability functions of the Q,, and
n (x),...,nM(x) the densities of the limiting N(O,P ) distributions. The results
we use, describing the convergence of /ﬁ'p (x) to n, (x) as n- o and also
X -+ o , gre familiar for the binomial case (see Feller [l], Chapter VII ). They
are proved for more general rendom variables in Richter [5].

First, for fixed Ayseeesyy 2

PL{Q;J* = {9} and R]
M-1
gty 5 o) e s T
i=1 i=k+l
Mol M~1
-(Mﬂ)/g ny(a -Z 91) . H n, (‘31) (-a—z g )e
i=k+l
€ 1/6

Iet now r=n for 0<e<1/6, sothat r=-o but r=0 (n’/") . Define

the square Dr in RM—l

= {X: -eri SI‘ ? i = l,.o-, M‘l} .
Then by the local limit theorem,

M-1

PL{Q,J* D1 < ) P(Q £ -]

i=1

~ K (1 - &(r))



where & is a normal d.f.. The last expression tends to O exponentially as
n = o by a standard estimate for the tails of the normal distribution (Feller

[1], p. 166). Therefore

PIR] =) P[{Q,}F = {g,}* end E]
{g, 1"

~Y Pl{a)* = {,}* and E]
D

/ k M-l o
P T gl -] a) tH meg) v e -] 0]
D 121 i=k+1l

r

Agein as a consequence of the uniform local limit theorem, n times the last

expression sbove is asymptotic to

,, ok Me1 ‘ M-1 :
I.—-.-.J no(a - Z Zi? -iill ni(zi) . nM(-a - z Zi) dz; ».. dzy oo
Dr i=1 - i=k+1

which converges to the corresponding integral (say Pm[R]) over RM—l as n - ow ;:
So nP[R] ~ Pw[R]- .
Combining these results, we have for the probability. function of {Ql }*

cbnditional on R that

(2:2)  nM/2priq * - (a7 ana RY/PLR]

M-1 | o o
I my(a) oy (e -Y a) /B IR .

i=k+l

Nno(a --Zqi) .
i=1



The right side of (2.2) is the density of Zi,.,.,Z&_l given the linear restraints

k

M
Xz*f=a and Zz?*:o
1 1

1=0

i=

where Zg,...,ZE are independent N(O,P.) random variables. But the conditional
. . R * *
distribution of ZO,...,ZM given z& 0 = 0 is the distribution of ZO,...,ZM

Therefore the right side of (2.2) is the density of the right side of (2.1) for

3. Two linear ANE estimators. A natural r-variate analog of Ogawa's

estimator is the ABIUE from chosen sets of sample quantiles in each direction
and the observed cell frequencies of the partition of Rr generated by the
quantiles., Unfortunately, the coefficients of these linear estimators are very
complicated. Theorem 1 is therefore stated only for the bivariate case.
For 0 < al < 4ee < o <1, denote by gi, i=1,¢..L, the sample

-quantlles based on the x-components of n independent observations from a
population with continuous bivariate location parameter cdf F(x - el, N 92).
The corresponding marginal population quantiles are X, =u, + el , where ui-
is the population ai-quantile for el =0 . For given 0 < Bl<"" < BM< 1,
the sample and population quantiles from the y-component are denoted by
gl,...,gM and yl,..,,yM - Here yj = vj + 92 » where v'j is the marginal
population ﬁj—quantile for 62= 0 . The IM sample quantiles partition the
plane into (L + 1)(M + 1) cells. Let M5 denote the number of observations
falling in the opeﬁ cell Qith ' '‘northeast corner'' (gi,gj). (The cells not in=-

dexed by this scheme are redundant when the sample quantiles are given.) Define

fOI‘ i = l,lco, L + l and. j = l, L] M + l the Probabilities



(3.1) Prs = Flug,v) - Flug,vy o) = Fluy povy) +Fuy povy 1)

with the conventions

. = = - @ = = + -
(3.2) "0~ Vo e 7 N 'S R

We abbreviate (3.1) as Pij = Aij F , thereby defining difference operators Aij .
The Pij can be thought of as asymptotic cell probabilities. Theorem 1

states that the ABLUE's in terms of the sample quantiles and the Qij= Nij/n - Pij

are ANE. We first introduce some notation.

Iet F. and F, denote the first partial derivatives of F(x,y) with

1 2
respect t&O x and ¥ , respectively, and define the quantities

834 Fl(ui’vj) F (ul,vJ l)
+
y 1JF1 Din, i1 )
J=0 T Tinyg
L+l
Ry Bigte  Biyn'2
b.= Y kK., ( - )
Jd . 1d P, . P, .
1=0 13 i,J+1
Ej(élJ iJ 61 J+1 lJ/ i,j+1
3=1
- -+
813%541, /P11, 5% 81, 5100, 5/ P, 1)
L
dj = $1 (summand as in ci)
izl
§,. == AFF =- pA¥F



where
S H = Mgt Ay wn® Bpa T bpa,ua®
i3 Tiwa Foa,y o Fra,ma

Any term above containing a factor l/Prs for Prs = 0 is interpreted to be O .
Note that the conventions (3.2) give Fl(uL+l,y) =0, F2(uL+1,y) = fY(y)

(the marginal density of Y), and Fl(uo;y) = Fé(uo,y) = 0, etc.. Define the

2 x 2 matrix I¥ = lI;rl by

L+l M+l ,
. z S (AiJij)(AijFr) .
;kr L Pi'
i=1 j=1 J
I =|L.,| will denote the information matrix,
T. OF. fk(X;Y)fr(x)Y)
Y ™ ) LT Y dx dy -
Finally, let
L M L M
= - + - +
w =y, alEm ) v ) aglem v e ) ) sy 9y
i=1 i=1 i=1j1
L M L XM
= - + \_‘ - +
we = ), el&mug) ) ylegv) r )N wy
i=1 3=1 i=1 j=1

and define (ei,eg)' = (I*)-l (Ml’ug)' , where prime denotes transpose.



9

Theorem 1. Suppose that the density f£(x,y) of F(x,y) is_continuous in

the plane. Then (9;; ez) are the ABLUE!s for (91,92) in terms of the sample

quantiles and the Nij . Ir (91’ 92) is true,
-1
2/ (8] - 8)), /U (f-65)} ~ W(0, (7)) .

I* is the information matrix for (91,92) from,the Joint asymptotic disﬁribution

of (/A (g %) /A (g vy), /A Qi =Liuee,l and §=1,ee0M) +

If the information integrals Ikr are finite and the derivatives fl and

f2 of f .are continuous in the plane, each I;r can be made as close as de-

sired to Ikr by choosing oy and Bl sufficiently near O, oy, and BM

sufficiently near 1 and IL,M sufficiently large with m%x»ta.-

17 03] and

max ~B. sufficient small.
3 lBJ BJ-l! L _

The proof differs only in detail from that of Theorém 2 below. Since it is
computationally more complicated, we omit it.

Let now F(xl- CIPRERYE er) be a continuous r-variate location parameter
fémily. For j =1,¢..,r, denote by gj the sample aj—quantile from the j-th
components of n independent observations on F . Partition the xj - axis into
Mj+ 2 intervals by marking off known distances from gj + These intervals are
indexed 0,...,Mj+1 , with those indexed O and Mj+ 1 Dbeing the half~infinite
intervals at the tails, and those indéxed O,...,Kjblying to the left of gj .

The cartesian product of these partitions is a parfition of Eucl;dean rjspace_Rr .
We index the cells of this partition by attaching index (il’7f"ir) to the product
of the ij-th interval in the Xj direction, for j = l,é,:,r: Usually we use o
as an abbreviation for (il,...,ir); Denote by N0 the ntmber of n independent

observations on F falling in»the o-th cell. We take all cells to be open.
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Iet vy be the § =0 population aj-quantile in the xj diréction, and
nmark off the given set of fixed distances from Vj . This scheme yields a non-
random partition of Rr. The probability when 8 =0 of an observation on F
felling in the ¢-th cell of this partition is Po = Acr, which defines the
difference operator Ag . (Bxplicit definitions may be found in many texts.) We

also need the r x r information matrices I and IF having entries

o

=‘rn f fk(xl,...,xr)- fs(xl,...,xr) o o
heg =) oot _ 10t

f(xl; v 'Jxr)

-3 -0

éGFK'AGFS

P
c

Tes =

a

for k,s = 1l,ee.,r, where F = aF/axk, etc, In the definition of I;S s

k
terms for which P = O are regarded as themselves being O « The same con-
o] : » ;
vention applies to the cko defined below.

The cells of the partition are lineariy dependent when the sample quantiles
are given. We therefore omit as redundant the following r +1 cells: those
indexed (Ml+ 1,..5,Mj_l+ l,O,Mj+l+l,..ﬁ,M&+1) for §j = 1,ee.,r and that in-
dexed (Ml+1, Mé+l,...,Mr+1). ¥ will denote summation over all indices except

those of the omitted cells. Denoﬁe by Ak the collection of indices
' : 1

'-.k
S

g = (11,ii.,1r) such that all i > Kj except lkm < Kkm for m = l,..f,s .
AO is the collection of indices with all ij > Kj . A; and P; will denote

A and P for that 5 with all ij= Mj+l except 1
o c

= 0 » and AY and P* the

corresponding quantities for o = (Ml+ l""’Mr+ 1) . Finally, let g be the

r x 1 vector with jth component gj- Y J=1,ee0,r .
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With this considerable weight of notation, we can define a vector Q** of

estimators of (el,---,er) =9' by
¢y-1
o =g - (I')7 q
where Q is the r x 1 vector with jth component
c. \N /n-P
ET Jc( o/ c)

and the coefficients ¢, ,ese,C are given by
1l " ro .

AF. AF.
I - GJ - . ;! ] A
jo P p¥* €%
o)
*.
AF. B A*F. AF
- O J _ Ky J - -
=51-) 2=+ (1) A P
g m=1 k . 8
m
S =l,.-.,r .
Theorem 2. Let F(xl- el,...,xr— er) be a continuous location parameter

family with continuous density f(xl-el,...,xr-er) . Then the components of & "

are the ABLUE's of (6,+-,0,) in terms of the g, and the N . VWhen g§ is
NI —————— G e— —

true,

£/ (0% 9)} - (0, (*)™1) .

¥ is the information matrix for 9 from the ssymptotic distribution of

{ /8 (g5 vy- 0),va (8 /n-P): all § and o} .

If the information integrals Iks are finite and the derivatives fl,...,fr

are continuous, each I;S may be made as close as desired to Iks by appropriately

choosing the set of fixed distances used in defining the estimators.
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Proof. For notational convenience, we give the proof for the bivariate

case, r =2 . Write (x,y) and (I,M) for (x13X2) and (Ml’Mé)’ and let
(ui,vj) be the vertices of the partition of the plane obtained by merking off
the given distances from the ¢ = O population quantiles (“l’“E)' Then
P, 5= by is given by (3.1), with the conventions that u ;= v_;= - and
YT M C

Form a non-random partition of the plane by marking off the given fixed
distances from the point (vl+ o+ w//m o, vot O,F v//n ) » The probability
of an observation on F(x - 8y ¥ - 92) falling in the (i,j)th open cell of

. e s n noo. .

this partition is Pij , where Pij is independent of (91,92) and P?ja Pij

as n —+ o .

Consider first the conditional distribution
> —
(3'3) zﬁi{fﬁ(Nij/n - Pij] |‘/—ﬁ(gl_ Vl- el) = U, fn (ge_ \)2- 92) = V}

where [Bij}* denotes the set of all quantities Bij except those having the
omitted indices (0,M+1), (L+1,0) and (I+L,M+1) . Under the conditions of (3.3)
define T 0 if the x-component of the observation on the line y = v2+ 92+v//5
is > vl+ el+ u[/ﬁ , and Tl= 1 otherwise. Similarly, set To= 0 if the
y~-component of the observation on x = vl+ el+ u//ﬁ is > Vé+ 92+ v//ﬁ , and
To= 1 otherwise.

There remain n - 2 observations falling into the open cells (n-1 if gy

and E, come from the same observation). The key to the proof is the observation

that when (91,92) is true,
®1. o ~
i{{Nij} lgl— V1+ 91+ u/\/ﬁ > EF \)2+ 92+ V/»/-n— > Tyo '1'2}

is the same as
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Kl ma I+ T2
(3.4) 35{{1113}*' z z ni,j= [nozl] - Tl’z E nij= [nOZg] - "'2} )
i=0 3=0 1=0 3=0

where {nij} are multinomial with parameters n - 2 (or n - 1) and sz .
This plausible fact is easily verified by calculations on the model of Siddiqui
[6], who displays the joint density of €15 Bps Tys Tp and the Nij for the
case L =M =0 (4 cells). Setting Qij= /A (nij/n - P?j) , Taylor's theorem

shows that the condition of (3.4) is

R: )y Q. =a , Ta,, =5

L1 id n Lpdd n

where £ and zé denote the summations appearing in (3.#) and

a = = TplvJu + 0(1), b= - £(u,)v + o(1).

oo - t
I Qij /0 (nij/n Pij) , then by Taylor's theorem ,
= + + + .
Q, . Q'j (AijFl) u (AijFE) v + o(1)

If {Zij} are a set of random variables having the asymptotic distribution

N(0,x) of the Qij (omitting Q ) , then the limit of gﬁ{Q;j}*|R] is

L+, ML
*1 N - =
(3:5) Byt wg g Y, g = - Bxogde s ) Bym i) V)

- + . s . .
where by (AijFl) u (AijFE)v" This is true because inspection of the
expansion of pi(x) given by the local limit theorem shows that the proof of

the Lemma of Section 2 is unchanged if the n, have parameters P? with qu Pi"

Since this holds for all values of T and T, , (3.5)'15 the limit of the

1 2

distribution (3.3).
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let ¢, = - 1/fx(\,l) and ¢, =

the method of Weiss [9] that when (91,82) is true,

- 1/fY(v2) . Then it is easy to show by

2{/B (g1= vy~ 9105 VB (67 vy 6,0}

~ (e, Tl Z; 5 ¢ Y ] .

Combining these results, we have that the asymptotic joint distribution of
*
\/.ﬁ (El" \)l- @l)) /-ﬁ (52" \)2- ge)J {\/?I (Nij/n - Pij)}

when (91,92) is true is just the joint distribution of

e ¥z, Y Zys o {2y cl(AijFl)Y s

— Lo

If n (+) is the density of the normsl distribution with means “ij and.

covariance ¥ , these last random variables can be computed to have density h

given by
*y * \ - \
h(u.vv;{qij} ) = n({qij} 2 E I q‘ij ’ z qij) ?
i=0 j=0 i=0 j=0

where the last two entries are in the (0,M+l) and (L+1,0) places, respectively.
Since the inverse of y is well known, it is a matter of routine arithmetic

to establish that h = K e_S/2 s where

% 2 ¥* 2 * *
= + v + v +
S Ill u I22 2112 u 2 5 clij qij u

. qij v + terms not containing unor v .
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Standard least squares theory now shows that (@z*,ez*) are the least squares
estimators from this distribution, and hence the minimum-variance linear un-
biased estimators. That (I*)_l is the asymptotic covariance matrix of these
estimators also follows from least squares theory.

It remains to show that I¥ approximates I for appropriate choice of the
set of fixed distances used in defining the estimators. Let Dij be the (i,j)-th
cell of the partition with vertices {(uk,vs)} . First notice that by Schwarz'

inequality,

(A F ) [HD.. £, Gosy)axay )
Y - ) '

i,J i,J I I f(X;Y)dXdy
1J

ENCRONE
Ez J]D £(x,y) xdy = Ipy -

i,J ij

IA

ILet D denote a compact set which is a union of closures of bounded cells Dij

in which f(x,y) is bounded away from zero, and which is such that

(£ (6, 3)7°

T e o

D

By choosing Uy V. and v, appropriately and making the cells containing
0L

M
points at which f = 0 sufficiently small, such a D can be obtained for any
given ¢>0 . Let D' = {(i,j):Dij <D} .

Ir Aij is the area of Dij’ the mean value theorem for integrals implies

that
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CffD fl(x,y)dxdyje

2
T (65« 1]
pr Pij o [T rlx,y)axay
JJ
ij
) iy (x5, )AlJ]
=/ HHR KK

for some (x* ,y°) and (x** ,y*°) in D,, . By Taylor's theorem this is

ij
R
}Z [Fy (wy_povs g 5578551
] +*
pr fluy_govy o8 7 B

*  _ * %Y L _ - o
where Rij —[fl(x ,7%) fl(ui—l’vj-l)]Aij O(Aij) as m?x u, ui—l' 0 and

*¥
_ . . ) . . Simi - olA
max |v. vJ ll 0, since fl(x,Y) is continuous. Similarly, Rij of ij) s
and by compactness of D both of these are uniform in (i,j) € D'.. It is now
easy to show that
2 2
(a, .F.) )

R G
Z 131 =Z 1" i-1 J:.Lv A, .+ of1)

i3
pt.  Fij D' - f(ui-l’vj-l)

as max ([u - ul_ll |v v l|) -+ 0 « The sum on the right is a Riemann sum for
Dl

[f (X:Y)]

A

p  flxy)

This establishes that Ill can be approached as closely as desired by first '

choosing D , then refining the partition.,
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The proof for IZE is similar. For I§2 use Schwarz'! inequality as

follows (where C is the set of (i,3) 4 D'):

s L
P c Py

c Fij

2 2
(? AijFl’Aisz)g N (a, F,) . T (a, )
c

It is a consequence of the proofs for Iil and ;;2 that the right side may be
made as small as desired by choosing an appropriate D . The sum over (1i,3) e D

is then treated as in the other cases. This completes the proof of Theorem 2.

4., Use of RBAN estimators. Our third ANE method of estimation for multi-

variate location parameters is based on Neyman's [3] theory of regular best
asymptotically normal (RBAN) estimators for multinomial problems. Suppose
nl,...,nm are multinomial random variables with parameters n and {Pi} .
If P,= ﬁi(e) , where m, is a known function and ¢ = (el,...,er) is an un-
known parameter, we can estimate § from the n, . If q, = ni/n are the
observed cell frequenciesg, a function @j(ql,...,qm) is a RBAN estimator for
ej if Qj is continuously differentiable with respect to each qi and
J/a (Qj- 93) is asymptotically normal with mean zero and variance equal to the
Cramér-Rao lower bound.

Neyman presents three methods of obtaining such estimators, including the

maximum likelihood method, but we will be concerned only with certain analytic

properties of the functions Py Iet G be the r x r matrix with entries

1

i, 1

us a8 BGS

o
H
=

om, My
k

ks
i=1
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Neyman shows that any function P such that Qj(ql,...,qm) is RBAN must

satisfy
(h-l) cpj(ﬂl(e))"‘)ﬂm(g))z ej
and
T
(4.2) % _ T ogis 1
oek e '”k 98

where IGjS] = G—l .

Suppose F(xl- yenesX - er) is a continuous r-variate location parameter

0y

family. For O < @ < eas & aiMi <1 and i =1,.se.,r, denote by ’5'13 the

marginal sample aij - quantile in the xi-direction. These quantiles partition
R, into cells which we index by o = (il,...,ir) . ILet 1\T0 be the number of
observationg felling in the ¢-th open cell, and qc =N /n . For given observed
o
, of t R titi i -random. Let R t
values ziJ of the glJ he partition is non-random nc({zlJ 91}) be the
probability that an observation on F(xl— O senerX " er) falls in the ¢-th

cell of this partition. For example, if r =2, Mg is defined by
M ({2557 033) = Flag 05 2pg- 6p) = Flzyym 015 25 5 17 6)

- - +
F(z 0 5 Zog 92) F( )

1,k-1 2y ke1” 917 P2 g.1" p)

for k= 1,eee,M+1 and s = l,...,Mé+ 1 with conventions that 2..= - o

1 ic

and

W e

Z —3
iM_+1
s}
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The proposed method of estimation is as follows: for the observed values

z;, of the g, the functions no({z - 9,}) may be taken as cell probabilities

iJ
for a multinomial problem to which Neyman's theory applies. Let @k({zij}, {t})
be a RBAN estimator for ek in this multinomial problem. We will estimate the

location parameter @ _ by (fe..}, {q 1), where q_ are the observed cell
k P55 o’’’ o

frequencies from the random partition formed by the gij .
let
n
where the gij arise from n independent observations on F . Clearly
n
PP = s
o - no({vla})
arﬁ
—= - 3 sa;
50, " ko (say)

in probability, where Vi3 are the @ = 0 population quantiles. These limits

are independent of @ . Define r X r matrices Gn and G, by

n
PPN o
€ = Y I 52 ¢ 52
n’ks én aek o0
o S
[e)

_ g 2
(G )ks - E: ——ﬂﬁ;gl
o

so that G, 1is the limit in probability of Gn .
We have supposed that the RBAN estimators for the multinomial scheme

nc({Z

15 ei}) could be written as fixed functions g of the z,, and the q_
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This is not unreasonable, since RBAN estimators are typically defined implicitly
ag solutions of systems of egquations in @he T, and qc . Existence of solutions
P having the properties required by theorem 3 will typically be guaranteed by
the implicit function theorem. For the three RBAN methods discussed by Neyman,
this is the case if Gn is non-singular. This in turn is shown by him to be a
consequence of an assumption that the parameters 91""’9r are not dependent
for the multinomial problem: Thus our assumptions on the functional form of gk
are essentially the requirement that we use the same RBAN method of estimation
for each of the sequence of multinomial schemes presented by the observed values
of the gij as n - o« .

Theorem 3. Let the density f(xl- el,.as,xr- er) bé continuous. Suppose

there exist functions ¢k({zij}, {qo} » continuous in each zij and continuously

differentisble in each q_ , such that wk({zij} > {*}) is_a RBAN estimator for

0 from the multinomial problem with cell probabilities "o({zij" 91}) « Let

P = (wl({gij}’ {qb})""’¢E({§ij}’ {qb})) - If G is non-singular for n

sufficiently large, then when 6 is true

£ {/8 (o - 8)} - N(O;G;l) .

If the partial derivatives f,,:ss,f of f are continuous and the infor-

mation integrals I . exist, each (G*)ks can be made as close as desired to

IkS by choosing & sufficient number of sufficiently closely spaced quantiles in

each direction.

Proof: Abbreviate w ({z,.- 6.}) by w_ and let 7 be the rx1
R o' tYig Vi o c
vector with k-th component (na)_l a"o/aek « Then from {k.1) and (4.2) it

follows that for any fixed {Zij} the Taylor's series about {qc} = [ﬂc} is
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oz (e ) =0+ Y (O 7 )a-n )+ R{a Y fm})
g

where the k-th component of R 1is

S o, |
Sﬂ( Py - :EE ) (@ - )
L aqb q* 0 |, o ©
o "o

for some q: between qor and m ot If therefore qo are the observed cell
frequencies from the random partition and Prg is the r x 1 wvector with k-th

component (P;‘)'l apg/aek , we have that
filo-0) =Y (€F o ) /B (a- B +/ER ({9 L{E]}) -
Now {/n (QG- g?)} is asymptotically N(o,5), Whére

Y =P (2-p ) =P P T .
L-co' O’( O'), EO‘T O_T:O'f
This important result is proved by arguments which differ only in detail from

those used in the proof of theorem 2. From this result and the continuity prop-
erties of Pie it is immediate that /n R({qo}, {Eﬁ}) -+ 0 in probability. Thus

/1 (e -0) is asymptotically distributed as

(4.3) DRGSR

where [Zc} are N(0,3y) and O has k-th component ako/go « That the r random

variables (4.3) have distribution N(O,G;l) follows after some calculation.
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The final statement of the theorem follows as in theorem 2, after writing
the 8o o8 difference operators acting on the derivative Fk .

As was remarked above, RBAN estimators are usually implicitly defined by
systems of equations which can only rarely be explicitly solved. There is a
large literature on methods for obtaining RBAN estimators (iteratively or other-
' wise) for multinomial problems. See Ferguson {2] for reference to some such
methods. Since our @, are obtained from RBAN estimators for certain multi-
nomial schemes, the problem of computing them should be approached by reference

to this literature.
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