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1. Introduction and summary, Let x = (xl,...,xp)' be distributed as multie

variate normal witis zero means and ecovarianee matrix V(x) and tnis will be

denoted by z,~'N(2:V(z))- Dunn's conjucture [3], namely.

o
(1) P[lxil < c:.l, i=l,2,...,p] > iEl PUXi! < ei].

was establighed by Knatri [U4], Sidak [5] and Scott [5) by using different ap-

proacngs. Moreover, Knatri [4] conjuctured tnat

1Y
(2) P[lxil >ey i=l,2,...,p] > iEl P[‘xil > ci]

and the proof of (2) given by Scott [5] is imcorrect. Tne purmose of tnis paper
is tqQ generalize (1) and (2) in the case of convex and symmetric regions about
tne origin. Tne generalized results are mentioned as under;

Let x' = in, Ypseres y') wnere yi = (x

A}

3eas X )’
pl+...+pi_1+l pl+...+pi

q
i=1,2,...58 with I p, = P. Morgover, let si(yi) be ¢convex and symmetrie
.-'-"-l X [and k

regien in ¥s about tne aorigin in pedimensionel spacg with -= < Xj <o,
j = l,2,...,pl+p2+...+pi_l, pl+p2+...+pi+l,...,p. Let Siiyi[ be the comple~
mentary region of ﬁi(yi). Tnen, we nave
q S !
(3) P(N9 (y,))> 0 P8, (y,))
i=1 i=1

and

q : q _
O AU ER KR



Some applications of tnese results are given on simultanecus confidence inter-
vals. All tne results mentioned by Knatri [4] are now valid omitting tne

strueture £ .

2. Inequalities For multivariate normal distributions.

Tne following lemmas will be used in establisuing (3) and (b).
Lemma 1. Let £’~'N(O,VQ§)), x(2) = (XZ,XB,...,XP) and let ﬂl(xl) and

- (2)

Qe(xce)) be two convex and symmetric regions in x, and x respectively

1 ~
about tne origin in p~dimensional space containing axes due to otner variates.
Then,

(2) (2
PO, () N8,())) 2 R(9, ) (0,1)

For proof, refer Knatri [4].

Lemma 2. Let x: px 1~ N(0,V(x)) and Z: px 1 ~N(0,v(Z)) . Tuen, if

v(x) - V(Z) is positive semi-definite,
P(8(z)) > P(8(x))

wihere ®(w) is a convex and symmetric region in W about the origin.
"~ ~7

For proof, refer Anderson [1].

Theorem 1. Let x ~ N(O,V(x)), x' = (y!,...,¥'), y! = (x )
e Mt o - ~ o~ '~ ~ ~l r\q ~ pl+- . .+pi_l’ * o ’Xpl+' . .+pi

and Qi(yi) be convex and symmetric region in Yi about tne origin in p-
dimensional space containing axes due to otuer variates, for i=l,2,...,Q.
Then

q d
0] 2 20, R 0 2 T (e, (r)



Proof. Wnen any (g-1) values of p,»> i=1,2,...,q are at tne most one, tuen
tnoerem 1 is establisued by Knatri [4] or theorem 1 is equivalent to lemma 1.
Here, we assume tuat 1 >1,1i=1,2,...,9. First of all, we suall consider

tue case wnen V(x) is positive definite. Wituout loss of generality, we

can write V{E) = AA' wiere A = (Aii') is nonsingular, 4., =0 for
i>4', i,4' = 1,2,...,q9. Let é‘l£=£ and Z' = (up,...» ¥) wita
w! = (2 seensZ ). Tunen, it is easy to see tnat
~ pl+"'+pi~l+l pl+...+pi
q
¥ = jEi éij Eg for i=1,2,...,59

and 2 ~ N(o,gp) or v, ~ IN(O,IP }, i =1,2,...,9. It is easy to see that
i

tneorem 1 will be establisiied for V(x) to be positive definite if we can

establisn

: q
) f 08T s w)lzealz

j=1 1]

q q
P[:égl(?il)] P[QE '\‘“i(jzi 25 %5 |2 eq)

for every (p.+l)-flat Q containing (2.,Z.,...Z_ )-axes.
1 1°72 Py
Let us take sucn a (pl+l)-flat Q and let us suppose tnat tnis is
determined by tne set of linearly independent equations given by

P'pl

z £ .Z, =0 for k =1,2,...,p~p,~1
j=1 kj J*py 1



P=by p-py
wnere witnout loss of penerality, take ¥ 4 .- =1 and ¥ £ .4 =
j=1 kd J=1 k37k']

'Y : = : (p-p,-1) % (p-p.). T
for k +k'. Let L, (zkj). (p Py 1) x (p pl) Tuen, we can complete L,
by a vector 4 sucn tnat L' = (& Li) is an ortuogonal matrix. Now use

tue transformation

t 1y o 1
L(E2’°"’Eq) (Vl’ gy eees vp_pl)

"Tnen it 1s obvious tuat tne (pl+l)-flat Q@ will nave thne coordinate system
given by Qgi, vy, v, =0 for i= 2,...,p—pl) and v, ~ N(0,1) and

Wy ~:N(O,Ip ) and tuey are independently distributed. Hence, using tuis

S, ~~l

system of coordinates in tne left side of (5), we get

q
(3) 1I(g P‘-ﬂ 9( A..w)lZeQ] Pr\f) (A w+6v)ﬂ(ﬂ 9.(8.v )-J
' ~i ~Ll~l ~ . J\~i 1
i=l j= j=2
' q
- : [ ' 1 sy t. =
wiere if 4 ('&2, 255 ..(.l, ilq) witn gl:p, x 1, 8, j*fi fiij ,&j for
i=2,3,...,0 and El = 322 élJ zj. Since Ed’ i=2,...,q4 are fixed
vector and &i(givl), i=2,3,...,q are convex and symmetric in §.v, about
q
tne origin and nence Q(Vl) ﬁ'(v ) is convex and symmetric in vy
"2

about the origin. Then using tunis in (6) and tnen lemma 1, we get

q
(7) 1(Q) > H 9, (A, 0, +6;v) | P(9(v,) = DEXAR
Note that
(8) P(ﬂ\‘)(év))-P(ﬂ;Q(%AW)lZeQ)
i=2 1=2 j=i

and by using lemma 2,



(9) 1{‘9 (411778, Vl)] Z Pfgl(ll):\

— ] 1 1
for V(yy) - V(&) w;48,v,) jz‘l Aghrs - (B8 + 8 8))

q
A (T - 4.4 A‘ is positive semi-definite.
j=o ~d (~p j ; P

Using (8) and (9) in (7), we get (5). Tous, theorem 1 is establisned when
V(x) is nonsingular.

Let V(;S) be positive semi-definite. ILet u: p x 1 ~N(E,h ’I;p) and
let u and x be independently distributed. Tnen x + u = EJA'N(9;q£p+V(§))
and VQE) + n Ep is positive definite.  Hence from the result for positive

definite covariance matrix, we get
q q
(10) B N a@.(t.)] > 1 P\}Q,(t.)]
L. 1~ - . 1'~1
i=1 i=1

Taking limits as n - o+, we get tne result for thne singular case, for

z I{Q(t ] - P[Q(Xi)]

if 9(y) 4is a convex and symmetric region in y about the origin.

Tneorem 2. Under the notations of tneorem 1, we nave

P(n 8. (y,)) 2 P8, (y,)) P(ﬂ 9.(v)) > n P8, (v,))

i=1

where SZE) is the complement of 9(w).



Proof. Let us consider tue case wnen V(x) is positive definite and we

proceed in tne same manner as in theorem 1 in considering

d
Ho,(;) N (U 9,(7,))]

i=2

Using tne same arguments as tnose in tneorem 1, we get

q q q
(11) 1{.;9 (2 a.w)N(U 9.(% A w))lz eQ]
Lo say ~ j=p T og=p TR

q
- ¢
= P[ég (A09;%8;v,) 0 (U 90y (Vl)]
_ i=2
q
Now U Qi(vl) L Ivll <o for some «o > o . Hence, using tnis in
i=2

(11) and using tieorem 1, we get

(12) Pfsal(%Aw)ﬂ(Uaa(ZAw))IZeQ,]
- i=2 j=

> P[ﬁ (All~l+6 v )] P[Iv | < a]
0!:\ i P‘:ii égi(vl)] ) P[:'Ez égi(j%i 'éijﬂj)‘f% € Q‘] and

1> p(,
B8, (1470 | Z B0, (1), ve et

tA

and using I{lvl[

(13) P[@(%A )0 (U 9,(5 A w)lzeal
W, . W, Z €

> B0, (y,)) pr u 9, (%
i=2 jﬁ

Tnen (13) gives us

q a
(14) 49, (z,) 0 (Y 9, (g, )] 2 209, (3,)) R(U95(z,)) -

N



We note thnat if Rl and RE be two regions, then

P(Rl) = P(Rl N ﬁg) + P(Rl n Re)

S
q q

Moreover, we have { U S.(y.)} = N 9.(y.). Using these in (14), we get
i=2 PR i=p 7

d ' q
(15) F[*gi(é’,l) n (iDE Qi(yi)] < PO, () P(iSE 9, Gg; )
and this implies

q : d
(16) P(N 9. (y.))>P®, (v)) (N 9. (y.)) .

. iR4 171 . iM4

i=1 i=2
Tius, tneorem 2 is proved wnen V(x) is positive definite. Wnen V(x) is
singular, we can argue in the same manner as in theorem 1. This completes

tne proof of tneorem 2.

Corollary 1. Let x4 ~'N(O,V(xj)), j=1,2,...,n and let tnem be independent.
Let Qi = Si(yil’ yi2""’ yin) be convex and separately symmetric in

) ~. ~
Yi12 Yio> =+ Yip about the origin for i = 1,2,...,4 and Qi be the
complement of Qi . Tnen

q q q _ a
P(N 9)> T PO) and P(N 8.)> 0 P(S,) .
=1 Y T i=1 7 i=1 T i=1

(For the definition of separately symmetric, see Knatri [4].)

Proof. We snall only indicate tne proof for one case as under:
Let Vi3 A,N(o,v(yij)), j=1,2,...,n and i =1,2,...,q9 and let them

be independent and independent of Xpseees X o By theorem 1, it is easy

L1 Xpo

to see tnat



(17) : Ef ﬂ Q. Yigreeeo Xin) l Ko vees fn-l]

q
> ve v
- P[igl Qi(zﬁl’ ? Z&n—l)lzl’ ’En-l]

because Qi(zﬁl""’Z&n) is convex and symmetric in y.n about tine origin

i

WAen y.iseees ¥ o are fixed. From (17), we get

q
(1-8) ﬂ:—igl égi(zil’. . )] ﬂ_ n A(_) (y l’ ’~in*l’~1n)]
Proceeding in tne same manner for x l ""’fl , we get the final result
as

V

q q q
(19) Igiih 0,127 N 0, Gegseom)] = 2 58, (g ey ]

i=1

il

T P(o.)
n P.) .
i=1 +

This proves the first part of corollary 1. The second part can be

proved in tne same manner.

Corollary 2. ILet X5~ N(O,V(x.)), j=1,2,...,n and be independent. Iet

. 2
us suppose that V(x.) = A. = =
D (“J) ( ), ~A1,J Gi,j Eai for o 1,2,...,T
al+.. +dl 5
and z X, 3 for 1 =1,2,...,r
- 2
a—al+ ..+ai l+l
q
v . = (Z z t=1,2,... =
b5 rl+...+tt_l+l,..., rotrot. +rt)’ =2 > s tgl Ty =r and

9, = gt(Z£,l’ Tg,000 0 Xi,n) about the origin for t = 1,2,...,q. Tnen,



q q
P(N 9,.)> H P(;‘J ) and P( N ,Q ) > H P(AQ ) .
t=1 %=1 t=1 t=1

Tnis follows from corollary 1.
Note: 1In corollaries 1 and 2, if some observations are missing on

or or ¥y _, we nave to omit tnese from tne convex and symmetric

¥y Ypoee Iy

regions Qi, i=1,2,...,9. €.g. Suppose on the only observations

Z,l:

available are vy 0 9 = 1,25..05n, (nl < n). Taen, 9 =9 (Zi 10 Zi,nl)

is convex and symmetric region in about tne origin.

Zi’l,..,,Zi’nl

3. Direct applications.

(3.1) Confidence bounds for means.

Let us suppose that X5 ~ N(é,V(x)) for j = 1,2,...,n and let them

. -
be independent. Let us assume tnat V(x) = (A s A =0 Lo, 71,2, m
- 1 1 . ' A .
and 5 (El’ R Er), witn Ei' @, x 1.
n
Let x! i o, . X1, y. = % y. ./n and
~J (y 1,37 ? ZI'SJ), Zl 1 ? Zl §=1 Z:L:J/
n — —en
.= T ¥y .y. .-ny'y, . Tnen, by corollary 2, it is easy to see that
11 j=l ZJ-:J ZlaJ Zl Z,l ! > 0¥ yoe, dt 2 y a
(20) F G768 G,78,) < o) &40 1= 1,2m.0r]
>
n p{(i’,l -5 (1578) <o Jii]
i=1
- n-1
because y. and /.. are independently distributed and /.. = T Z! Z,
i ii ii j=1 ~isd A

. witn <§i”';’§})' A,N(E,V(i)/n) and EJ = (Ei,j""’zigj)' “'IN(S’V(E))'
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Now it is easy to see tuat n(n-l)(§i-§i)'(}i—gi)/agi is distributed
as Fai,(n—l)ai with o, and (n—l)ai degrees.of freedom for i = 1,2,...,r.
Hence, we can find cl,02,...,cr such thnat

r
(21) N gG-8)<e, o] = 1-a
i=1 ~

~

One cnoice of choosing "’Cr is to take

CysCpse

{G-6) Gg) € ¢y o= @-a¥" .

Using (21) in (20), we can find simultaneous confidence bounds on E,

~Ls

i=1,2,...,r with confidence greater than (1 - ) as

@) a7 - {eye) < ag <7+ oy o)}
1

for all i =1,2,...,r and for all non-null vectors as: o, X 1, 1 =121,2,...,r,

(3.2) One sided confidence bounds on variances.

Let us suppose that x = (Zi,...,zé)' ~ N(0,V(x)) and let us have n

independent observations on x . Out of these n observations, it is found

~

that ni Observations are missing on yi, i=1,2,...59. Let V(x) = (Aii')’

~

and Si’ the sample sum of squares matrix due to available observations on

vio i =1,2,..0q .

If 9, = Q.[ch (AT} s )< c.], then 9., is section-wise convex and
i it Tmex il 57 — i i
separately symmetric in available observations about the origin (see DasGupta,

Mudholkar and Anderson [2]). Hence, by corollary 1, we get

q q a _ a
(23) P[E\ ’S’ilf I P(9,) and P[Q 391]3 I 2@,) .
i=1 i=1 i=1 i=1



In order to obtain the lower bounds on the parameters A'i’ 1=1,2,...,0Q,

o~

we use tne first part of (22). Let us choose

cl,cg,...,cq such tnat

(ek) H E[cnmax S ) < c. ] = 1-q .

s T R

Using (24) in the first part of (23), we get simultaneous lower bounds on

A11’ i=1,2,...,q with confidence greater tnan or equal to (1L - @) as

(25) % A

a,
A1l A~

> a!
i = <

i - l LI B ]
H Ei ii/ci, 1 323 sq

for all non-null vectors il’ f2""’ fq .

Similarly, by cnocsing ci, i=1,2,...,9 from

q -1
5 ; > o
(29) 0 Ren (45 s;) ci:\

i=1 = l-e,

11

we find the simultaneous upper bounds on A 52 i=12,...,q9 with confidence

greater than or equal to (1 - @) as

o! TR
(27) 31 éll 23 = 1(31 ~1 21)’ 1= 1,25-.050

for all non-null vectors ai, i=1,2,...,9 .
By combining (25) and (27), we get the simultaneous confidence bounds

on A11’ i=1,2,...,q with confidence greater than or equal to (1 - q)
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