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1. Introduction and Summary. In this paper, first, the distribution of

U(S), the sum of the s non-null characteristic roots of a matrix (which
is a constant times Hotelling's Tﬁ) is derived for s = 3, starting with
the joint density of the s roots given by Roy [10] (see Section 2). The
C.D.F. of U(3) thus obtained is used to compute upper 5 per cent points
for selected values of two sample parameters which show that the approxi-
mate percentage points given by Pillai [8] are generally accurate to the
three decimals provided. The distribution of the sum of the three smallest
roots of a sample covariance matrix is obtained next for p = h, where p
is the number of variables, taking the population covariance matrix

5= I . Further, the distribution of the smallest characteristic root

of a sample covariance matrix is derived for an arbitrary E . For tests

based on the sum of the i smallest of p roots and the smallest root

alone of a covariance matrix, reference may be made to [1], [97], [10].

2. Exact distribution of U(3). The distribution of non-null characteristic

roots of a matrix derived from sample observations taken from multivariate

normal populations, given by Roy [10], ig of the form

*
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where C(s,m,n) = {P[2(2m+2n+s+1+2)]r[2(2m+1+1)]F[2(2n+iil)]r(il)}
l

and m and n are defined differently for various situations described by

Pillai [7] and [8]. In this section, we will obtain the density of U(3) =
+ + = . = i . =

M Ay *g with s = 3. First put s =3 in (2.1) and let 2 lih‘ R

i =21,2, then we have
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where d (1+9\ )(2 £ 32) (lﬂ ) (1 ,@l)(l ,;2) It can be shown that

0 <«<d <l and we expand (2.2) in the following series form:
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where (a.)k = a(a+l)...(a+k-1) and (a)o = 1. Now transform M = 9 * 1y

and G = "1“2’ then the joint density of M, G and 7\3 is given by
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(2.&) is true only if both m and n are non-negédtive integers. We may integrate
by parts term by term with respect to G from 0O +to MQ/’-L for O<M<l

(3) _

and from M - 1 to Mz/l& for 1 <M< 2. Further, transform U )\3(M+l)
and integrate with respect to )\3 from U(S)/E to U(3) for O<Mc<l

(3)
and from U /3 to U(3)/2 for 1< M< 2, we have finally the density
or ot3)
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and B(xl’ix2; P;Cl) = Jxl -yP (l-y) dy, 0 < xl < x2 < l . Although

(2.5) is expressed in a series form, it converges for all values of

0 <u< ®. PFurther, the C.D.F. of U(3) obtained from (2.5) is of the form
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The C.DFs of U(3) in (2.6) has been used to compute upper 5 percent points
for selected values of n and m =0 and 1l. These values are given along
with the approximate values obtained from the Pearson type approximation

Qﬁllai [8]) for comparison.

Table 1

Exact and approximéﬁé upper 5 percent points of

U(3) for m =0 and 1 and selected values of n .
n m =0 o . m=1
Exact Approximate Exact | Approximate
15 0. ThT SThT 1.03 1.02
20 0547 546
25 0.437 37
30 0.362 0.362 0.500 0.499

The table shows that the approximate values (Pillai [8]) are generally accurate
to the three decimals provided. The exact values from (2:6) were computed on

CDC 6500 and terms of the series up to k =25 were generally used.



3. The distribution of the sum of the three smallest roots of a covariance

matrix when p =4, $=I . We may start with the following density which

will be discussed in detail in the next section.
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First put p = 4 in (3.1) and integrste with respect to 8, Next trans-

= p! + p! = p'p! ! = i = i ;
form Ml El 52, Gl zlza where zi gi/g3, i=1,2 and integrate

.with respect to Gl' Then the joint density of ‘Ml and g3 is of the
form:
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and where

a = (m2)!/(m2-r)!, b = (m*1)!/(m+l-r)!, c = m!/(m—r)ﬂ,d = (m+1)/4(m*2),

iy (hyn) = Ky (4,n)/ (ma) + 2572
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Now we make the following transformation T = g3(M +1) in (3.2) and (3.3)

1
and integrate with respect to g3 from %T to T and gT to %T respectively.

Finally the density of T is given by
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and constant coefficients are:
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k., The distribution of the smallest characteristic root of the sample co-

variance matrix. Let X(p x n) be a matrix variate with columns independently

distributed as N(O,Z), then the distribution of the characteristic roots,

~

0 < Wy SV, S eee < w? <o of X X' depends only upon the characteristic

o~

roots of 5 and can be given in the form (James [4])
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where the integral is taken over the orthogonal group of (p x p) orthogonal
L 1
matrices H; m = %(n-p—l) and K(p,n) = 1'[2192/22‘]@1'l Fp(%n) PP(%P) and

W= diag(wp, cee,W (k.1) can also be written in the form (James [k])

~
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where qu(al’ . .,ap; b,

and a.,.-4,8_3 b.,.e.,b are real or complex constants and the multivariate
1 p° 1 q
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coefficient (a)K is given by (a)K = 1 (a-%(i-l))ki and where partition
i=1

i = LI ] > ] +-oo+ =
K of k is such that K (kl, ,kp), ky >k, > 2k, 20, k k, k

and the zonal polynomials, CK(::/’) , are expressible in terms of elementary
symnetric functions of the characteristic roots of o, (James rs1). If

we let ¥ = EP in (4.2) and transform 8; i=1,...,p, we obtain

| = 2¥y
the joint density of g, LN in the form [see (3.1)]
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Expanding (4.2) as a power series, we have
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Let uJ{_ = W—l, i=12,...,p-1, and make use of the known equality (Khatri

D k o
and Pillai [6]), C ('U') = = 2o 0 Cp(U') where U' = asag(ul y,eeerul)
. ~ n=o 1 ~ ~

and bK are constants depending on K and 1, then we have

S
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we need only to consider
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Now apply the result (Khatri and Pillai [6], Hayekawa [37),

C (U') C (U‘) = 2 C (U') where the summation is over all partltlon

J'ne
8
@ of g satisfying nts=q and qyn are constant depending on 8,
and 1. In (4.5) transform u, = l—ui, i=1,2,.00,p-1, i.e.,

U=1I-1U! where U= dlag(u ,...,u . ), then (4.6) becomes
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and meking use of the following equality (Khatri and Pillai
b
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constants depending on 6 and v ahd gg is the coefficient of CG(U):

bl ~
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Note that the series in t is actually only a finite summation and (4.10)
converges for all values of o« > Wp > L&l >0 . So if we integrate (4.10)

with respect wp, we have the density of the smallest characteristic root
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Also note that if we expand (4.1) as a power series and proceed as above,
we will obtain the joint density of the largest and smallest characteristic

roots.
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where Aﬂ,v is defined similar to AQ,V' We-may also set u =1~ Wl/Wp in
(4.10), then w,  and L are independently distributed. If we integrate

with respect to wp, then the density of Uy i,e, the ratio of the smallest

root to the largest root is given by
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