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CHAPTER I

BACKGROUND AND FRELIMINARIES

1.1 General Background

In midtivariate analysis, we generally wish to test three hypoth~
eses, namely,

(I) that of equality of the dispersion matrices of two p-variate
normel populations,

(II) that of equality of the p~dimensional mean vectors for £
p-variate normal populations (which is mathematically identical with
the genersl problem of multivariaxe analysis of variance of means); and

| (III) that of independence between e p-set and a g-set of variates
in a (p+q) ~ variate normal population, with r<q.

All tests proposed so far for these hypotheses have been shown to
depend, when the hypotheses to be tested are true, only on the charac-
teristic roots of matrices based on sample observations. For example,
in case (I), all the tests proposed so far are based on the character-

istic roots of the matrix Sl(sl+82)'l, where S. and S

1 2
sum of product (S.P.) matrices and where both are almost everywhere

denote the

positive definite (a.e.p.d.). Thus S:L(S:L+Sa)'l is a.e.p.d., whence
it follows that all the p characteristic roots are greater than zero
and less than unity. In cese (II), the matrix is S*(S*+S)'l, where

5% denotes the "between" 5.P. matrix of means weighted by the sample



sizes and S denotes the "within" S.P. matrix (pooled from the S.P.
matrices of { seamples). Then 8 is a.e.p.d., and S* 1is at least
positive semidenfinite of rank s = min (p,4-1). Thus, a.e., s of the
characteristic roots are greater than zero and less than unity and the
p~-s remaining roots are zero. In cese(III), the metrix is 811812852812,
where Sll is the §S. P. matrix of the sample of observations

on the p-set of variates, 822 that on the g-set, and S the S.P.

12’
matrix between the observations on the p-set and those on the g-set.’
If p<q and p +q<k, where k 1is the sample size, then a.e. |
the p characteristic roots of this matrix are greater than zero and less
than unity.

In other words, these characteristic roots, form the sample func-
t;ons, using which all tests in multiveriate analysis, are comstructed.

So, their discussion for introductory purposes is perhaps mandatory.'

Consider the following determinantal equations,

(1.12.1) la-0(A+B)] =0
and
(1.1.2) Ja-aB] =0

where A and B are independent S.P. matrices, hased on ny and n,

sample sizes respectively and can be defined differently for different
hypotheses (I), (II) and (ITII), as mentioned above. In each case, if

the hypothesis to be tested is true, the s < p nonzero roots ei s



where 0 < el < 62

the form of which was given by Roy (1939), Hsu (1939) and Fisher (1939).

.. .5 es < 1, have the same joint distribution,

The distribution can be written in the form

s ) ]
(1.1.3) c(s,m,n) 1 e? (1-8,)" 1 (e,-6,) T ae
1

=1 1>j 37 1

0<6, <0 <8, ,<1,

where

/2 7 r(@ﬁmwﬁe
. )

(1.2.4) ¢(s,m,n) =

; J

i=1
Fr(EE)r (B (E)

Here m and n are to be interpreted differently for the different
situations. For example, in case (1), with 0,y and n, @as the sample

sizes,

(1.1.5) m

1}
[

(n,-p-2) , n =% (n,-p-2) .
In case (II), with N the total of the sizes of 4 samples,

(1.1.6) m

i}
M=

(}2-p-1]-1) , n =3 (N-2-p-1) .

In case (III),

(1.2.7) m

LI}
=

(k=-p-g-2) .

=]
]
N

(g-p-1) ’
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5]
The corresponding joint distribution of ki*s(hi= I%g— , i=1,.4.,8)
i
under the reSpective hypotheses, is given by
s -8
(1.1.8) C(s,mn) T 1} (1+xi)'(m+n+s+l) I (hg-hy) Tag

i=1 gy i=1

O0< A, € 400 <X Ko,
1l - - '8

where m,n and C(s,m,n) are defined as gbove.
Nenda (1948 a) has shown that if g, =n ei(i=1,...,s), then the

limiting distribution of §i's as n tends to infinity is given by

8 g, s
(L1.9)  k(s,m) I g e” ~ I (g,-€.) 0 ag
1=1 1>1 Jia1

0<'g15.”sgs<m

where

(1.1.10)  x(s,m) = ns/z/ [1§1 r (255%13) r (%)] .

The distribution (1.1.9) can also be arrived at as that of

g

g = %Yi (i=1,...,8) where Y,'s are the roots of the equation
IS-Y 2|= 0 where S 1is the variance - covariance matrix computed from
 a sample taken from an s-variate normal population with dispersion matrix

Z .



1.2 Statistic Proposed for Tests of

Hypotheses (I), (II) and (III)

We list below the statistics based on the characteristic roots
ei, )\i or if.,i , which can be used to test the hypotheses (I), (II) and
(IIT) with the suitable choice of the independent S.P. matrices A and
B.

(i) Roy's (1945, 1953) criteria of the largest root es(xs) and

the smallest root Gl(hl) .

(ii) Hotelling's (1951) Tﬁ statistic defined as

) 8
9
(1.2.1) 'Ii = (n2-l) tr 1A = (n2-l) E Ay = (na-l) Z (_i%_e_ )
i=1 11 1

(ii1) Wilks' (1932) A-criterion defined as

8 8
(1.2.2) A= 1Bl = I (1-91) =1 (1+7\i)'1
|a+B] =1 1=1

(iv) Pillai's (1954) V-statistic defined as

8 8
A
- -1 .42 = 1

(1.2.3) VvV =tr [(A+B) " A] = z 0, = Z(H“ )

1=1 i=1 *
(v) Finally, we propose the statistic Wés) defined as
(s) _ .
(1.2.%) Wyl = E; g gj .

1<)



Arguments for the use of these test criteria are that the char-
acteristic roots (i) are invaeriant under all linear transformations of
the variates, (ii) are unaffected by a change 1in the unit of measure-
meut, and (1ii) are independent of the magnitudes of the population
variances and covariances.

Nanda (1948 &) gave the joint limiting form of (1.1.3) which we
have listed in (1.1.9). Following him, the joint limiting form of
(1.1.8) is easily proved also to be the same as (1.1.9) by setting
§i=n Ki in (1.1.8) and then letting n - ® . This fact that the joint
limiting forms of both (1.1.3) and (1.1.8) are the same ensbles us to
conclude that the limiting distributions of the statistics Tﬁ and V
will be the same except for the constant multiplier. The same can be
said in the case of Roy's statistic.

No great headway has been made so far in finding the distribution
of the various statistics defined above. The classical Ti is known
(Rao, 1952) to be distributed, under the null hypotheses, as central
chi-square with (nl—l)p degrees of freedom (d.f.). In the case of
non-centrality parameter 62 + 0 , the classical Ti is & non-central
chi-square distributed with (nl-l)p d.f.. The exact distribution of
studentized Tﬁ for both central and noncentral cases is not knowm
in compact standard form. Ito (1956) has given, under the null hy-
potheses, its approximste distribution as»an asymptotic expression of
chi-square each with (nl-l)p d.f..

Wilks (1932) has given the exact distribution of A for n = 1,2
and any p, and for p = 1,2 and any n, by comparing the moments of A

with those of F-ratio. Bartlett (1938), Rao (1948), Box (1949) have



suggested different spproximations but the exact distribution and its
tabular values are not yet completely available.

Roy (1942) obtained the distribution of the largest, smallest and
any intermediate one of the roots of the determinantal equation (1.1.1).
Nenda (1948 a) gave a different method for deriving these distributions
for s =2(1)5. The limiting forms of these distributions were given
by Nanda (1948 b). Pillai (1954) gave exact expressions for the dis-~
tribution of the largest root up to s = 10 and also an approximation
which he generalized (1965, 1967). He (1960) published tables for
8 =2(1)5 , m = 0(1)%+ and n =5 to 1,000 which he later (1967) ex-
tended up to s =20 .

Pillai (1954, 1955, 1960) has given an approximation to his
statistic V and has tabulated it for s =2(1)5, m = ~-.5(.5)5(5)80
and n = 5(5)80. Nanda (1950) has also given the exact distribution
Tfor the special case.when m=20.

We shall be concerned here with the distributions of A and Wés)

in the null and the non null case.

1.3 Recent Advances

The theory of multivariate analysis took a new turn when matrix
variates were introduced as arguments. A.T. James (1954, 1955, 1960,
1961) used the theory of averaging over orthogonal groups, zonal poly-
nomials, Bessel functions and hypergeometric functions with matrix ar-
gument and derived (a) non-central Wishart distribution (1955),

(b) distribution of the latent roots of the covariance matrix (1960),

(c¢) distribution of non-central mesns with known covariances (1961).



Constantine (1963) discovered the power series representation of
hypergeometric functions with matrix argument and using the Laplace
transform gave an alternate derivation of (a), (b) and (c¢). He
also derived the distribution of canonical correlation coefficients
in the general case. More recently, Constantine (1966) cbtained the
non-central distribution of Hotelling's generalized Ti but it con~
verges only in [0,1).

Schotzoff (1966) gave a form for the distribution of Wilks' A using
convolution operation. But he did not give the exact distribution ex~
plicitly for p > 2 and his tables of percentage points were restricted
such that pf, < 70. Consul (1966), using inverse Mellin transform;
gave exact distribution of A pr p=3 and 4 which involve hypergeo-
metric functions. Present investigations have extended these results
giving explicit distribution for p =3(1)6 in finite series form
(except when p and f2 are both odd, in which case the series is

infinite)and enabling computations of percentiles overcoming the barrier

pf, < 70 .

1.4t Mathematical Glossary

Some known results, which are used frequently in this thesis, are
given in this section. These results, stated without proof, are given
in brief in order to ease and make clear subsequent'use of them and

checking of conditions for their use.



1.4.1 Vandermondels Determinant
Let us counsider a type of determinant (due to Vandermonde) which
plays an important role in the development of Chapter II. Denote by

Vo the Vandermonde's determinant of the form

xP-1 xP-2 ceo X 1
P P o
L -SSP
(1.4.1.1) v, = .
xg'l xg-e cee X5 1
xg-l x€"2 cor Xy 1

where xl,...,xp are p varisbles. The determinant can be shown to be

equal to the expression

b
(1.%.1.2) v = 153 (xi- xj) .
The determinant V0 has several interesting properties. In Chapter II
we are interested in the product of a Vandermonde determinant and the
powers of elementary symmetric functions. To this effect we have a
very useful Lemme due to Pillai (196k4), which we state below.
Ierma 1. Let D(gs, SPRITE gl) N (gj >0, j=1,2,...,8), denote the

determinant



g g g
x 8 x -1 . x 1
] S s |
(10"4‘01'3) D(gs)gs-l""’gl) = : ‘
g g (23
s s-1 1
xl xl ( o0 xl

If ar(r < s) denotes the rth elementary symmetric function in s
x's , then

(1)

!

(Lbh.1h) & D(gs,gs_l,-o-,gl)=z D(gls g _150+,81)

j+ 8 , J=1,2,000,8, 6§ =0,1 and %' denotes the sum

over the (i) combinations of s g's taken r at a time for which

where g3 =g

r indices g3 = gj+1 such that & =1 while for other indices

! =g. such that 6§ =0 .
gJ 8J

(11)

(1.4.1.5) a, & D(gs,gs_l,...,gl) ==§z D(g_, g;_l,...,gi) s

where h <s, gg = g3 +8 , jJ=1,2,004y8, 6§ =0, 1 and " denotes

summation over the (i)(;) terms obtained by taking h at a time of

the s g's ineach D in £' in (1.k.1.4) for which h indices

g"J.' =g} +1 while for other indices g:j' =g} -

10

- k 4
(1ii) (ar) (ah) D(gs,gs_l,...,gl) s (k,2 > 0) can be expressed as a
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sum of (:)k (;)z determinants obtained by performing on D(gs,gs_l,
...,gl) in any order (i) k times and (i) £ times with r =h .
However, if at least two of the indices in any determinant are equal,

the corresponding term in the summation vanishes.

1.4.2 Generalized Hypergeometric Functions
The generalized hypergeocmetric function PFq is Pachhammer's

"notation for the series

<
(a,), eee (8 ) k
1k k x
(lohogol) F (a ,ooo,a ,'b ,001,b ;X) = p ‘-"'
pa 1 P’ 1 a A by )y - (bq)k k!

where the hypergeometric coefficient '(a)k is given by
(a)k= a(a+l) ... (a+k-1) .

qu is a function of the real or complex numbers a

bl cen bq .

100 2y

The nultivariate distributions involve a generalizstion of this
function to the case in which the variable x is replaced by a sym-
metric matrix S(mxm) and qu is real or complex valued symmetric
function of the latent roots of § .

We take our definition of the general system of hypergecmetric
functions of matrix argument as the power series representation dis-
covered by Constantine (1963). As we are dealing with symmetric func-
tions of m variébles, the power series can be expanded in terms of

one of the types of symmetric polynomisls. For any such type of basis

of the symmetric polynomials, the individual homogeneous polynomials of



degree Xk are usually indexed by partitions K = (kl,k2,...,km) ’
klz kzz vee> kmz o, kl+f¢¢+ k =k, of k into not more than m
perts. Hence whereas in the case of a single variasble, we sum over
2ll integers k , in the case of a matrix varisble, we sum over all
partitions K of all integers. While in theory any basis of the sym-
metric polynomials would do, in practice a colossal simplification of
the coefficients is achieved if certain homogeneous symmetric polyno-
migls, CK(S) » called zonal polynomials, described in the next section,
are used.

The hypergeometric functions which appear.in the distributions of

the matrix variates are given by Constantine (1963).

Definition 1.

, 2 o (ag)y ees (). C(5)
(14.2.2) _F (8,,:40,8 3b.,ee.,b 38) =) 1k T Cpe K
pal prl 4 kt'O; (b ) =i (b0 X!

al... a?, bl,;..,bq are real or complex constants and the multivariate
hypergecmetric coefficient (a.)K is given by
m . v
(a)g = ;0 (a- -2-(1-1))ki

Definition 2.

(10"".2.3) qu(al, o‘ou,‘ap; bl,oua,bq; S,T) =Z Z
k=0 K

(a))ceee(a )y (810, (1)
(bl)K..'._"(bq)K C (T, Jk!

Relationship between hypergeometric functions, zonel polynomials

and Laguerre polynomials has been discussed in later sectionse



1.4.3 Zonsl Polynomials
The definition of zonal polynomials requires a few concepts from
group representation theory. ILet Vk .be the vector space of homoge-
neous polynomials ¢(S) of degree k in the n = % m(m+l) different
elements of the m x m symmetric matrix S . The dimension N of Vk
is the number N = (n-k-1)! /(n-1)! k! of moncmials

m
m k.
I 8,79, of degree z iy =k

i<
i<j 1<j

Corresponding to any congruence transformation
(1.4.3.1) S-LS L

by a non-singular m x m matrix L, we can define s linear transformation
of the space V, of polynomials ©o(8) , namely

(1.4.3.2) ¢-Lo: (Lo)s) =L tsr?t)

A subspace V! CVk is called invariant if IV! Cc V! for all
non~singular matrices L . V! is called an irreducible invariant sub-
space if it has no proper invariant subspace. Throll (19&2), Theorem 3,
p. 378 proved that Vk decomposes into g direct sum of irreducible in-

variant subspaces VK corresponding to each partition K of k into

not more than m parts

(1.4.3.3) V., = & v, .



1k

The polynomial (tr S)k € Vk then has a unigue decomposition

(1.4.3.4) (tr s)k = z ¢, (s)
K

into polynomials, CK(S) € VK s belonging to the respective invariant
subspaces. |

The zonal polynomial CK(S) is defined as the component of
(tr S)k in the subspace VK . It is a symmetric homogeneous polyno-
mial of degree k in the latent roots of S .

Equation (1.4.3.4) holds for all m, and the zonal polynomials
look the same for all m, but if the partition ¥ has more than m
parts, the corresponding zonal polynomial CK(S) will be identically
zZero.

Zonal polynomials, dencted by ZK(S) because they are given a
different normalizing constant, are listed up to k = 6 in James (196L4).
Zonal polynomials for k = 7lto 11 (unpublished) were communicated to us

by James. General methods of calculating them have been described by

James (196L4). The CK(S) aﬁd ZK(S) are related as
(1-4.3.5) Ge(8) = [ xpy, {1) 2% ki / (2x):] 2,(8)

where X[EK] (1) is the dimension of the representation [2K] of the
symmetric group on 2k symbols. It is found by substituting (2K)
= (2k1, 2kp) for K = (kl,... kp) in the well known formula (Weyl

(1946), p. 213. Theorem 7.7.B) that
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P ' P
(1.4.3.6) Xpyy (1) =X 123 (- k- 1+ J)/izl(ki+p-i)!

From equation (38) of Constantine (1963), namely
(1.4.3.7) 7,(1) = 2"(n)
e™e )e Km 2m.K
we have the value of the zonal polynomial at the unit matrix;

o p b
(1.k.3.8) ¢ (L) =2 s (3m), T (2k, - 2k, - i+§)/ I (2k + p-1) !
. i J . i
i<y i=1
Note that if m =1 , equation (1.4.3.4) which defines the zonal
polynomials becomes xk = C(k)(x) . Thus zonal polynomials of a matrix

variable are analogous to powers of a single variable.

1.4.4 Generalized Laguerre Polynomisls

Iet S be a complex symmetric matrix. The generalized Laguerre
polynomials are polynomials in the elements of S and are extensions
of the classical Laguerre polynomials, to which they reduce when m = 1i
Many of the results for the classical polynomials generalize to the
case of matrix variables. The reader is referred to Chapter 10 of
"Higher Transcendental Functions” by Erdelyi et al. for the case m = 1,
especially Section 12.

For each Romogeneous, symmetric polynomial o(R) inthe mx m

matrix R, Herz (1955) defines the function Ig (8) vy
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(1.%.4.2) R L'(s) =J etr R |R|Y o(R) A (RS) 4R ,
o R>0 A

where Y > -1 and the generalized "Bessel" function AV(R) hes the

expansion (Constantine 1963)

<o

(1.h.k2) A (R) = [1/rm(y+%(m+1))]z [c (-R)/(v+i(m*1)), ki1 ,

k=0
where
(L.k.4.3) L (a,6) = 09D 12 a3 (1-1))
and
(L.h.b.4) T, (a) = T (a,0)

He showed that Ig (s) 1is a polynomial of the same degree as O .
Constantine (1966) took the zonal polynomials as a basis for sym-

metric functions, and defined

(.b.h5) e 5 ¥ (s) = Jmoe'tr B r|Y ¢, (R) A (RS) &R .

Now the Bessel function has the integral definition

-1
(1.4.4.6) AY(R) = [e%m(m'l)/(eni)%mp] I JtrZ -tr RZ 2| ¥Paz,
R(Z)>0
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where
p =3 (mtl) .

Substituting (l.4.4.6) in (1.4.4.5) and reversing the order of inte-

gration,
Y im(m-1) mp
(L.b.b7) 1 (8) = I (v+p,k)[22 [(emi)™]
T E VP g (a2t az
R(Z)>o

Equation (1.4.4.7) allows the calculation of the Laguerre poly-
nomials. The inverse Laplace transform of the zonal polynomial is
(Constantine 1963)

1 - 1 - -
(1.0.4.8) [220(m-1) 5 y3uD] J e R 2 \g|-Y c (z) az
(z)>
= [/, (v,)) [R|"P e, (R) o
. -1
Expanding C, (I-s z°7) ,

(1.k.49)  c (I-8 Z71)/c, (1) =}j‘ Y (-1 e c (s zh)/e (1)
n=o ?

and performing integration in (1.k.k.7) using {1.4.4.8), we obtain

Q420) 1Y (5) = (), 6D T T (" Tag e (8/6 (1))
n=o ’
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An explicit formula for aK’v is not known, but they may be readily
calculated from (1.4.4.9). They are tabulated up to order k =4 in
Constantine (1966). (1.4.4.10) shows that, in general L; (8) is a
polynomial of degree k in S , unless S is singular when the degree

may be less than k .
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CHAPTER II

DISTRIBUTION OF wés)

2.1. Introduction

Distribution problems in multivariate anaylsis are often related
to the joint distribution of the characteristic roots of a matrix de-
rived from sample observations taken from multivariate normal popula-
tions. This Jjoint distribution (under certain null hypotheses) of s
non-null characteristic roots given by Fisher (1939), Girshick (1939),

Hsu (1939), and Roy (1939) can be expressed in the form

S
(2.1.1)  £(8y,..-,8,)=C(s,m,n) T erin(l-e.i)n I (o;-6.)
i=1 i>5y J

0<6.<...<6 <1
1~ - s

where

emienis 112, /(2L 1@ty /o))

(2.1.2) c¢(s,myn) = HS/2 ; r( 5

i=1
and m and n are defined differently for various situations described
by Pillai (1955, 1960). Nanda (1948a) has shown that if §i=nei(i=l,...,s),
' g
then the limiting distribution of gis as n tends to infinity is given

by
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1

8 -gi
noge T 158y

(2.1.3)  £,(§),8---55;) = K(8,m)
- i>j

o<glg...§gs<m

where

(2.1.4) K(s,m) = rfs/g/[ Islr(gg%il—) r(i/2)].
i=1

The distribution (2.1.3) can also be arrived at as that of §i= % Yy

t
i=1,2,...,8) where .S are the roots of the equation {S- o =0
Y Y

where S is the variance-covariance matrix computed from a sample taken

from an s-variate normal population with dispersion matrix Z. In this

(s)
2

1
function (esf) in s E S, have been obtained and approximations to its

chapter the first four moments of W , the second elementary symmetric

distribution suggested. In addition, the variances of the third and

fourth esf's are also obtained. An example is given to illustrate the

(s)
2

use of W as a test criterion.

2,2, Formulae for the First Four Moments. of Wés)

The joint distribution (2.1.3) can be thrown into a determinantal
form of the Vandermonde type and integrated over the range R,

O<gl§“.§%<m,@ﬁ%
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(oo] - 0 -g
J g?s’l e gsdgs...f s e dE
o o

S
(2.2.1) fRfl(gl,gz,...,gs) .nl d§i=K(s,m)
1=

g€
Bo mis.1 B 2 -
J g?+s le ldgl...J §Te dgl
o)

Now denote by W(s-l,s-2,...,1,0) the determinant on the right side
of (2.2.1). Using Lemma 1 in (Pillai, 1964), the first four moments of

we)

wés) can be obtained as follows: (denoting E(Wés))r by !

(2.2.2) Wy = K(s,m) W(s,8~1,8=3,.00, 1,0)

1

(2.2.3) W K(s,m)[W(s+l,s,8-3,.4.,1,0) + W(s+l,s-1,8-2,s-k,...,1,0)

+ W(S,S-l,S-2,S-3,S-5,...,l,O)]

(2.2.4) K(s,m)[W(s+2,s+1,8-3,...,1,0) + 2W(s+2,s,5-2,8=4,...,1,0)

H3

+

3W(s+l,s,8-2,8-3,8-5,...,1,0) + W(s+2,s-1,5-2,8=3,8-5,

eers1,0)
+ W(s+l,s,s-1,s-4,...,1,0) + 2W(s+1,s-1,s-2,5-3,5-k,s5-6,

cee»1,0)

+ W(s,s-1,5~2,8-3,8-4,5-5,5-7,...,1,0)]

and
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(2.2.5) Wy, = K(s,m)[W(s+3,5+2,8-3,...,1,0) + 3W(s+3,8+1,8-2,5-4,...,1,0)
+ 6W(s+2,8+1,5-2,8-3,8-5,...,1,0) + 2W(s+3,s,s-1,8-4,...,1,0)
+ 3W(s+3,5,5-2,8=3,8-5,...,1,0) + 3W(s+2,s+1,s-1,s-4,...,1,0)
+ TW(s+2,s,5-1,8-3,8-5,...,1,0)
+ 8w(s+2,s,s-2,s-3?s-h,s—6,...,l,O)
+ 3W(s+l,s,8-1,8~2,5=5,...,1,0)
+ 6W(s+l,s,s-1,8=3,8-4,8-6,...,1,0)
+ 6W(s+l,s,s-2,s-3,s-4,s-5,s—7,...,l,O).
+ W(s+3,8-1,8-2,8-3,8~4,8-6,...,1,0)
+ 3W(s+2,s-1,5-2,8-3,8-4,8-5,8~7,...,1,0)
+ 3W(s+l,8-1,8~2,5=3,5=0,5-5,8=6,5=8,444,1,0)

+ W(s,s-1,8-2,8-3,s5-k,5-5,8-6,5~7,8-9,...,1,0)]

2.3. A Method of Evaluation of the W-Determinants

Let us denote by V(qs,q .,ql) the determinant which could

NEEEE
be obtained from W(qs’qs—l"°"ql) by replacing &, by 6; in (2,1.1)

g.
e T by (l-ei)n and the range of integration by that in (2.1.1).

Pillai (1954,1956) has given a method of reducing the sth order deter-
minant V(qs,qs_l,...,ql) in terms of (s-2)th order determinants and
an sth order determinant with 4 changed to qs-l, the last one

being zero if qs-l =q The method of reduction for W(qs,---,ql)

s-1°
can be deduced from that for V(qs,...,ql) in (Pillai, 1956) and we

obtain the following:

1
- s=J-1 .
(2.3.1) Wlagag pseeay) =2 ) (-1)¥ I (a2 (ag g5 e eay, 0
J=s-1

q'j-l’”"ql) + (m+qs) W(qs'l,qs_l:”°: q‘l)



23

where .
(24342) I(ps2) = J 2 e ax = r(p+1)/2p+l .
(@]

The values of the W-determinants involved in (2.2.2) - (2.2.5)

are obtained using (2.3.1) and presented in the following section.

2.k, vValues of the W-Determinants

Iet us set

(24k.1) (2m+a)(2mtb) ... = M(a,b,...) .

Then for the first moment , we get

(2.4.2) K(s,m) W(s,s=1,8=3,...,1,0) = s(s-1) M(s,s+l)/23 .
In fact, in general
(2.4.3) K(s,mW(s,s-1,8-2,...,8-1+1,8-1=1,...,,1,0) = (;)M(s~i+2,...,s+l)/2l.

For the second raw moment, we get

(2.4.4)  K(s,m)W(s+l,s,8=3,..,,1,0)
= [(;)M(s,s+l)/2h33][hs(s+l)m?+ 2s(252+ 5s+9)m+sl‘L
+ hsd+ 1185+ 85+12] .
(2.4.5)  K(s,m) Ww(s+l,s-1,5-2,8=4,.,.,1,0)
-='[(§) M(Sel,s,s+l)/26][2(3s—l)m+352+s+io]

+ (m+s+1) K(s,m) W(s,s-1,s-2,8=4,...,1,0)



2
The last determinant on the right side of (2.4.5) is evaluated by putting

i =3 in (2.4.3). 1In general
(2.4.6) K(s,m) W(s+l,s-1,8-2,...,8-i+1,8-1-1,...,1,0)
. /8 . i+1,, .
= [1(M(s-142,...,541)/2 (1+1)][2(s+1)m+(s+1)(s+2)+1+1] .
K(s,m)W(s,s-1,8-2,8-3,5-5,...,1,0) is obtained from (2.4.3) by putting

io= U,

For the third raw moment, we get

(2.4.7)  K(s,m) W(s+2,s+1,5-3,...,1,0)
= [(szz)M(s,s+1,s+2,s+3)/26 3:][us(s+1)m?

+ 2s(232+5s+21)m+su+hs3+23sz+2Os+72} .
In fact, in general

(2.4.8) K(s,m) W(s+2,s+1,8~2,...,8=i+l,8=i-1,...,1,0)
= [i(i—l)(iiS)M(s-i+2,...,s+3)/21+531][hs(s+l)m?

+2s(2s2+5s+hi+l3)m + s(s+l)(52+3s+hi+12)+6(i+l)(i+2)] .

(2.4.9) K(s,m)W(s+2,s,s-2,8-U4,...,1,0)

= [(S+1)M(s-l,s,s+l,s+2)/25.15][2sk8s+l)m2+s(l6sz+l9s+lo9)m
L

b o3

+ 4s+9s +5932+5hs+180]

+(m+s+2)K(s,m) W(s+l,s,8=2,s-4,...,1,0) .

The value of the determinant in the last term on the right side of

(2.&.9) is obtained by putting 1 = 3 in the following general resulti:
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(2.,4,10)  K(s,m) W(s+l,s,8-2,...,8-i+l,8-i~1,...,1,0)
= LD (M(s-142, - 541)/27 3 (141) Ik (oo )n”

+2s(2s2+5s+2i+5)m+su+hs3+(21+7)52+(2i+h)s+21(i+l)] .

Now X(s,m) W(s+l,s,s-2,8-3,8-5,...,1,0) is obtained from (2.%.10) by

putting i = L,

(2.4.11) K(s,m) W(s+2,s~1,8-2,5-3,8~5,...,1,0)
= [M(s-2, ... 5+2)/2731)[2(58-2 Ju5s +s+h2]

+ (m+s+2) K(s,m) W(s+l,s-1,8-2,5-3,8-5,...,1,0)
In fact, in general

(2.4.12)  K(s,m) W(s+j,s=1,8-2,...,8~i+1,8-i=1,...,1,0)
= LA M, use3)/27 5 (049)]
x [2{(i+j-1)s-]} m+(i+j-l)sz+(i-j-l)s+j(i-l)(i+j+l)]

+ (m+s+j) K(s,m) W(s+j-1,8-1,58-2,...,8-i+1,s-i-1,...,1,0).

The value of the last determinant on the right side of (2.4.11) is

obtained easily from (2.4.6) by putting i = L.
(2.4.13) K(s,m) W(s+l,s,s=1,s8=4,...,1,0)
| = [(E)M(s-l,s;s+l)/26h3][8(s-l)s(s+1)m3+12(s-l)s(s2+2s+5)m?
+ 2(s-1)(3suﬂ9s3+3292+1hs+72)m

+ s(s-l)(su+hs3+l7s2+lhs+72)+lhh] .
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Now, K(s,m) W(s+l,s-1,s-2,s5-3,s-k,s-6,...,1,0) is obtained from (2.4.6)
by putting i =5 and K(s,m)W(s,s-1,s-2,s-3,s-4,s-5,s-7,...,1,0) from
(2.4.3) with i = 6.

For the fourth raw moment , we get

(2.4.14)  K(s,m) W(s+3,542,5-3,...,1,0) = [(SZE)M(S,S+1,S+2,s+3)/2853]
x [168(s+1)(s+2) (543 )m +85(542) (s+3) (hs2+1ls+46 )
& b(s+1)(s42) (65 +485342335°+6095+720 )
+ 2(s42) (UsP 4465743108 4132053435257 +58025-+6480 )m

+ (s+2)(s+3)(s6+lls5+8lsu+373s3+111852+2256s+h320)+288O] .

(2.4.15) X(s,m)W(s+3,s+1,s8-2,s-k4,...,1,0)
= [(S;E)M(s-l,...,s+3)/28h1][8s(s+l)(5s+3)m3
+ us(15s3+u7s2+189s+213)m2+2(15s5+705”+uo3s3+966s2+18ues+1uho)m
6

+ 58 +31s5+217s”+769s3+2210s2+h512S+576O]

+ (m+s+3)K(s,m)W(s+2,s+1,8-2,s-4,...,1,0)

The value of the determinant in the last term of the right side of
(2.4.15) is obtained from (2.4.8) by putting i = 3. K(s,m)W(s+2,s+1,
§-2,8-3,5-5,...,1,0) is deduced from (2.4.8) with i = L.

S+2 8.4
(2.4.16)  K(s,m)W(s+3,s,8-1,s=4,.,.,1,0) = [( 5 ) M(s-1,...,8+3)/2°3!]
X [832(s-l)m3+hs(s-l)(3s2+2s+2h)m?+2(s-l)(3su+hs3+h9s2+2hs+180)m

+ s(s-l)(su+253+25s2+2hs+l80)+36O]

+ (m+s+3)K(s,m)W(s+2,s,8~1,8-4,...,1,0) .
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The value of the determinant in the last term on the right side of

(2,4,16) is obtained from the following result by putting i = 3.

(é.h.l?) K(s,mW(s+2,8,8-1,8=3,c00,8=i+1,8-i=1,.4.,1,0)
- =[(i—2)(§:i) M(s-i+2,..,,5+2)/2i+”(i+2)h:] '
x [83(s-l){3(i+1)s+2(i-1)}m3+hs(s-l){9(i+1)s2+2(7i~1)s
+ 2(612+20i+h)}m2
+ 2(5-1){9(3+1)5 +2(111+1)s3+(24i 24851417 )s242 (61°+191 45 )
+ 2hi(i+1)(i+2)Im
+ s(s-l){3(i+l)sh+2(5i+l)s3+3(412+15i+3)52+2(6i2+l9i+5)s

+ 2hi(i+1)(i+2)} + 2b(i-1)i(i+1)(i+2)]

+ (m+s+2)K(s,m)W(s+1l,s,8-1,8-3,...,5-i+1,s8-i-1,...,1,0) ,

where the values of the last determinant on the right side of (2.4.17)

is obtained from the following:

(2.4.18)  K(s,mW(s+1l,s,5-1,5-3,...,8-1+1,5-1~1,.,.,1,0)
= [(1-2)(5) M(8-142, 4uuyps41)/2 (101023
3 . 2 . 2
x [8(s+l)s(s-1)m”+12s(s-1)(s " +2s+i+2)m
+ 2(5-1){35 4983+ (61414 )52+ (3145 )s+61 (1+1)}m

 s(s-1)[ s +hs34(3148)524(3145 ) 5461 (1+41) }+6(4-1) (1+1)] .
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K(s,m)W(s+3,s,s~2,8-3,8-5,...,1,0) is deduced from the following result

by putting i = L.

(2.4.19) K(s,m)W(s+3,5,8-2,...,8=1i+1,s-i-1,...,1,0)
= [P0 (542,000, 543)/2 (143 )01
x [hs{3(i+2)s+(1-6)}mi+2s{6(i+2)s>+3(31-2)s+121 24491 -6}m
+ s(s41){3(i+2)55+(51-6)s+121 (1+4)}+121 (i+2) (i+3)]

+ (m+s+3)K(s,m)W(s+2,8,8-2,...,8=i+1,8-i~1,,..,1,0)

where the value of the determinant in the last term on the right side of

(2.4.19) is given by

(2.4.20)  K(s,m)W(5+2,5,5-2, 400 ,8=i41,8=i=1,,4.,1,0)
= [(i-l)(iii) M(s-i+2,...,s+2)/2i+3(i+2)3:]
x [us{2(1+1)s+i-2}m?+2s{h(i+1)s2+(7i-2)s+(612+19i-2)}m

+ s(s+1){2(3+1)s5+2(21-1)s+61 (143 )+61 (i+1)(i+2)]

+ (m+s+2)K(s,m)W(s+1,s,8-2,...,8-i+1,8-i-1,...,1,0) ,

where the value of the determinent in the last term on the right side of

(2.4.20) is obtained from (2.4.10).

(2.4.21)  K(s,m)W(s+2,8+1,8~1,5-4,...,1,0) = [(S;Z)M(s-l,...,s+3)/2ll]
x [8(s+1)8(s-1)mo+hs (se1)(385+65+31 )

+2(s-l)(3su+9s3+6h32+30s+2h0)m+s(s-l)(sh+hs3+3352+305+2h0)+h80].
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K(s,m)W(s+2,8,8-1,5-3,5-5,...,1,0) is obtained from (2.4.17) by putting
i=4 and K(s,m)W(s+2,s,5-2,8-3,s=4,5-6,,..,1,0) from (2,4,20)

with i = 5.

(2.4.22)  K(s,m)W(s+l,s,5-1,8-2,5-5,404,1,0)
= [(EM(s-2, .., 590)/2%51]
x [16(s+1)(s)(5-1)(8-2)m"+168(5-1) (s-2) (257438411 )m°
+ 4(8-1)(5-2) (65 +128+6552-5+240 )u
+ 2(5-2) (4sO+657+5hs " 6853 +4625° 698541680 )m

6

+ s8+1hs —6Os5+269sh-90033+259632-h800s+5760] .

(2.5.23)  K(s,mW(5+3,5,5-3,+,1,0) = [(S1OM(s,...,843)/5.27]

x [hs(38-1)m+2s(657+35+35)m + 5(s+1)(25°+395-1)+120]

+ (mts+3)K(s,m)W(s+2,8,5-3,...,1,0) .~

The value of the determinant in the last term on the right side of

(2.4,23) is presented in the Appendix A.

K(s,m)W(s+l,s,s-1,5-3,5-b,5-6,...,1,0) is obtained from (2.4.18)
by putting i = 5; K(s,m)W(s+l,s,s-2,5-3,5-4,8-5,5-7,...,1,0) from
(2.4.10) with i = 65 K(s,m)W(s+3,8-1,5-2,5-3,8-l,5-6,...,1,0) from
(2.4.12) by putting j =3 and i =5; K(s,mhﬂ(s+2,s-l,s-é,s-3,s-h,s-5,

§=T,ve0,1,0) from (2.4.12) by putting j =2 and i = 6;



K(s,m)W(s+l,s-1,s-2,8-3,s-L,s-5,8-6,8-8,...,1,0) from (2.4.6) with
i=17; and K(S,m)W(S,S-l,S-Q,S-3,S—}—I-,S-5,S-6,S—73s-9,...,l,O) from

(2.4.3) by putting i = 8.

2.5. Moments of the Second, Third and Fourth ESF's

Using the values of the determinants evaluated in the preceding
section, the raw moments of the second esf, Wés), are obtained as

follows:
(2.5.1) wd S = () m(s,en) /2P,

(2.5.2)  py (8} = [(EM(s,541)/27]s(s-1) (2m)P (28357 475-8) (2m)

+ sh+752-83+12] R

(2.5.3) ué{Wés>} =_[(S)M(S,s+l)/28][sg(s-l)z(2m)h+2s(s-l)2(2s2+s+12)

(2m)3 + (S-l)(6s5+6753—h9s2+l723-160)(2m)2

+ 2(257-s6+33s5-h7sh

+ 012250 ahs? 41735 29653476452 832546727

+18553-314s2+4625-368 ) (2m)

and

30
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(2.5.4)  wl{is®} = [(Em(s,s41)/2 1083 (s-1)3 (@m)°

2 (5-1)2(655-35>+155-48 ) (2m)

+

s(s-l)2(15s5+22853-l’+7s2+8083-832)(2m)h

<}

8

+ (5-1)(20s5-108T+4525° -56957+33865*-567953+10080s°

~13440s+5376) (2u)>

6

+ (15520-155244538 840874529550 1210557 4325175

-62960534925365°-104048 s+5030L ) (2m)°

6

+ (65%1-3510422569-330s 4334087 7155504276457

4 110824053-1984185%+2134565 -132480) (2m)

N

~-58688s
+ slz+h5slofh8s9+81188-l568s7+8h15s6-18hl6s5+5h520s

9977655 +16430ks7-1612805+93312] .

Using the raw moments given above, the first four central moments of

W(S) ’

2 are obtained in the following simple forms:

(2.5.5) polHSHY = [(EM(s,541)/23)[h(s-1)measP-2843]
(2.5.6) 0518 = LEn(s, 5+1)/23105(s-1)% (2m)?

+ (1053-2OS2+3OS-23)(2m)+5sh-lOs3+2552-26s+21] s

and
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(2.5.7) 0§} = (3G (s, s41)/2T ) ks(s-1)3 (2m)"

+ b(s-1)2(bs>-352+308-28) (2m)>

6 u-1056s3+l833s2—2173s+10h8)(2m)2

L

-6Os5+h08s
6

+ (2khs

+ (16s7-3650+384s7-1036s 42634 55-420957+145035-2760) (2m)

+ hs8-8s3+12us2-3h0s5+11u5s”-21h8s3+3h79s2-3360s +19LL],

Further, the results of the preceding section can also be used to obtain
the first two raw moments (and hence the central moments) of Wgs) and
Wﬁs) , the third and fourth esf's respectively in the s, E's . It may

be observed in general that

(2.5.8) ui{WiS)} = K(s,m)W(s,s~1,8-2,.0.,8-i+1,8-i=1,...,1,0) ,

i=1,...,8

and the value of the right side of (2.5.8) is given in (2.4.3). Now

using the methods in section 2.3, we get

(2.5.9) ué{wgs)} = K(s,m)[W(s+1,s,5-1,8-k,...,1,0)
+ W(s+l,8,5-2,8-3,8=5,...,1,0)
+ W(s+l,s-1,8-2,8-3,s=k,s-6,...,1,0)

+ w(s,s-l,s-a,s-3,s-h,s-5,s-7,.,.,1,0)]

and
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(2.5.10) ué{wﬁs)} = K(s,m)[w(s+l,s,s-l,s-2,s—5,...,l,O)
+ W(s+l,s,s-l,s-3,s-h,s-6,...,l,O)
+ W(s+l,s,s-2,s-3,s—h,s—5,s-7,...,l,O)
+ W(S+l,s-l,s-2,s-3,s-h,s-5,s-6,s-8,‘..,l,O)

+ w(s,s-l,s-e,s-3,s-h,s-5,s-6,s-7,s—9,...,l,O)] .

It may be pointed out that the values of the determinants on the right
side of (2.5.9) and (2.5.10) are available in the Preceding section ang
using these values and (2.5.8), the variances of Wés) and wﬁs) Wwere

obtained and are given below.

(2.5.21)  wymul®)y - [3(30M(s-1,8,5+1)/2%7[ (5-1)(s-2) (2m)2

+ (s-2)(252-3s+7)2m+s4-hs3+11s2-205+203 s

and

(2.5.22) o)y - [(j)m(s-e,...,s+1)/u:el*][2(s-1)(s-e)(s-3)(2m)3
+ 3(s-2)(s-3)(2s2-l+s+11)(2m)2
+ (s-3)(6sh-3053+10652-2253+3lh)2m

+ 256-18s5+89sh-31853+84552-15OOS+1368]

2.6. Approximations to the Distribution of Wés)

Using the results on moments of Wés) given in (2.5.1), (2.5.5),

(2.5.6) and (2.5.7) the following approximation to the distribution of
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Wés) is suggested:

\Y -oz(WrgS))

(2.6.1) f(wés)) = -2-13‘.—(—\)7 e

(wés))i"‘l,o < wés) <o

where

(2.6.2) v = s(emts+l)/2

and

(2.6.3) o = 2[s(ms+l)+2]/ (s-1)(2m+e) .

It may be pointed out that the first moment is the same for the
exact and approximate distributions, For further comparison, numerical
values of the first four moments from the exact and approximate distri-
butions and the ratios of the respective approximate and exact moments
and the moment quotients are presented in Tables 1 to 2 for values of
s = 3,4,5,7 and 10 and selected values of m. The tables show that
the ratio of the respective approximate to the.exact moments tends to
unity as m increases or s increases or both. On the basis of these
ratios the approximate distribution might be recommended for m =5 and
above when s =3, m =3 and above for s =4, m =2 and above for
8 =5 and m=0 and above for s =7 and all values of m and all
values of s beyond 7. The values of the approximate and exact stan-
dard deviations, Bis and Bés practically agree in the first two
places at the smallest values of nm recommended.for each value of s

and this in turn almost guarantees sufficient accuracy for upper or
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Ratios of moments (central) of W(S) from the exact and

approximate distributions for

2

s = 3 and different values of m

Moments m= 2 m=5
Ratio Ratio
Exact Approximate (A/E) Exact Approximate (A/E)
wi .42000000X10° . 42000000X10% 1.0000 .1365oooox1o3 .1365oooox1o3 1.0000
By .65looooox1o3 .61061538x1o3 .9380 .375375oox1oh .36296590}(101L .9669
b3 .26271000)(105 .22869372x1o5 8705 .26h3322ux1o6 .2&565092){106 .9293
Wy, .31091uu5x1o7 .259520h5x1o7 .8347 .7&113715x1o8 .67887768x1o8 .9160
fiy, .25514701X10° .2UT10632X10° 9685 6126785107 .60246652X10° 9833
By .25015561X10 .22972342%X10  .9183 .13210043X10 .12619417X10  .9553
Bs .73363312X10 .69604304x10  .9488 ,52597837X10 .51529966X10  .9797
Moments m= 10 m = 20
Ratio Ratio
Exact Approximate (A/E) Exact Approximate  (A/E)
“i .hlhoooooxm3 .hlhoooooox1031.oooo .1ul9oooox1oh .14190000}{101+ 1.0000
Mo .19665ooox1o5 .19301351x1o5 .9815 .12416250%10° .12294470X10° .9902
bg .2368701ox1o7 .22738869x1o7 .9600 .2737&639x1o8 .26789059x1o8 .9786
), .16h45728x1olo 15718388x1olo .9558 .56hu7su7x1oll.55202852x1oll .9780
/iy .14023194¥10° .13892930X10°  .9907 .35236699x1o3 .35063471X10°  .9951
By 73779996 71907568 L9746 .39149430 38617617 .986k4
Bs L2527045%10 L 42192239X10 .9921 .36615303X10 .36520935X10  .997h
Moments m = 40 m = 100
Ratio Ratio
Exact Approximate (A/E) Exact Approximate (A/E)
i .'52290000x1olL .52290000x104 1.0000 .31059000x1o5 .31059000x1o5 1.0000
By .875857u9x1o6 .871&3137)(106 L9949 .126565h2x108 .1263ou9lx108 .9979
by .36828631X10° .36421020X10° .9889 .12915931X10%.12857552X10 L9955
y, .256233h2x1ol3.253h5972x1ol3 .9892 .502735hox1015.500601l+9x1ol5 .9958
AI; .93587258X105 .93350488%10° .9975 .35576034)(101L .35539402)(1&L .9990
B, 20186954 .2004493k .9930 .82282265X10™T.82045702x10™% L9971
By .33401722X10 .33376636X10 .9992 .31384072X10 .31379906X10  .9999
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Ratios of moments (central) of Wés) from the exact and approximate

distributions for

s =14, 5, 7 and 10 and different values of m .

Moments s=4 m=0 s=L4 m=3
Ratio ‘ Ratio
Exact Approximate  (A/E) Exact Approximate (A/E)
by .3ooooooox1o2 .3ooooooox1o2 1.0000 .16sooooox1o3 .16sooooox1o3 1.0000
by .uosooooox1o3 .3763636&;{103 .9293 .5197sooox1o“ .50576086}(101L L9731
b3 .1435&999x1o5 .12228099){105 .8518 .u19017h9x1o6 .39&2689ox1o6 .9409
by, .1379902Lx107 ,11130166X107 .8066 .13880369x10° .12914122%10° .930k4
/E; .20124611x10° .19400093%10° .9640 .72093689X10° .71116866X10° .9865
By .31019966X10 .28047550x10  .90k2 ,12504917X10 ,12015708X10  .9609
B Bh127571X10  .78575356X10  .9340 .51382120X10 .50486403X10  .9826

Moments s=UL4 m= 20 s =54 m= 100

Ratio Ratio
Exact Approximate (A/E) Exact Approximate  (A/E)
bl .297ooooox1o” .297ooooox1o” 1.0000 .627soooox1o5 .6273oooox1o5 1.0000
by .396&9&99x1o6 .39ul9u06x1o6 .9942 .38h8u8s5x108 .38&37u6ux108 .9988
b .13311094X10° .13137293X10° .9869 .59102856X10°".58938151x10°" 9972
y, .54702853x10 2., 53999866x10%2 9871 .45958868x10°C . 15842690x10°° .9975
AI; .629678u8X1o3 .6278&875x1o3 L9971 .62036163x1oh .61997955x1o” .9994
By .28425910 28176142 .9912 .6128k4040x10™T . 61168642510t .9981
By .34796418X10  .34751417X10  .9987 .31030560X10 .31028490X10  .9999

Moments s=5 m=290 s=5 m=2
: Ratio Ratio
Exact Approximate  (A/E) Exact Approximate (A/E)
i .7soooooox1o2 .7soodooox1o2 1.0000 .225ooooox1o3 .225ooooox1o3 1.0000
Ko . 16125000X10" .15&687h9x1o” -9593 8U4375000x10" .82557692x1oh .9785
b3 .89662500x1o5 .81738281x1o5 .9116 .8o763750x1o6 .76890088x1o6 .9520
Wy, .16395075x108 .1&58929ux108 .8899 .3&5498u1x1o9 .32636309x1o9 L9446
A;; .h01559h6x102 .39330331x1o2 L9794 .91855861+x1o2 .90861263x1o2 .9892
By J19174432X10 .18050338X10  .ohlkh ,10859043X10 .10506742X10  .9676
B, -63054191X10 .60971074X10  .9670 .48530915X10 ,47883505%x10  .9867
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Table 2 (Cont'd.)

Moments 8 =5 m=20 s=7 m=0
Ratio Ratio
Exact Approximate (A/E) | (A/E)
by .51750000}(16h .517soooox1oh 1.0000 .29uooooox1o3 .29nooooox1o3 1.0000
by .939262h9x1o6 .93551508x1o6 .9960 .12789000}(105 .12560896x1o5 .9822
by Li2815620%10° .42k25269x10° .9909 .14169329X107 .13600565%X107  .9599
), .29756611x1ol3.29&97h7ux1ol3 .9913 .7581uosox1o9 .7236&86hx1o9 .9545
/E; .96915556x1o3 .96722028x1o3 .9980 .113088&6}{103 .112075uox1o3 .9910
By +22122975 .21983500 .9937 .95981795 .93336613 972k
Bo .33729468%X10 .33704139X10  .9992 .46352859X10 .b5865535X10  .9895
Moments s=7 m=5 s =7 m= 20
Ratio Ratio
Exact Approximate  (A/E) Exact Approximate (A/E)
g .16o6sooox1o“ .16065000){101L 1.0000 .11844000X10° .1184L4O00X10° 1.0000
o 166272743100 .16514318x10° 9932 .33577739%107 .33498896X107 .9977
3 .h3382729x108 .4270523ux108 9841 .238727o6x1ol°.237&2615x1olo .9946
" .10207592¥10-2. 1004689831032 ,98L3 .36682109x10%+ . 36498082x10™* 9950
/EE .uo776555x1o3 .h0637812x1o3 .9966 ..18324229){101F .183027oux1ou .9988
By .hogl2136 .Lok93031L .9890 .15053897 .14995660 .9961
Bo .36921655X10 .36839245X10  .9978 .325350L42X10 .32524380X10  .9997
Moment s 8 =10 m=20 s =10 m= 500
Ratio Ratic
Exact Approximate (A/E) Exact Approximate  (A/E)
wi ;12375000x1oh .1237sooox1oh 1.0000 .11&87&87x108 .11&87487x1o8 1.0000
b .11323125x10° .11236942x10° 992k .104438kox10%2. 10443158x10%2 9999
by .26118994x10° .25690653x10° .9825 .23740000x10-0.23736303%10%° 9998
b, -48682272x10". 47808616x10™ 9821 . 328128611073, 32808512x10°3 9999
/ﬁ; .336&9851)(103 .335215u8x1o3 .9962 .323169uhx1o6 .32315876x1o6 1.0000
By 47098932 .46516379 .9876 .u9h7u29hx1o'2.h9u68701x1o'2 .9999
85 .37969793X10 .37862553X10  .9972 .30083123X10 .30083112X10 1.0000
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lower percentage points from the approximate distribution. It may fur-
ther be observed that an interesting feature of the distribution of
Wés) is thatiit is asymptotically normal for large values of m or s.

An alternate approximation (which is exact for s = 2) is obtained
by replacing the value of v in (2.6.2) by s(2m+s)/2 and qa in
(2.6.3) by 2[s(em+s)+2]/(s-1)(2mt+s+l). But this second approximation

is not as good as the one suggested in (2.6.1) even for s = 3.

2.7 Some Remarks

It may be pointed that 2 ‘;1 g, is distributed (Pillai, 1954) as
i=

a chi-square with s(2mt+s+l) degrees of freedom and hence the distri-
bution problem in this case is very simple. The results of this paper
show that we can also have a simple approximation to the distribution
of the second esf in ﬁhe S €'s., While the former chi-square distri-
bution can be interpreted as the limiting distribution of Pillai's V(S)
criterion (Pillai, 1954, 1960; Pillai and Mijares, 1959), the same is
also true in the present case that the distribution of Wés) can also
be considered as the limiting distribution of the second esf in the
s 8's following the joint density (2.1.1). It might also be pointed
out that the distribution problem studied in this paper has great use
éince it has been shown that several tests based on the esf's of the
characteristic roots have been observed to have monotonicity of power

and other optimum properties (Anderson and DasGupta, 196La, 196Lb;

 DasGupta, Anderson and Mudholkar, 1964; Kiefer and Schwartz, 1965).



The criterion W
p~-dimensional vectors of

common covariance matrix.

2.8. An Example

(s)

priate for this test are given by

(2.8.1)

where N 1is the total of g
(1952, p. 263) may be used for the test, which consist of measurements
on (1) head length (2) height and (3) weight of 140 school boys of

almost the same age belonging to six different schools in an Indian

city.

ters from the six different schools.

product matrices 'between' and 'within' schools for the three charac-

ters.

(2.8.2)

and

(2.8.3)

The values of m and n

m=3{4-p-1{-% , n=FN-g-p-1) ,

/.OL‘7898)+

(5 + 5%)™" =
.0L4684095
s*(8 + g)™t = .00808723
.01837418

sample sizes.

The data studied by Rao

These are available in Pillai and Samson (1959).

-.Ou61351

5 may now be used to test the equality of
£ p-variate normal populations having a

in (2.1.1) appro-

The problem is to test the equality of the three mean charac-

Tet 8% and S be the sum of

Now

.05112h6

,001388366 -.05269036

11100391
.08898122
.09115586

.oto7857

-.00576916
-.00120418

.050L46243

39
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(3)_ -
Now, from (2.8.3), vy = 9162+6193+9293 = 0,010340., Further from

(2.8.1), m=0.5 and n = 65, For, this value of m and s = 3,

the first four moments, Bl’ and By of Wé3) were computed using the

results of sections L4 and 5 and their values are as follows:

b= 15, by = k2.5 by = 3600, W, = 221400
Jﬁg = 11.9373 B, = 1. 4788, JEI = 2,1163, B, = 10.9030

Now using the above values of ‘/EI and 92 and extrapolating from
"Tgbles of percentage points of Pearson curves, for given Jﬁz and Bo>
expressed in standard measure" (Johnson et al, 1963), the upper 5 per

cent point of W§3) was determined as 38. Further, taking

g = nei(i =1,0..,5),
w§3) = n2Vé3) =51

which shows that the test rejects the null hypothesis of equality of the
mean characters of boys from six different schools. - However the test
does not reject the null hypothesis at the upper 1% level, This agrees
with (a) the findings of Rao (1952) who examined the data using the A
s
criterion of Pearson and Wilks which is the product, igl (1-ei);
(b) the findings of Pillai and Samson (1959) who tested the same hy-
s s

pothesis based on the criterion U(S) = 'Zl [ei/(l-ei)] = _Zl ki, and

. - i=

(c) the findings of Pillai (1965) who further considered the test of



this hypothesis using the criterion Uéfi , the (s-1)th elementary

symmetric function in the s A's. Foster (1957), however, finds that

the largest root is significant only at the upper 15% level.

Ly
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CHAFTER IIT

NON-CENTRAL DISTRIBUTION OF wés)

3.1. Introduction

Let X be a px f matrix variate (p < f) whose columns are
independently normally distributed with E(X) =M and covariance matrix
Y. lLet Wysvess W be the éhafacteristic roots of |XX'- w zf =0,
then the distribution of W = diag (Wi) is given by (James, 1961, 1964 )

1 1 1 }
~str -5trW S(f-p=~1
(3:1.1) &2 5 (Ges do, W) wlpye) & F W EEP Yy (g,
is>J
O<WlSA-.a SWP<®

where
1.2 1
= il

(3.1.2) k(p,2) = 1/ 122 (3f) r,(3)}

Q= diag(wi) where ¢, 1 = 1,..., P, are the characteristic roots of

IM M - onl =0 and ofp 1is the hypergeometric function of matrix argu-
ment (see Section 2) defined in James (1964). The above distribution of
non-central means with known covariance matrix was obtained by James (1961).
But (3.1.1) has also been shown, (James , 196k), to be the limiting distri-
butionas n- e« of n R2 =W such that 0 <« nP2 =)< o, vhere

2
R™ = giag (r?) and - diag (pi) and where the canonical correlation
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coefficients ri,..., ri between a p-set and a qg-gset of variates
(p < @) following a (p + q) variate normal distribution, are calcu-
lated from a sample of n + 1 observations and pi,..., pi are popu-
lation canonical correlation coefficients. Further gq = f.

In this chapter, the first two non-central moments of Wép), the
second elementary symmetric function (esf) in %wl, %WE,..., %w? (note
in this chapter s = p) have been obtained first by evaluating certain
integrals involving zonal polynomials and then by using generalized
Laguerre polynomials. These moments were used to suggest an approximation

to the non-central distribution of Wép). The approximation is observed

to be good even for small values of f.

3.2 The Moments of Wép)

First let us recall a lemma due to Constantine (1963) which will be
used later in this section.
Lemma 1. Iet Z: mx m be a complex symmetric matrix whose real part
R(Z) is p.d. and let T: mx m be an arbitrary complex symmetric mabrix.
Then

t-3(u+1)

(3.2.1) Js Oexp(-tr z 8)|s| c, (T 8)as = rm(t,x)|z|‘th(T 7™ty |
>

m
m r(t +x.- 3(j-1)) where
j=1 J

(e
where R(t) > 3(m-1) and rm(t,K) = me(m 1)

= LA ) Y e ve +0.’ + = e
K (kl, ,ks), k >k, > 2k, >0, k k, =k (See

Khatri (1966)). Now let us note that

(3.2.2) ¢, (8) = [x[2¢](1) Ekkl/(zk-)I]ZK(S)
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where [2k](1) is defined in James (1960). Hence one can either work
with the zonal polynomials CK(S) or ZK(S) which differ only in their

normalizing constants. Now since Z 5 = 2 a,, where is the second

() () * =

esf in the roots of S, W can be expressed in terms of the zonal pol-

ynomials C (W) or 2 (W)« Purther let us note that(James, 1964)
(1%) (2%)

(3:23) oFy(Bes daw) = Y ) c (o) o(@)/{(de), o (L) K}
K

k=0
Now since
: - 5
(3.2.4) C W) € () = ) gy C(0)
6

where § 1is a partition of k +n =d and g's are constants, it is
easy to see that using (3.2.3) and (3.2.4) in the product of (3.1.1) by

2
(3/4) c( o (W) , we can obtain E(Wép)) by using lemma 1. Similarly
1)
the higher order moments can be obtained successively. Thus the first

(p)

moment of W is given by

P (2f;5) C (Ip) g .
F(sz)C(I) o (30)

(3.2.5) E(W(P))=(3/h2)e'%’°m§ Y ) 2®
K &

k=0

where k +2 =d such that n = 2. Similarly the rth moment of Wép)

is given by

r(3,6) €, (1) &
R G (L) 1

-%tr_‘f. . —
(3.2.6) B(HSR)7=(3/42 e OZ R 1 ¢ ()
K &
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where now k +2r =d such that n =2r . The g-coefficients in (3.2.5)
and (3.2.6) may be computed using (3.2.k4).

The first two moments of wép) obtained from (3.2.5) and (3.2.6)
are given at the end of this section. Following are some intermediate
results on the expected values of certain expressions in the central case
i.e. when Q = O which have been used to obtain E(Wép)) and E(wép))2

in the non-central case. These results were obtained with the help of

lerma 1. Noting that

(3.2.7) 8, = 37z o

(3.2.8) E(a,2 z(k)) = B, (p, £)(p-L)(£-1)(pf+hk),k = 1,2,000

(3.2.9) Elay Z(y_y 1)) = B (0,%) [{p-1)(£-1)(pf+hk) + h(2k-1)]

k.=2,3,oco .

(3.2.10) B(a, 2 p) = B (0,2)[{p-1)(£-1)(pf+hk) + 4(Lk-3)]
(k"2:l ) :
k=3k400e
(3.2.11) E(a, 2 5.0 = B, (2,2)[(p-1)(£-1)(pf+hk) + 4(6x-6)]
(k-3,17) ‘

k.=)-l',5_,so. .

(3.2.12) E(a, 2(22)) = BK(p,f)[P(P-l)fg- (p~-1)(p-16)f - 8(2p-7)] -
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Ek-l( 1 )

where BK(P,f) =2 5P

‘ (%f)K , i denoting the specific partition

of k given on the left side of each equation involving BK(p,f). Fur-

ther noting that

2

‘ L
(3.2.13) 8y = 55 2

2 3
Z +)-I-OZ

@) B (2,17 by

(1

(3.2.14) E(a§ Z(k))=22k"2(g)K <§)K (p-1)(£-1)[5"(p-1)£>- p(p-1){p-8(k+1)}2”
{20kt )pP- (MP+ 1k + 5)p + k(k+3)}E

-16k{ (k+3) p-(3k+7)}],k = 1,2,...

| 2 Ok~
(3-2.15) E(eh 2y 1)) = 2 2R), B) 157 (01" - 2p(p-1)P(p-k(ar1)3e3
3 2 2 2
+(p-1){p”- (16k+1T)p "+ L(4K"+ 20k+5)p - 16k(k+3)}f
{2 (k1 )po- (BKE432K+5 Jpo+{4OK=+9Lk-13 )p
- (32k2+80k-2h)}f
2 2 2
+16{k(k+3)p"~ 2(4k"+10k~3)p +(15k"+25k-12)}]

k=2,3,l.'

where

(3.2.16) (@) = 1 (a- 3a-2))
1

i=

(3.2.17) (a)k alatl) ... (at+k-1)
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In addition, expressions for E(a2 Z ), E( ), E(a? Z )
2 (23) 3,207 % P )
2

)s E(a Z ) were also obtained (which

E a2 Z
= 2,1) (2,13)

), and E(a2 z

(e (1°)

are presented in Appendix C) and all these were used to compute the fol-

(p)

lowing two moments of W
(3.2.18) E(Wép)) = [1/23][(p_l)(f-l)(pf+hbl) + 8b2]

(3.2.19) E(Wép))2 = [(p-l)(f-l)/26][pg(p-l)f3- p(p-l){P-B(bl+l)}f2
;u{e(bl+l)p2—(hb§+18bl+5)p+hbl(bl+”)}f
- 16b { (b, #4)p - (3b; + 10)}]
b
+ 2p(p-1)2% (3P (o aT)p + 4o 45))E

- 4{(b 50D - 3(b )}] * W + 6,

where bi is the ith esf in % (392 %% %wp .
It may be pointed out that (3.2.18) and (3.2.19) were obtained after
summation of infinite series arising from the use of (3.2.5) or (3.2.6).

For example, (3.2.18) was obtained from the following expression:

(3.2.20) E(Wép)) _ "3t { ;ibi [(p-1)(£-1)(ps+hi) / 23117

i=o

o, [ (b /i ] } .
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The coefficients of bi and b, bi in (3.2.20) were obtained by the

use of (3.2.8) to (3.2.12) since computing the coefficients for a few

small values of i easily yielded the generalization. It was further

observed that the coefficients of terms bl b2 b3 .

in (3.2.20) reduced to zero. The method used for obtaining (3.2.19) was

other than given

similar.

3.3. Alternate Method

Alternately the moments of Wép) can be obtained in terms of the
generalized Laguerre polynomials in the sense of Constantine (1966). In

chapter I we noted two properties of these polynomials, denoted by L;(S).

(3.3.1) ¥ () = otr B [ o tr R

IR|Y ¢ (R) A (BS) as
“R>0 K Y

and
k .
(3.3.2) 1)(s) = (v *+ 3wn)), © (1) ) § (-1)a, /(v * Hws1)) ]

n=0 vy

-+ [e (8)/c (1]

where a. are tabulated only up to order k = 4 in Constantine (1966).
v

Now a;

mials as follows

can be expressed as a_linear compound of the zonal polyno-

=3
(3.3.3) 2, =5 C 5

(3.3.L 2_drsc b C
) 2 16l (22)+ (21.2)+ g () :



(3.3.5)

stituting

(3.3.7)

where

(3.3.8)

We get

(3.3.9) E

k9

3 T 1l 57 3
a’ = =t C + = C + 2L ¢ + 2 C
2 6l (32) 12 7(321) 320 (2212) L0 (313)
1 9 o7
+ = C + c + =L C
6
L 9 5 1 11 3
a. = c + =2 C + == C + == C + =2 C
2~ 256 (12) 192 (431)" L2 (42%) 180 (4212) 1k0 (hl“)
L 1o 293 1 L 153
9. 171 231 1179
+ c + =l + 22— + F=2 C
112 (315) 1792 (2”) 2240 (2312) 8960 (Qzlh)
81 81
T ) T gty
Now the moments of Wép) can be obtained from (3.3.1) by sub-
£ 1 -~ (£ J1
F1 G 5 =13 A (-zai)
vy =3 (£-p-1) .
-tr O
@) =g e [ e , 0xE oo a
p(§> .W>o (l )
=317, (k)
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Similarly, writing LK for L;(-%Q) we get

(3.3.10) E(wép))2 = %g [5L ,+L4L +9L ., 1

@®)  (e®) Ty
(p)\3 _ T 1 5T 3 3
(3.3.11) E(W2P )y = @ L(32)+ 5 L(321)+ 55 L(2212)+ 5 L(313)+ 8 L(23)
+ %6 L + &8y,

(21”) ok (16)

and

(p)y4 + 2
(3.3.12) B;P')" = 27 "2y’ 192 Lusn)* i Y42 i (e1%)

IUU

<+

1 293 i
L + 5 I + L
0 (hlh) 2k (322) 5376 (3212) 192 (322l)

I

N {4
= Pt

L 17l L231 o
(3213) T T(315) 1192 “(ohy" 220 (53,2

+ L

240

;1179 ¢ L 8L

But, since aKv in (3.3;2) have been tabulated only up to order
k = k4 , only the first two moments could be evaluated explicitly, which
correspond to the expressions (3.2.18) and (3.2.19) respectively. How-
ever the third and the fourth moments are now available in terms of the
generalized Laguerre polynomials as in (3.3.11) and (3.3.12). For ex-
plicit evaluation of third and fourth moment we need coefficients aK

v
for k=6 and k =8 respectively.
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3.4, An Approximation to the Non-Central

Distribution of wép)

In the previous chapter we have suggested an approximation to the

central distribution of W(p)

5 in the following form after obtaining

the first four moments:

(0) S L (0)
(3.0.1) 2P = [o¥/2r(w)1e WP o )

where

(3.4.2) v = 3 pf

and

(3.4.3) o =2(pr2) / [(p-1)(£-1)] .

From a comparison of the exact and approkimate monments and moment
quotients the approximation (3.4.1) was recommended for £ = 14 and
above when p = 3, £ =11 and above when p = 4, £ = 10 and above when
p=25,f =8 and atove for p =7 and all values of f and p beyond
T . However, since the lowest value f can take is p and small values
of f are quite important from a practical point of view, the approxi-

mation to the non-central distribution of W(p)

5 given below is believed

to serve that purpose. The new approximation satisfies (3.4.1) with
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(3.1.4) v = 2[2(Mi)3 / ug((ué)% - ui)]%
and
(3.4.5) o = y(v) [ ul

where pJ and bl are the first two (non-central Jmoments given in

(3.2.18) and (3.2.19) respectively and N the variance of Wép) .

3.5. Accuracy Comparisons

has

The approximation to the non-central distribution of Wép)

the first moment the same as that of the exact. An idea of the close-

ness of the spproximate to the exact second moment can be had from

Table 3.
Table 3
Values of exact and approximate variances
p=3 £f=3
1 1 1
Ewl 20 §w3 u2
Exact Approx. Ratio (A/E)
0 0 0 24,75 2k,56 9924
2 0 156.75 155.89 L9045

25 0 0 1824.75 1820.46 .9976

5 5 5 5154.75 5148.41 .9988
> 5 25 3119k.75 31180.31 <9995

15 15 15 98214, 75 98194.92 9998
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Table 3 (cont'd.)

p=5 f=5
%‘(o 1 %(02 %03 %"")4_ %wS )
Exact Approx. Ratio (A/E)
0 0 0 875.00 87h.27 +9992
2 1 4821.00 4817.81 .9993
25 0 2 2 10 85963.00 85048.64 .9998

10 10 10 10 10 256875.00 256846.38 .9999

The values of the exact and spproximate variances tend to be closer
for larger values for & given p and hence the tabulation has been con-
fined to the smallest value of f in each case. It may further be not-
ed from Table 3 that ratios of the (approximate to exact) variances are
closer to unity for larger values of p , for example, in the null case.

Further, the approximation to the non-central distribution is better
even in the null case than that given in Chapter II Jjust for the null

case which is the same as in (3.4.1) - (3.4.3). The moments of W(p)

1

when () = 0 which were evaluated in Chapter II are presented in the

notation of this chapter in a much simpler form below.
(0) (.(p) py(Ey102
(3.5.1) w0 (W3} = [(5)G)]2712(p-1)2-2 p45]

(3.5:2) VPN = 1)) PPI5(p-1)PE- (10p%-hop33)2 5= 33949

(3.5.3) 2Py = 3@)(E)125

- [hp(p-1)3¢ "4 (p-1)2 (3p°- 34 p+28 )3 +(12p - 30603 +191 752-2893p+1384 )52

_(4p"-360p342893p°- T129p+5192 )2~ (112p3- 1382 +5102p- 5864 )]
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(3-5:4) ps WPy = 91 (-1 22 )P-3(0-2) (p-3)2 1252 99418)]

(3.5:5) w2 Py = L)) 12" 102(0-1)(p-2) (p-3)3-3 (p-2) (0-3) (p-13)¢°

where N

+(p—3)(22p2-201p+h58)f-6(2p3-39p2+229p-420)]

(0)

denotes the ith moment in the central case. The moments

(3.5.1) - (3.5.5) were obtained by evaluating linear compounds of cer-

tain determinants (see Pillai 196L4).

for the non-central case (see eqgns. (3.4.1), (3.4.4) and (3.4.5)) works

That the approximation suggested

very well for the null case for all values of p and f, can be inferred

from Table k.

Table 4
(p)

Ratios of moments of W, (q = 0) from the exact

approximate distributions for p =3 and f =3 and 10

Moments

T =3 f =10
Ratio Ratio -
Exact Approximate  (A/E) Exact Approximate  (A/E)
! .115000000X10 .45000000X10 1.0000 .67500000K10° .67500000X10° 1.0000
by _.2&750000){102 .24561.937X1o2 9924 .131625oox104 .1315&799)(10h .9994
u3 .37350600X1o3 .36307500)(103 9721 .66318750}(105 .65752496}(105 .9915
My, “.12067312x1o5 .11&68028}(105 .9503 .1095&36&X1o8 .10835868}(108 .9892
J;; hoTho3Tixio  L49560001X10 ,.9962_.36280159x102 .362695u6x102 .9997
By .92014357X10 .88962059X10  .9668 .19286681X10 .18992046X10  .9847
Bs _.196997210(102 .1.9009186}(102 L9649 .63228139X10 ..62617429X10  .9903
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Table 5 provides some comparison of the closeness of the approximate to
the exact moments when Q = 0 for a) the earlier approximation for the
null case (Egns. (3.%.1) - (3.4.3))and ©b) the new approximation for the

non-null case (Eqns. (3.%.1), (3.4.4) and (3.4.5)).

Table 5
Ratios of moments of Wép ) (o = O) from the exact and approximate
distributions using a) earlier approximation b) new approximation

for p=4% and £ =5

Moments a)earlier approximation b)new approximation
Exact Approximete Ratio(A/E) Approximation Ratio(A/E)
p,i . 3OOOOOOOX102 3 OOOOOOOX102 1.0000 . 3OOOOOOOX102 1.0000

s .hosooooox1o3 .3763636AX103 .9293 .uohu5819X1o3 .9987

u3 .1#35&999X103 .12228099){105 .8518 .14153057x105 .9859
ty, .1379902hx1o7 .11130166){107 .8066 .13501215X1oT 9784
«ﬂg; .2012&611){102 .l9h00093X102 .9640 .201111h5x1o2 .9993

By +31019966X10 .28047550X10 9o0k2  .30274682X10 «9T60
B .84127571X10 . 78575356X10 9340  .82532614X10 .9810

Thus it may be seen that the new approximation can be used in
the null case even for the very small values of f for which the ear-

lier approximation was not recommended.



56

CHAPTER IV

EXACT DISTRIBUTION OF WILKS' A

4,1. Introduction

Wilks (1932), following the likelihood ratio method (Neyman and
Pearson, 1928, 1931; Pearson and Neymen, 1930), obtained suitable gener-
alizations in the analysis of variance applicable to several variables.
The statistic A proposed by him has been found useful in a variety of
problems. Bartlett (1934) applied it for testing the significance of
treatments with respect to two variables in a varietal trial and indi-
cated its general use in multivariate tests of significance. Wilks
(1935) and Hotelling (1936) found it useful in testing the independence
of several groups of variates. Wilks' statistic supplied some of the
basic tests in multivariate analysis, but the problem of tabulation has
not been tackled except in some limited cases. The problem of finding
the percentage points of this statistic becomes difficult because its
exact distribution is either unknown or is too involved.

The problem of multivariate analysis of variance can be reduced
to the following form (e.g. see S.N. Roy, 1957): the joint probability
density function (p.d.f.) of the elements of the random matrices
X(p x fl)(fl >7p) and Y(p x f2) is given by

L. "y
_2P(fl+f2)|zl‘2(fl+f2)

(.1.1)  (20) expl -ktrs X X' +(Yu) (Y91 11 s
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where the matrix X(p x p) is positive definite, symmetrical and

unknown, and the problem is to test the null hypothesis HO that the

metrix p(p x f,) is a null-matrix, i.e.
Hy:p =0 (px f2) against H, :u %0
Let the non-zero roots of the determinantal equation

(h.1.2) |a, - A ] =0

be denoted by Ay < ... <A, where s = min(p,fg) and

Aj(pxp) = XX

Y v! .

A2(P X p)

The likelihood ratio statistic for testing HO, given by Wilks (1932) is

(13 bomeeT T L G

In this model of multivariate analysis of variance, p is the number of
variates, Al and A2 are the sums of sqguares and products matrices

for error and hypothesis respeétively, and fl and f2 are the corres-
ponding degrees of freedom.

Wilks (1935) has obtained the exact null hypothesis distribution
of A in the form of a (p-1) fold multiple integral, which he was
able to evaluate for p = 1,2; p =3 with f, = 3,4 and for p =L
with f2 = k4 only. A number of asymptotic approximations have been

‘ given for general p and f5. Bartlett (1938), observing the asymp-

totic behaviour of likelihood ratio statistics,obtained a chi-square
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approximation to -f2 log A, for testing independence of several groups
of variates as an infinite series of chi-square distributions. Wilks'

A criterion is a special case of the statistics considered by Wald and
Brookner (1941), when the number of groups is equal to two. Rao (1948),
using -{fl- %(p-f2+l)} log A obtained the first three terms of a more
rapidly convergent series. Finally, Rao's approximation was shown to be
a. special case of a more general result of Box (19&9),who gave asymptotic
approximations to functions of general likelihood ratio statisticg.
Schatzoff (1966) has given a method for obtaining the exact distri-
bution of A Dbut has not given explicitly the distribution function.
We are giving the same here in explicit form which he was not able to
give. He has been able to tabulate the correction factors for converting
chi-square percentiles to exact percentiles of -{fl- %(p-f2+l)} log A
for p = 3(1) 8 and values of f, such that P f, < 70, using certain
recurrence relations on IBM 7094. We are able to give the exact ex~
pression for the distribution function overcoming the restriction
P f2 < 70 Dbecause our method is by far simpler than his. Unlike
Schatzoff who could not suggest a suitable method even for handling the
distribution problem for odd values of f2 (unless by some indirect
methods in some special cases) we are giving here the distribution also
for that case. We give here exact distributions of A for p = 1(1)6
and extend Schatzoff's tables to £, = 12(2)22 for p =3, to
f, = 11(1)13(2)23 for p =4 and to f, = 11(1)13 fo/r p=6,

Additional 17 tables can be obtained by interchanging p and f2 .
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4,2, Distributional Properties of A
For purposes of notational ease, the symbol A will be replaced

by U. Let us denote by B[a,b;X] the density function
(k.2.1) [1/B(a,0) 1 (1x)°t  o<x<1

of a Beta variable X. The following theorems, which we state without
proof, appear in Anderson (1958, Chapter 8) and have been used in the
next section.

Theorem 4.2.2., The distribution of U is the same as that of

P)flel

U .
fe)p)fl+f2-p

This implies that without loss of generality we need consider only

values f2 > P.

Theorem.h.?.B. Uﬁ’fg’fl is distributed like Xl...Xp where Xi are

independently distributed as B[%(fl-i+1),%f2;Xi] .

Theorem 4.2.4, U is distributed like Y2...Y2, where Y. are
2r,f2,fl 1 r i

independently distributed as B[fl+l-2i,f2;Yi]; U28+1’f2’fl is distri-

2 2 . . R

buted as  Z;...Z_ . Zg,1> vhere Zi(l = 1,...,8) are independently dis~

tributed as B[fl+l-2i,f2;Zi] and 2., 1s independently distributed
fo

as B[H(f+1-p); = ; 2] .

Theorems 4.2.3 and 4.2.4 directly provide us with the two special

cases.
Case 1: p = 1. Ul,f ,f has the density
2’71
fl f2

£ _—-1 =1
(4.2.5) [/8( , )1 v> @y
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and hence
1-U
l,fz,fl fl
(4.2.6) —— = =T
l,fz,f 2 2°71

Case 2. p=2. X=JU, . - Ty has the density

£ -2 -1

(k.2.7) [l/B(fl—l,f )11 X 1 (1-X) 2 R
and thus the density of U2 £ is
2 2’ l
2(2,-3) £,-1

(4.2.8) [1/2B(f -1,%,)] y2 (l--/U) R
and hence

-0, ¢ g £ -1 |
(4.2.9) — —‘% = Tor_o(r.-1)

Vi, ¢ ¢ 2 227\
"R}

where Fm,n is Snedecor’s F with m and n degrees of freedom.
Thus the percentage points in both these cases can be obtained from the
tables of F-Distribution (e.g. Biometrika Tables for Statisticians)
with respective degrees of freedom.

By interchanging p and f2, we will get the corresponding
results for f2 =1 and f2 = 2.

In order to derive the exact distribution for cases of higher

dimensionality we use the method described in section 4.3.



61

4,3, Method of Derivation

An immediate consequence of Theorem L4.2.3 is that the distribution

P
of Log Ub £ T is the distribution of I log Xi’ so that the
9

2’71 v i=1
problem is transformed to one of finding the distribution of a sum of
independently distributed random variables. Such a problem can be
handled by teking successive convolutions provided that the process
yields expressions which can be easily integrated at each stage.
Schatzoff (1966) has proved that this is in fact the case. But whereas
he invokes Theorem 4.2.3 we make use of Theorem 4.2.4, And by doing
so we can get exact distribution for p = 3,4,5,6, in much simpler form
than otherwise is possible. For example, for p = L, we convolute
just once as against three times, as Schatzoff (1966) has done. This
“results, for general fa, in a simple expression involving just one
double but finite series. Similarly for p =5 and 6 we convolute
only two times, as against U4 and 5 times. This saves lot of work,
which is not easy by any means, and for the first time it makes possible
to write down explicitly the distribution of Wilks' statistic in a

closed form for p = 4,6 for general f, and for p = 3,5 when £,

2
is even. The case when p and f2 both are odd involves infinite
series, however the same formulae, derived for f2 even, work.

Consider the beta random variable of the Theorem 4.2.3. The
density of Xi is given by

. fl-i-l f2-2
2 2

(b.3.1) B[%(fl-ul), ?2 ;X1 =K X,

) >
0<X <1, f;>1
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where

£, -i+1 f2 f_ «i+1+F. T i+l

T
(h3.2) K =/, 2] =T () [ 1) T(F)

£, =2
When f, is even, —%?— is an integer, the expression (4.3.1) can

be expanded using binomial theorem, resulting in

b 1

f =i+l f (£,-1+1+22)
1 2, N < 4 by o271
(L|..3.3) B[ 7] > 3 Xi] = Ki L‘ ('1) (ﬂ,) Xi
2=0
where
f2-2
(4.3.4) b = -5 .
Let us now make the transformation
X
(4.3.5) Y, = -log, X; ay, = --ji; .
Then the density of Yi is given by
b —_— %Yi(fl-i+l+2£)
(4.3.6) Y~ K 2‘ (—1)s (z) e , y Y3 > 0i=l,e00sp o
£2=0

gimilarly in the light of the Theorem 4,24 we consider the random

variable defined by

(+.3.7) 23 = Koyt Xpy

then the density of Zi is given by
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3(f,-21-1) __fym
(4.3.8) Z; ~C; * 24 (1~ Jzi)
where
(%.3.9) c; = [1/2B(f-2i+1,5,)] .

Note that in this case to apply binomial theorem to get a finite
series, unlike the previous case, f2 does not have to be even, This
is important for our method.

Making the transformation (Schatzoff, 1966)

(4.3.10) Y{ = =~ log Z;

and expanding by binomial theorem, we get the density of Y' as
i

fz-l i
, ol - (fy+p-2i%1)
' - >
(13.21)  ¥ac ) (D (5 )e Lr>o0 .
4=0

Finally, we consider the density and distributions of random vari-

ables like
(4.3.12) V=V, +V

where apart from normalizing constants

_ av
(4.3.13) V. ovie T , v, >0, k= non-negative integer



and

bv2
(4.3.13) Vo~ € N >0

Vo

The density function of V is easily found by forming the convolution

integral
av bV, v av, Db(v-v,)
k 1, o k 1 1
(4.3.14) vy e * e = Jo v, e e dv,
by J"’ p (ab)vy
= e v, e dvl

where the asterisk denotes the convolution operator, We have two cases.

Case I. & = b, then (4.3.14) is simply

v k+1
. bv f k _ . bv v
(4.3.15) e vy dv, =e =5

0

Case II. a b, then we have

i (a=b)vy
v, e dv

A\
(4.3.16) eb"j 3 L

(o]

k+1

_ av Sl ki ¥ ] bv, -l\k+1 .,
=¢ [Z (-1) (k=r+1)? | te GF) K
(a-b)

r=

which can be easily varified by performing k successive integrations

by parts.
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The distribution functions are readily obtainable by direct. inte~

gration of the density functions.. It should be noted that whether we
are integrating the right hand side of (%4.3.15) or(%.3.16), we have

only to evaluate integrals of the form given by the left hand side of
(4.3.16).

.k Exact Probebility and Distribution Function of U
P, To, T

Lh.lep =3

We write the Wilks' statistic as a product of independent variables

(h.b.1.1) U3,f2,i,1 = Xt Xt X

1}
N
R

So that, in the notation of section 4.3, we have

(h.h.1.2) - log‘U3,f2,fl = - log Z, - log x3.
= Y1+ Yé_ = Wé (say)
where
£.-1 Y
2 i N
. o Foml  =—5(f44-1)
(b.4.2.3) ¥ ~ [1]2 B (£,-1,7,)] 2 (-1)* ( 2‘% e 2 L
2=0
and
£
2
=1 £ Y
- 2 23/, \
£.-2 f = -1 - ==(f,+2m-2)
: tmr 1 24 2" T2
(bodak) Yo [UB(5—, 2)1) (-7 (2 )e Z7E )

m=0
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Then
et e +g-1)
1 ~m={f, +g-
(he1.5) Wy= -log U ~{[1/2 B(£,-1,f )]Z (-1)* ( Je 21 } »
2=0
R

Y
f.-2 £, 2 23 --—3(f +2m-2)
{tsE=)s21) (%2 e 271 )

=0

Thus we get the probability density function of ~log Ué P
2.’

1
f .
2 £
l -2 2 m-1 4 -1
(4.4.1.6) Wy~ [1/2 B(2,-1,2,)8(25, 2)] ) (-1) CEO(Eh
m=1 W
-—%(fl+2m-2)
W, e
3
o
f2rt 2t ;z,-hnfl (f+ 1) 3(f+2m2)
(-1) "' A A e A
+22 Z i2m-,e,-l) ) ( >]
£2=0 m=
M,-Qm-l
W3 >0 ,

which may be easily verified by reference to (4.3.1k) - (4.3.16).

If now we make the substitution

(boho1.7) W=-11ogU , aW=-=

we obtain
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£

£ £,
I8 T -1, 2" 2 -1
(44.2.8) Uy o~ [3/28(2 22,2 )85 )] }“( " )( )
m=1
| :f‘1+2m-1+.
(- log U) U 2
£
£,-1 5o-1 £, £,44-3 £ +emk
1)fm fomi ol 7N
+2Z 5 (Em-g,-l(,@ L )CU -U )]
2=0 m=0
£,+2m-

which is a closed form for f2 even gnd gn infinite series for f2 odd..

To find the distribution function of U

s we integrate
3,f,,f, °
2°71

(4.4.1.8) vetween the limits (o,u) ; o < u< 1l , obtaining

T

2., £ 4en-2
£2 £, 2 -1 T2
- 1 1 2 (-1)™
(4.4.1.9) B0p ,2.S 0] - [1|B(£,-1,2, )B(—5— 2)][2 .
£
-—2—-1 -1
( m )(Qm-l) . (2-(f1+2m-2')log u)
e 21 2
+2§ 2 Go-r1) o (m <f+z1"fl.+2m-2>] N
=0 m=0 v
Lfem-1

For comparison's sake, we list below the exact probebility and -

distribution functions of U for the particular cases“ f2'=3 and k&, .

3,5, %,
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Special Cases.
is

Case Y.  For f, =3, the exact probability density of U
2 3’3,f1

given by
iyt
2 1
(B.4.1.10) U ,3,7 ~Y T3 [2-9 U+ 3(2-10gU)U + U3/
N 2
1 6B(2,-1,3)B(—53)

Um
U2 (2m~l)(m-l)(2m-3)}]

1
El 1 3/

-+ 6 7(-1)111(;) {gm-__j =17
m=2

which is an infinite series. Integrating (2.4.1.10) between the limits

(0,u), we get the distribution function of U,
3,38,

fl'a
uT 'u3/2 u
(8.k.2.11) P[U; 5 s u] = —F [l3(f T) * s {241, (2-10gu)}
B(z,-1,3)8(-%5 3) ~ * 1
1 3
3u2 + 2
(; 1) T3 T 2y (-2)° (){(Em-3)(f )
m=2
ué s 1
(2m-1)(f -1) " (2m~1)(2m~3)(m-l)(f1+2mr2)}J

u
o (m—l)f

Case II, For f2= 4 , the exact probability demsity function of

" U3,-1+, f]_ -becomes
u

(heke1.22) U ) o h,[U /4B(2; 1,h)B(———- 2)]f1+8U2 803/ 2126 1og U]
0<U<g1l



and the distribution function of U becomes
3,b, £,
f1~2
2 82 . 6
{4.k.1.13) P[U <u] =2 [ I S 2o 10g u)
. "3, )4., fl— - f1-2 f1'2 fl‘l f2 1
2B(f1'l)h)B(T-:2) 1
8u 3/2 u? ]
+ -
+
fl 1 fl+2 Y

Wilks (1935) and Anderson (1958) obtained the distribution functions
of Ué,3,f1 -and pé,h,fl in the form of algebraic expressions. Our
result agrees with that of Anderson (1958) and Consul (1966) who used
different methods. Thus the expression obtained by Wilks (1935) was def-

"initely incorrect.

L.h2,p=4k

"We write Wilks! statistic as

(kh.2.1) Uh’fe’fl =X % rx3 %),
=7, %,

So that, in the notation of section 4.3, we have

)-l-... - U = - Z-l Z
(L. 4.2.2) log h’fz’fl log N og Z,

1 | -
T+ Y =W (say)

where
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f,-1 A

_2 . - l(f +z-1)
(k.4.2.3) ¥! o [1]2B(f -1,2 )]z (-1)* ( 2 )e
eTe 03 l ~ l_ " 2
2=0
and
£,-1 Yé
5-(f,m-3)

o o fa-l
(b.b.2.8) Y3o [1]2B(2-3,2,)1 ) (-1 (27) o

m=0

 Then by way of convolution, we have

£.-1 1
2
| = £.-1 - -—-(f +4-1)
1 2 o
(li-.h.E. 5) WLI-: '10g Uh,f2,fl~ [ m Z ("1) ( A ] *
2=0
£.-1 1
2" £,-1 --g-(f1+m-3)
[23(1’ -3,1,) X( 1)* ( )e ]

m=0
vwhich gives us the probability density of - log U, as
4,r »%q
f2'3 Wh( )
2 -1 f -1 - —=(f_ +i-1
2 2 1
(1‘1‘26)""““ 2B(f-21+lf)[z( Mo ) W, e
(- l)zm f -1 f2 -1 -5 fl+,<7,-1 - f +m-3
+22 Zlmz-i )(m )(e )J
2=0 m=0
24m-2

Yow substitute

(k.k.2.7) W=-1log U
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to get probability density function of Uh £,f as
1
£5-3 f1+!5-3
2 f -1 f -1
(4.1.2.8) U ”fz’f“l”(f 2i+1f)[2( W2 N-1og 1) U °
f -1 f -1 : f1+,¢,-3 f1+m-5
m f -1 f -1
(-1)* 2 2 ) :) ]
+22 z (m-2-2) ( )( (U -v
£=0 m=0
2m-2

which is a closed form for f, even or odd., Integrating (k.4.2.8)

between limits (o,u) we get the distribution function of U .
. h',fa)fl
£,-3 I1tt
) 1 2 2 (f2 l)(f l)
(4.4.2.9) PrU <u=51 [}: g :
. h,fe,f 2, B(f -21+1, 2) (f - 1)

l .
'(2-(fl+g-l)log u)

-1 £-1 f1+"-1 £, +m-3

),ﬁm f-lf l

2
+2S z(m-g-2 ;5 ) {f+/2,l fl+m-3 }:I

2=0 m=0

23m-2

A special case, which has been obtained by Wilks (1935) and Anderson
(1958) is £, = k., The algebraic forms of the exact probability and

distribution functions for this case are respectively,
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1
(3.4.2.10) U, o~ 2 r1-1502-100(8+310gU) +1003/2
771 5B(£ -1,4)B(£,-3,4)

(8-310g0) + 1507-07%] , 0<vU<1

and

fl-

5 1
L ou 1 15u? , 10 u
(k.4.2.11) P[Uh’h’f <ul = +

1 sB(e,-Lb)B(£,-3,) 13 TR (e 1)

3/2 2 o
(6-(fl-l)(3logu+8))"‘%;““ (642, (8-310gu)) + ;ilil ) ;1+2 ]
1

The expression (4.4.2.11) is much eimpler than the result obtain-
ed by Wilks (1935) and Anderson (1958) and aéieés with the result of
Consul (1966)s Further, Consul (1966) has shown that Anderson's result
can be simplified to (k.Lk.2.11).

)-l--)-|-.3: P = 5

Writing the Wilks! statistic as -

(h.h.3.;) Us’fe’fl =X %, x3 Xh xs

and then taking the logarithm of the inverse, we get
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(4.4.3.2) - log U =- log Z, - log Z

1

- log X

5sf,s T 1 1 5

=Y! +Y! +
Yl 5 Ys

=W, + Y5 = W5 (say)

vhere W, is distributed as in (4.%.2.6) and
T

T D e
f._2n-
(M33)Y~[1/B(1 2)]2(1)(2 ) 2

Then the convolution technigue yields the algebraic forms of the exact

probability and distribution functions for U respectively as

5’ e’fl
follows.
f
(ll-o)-l'-3o)+) US 2 ( l)n f(2n-3,2n-l,n) Un (log U)2
2, n=2
( l)n 3 £+3
¥ hZ z(an 3y (2472, 11){@;—,,35(11’1-01S ) - U2 10g U}
z=|-2n-
~ min-1
- b 22 (nj_—z.-,)l—,:ﬁ- £(2n-3,m,n) U” log U
1;2n=2
my2n-1
243
(sppmm , .
-8) ) ) By femn) @ -0 F )
,z mn
.(’, m=-2, 2n 3 ]
+h ZZ (2n ; =3 £(g,20-1,0n) U° log U
£ n=l

Hen3
m+l
p8200 U e mm) (P02 )]

D (m- 9~2 ){2n~m-1)

2{m-2, m§en-1




h

and

(4.%.3.5) P[U f2’fl u)
£~
=2 Ku® f}:(l)u ﬂaaﬁmLmuﬁ@mmﬁhgﬂz
(£ +2n-h) |
- )-l-(fl-'en-h)log u+8}
£33
(1) u 2
b f( ,0t2,n){2- (£, +5-1)1
" ZZ(fan-,: Nl e (et o
,z+2n- 2n-4-3
2(f - -1) (fl+,(z,-l)u 2
(2n-,G- ) (fl.fen_h) B 1>}

( l)m+n -1 n

£(2n-3,m,n)(2- (f1+2n-ll- Ylog u)

+hzz

(m-2n +l)(f 4’2n—h)2

m n=2
m{2n-1 -

_ _ (- 1)g+m n 2 ~
+8 ZZ (m~-9-2)(2n-2-3) f(p,m,n)(é.ll_'_an_h) - l(1'.t‘1+,q,-1) )
»@h’kéygnig

el
- h Zz (-1)° u f(g,2n-l,n)(2-(fl42n-h) log u)
7 mel (201 -3)(£; 12n-h )
,€,+2n- !il_-_l-_]:,
(- l);z,-im n n 2
+8 ZZZ (- g-2)(20-n- -1) £(4,m,10) <?f1;2‘ﬁ-1¥) B 1(lf’lw‘nrl-3)>]
gmn

f/{’m"e:\m"’en'



wvhere
2
f2-1 f2-1 - -1
(4.4.3.6) £(g,mmn) = (5 )2 NE )
and

fl-h £, 2
(b.%.3.7) K= [1/213(—2;— , —2-)]ir=1l [1/2B(f1-21+1,f2)]

and the indices f,mand n run from O to f5-1, f5-1 and

respectively unless specified otherwise.

b p=6

As in (4.4.3) we have

(4.h.4.1) U6’f2,f1 =X, X, J% X, x5 Xg
= 2, Zy Zq
and
(4.b.4,2) - log U6’f2’fl = - log Z, - log Z, ~ log z3
=Y+ YL+ yg

W, + Y3' = Vg (say)

vhere W, is distributed as in (4.4.2.6) and

f

2
5 - 1l

75



76

f2-l p 4
: n Eorl ==3(2 4m-5)
(bok.b.3) Y3~ [3/2B(£,-5,25)1) (<17 (2 1) e .
n=0

By convoluting we get the algebraic forms of the probability and distri-

bution functions for U6’ E’f respectively as follows,
£-3 -5
(b.b.b4) U ~KU 2 [z (-1)* £(2, 242, 4+4) 02 (log v)?
6,f2, 1

2 2
+ h}: Z.(.;}_)f._)_ f(z,.Q,-I-E n)<2U - 2+(n-z-h)1ogU)>
£ n

_Q-_-_lt
+8 ZZ_ (m-z-a)(n 7%) T(4mn ("M © )

fmn

-2, n-b

- hz z g-;;}—g%-)— £(2,m, 4+4) Uz/a log U
£ m
24m-2

co (LY m2 B
-8 222 gm}z,-Q)(n-m-2) £(4,m,n) (U -u® )

fmn

z=|=m-2,m1=n-2

n-2
N
+ I yz -z 5 f(8,mm+2) US 1log U]

z=|=m-2

and
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(k.k.k.5) P (U < u]
6,£5,%,

f -1 f -5

=2Ku [z ———L-— £(8, 042, 4+ ){ (£ +z-1)2(1og u)
(f +4-1

-h(fl+z-1)1og u+8}

( l)n — 2(f1+,€-l)
+4 £(2, 242, n {2~ (f +,c-1)1 A ooy
Zz (n—ﬁ,-lt-)(f +z-1) ( n){ R X -2~
P n-4-4
%n (f +4- 1)u2
(£ +n-5) - 1>}
2 /2 o
1) J) )
+ 82?2 (m-2-2 }(n-2-4) £(4,m,1n) (: +2-1 ; +n-5
fmn 1 1
E¥m-2,n-h
f -5
(-1)"
L 5 £(4,m, 4+ )(2- (£, +0-1) 1
i % % m-,(’,-2)(f +-1)° (4ym, 430 )(2- (£, +4-1) dog v)
24m-2
(-1 )mn 2 2
- 8222 (ﬁ-,g,-e)(n-m 5y £(£,m,n) (: 3 7 +n-5>
fmn 1 1
24m-2, mfn-2
£5-3 m-2
( l)ﬂ: u 2
- L £(2,m,m2)(2-
% % pT— (2,m,m2)(2- (2, 41-3)10g u) ]
24m-2

where

-1 f£f.-1 f.-1
(k.4.k.5) f<z,m,n)—(2 (2 (2
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and

(b.b.b.6) K=£%

n =W

[1/2B(f,-21+1,%f,)]
i=1 / 1 2

and the indices f,m and n run from O to £,-1 unless specified

2
otherwise.
hnll'l 5' P > 6
Since by theorem 4.2.2 the distirbution of U is the same
p,fa,fl
>
gs of Ufa’p’f1+f2'P , the distribution of Ub’fz’fl for p>6 and

f2 < 6 can be obtained from the previocus results. For example the prob-

ability density function of U £ and U,
. 2 3

for f. =L4,6 can
1 9)f2’f 2 ?

1
be obtained from (4.4.2.8) and (4.4.L.k) by substituting f, =T eand 8

respectively. And probability density function of US £ and
=k}
U for £, = 3,4,5,6 can be obtained from (k.k.1.8), (L.4.2.8),
1O,f2,fl 2

(b.b4.3.4) and (4.b.k.1) by substituting £, = 8 and 10 respectively.
The distribution functions are obtained similarly. However the exact
distribution functions for p > 6 and fy > 6 become too involved for

presentation as well as for computational purposes.

4.5 Computetion of Percentage Points

The number of terms in the expressions for the probability and
distribution functions increases very rapidly as p» or f2 increases.
For the pair (p,fe) = (k,4) the number of terms are 8 and 10 re-

spectively. Since Schatzoff's (1966) derivation proceeded in stages,
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and

(L.b.4.6) K=14% [1/2B(f1-21+1,f2)]

[[J =< kV

i=1

end the indices {4,m and n run from O to f2-1 unless specified

otherwise.

L.k,5, p>6
Since by theorem 4.2.2 the distirbution of U is the same
P,feyfl
gs of Ufg:P,fl+f2“P , the distribution of Up’f2’fl for p>6 and

fg.f 6 can be obtained from the previous results. For example the prob-

ebility density function of U £P end U for %

= 4,6 can
- ! 9oty 2 7

be obtained from (4.%.2.8) and (k.4.4.4) by substituting f, =7 and 8

respectively. And probebility density function of UB F.F and
.92)1

U for f. = 3,4,5,6 can be obtained from (4.4.1.8), (4.k.2.8),
1O,f2,fl 2

(4.4.3.4) and (L.4.b.L4) Dy substituting £y = 8 and 10 respectively.

The distribution functions are obtained similarly. However the exsact

distribution functions for p > 6 and £y > 6 become too involved for

presentation as well as for computational purposes.

4.5 Computation of Percentage Points

The number of terms in the expressions for the probability and
distribution functions increases very rapidly as p or f2 increases.
For the pair (p,fe) = (4,4) the number of terms are 8 and 10 re-

spectively. Since Schatzoff's (1966) derivation proceeded in stages,



9
an error at any stage would promulgate errors at all succeeding stages.
We have no such problem, since we have derived explicitly the distri-
bution at each stage sepsrately.

The method developed in the preceding section was used in the prep-
aration of the tables of percentage points of A . Tabulation of exact
percentiles of A requires solving for the roots of F(u) = o , where
F(u) is the distribution function.

Each table represents a particular pair (p,fa), with arguments
M= f,-p*l and significance level « . By defining M(Schatzoff, 1966 )
in this manner, each Table starts with argument unity. Further, since

by theorem 4.2.2 the distribution of U is the same as that of

p} f2’f1

Ufe,p,fl+f2_p s we see that interchanging the roles of p and f2 does

not affect the computation of M . For example, the distribution of

Uh,7,12 and Uf,h,lS are identical, and in either case, M = 9 . Thus,

to use the tables when f2

with arguments f2,p and M = fl-p+l. Table 6 gives the percentage

is odd and p 1is even, enter the table

points for p =3, f, = 12(2)22 and o = .10, .05, .025, .00, .005 .

Table 7 gives the percentage points for p =4, £, = 11(1)13(2)23 and

2
@ = ,10, .05, ,025, .,010, .005 . Table 8 gives the percentage points
for p = 6, f, =11 and o = .05 .01 . Tsble 8 also gives the per-
centage points for p = 6, f2 =12, 13 and « = .05 only. Because

of the inherent decimal accuracy problem, all calculations were carried

out on IBM TO9L, using double precision arithmetic.



Table 6

Percentage Points of Wilks' Criterion U

for p=3 and f, = 12(2)22

80

£, =12
o

k .100 050 025 .010 .005
1 .92705(~5)  .21622(-5) .52231(-6) .81868(-7) .20327(-7)
2 28648(-3)  .12464(-3)  .56787(-k)  .20971(-4)  .1COTB(-k)
3 3777(-2)  W7hl72(-3)  JB1669(-3)  .20280(-3)  .12023(-3)
4 .3667h(-2)  .22136(-2)  .13880(-2)  .77837(-3)  .51298(-3)
5 .73198(-2)  ATS66(-2)  .31986(-2)  .19606(-2)  .13820(-2)
6 .12342(-1)  .8453u(-2)  .597125(-2)  .38959(-2)  .28695(-2)
7 J864T(-1)  .13291(-1)  .OTM66(~2)  .66607(-2)  .507ThT(-2)
8 26099(~-1)  .19198(-1)  .14496(-1) .10274(-1)  .80369(-2)
9 3hsha(-1)  .26069(-1) .20157(-1) .1474(-1)  .2275T(-1)
10 L3818(-1)  .33785(-1)  .266h4(-1)  .19930(-1)  .16207(-1)
12 .6hool(-1)  .51298(-1)  LA4IT37(-1)  .324hh(-1) .27125(-1)
1L ,86493(-1)  .70784(-1) .58958(-1)  .h7i7i(-1)  .h0258(-1)
16 . 10964 91534 (~1)  .77661(-1) .63558(=1) .55127(-1)
18 .13312 .11297 97292(~1)  .81094(~1) .T1261(~1)
20 .15655 13466 11742 .99360(-1)  .88259(-1)

24 .20218 L1776k .15791 .13683 .12360

30 26561 23866 .21653 .19235 17686

Lo +35589 .32748 30364 27696 25948

60 L8791 L6057 L3707 11009 «39199

120 68727 66690 64892 62770 .61309

p = number of variates; f2 = hypothesis d.f.; fl = error d.f.;

M=f-p+1;

1

by which tabulated values are to be multiplied.

the numbers in parentheses indicate the power of 10



Table 6 (Cont'd.)
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f, = L

;;\{i 100 .050 025 .010 .005
1 .59470(-5)  .13855(-5)  .33448(-6)  .52408(-7)  .13011(-7)
2 .18808(-3) .81585(-4) .37096(-4) .13675(-L) .65660(-5)
3 .92bo7(-3)  .h9596(-3)  .27779(-3)  .13481(-3)  .79789(-k)
4 .25136(~-2)  .15100(-2)  .9h3%41(-3) .52713(-3)  .34664(-3)
5  .51128(-2) .33052(-2) .22137(-2) .13512(-2)  .9hBLO(-3)
6 B7710(-2)  JS597hT(-2)  JAh2030(-2)  .27292(-2)  .20044(-2)
7 .13462(-1) .95h16(-2)  .69654(-2)  .h7372(-2)  .35983(-2)
8 «19116(-1) .13981(~1) .10508(-1) .Th103(-2) .57785(-2)
9 .25637(-1)  .19237(-1) .14805(-1) .10751(-1) .85632(-2)
10 «32957(~1)  .25268(-1) .19838(-1) .14768(-1) .11973(-1)
12 L9366(-1)  .39166(-1)  .31716(-1) .okse7(~1)  .20436(-1)
i 67683(-1)  .55066(-1)  J45652(-1)  .36336(-1)  .3090T(-1)
16 .87181(-1) .72382(-1) .61131(-1) .Aho77h(-1)  .143029(-1)
18 .10737 .00628(-1)  .7770L(-1) .6hhha(-1)  .56L43(-1)
20 .12786 .10941 94087(-1)  .79989(-1) .70824k(-1)

24 .16868 L147h8 .13057 11261 «10141

30 .22713 .20318 .18365 .16245 .14895

Lo «31327 28717 .26540 24119 .22542

60 Lhhs5 L4184 .39606 «3705k «35351

120 .65286 63241 61444 .59334 .57887



Table 6 (Cont'd)
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5 = 16
o
;\\\\ .100 .050 .025 .010 .005
1 Jokoh(-5)  Jokok6(-6)  .22695(-6)  .35550(-7)  .882h7(-B)
2 .13006(-3)  .56292(-k)  .25556(-k)  .94083(-5)  JL45141(-5)
3 .65086(-3)  .34790(-3)  .19441(-3)  .9h136(-k)  .55643(-k)
b .a7977(-2)  .10760(-2)  .67034(-3)  .37348(-3)  .24518(-3)
5  .37121(-2)  .23900(-2)  .15956(-2)  .97074(-3)  .6800k(-3)
6  .eu5Ti(-2)  .43795(-2)  .30703(-2)  .19865(-2)  .14557(-2)
T .10039(~1)  .70830(-2) .51520(-2)  .34ook(-2)  .26kh9(-2)
8 Jabbes(-1)  .10501(-1)  .78628(-2)  .55228(-2)  .42957(-2)
9 .19558(-1)  .uk607(-1)  .11198(-1) .80989(-2)  .64336(-2)
10 25405(-1)  .93867(-1)  .15162(~1) .11239(-1) .90886(-2)
2 «38771(~1)  .30597(-1) .2u682(-1) .19006(-1)  .15793(-1)
1% «53979(~-1)  JU3711(-1) .36097(-1) .28608(-1) .2k266(-1)
16 .70506(-1) .58268(~1)  .h9021(-1)  .397h5(-1)  .3k263(-1)
18 B87914(-1)  .73870(-1)  .63094(-1) .52108(-1)  .U45515(-1)
20  .10585 .90179(-1)  .78000(-1)  .65413(-1)  .57762(-1)
2k . 14229 .12388 «10929 .93888(-1)  .84334(-1)
30 .19587 «17hsh .15726 .13860 2677
ko 27738 25342 «23354 .21155 .19730
60 JLo6k1 .382151 «36032 .33625 .32024
120 62093 - +60054 .58270 +56181 .54753
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£, =18

N .100 .050 .025 :010 .005
1 .28692(-5) .66739(-6) .16100(-6)  .25214(-T7)  .62584(-8)
2 .93663(-4) .hohés(-k)  .18348(-L) .67k76(-5) .32357(-5)
3 A7525(-3)  .25340(-3) J1ka34(-3)  .68318(-4)  .Lho3zka(-k4)
b .13300(-2)  .79368(-3)  .49336(-3)  .27h2k(-3)  .17979(-3)
5 27802(-2)  .178k1(-2)  .11881(-2) .T72087(-3) .50418(-3)
6 L48917(-2)  .33061(-2)  .23113(-2) .14898(-2)  .10906(-2)
T .76863(-2)  .54031(-2) .39185(-2) .26464(-2)  .20013(-2)
8 L11154(-1)  .80890(-2)  .60383(-2) .he27e(-2)  .32811(-2)
9 .15263(-1)  .11355(-1) .86780(-2)  .62547(-2)  .L49578(-2)
10 .19966(-1)  .15176(-1)  .11828(-1) .8734k2(-2) .TOMME(-2)
12 .31003(-1)  .24371(-1) .19594(-1) .15034(-1)  .1246h(-1)
14 A43758(-1) .35293(-1) .29050(-1)  .2294o(-1)  .19413(-1)
16 .57853(-1) .u7623(-1)  .39935(-1) .32261(-1) .27746(-1)
18 .72922(-1)  .61036(-1) .51965(-1) .hetée(-1)  .37264(-1)
20 .88659(~-1) .752h6(-1)  .eu877(-1)  .5k21s5(-1)  J47763(-1)
24 .12118 .10513 L92L6h(-1) .79161(-1)  .7O945(-1)

30 .17018 L1511k ..13579 .11929 .10888

4o .24689 22489 «20673 .18673 .17381

60 .37267 .34901 .32807 .30628 .29124

120 +59123 « 57099 55334 53275 51871
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f, =20
N .100 .050 .025 .010 .005 )
1 .21103(-5) .49061(~6)  .11832(-6) .18526(-7)  .45983(-8)
2 J69675(-k)  .30058(-k)  .13616(-4)  .50029(-5)  .23980(-5)
3 .35758(-3) .19027(-3) .10597(-3)  .511h5(-k)  .30176(-L)
b .10m6(-2)  .60219(-3)  .37362(-3)  .20729(-3)  .13575(-3)
5 .21362(-2) .13671(-2) .90845(-3)  .55000(-3)  .38415(-3)
6  .379k7(-2) .25571(-2)  .17836(-2) .1ak77(-2)  .83827(-3)
T 60161(-2)  h42161(-2)  .30501(-2) .20545(-2) .15512(-2)
8 .88038(-2) .63643(-2)  47386(-2) .33081(-2) .25633(-2)
9 J21k2(-1)  .90035(-2)  .68627(-2)  .h9321(-2)  .39023(-2)
10 .16003(-1)  .12122(-1) .9k221(-2)  .69370(-2)  .558k5(-2)
12 .25186(-1) .19731(-1) .15820(-1) .12101(-1) .10013(-1)
14 235074 (~1)  .28916(-1)  .23734(-1) .18684(-1) .15780(-1)
16 L48071(-1)  39437(-1)  .32978(-1) @ .26558(-1) .22794(-1)
18 61175(-1)  .51032(-1)  .A43327(-1)  .35543(-1) .30910(-1)
20  .75023(-1) .63463(-1)  .54566(-1)  .45k59(-1)  .39968(-1)
2l .10410 .90017(-1)  .78961(-1) .67399(-1) .60285(-1)
30 .14885 .13180 .11812 .10347 .oL265(-1)
Lo 22078 .20058 .18397 .16575 «15402
60 .34268 .3202k «30129 27992 26581
120 «56353 54351 . 52611 .50586 49210




Table 6 (Cont'd.)
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£, =22

;ngi .100 .050 .025 .010 .005
1 .15972(-5)  .37114(-6)  .89u87(-7)  .ikoio(-7)  .3477L(-8)
2 .53229(-4)  .22936(-4)  .10381(-4) .38116(-5) .18263(-5)
3 .27576(-3)  .14649(-3)  .B1hB4(-k)  .39280(-k)  .23160(-k)
o .787125(-3)  Ju6769(-3)  .28972(-3)  .16049(-3)  .10500(-3)
5 .16768(-2)  .10707(-2)  .71020(-3)  .42918(-3)  .29943(-3)
6 .30030(-2) .20186(-2) .1h052(-2) .90240(-3)  .6582L(-3)
7 J797h(-2)  .33533(-2)  .24208(-2) .16270(-2) .12267(-2)
8  .70709(=2) .50979(-2) .3787h(-2) .26378(-2) .20409(-2)
9  .97599(-2)  .72389(-2) .55214(-2)  .39586(-2)  .31272(-2)
10 .13018(~1) .98360(-2) .76282(-2) .56022(-2) .L45368(-2)
12 207h2(-1)  .16202(-1)  .12960(-1)  .9887k(-2)  .81672(-2)
1k .29938(-~1)  .23994(-1)}  .19646(-1)  .15425(-1)  .13004(-1)
16 40385(-1)  .33034(-1) .27556(-1) .22131(-1) .18962(-1)
18 .51835(-1)  .h311k(-1) .36514(-1) .29873(-1)  .25933(-1)
20 .6h063(-1)  .5ho3h(-1)  .46347(-1) .38507(-1)  .33795(-1)
ok .90099(-1) .77695(-1) .67991(-1) .57881(-1) .51681(-1)
30 .13098 11567 .10343 .90375(-1)  .82195(-1)

L0 .19829 17972 . 16450 .14786 .13719

60 .31591 2946l 2767k 25663 24338

120 +53763 .51789 .50078 48092 L6745
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Table 7
Percentage Points of Wilks' Criterion U
for p =4 and £, = 11(1)13(2)23
£, =11
;;\(i .100 .050 025 .010 .005
1 .a3773(-7)  .34196(-8)  .85196(-9) .13603(-9)  .33984(-10)
2 .85307(-4)  .36251(-4)  .16238(-4)  .59027(-5)  .28129(-5)
3 JL7887(-3)  .2h866(-3)  .13684(-3)  .65205(-4)  .38171(-4)
L .akas3(-2)  .83203(-3)  .51073(-3)  .27993(-3)  .18190(-3)
5 .30973(-2)  .19622(-2) .12922(-2)  .77H12(-3)  .53690(-3)
6 .56328(-2)  ,37660(-2) .26078(-2) . .16636(-2) .12077(-2)
T .90658(-2)  .63160(-2) .L5h37(-2)  .30393(-2) .22833(-2)
8 .13388(-1) .96379(-2) .71k62(-2) Lho6e2(-2)  .38297(-2)
9 .18556(-1)  .13721(-1) .10k28(-1) ..7h6hT(-2) .58882(-2)
10 2h502(-1)  .18530(-1)  .14376(-1)  .10555(-1)  .B4T78L(-2)
12 .38413(-1)  ,30106(-1)  .24131(-1) .18hk1(-1) .15242(-1)
1k J5hh68(-1)  J43865(-1)  .36044(-1)  .28393(-1) .23981(-1)
16 .72053(-1)  .59289(~1)  .49683(-1)  .40085(-1)  .34LU3T(-1)
18 W90666(-1)  .75925(-1)  J646hT(-1)  .53184(-1)  J46326(-1)
20 10986 .93340(-1) .80530(-1) .6732h(-1) .59315(-1)
24 «14880 12934 .11393 97669(-1)  .87598(-1)
30 «20580 .18326 .16500 527 13277
4o «29154 «26639 24550 +22236 20734
60 J2h65 .39889 .37693 .35192 «33527
120 .63909 .61854 60052 .57939 .56491

p = number of variates; f, = hypothesis d.f.; f

M=f-p+1;

1

1

by which tabulated values are to be multiplied.

= error d.f.;

the numbers in parentheses indicate the power of 10
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f, =12

N 100 050 .025 .010 .005
1 JBugsh(-8)  ,21102(-8)  .52584(-9)  .83970(-10) .20979(-10)
2 63004 (-k)  267h8(-L)  J11961(-4)  JA34Ak(-5)  .20672(-5)
3 .35698(~3)  .18660(-3)  .10244(-3)  A48701(-4)  .28k70(-L)
L .10826(-2)  .63421(-3)  .38821(-3) .21217(-3)  .13761(-3)
5  .2h039(-2) .15172(-2) .99610(-3)  .67899(-3)  .L1170(-3)
6 Jh2os5(-2)  .20hk98(-2)  .20362(-2)  .120k5(-2)  .93772(~3)
T W72LEk(-2)  .50059(-2)  .35894(-2)  .23925(-2)  .17934(-2)
8  .10770(-1)  L7721k(-2) .57062(-2)  .39479(-2)  .30398(-2)
9 J1507h(-1)  .11102(-1)  .84089(-2)  .59973(-2)  .h7195(-2)
10 .20085(-1) .15128(-1) ,11698(-1) .85568(-2)  .68569(-2)
12 .31993(-1)  .2ko75(-1)  ,19953(-1)  .15192(-1)  .12527(-1)
1k J145983(-1)  .36890(-1)  .30215(-1) .23717(-1)  .1998k(-1)
16 J61567(-1)  W50b77(-1)  Lh2170(-1)  .33909(-1)  .29067(~1)
18 L 782hk2(~1)  .65286(-1)  ,55k21(-1)  JA5hho(-1)  .39Lk93(-1)
20 W95654(-1)  .80992(-1)  .69674(-1) .58057(-1)  .51040(-1)
24 «13152 «11396 «10010 .85555(-1)  .7657T7(-1)

30 +18508 16434 L14T759 .12958 .11821

Lo 26751 .24383 222l 20262 .18863

60 +39897 «37H06 +35290 .32889 .31294

120 61760 59710 +5T9LT 55819 .54385
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£, =13
;;\3;4 .100 .050 .025 .010 .005
1 .54329(-8) .13500(-8)  .33647(-9) = .53737(-10) .13426(-10)
2 LT7670(-4)  .20168(-4)  .98728(-5)  .32643(-5)  .15533(-5)
3 .27388(-3) .uk277(-3)  .78222(-4)  .37111(-%)  .21669(-4)
Lo .84238(-3)  .h9193(-3)  .30038(-3) .19782(-3) = .10609(-3)
5  .189k6(-2)  .11917(-2)  .78034(-3)  .4646E9(-3)  .32109(-3)
6  .35318(-2) .23438(-2) .16133(-2) .10226(-2) . .T73937(-3)
7  .58137(-2)  .bhoig7(-~2) .28739(-2) .19096(-2)  .1k285(-~2)
8 ,87633(-2)  .62603(-2)  JL6128(-2) .31812(-2) . .24Lhl(-2)
9  .12375(~1) .90810(-2) .68580(-2)  .i8752(-2) .38285(-2)
10 JA6624(-1) J12h76(-1) .9618Lk(-2)  .70128(-2) = .5607T7(-2)
12 .26867(-1) .20899(-1)  .16647(-1)  .12634(-1) . .10395(-1)
1 .39100(-1)  .31259(-1) .25529(-1) .19974(-1)  .1679k(-1)
16 .52923(-1)  Jh32uh(-1)  .36026(-1) @ .28877(-1) .2hkr02(-1)
18 67895(-1)  .56468(-1)  .L7805(-1)  .39075(-1) . .33892(-1)
20 .83700(-1)  .70648(-1) .60614(-1) .50357(-1) . .LhLki82(-1)
ok 11672 .10083 .88353(-1)  .75300(-1) .67272(-1)
30 +16695 L1h78h .13248 .11602 .10566
4o .24 597 .22368 .20531 .18511 17207
60  .37528 - 35124 .33087 .30783 .29256
120  .59710 .57669 .55888 .53809 452391
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::15 ”

o

;P\fi .100 .050 .025 .010 .005
1 .24292(-8)  .60402(-9)  .15059(-9)  .2h056(-10) .6010L(-11)
2 .28697(-k) .12100(-%)  .53905(-5) .19498(-5)  .92671(-6)
3 .16910(-3)  .87758(-k)  .h7920(-4)  .22659(-k)  .13202(-k4)
Lo .53248(-3)  .30936(-3)  .18815(-3)  .10215(-3)  .65990(-k4)
5  .12237(-2)  .76546(-3)  .49900(-3)  .29578(-3)  .20378(-3)
6  .23268(-2) .15352(-2) .10517(-2)  .66327(-3)  .4T780k(-3)
7 .3900k(~2)  .26806(-2) .19072(-2) .12605(-2)  .93980(-3)
8 5978k (-2)  Jhehh7(-2)  .31120(-2)  .21960(-2)  .16230(-2)
9 85737(-2)  .62526(-2)  .46981(-2) .33213(-2) .25988(-2)
10 .11683(-1)  .87137(-2)  .6683u(-2)  .48k55(-2)  .38605(-2)
12 .19368(-1)  .1k973(-1)  .11866(-1) .89545(-2)  .T3LkOT{-2)
1k .288k2(~1) .22023(-1)  .18631(-1) 1hhoo(-1)  .12149(-1)
16 .39770(-1) -.32306(-1) .26781(-1) .21349(-1) .18197(-1)
18 .51895(-1} - .h2915(-1)  .36156(-1) .29395(-1)  .25L405(-1)
20 .64950(-1) - .54517(-1)  L46556(-1)  .38hTh(-1)  .33639(-1)
2 .92927(-1) - .79860(-1)  .69666(-1) ,59078(-1)  .52605(-1)
30 -..13698 - 12072 L10TTH .93919(-1)  .85270(-1)

ko  ..2091k -« 18041 +17325 $15557 L« 14423

60 +33313 - »31079 «29196 .27078 »25681

120 .55878 -.+53866 - 5008k L8702

#2117
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£, =17
o
;?\\\\ .100 .050 .025 .010 .005
1 ..11950(-8) .29730(-9) .Th1k2(-10) .11846(-10) ..29598(-11)
2 .18297(-k)  .76948(-5)  .34215(~5) .12356(-5)  .58662(~6)
3 .11000(-3)  .56889(-4) ..30980(-4) ..14610(-4) ..85000(-5)
Lo .35298(-3)  .2o0k2h(-3)  .12382(-3) ..67000(-k) ..43199(-k4)
5 .82552(-3) .51k07(-3)  .3339W(-3) .19718(-3) ..13552(-3)
6 ..15953(-2)  .1ok76(-2) ..T71h95(-3)  .hhoo5(-3)  .32281(-3)
T .27146(-2)  .18565(-2) ..13156(-2)  .86579(-3)  .64375(-3)
8  JL2191(-2)  .29806(-2) ..21763(-2)  .14861(-2)  .11346(-2)
9 .61293(-2)  Jhhh73(-2)  .33277(-2) ..23k17(-2) ..18270(-2)
10 Bhs2g(-2)  .e27ebk(-2)  JL7907(-2)  ..3bus572(~2)  ..2ThE2(-2)
12 $14321(-1) ,11015(-1) ..86920(-2) ..65284(-2) ..53351(-2)
14 21739(-1)  J17191(-1) .13913(-1) ..20777(-1) ..90026(-2)
16 .30481(-1)  .24637(-1)  .20340(-1) ..26139(-1) ..1371hk(-1)
18 Jo370(-1)  .33222(-1) .27876(-1) ..22559(-1)  .19438(-1)
20 .51203(-1) Jherrh(-1)  .36382(-1) .29931(-1) .26092(-1)
2h «Tho51(-1) .6k121(-1) ..5572h(-1) Jhrosi(-1)  LLaTT6(-1)
30 .11351 .99630(-1) ..88602(-1) .76927(-1) ..69657(-1)
40 .17908 .16159 <173k .13184 .12194
60 -+29690 27619 .25883 .23937 22659
120 «52369 -+50395 .48686 46707 L5365




Table 7 (Cont'd.)

91

£, =19
;;\31 .100 ~.050 .025 .010 .005
1 .63378(-9)  .1577h(-9)  .39347(-10) .62872(-11) .15711(-11)
2 Jd2212(-k)  .51246(-5)  .22753(-5)  .82048(-6)  .38935(-6)
3 .7h628(-k)  .38483(-4)  .20012(-4)  .98399(-5) .57181(-5)
in 24320(-3)  L1k02h(-3)  .8h799(-Lk)  Jhs7é2(-k).  .29hk52(-k4)
5  .57T0(-3)  .35802(-3) .23186(-3)  .1365L(-3) - .93640(-L)
6  .11303(-2)  .73931(-3)  .50299(-3)  .31486(-3)  .22587(-3)
7 W19k77(-2)  .13266(-2)  .93700(-3)  .6abkk(-3)  .h5582(-3)
8 .30629(-2)  .21548(-2)  .15680(-2)  .10667(-2)  .81251(-3)
9  LA4ko87(-2)  .32503(-2)  .2k236(-2)  .16990(-2)  .13223(-2)
10 .62683(-2)  JA4631h(-2)  .35248(-2)  .25337(-2).  .20076(-2)
12 .10820(-1)  .82857(-2)  .65152(-2)  .48738(-2). .39728(-2)
1 .16702(-1)  .13151(-1) .10606(-1)  .81821(-2) .68172(-2)
16 23764 (-1)  .19127(-1)  .15734(-1)  .12434(-1)  .10539(-1)
18 .31890(-1)  .26133(-1) .21851(-1) .17613(-1). .15137(-1)
20 Lb0928(-1)  .3k050(-1) .28862(-1) .23652(-1) .20565(-1)
2k 61150(-1)  .52108(-1)  .45133(-1) .37966(-1) .33625(-1)
30 .obo1r(-1) .83001(-1)  .73585(-1)  .63663(-1) . .57512(-1)
ko .15430 .13878 .12620 .11256 . .10389
60 .26557 246k 23041 .21254 . .20085
120 L491k5 - Wh7218 45554 L3632 . W4e33h




Table T (Cont'd.)
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£, =21
;?\:; 100 .050 .025 .010 .005
1 .35718(~9)  .88930(-10) .22187(-10) .35455(-11) .88600(-12)
2 .84599(-5)  .35439(-5)  .15715(-5) .56607(-6)  .26846(-6)
3 J5ohol (k) .26959(-k)  .ak623(-4)  .68686(-5)  .3987h(-5)
L .17299(-3)  .9ok81(-4)  .60021(-4) .32320(-4) .20773(-k&)
5 .b1sk8(-3)  .25699(-3)  .16605(-3)  .97500(-k)  .66TT6(-k)
6  .82318(-3) .53667(-3)  .36416(-3)  .22731(-3)  .16277(-3)
7 J4337(-2)  .97321(-3)  .68548(-3)  .hh814(-3)  .33181(-3)
8  .e2rrs(-2)  .15966(-2)  .11590(-2)  .78560(-3)  .59720(-3)
9 .33769(-2)  .24310(-2)  .18073(-2)  .12628(-2)  .98069(-3)
10 Jrhre(-2)  J3hob7(-2)  .26516(-2)  .18997(-2)  .15020(-2)
12 .83280(-2)  .63543(-2)  .49818(-2)  .37133(-2)  .30204(-2)
14 .13047(-1)  .10235(-1)  .82287(-2)  .63265(-2)  .5259k(-2)
16 .18806{~1) .15080(-1) .12367(-1) .97398(-2) .82360(-2)
18 .25533(-1) .20847(-1)  .17378(-1) .13959(-1)  .11970(-1)
20 .33119(~-1)  .2745k(-1)  .23200(-1)  .180k7(-1)  .16437(-1)
2k .50403(-1)  .k2801(-1)  .36963(-1)  .30990(-1)  .27387(-1)
30 .80007(-1)  .69735(-1)  .61653(-1)  .53173(-1)  .k7930(-1)
Lo .13371 .11992 .10877 L96746(-1)  .89123(-1)
60 .23836 2206k .20589 .18048 .17878
120 L6177 44300 42685 o825 .39571




Table 7 (Cont'd.)

£, =23
;F\Sl .100 .050 .025 .010 .005

1 .21164(-9)  .52711(-10) .13153(-10) .21020(-11) .52530(-12)
2 60449 (-5)  .25286(-5) .11201(-5) .40309(-6)  .19108(-6)
3 .37873(-4)  .iohbs(-k)  .10531(-k)  .149393(-5)  .28649(-5)
L 12640(-3)  .72517(-4)  JA43672(-4)  W23h7a(-k)  .15069(-L4)
5 .30675(-3)  .18924(-3)  .12202(-3)  .71488(-4)  .48897(-L)
6  .61373(-3)  .39900(-3) .2701k(-3)  .16822(-3)  .12027(-3)
7T .10789(-2)  .73017(-3)  .51308(-3)  .33457(-3)  .24732(-3)
8 J17288(-2)  .12082(-2)  .87450(-3) .66789(-3)  .LuLBB2(-3)
9  .258u5(-2)  .18547(-2)  .13753(-2)  .95831(-3)  .T7h290(-3)

10 .36614(-2)  .26869(-2) .20334(-2) J1kse7(-2)  J11k64(-2)

12 .65354(-2)  JhoT2hk(-2)  .38892(-2) .28027(-2) .23kok(-2)
1k .10343(-1)  .80872(-2)  .6hBh2(-2)  Jhovok(-2)  .h1239(-2)
16 .15080(-1)  .12053(-1) .98576(-2) .77h02(-2) .65322(-2)
18 .20690(-1) .16838(-1) .13998 .11210(-1)  .95937(-2)
20 27094 (-1)  .22388(-1) .18868(-1) .15363(-1) .13302(-1)

2k .41930(-1)  .35495(-1) .30574(-1)  .25558 22542
30 67934 59038 . 52066 Lh7T79 L0292
4o .11648 .10k19 Oh290(-1)  .83652(-1) .76929(-1)
60 21460 .19822 18462 16955 <1597k

120 43439 L1616 40051 .38253 < 37043




Table Ta

Percentage Points of Wilks' Criterion U
for p=5 and £, = 12(2)16
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f,= 12 o= 1k fo= 16
M > .05 .01 .05 .01 .05 .01
1 .88625(-7)  .32921(-8)  .uh2s58(-7)  .16412(-8)  .2bo7i(-7)  .89138(-9)
2 -70k78(-5)  .111h43(-5) .36386(-5) .57161(-6) .20307(-5)  .317u44(-6)
3 J55k26(-b)  .13976(-k)  .29579(-4)  .73895(-5)  .16943(-k)  .Lh2022(-5)
N .20850(-3)  .67186(-4)  .11k77(-3)  .36578(-4)  .67377(-4)  .21289(-k)
5  .58353(-3)  .20511(-3)  .30788(-3) .11477(-3) .18491(-3)  .68284(-k)
6 .11374(-2) .48053(-3) .66121(-3) .27583(-3)  .k0570(-3)  .16752(-3)
7 .20567(-2)  .9k709(-3) .12249(-2) .55661(-3) .76633(-3)  .34h62(-3)
8 .33523(-2)  .16536(-2) .20420(-2)  .99323(-3) .13008(~2)  .62611(-3)
9  .50608(-2) .26k0k(-2)  .31530(-2) .16184(-2)  .20379(-2) .1037h(-2)
10 .72010(-2)  .39384(-2)  .h5587(-2)  .24506(-2)  .30015(-2)  .16015(-2)
12 .12792(-1)  .75b19(-2)  .83743(-2)  .4B709(-2)  .5672h(-2)  .32626(-2)
1 .20090(-1) .12552(-1) .135W4(-1) .83515(-2)  .9kog9o(-2)  .57385(-2)
16 .28867(-1) .18873(-1) .19958(-1) .12881(-1) .14169(-1) .9OMET(-2)
18 -38943(-1) .26423(-1) .27527(-1)  L184h5(-1)  .1992h(-1)  .13210(-1)
20 .50090(-1) .35054(-1) .36112(-1) .24966(-1) .26594(-1) .18196(-1)
2k J7hsh(-1)  .5M931(-1)  .55726(-1)  .hok82(-1)  .L2273(-1)  .30409(-1)
30 .11508 .89082(-1)  .89207(-1) .68338(-1) .70090(-1)  .53209(-1)
%0 .18367 .15036 14912 .12098 12222 .98374(-1)
60 +30592 26607 26257 22678 .22659 .19449
120 .53618 L9BoT 49255 L5584 45340 41803
p = number of variates; f2 = hypothesis d.f.; fl = error d.f.; M = fl- p + i H

the numbers in parentheses indicate the power of 10 by which tabulated values are

to be multiplied.
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Table 8
Percentage Points of Wilks' Criterign U
for p =6 and £, = 11(1)13
fy=11 = 12 fy= 13

;;\$:¥ .05 .01 .05 .01 .05 .01
1 -38408(-7)  .14198(-8)  .2kh98(-7) .ookk1(-9) .16131(-7)  .59584(-9)
2 .33078(-5)  .51481(-6) .21601(-5) .33466(-6) .1517(-5)  .22L01(-6)
3 -27938(-4)  .69021(-5)  .18672(-4)  .45832(-5) ,12806(-k)  .31255(-5)
4 .11166(-3)  .35196(-k)  .76238(-k)  .2385L(-4)  .53285(-k)  .16560(-k)
5  .30639(-3) .11307(-3) .21335(-3) .T78091(-k) .15172(-3)  .55132(-k)
6  .66973(-3) .27681(-3)  .u7h72(-3)  .19456(-3)  .34265(-3)  .13951(-3)
7 .22577(-2)  .56693(-3)  .90501(-3)  .hobB6(-3)  .66217(-3)  .20450(-3)
8 .21190(-2)  .10235(-2)  .15h7h(-2) .7BAT6(-3)  .11465(-2)  .54676(-3)
9 .32926(-2)  .16826(-2)  .24388(-2)  .12365(-2) .18343(-2)  .92266(-3)
10 48110(-2)  .25779(~2)  .36037(-2)  .19169(-2)  .27h13(-2)  .14k67(-2)
12 -8002k(-2)  .51578(-2)  .68301(-2) .39229(-2)  .53017(-2) .30213(-2)
14 -1kb79(-1)  .89032(-2)  .11325(-1) .69057(-2)  .89k85(-2)  .54155(-2)
16 .21403(~1)  .13788(-1) .17016(-1) .10873(-1) .13650(-1) .86579(-2)
18 -29571(-1)  .19790(-1)  .23849(-1) .15835(-1) .19388(-1) .12781(-1)
20 .38818(-1) .26819(-1) .31706(-1) .21739(-1) .26082(-1) «17758(-1)
pa -59867(-1)  .h34o6(-1)  .logsh(-1)  .36037(-1) .bigek(-1)  .30047(-1)
30 -95541(-1)  .713251(-1) .81720(-1) .62254(-1) .70207(-1)  .53168(-1)
40 .15865 .12889 13970 .11287 .12338 .99183(-1)

60 .27605 .23880 .25160 21674 .22971 .19711

120 .50789 706k .48256 A4607 45880 42313

P = number of variates; f2 = hypothesis d.f.; f

1l

= error d.f.;

M= fl- Pt1l;

the numbers in parentheses indicate the power of 10 by which tabulated values are

to be multiplied.
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CHAPTER V
DISTRIBUTION OF WILKS' A, IN THE

NONCENTRAL LINEAR CASE

5.1. Introduction

In this chapter we continue our investigation into the problem of
the distribution of Wilks? A . The work already done in Chapter IV
concerns the distribution of A when the hypothesis to be tested 1s
true (null case). Here we investigate the non-null distribution of A
in the linear case l.e. when the alternative hypothesis is of unit rank.
Thus using the notation and terminology of Chapter IV, it is our specific
purpose to derive exact non-null probability and distribution functions
of A for p =2(1)5 and general £, and £, .

A first step towards the derivation of the nonenull distribution,
was taken when Anderson and Girshick (19L4L) attacked the problem of find-
ing the distribution of the Wishart matrix in the noncentral case. The
result let Anderson (1946) to the derivation of the moments of the cri-
terion for testing the hypothesis of the general multivariate regres-
sion problem (or rather the equivalent Wilks-Lawley hypothesis).
Anderson’s results were valid for a certain class of alternatives, which
he called linear and planar (corresponding to one or two noncentrality
parameters). The moments for the linear alternative involve an infinite

sum of expressions containing gammsa functions and for the planar slter-

native, involve a triple infinite sum of the same type of expressions.
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J. Roy (1960) obtained gamma-series expansion for the power function of
Wilks test, which is convenient to use when the error d.f. is large and
the noncentrality parameter is small. However, more recently Posten
and Bargman (1964) obtained an spproximation to the power of the like-
lihood~-ratio test of the multivariate general linear hypothesis by ob-
taining the cheracteristic function of a test statistic and expanding
this function in & series , the terms of which were of a form which could
be easily inverted.

The non-null distribution of A when f2 = 1 was derived by Bose
and Roy (1938) and Hsu (1938) and the probability density funetion in

this case can be written as:

=]

(5.1.1) ) 2,3 \%) B [

J=o

T -ptl
1
) :%J;L]

vhere pj(e) is the Poisson probability function
(5.1.2) py(e) = & o 131

and Bfr,s;L] 1is the Beta density function

(5.1.3) B[r,s;L] = [1/B(r,s)] ILlr'l |:|:-L]s'l
and

(5.1.%4) 12 =yt z‘l wooe
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Anderson (1946) has shown that in general, when the rank of the matrix

p is s,s =min (p,fz), the distribution of A can involve at most s
parameters 11, X2""hs defined as the positive square-roots of the

non-~zero roots of the determinantal equation

(501-5) l w RIS} ZI = 0

5.2. Distributicnsl Properties of A

In the notation of Chepter IV A, has the W(A /o)) distribu-

1
tion, where W(S/t/f) stands for the density function of a pxp Wishart
matrix S , based on f d.f. and population covariance matrix X .

But A, hes W(Aa/z/fz) distribution if and only if H,
otherwise A2 has noncentrsl Wishart distribution. Note that under

is true,

HO , the statistic p 1is distributed independently of the elements of
(Al+ A2). The following result is known.

Iet Al and A2 be two positive definite symmetric matrices of

order p , A. having Wishart distribution with f d.f. and A. having

1 1 2

an independent noncentral Wishart distribution with f2 d.f., correspond-

ing to the linear case (Anderson 1946; Anderson and Girshick 19ul). If

we write
(5.2.1) A =CLC ,

where C 1is a lower triangular matrix such that
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(5.2.2) AL +A = CC!

it has been shown (Kshirsagar 1961) that the density of L is given by

1

=(f_ -p-1)
(5.2.3) 2(1) = k expl- 32) |Fy (e 42,), 3o, 2 (1m0 B[22

1 .
—(f ...p_l)
. I I"'L‘Q 2 ,

where

(5.2.4) Ko BEB-1)/H ﬁl r [3(£,42,+1-1)1/{r{3(e, +1-0)]r [3(e,41-1)13

12 is the single noncentrality parameter in the linear case, 211 is

the element in the top left corner of the matrix L, and lFl denotes

the confluent hypergeometric function, defined below.

[+

(5.2.5) Flanz) = 5 fel . 2
0

where

(5.2.6) , (a)n = a(a+l) ¢+ (atn-1)

Note that IL| =4 .

Further, we can write -

(5.2.7) . L=T7T
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where T is a lower triangular matrix [tij] of order p . Then it

has been shown by Kshirsagar (1961) that the diagonal elements t

2
ii

ii

are independently distributed and that t (i = 2,...p) follows the

distribution

2
2

1 +]l=i )=
1-t_. )

£ -i+l f
(5.2.8) 2(t5,) = [1/B(L5— , B3

2
0< tii <l ,

wvhile t2 is distributed as

11
2\ _exp(- 2°/2) (.2 %’ 1 2 ‘f‘g'l
B('é"'; "é')
2 2 2

Observe that

P o5 P
(5.2.10) A=lL= ©m t;,= U X (say)

! AT & | .
i=l i=

where Xﬁ A,B[%(fl+l-i), 3 Tys X

Now we state a theorem which is a direct consequence of above re-
sult and theorem 4.2.4. We shall use this result quite often. How-
ever a proof is not given, since its so cbvious (See Anderson 1958).

Theorem 5.2.11. In the noncentral linear case, U is distribu-
2r,f2,fl

ted like Xl Yi ...Yi_l Xér where Xl is independently distributed
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as in (5.2.9), Yi(i=l,e.,,r-l) are independently distributed as

B[fl-Ei, f2; Y] and X2r is independently distributed as

£ +l-p

B[ %

2 )%f

5 X], Amd U is distributed like X Y’i !i

2 25+1,T,,,, 1

vhere X 1is independently distributed as in (5.2.9) and Yi(i=1,...,s)

are independently distributed as B[fl-Qi,fg; Y] .

5.3. Method of Derivation

The method used in deriving the probebility and distribution
functions of U in the noncentral linear case is the same as
p} f2’fl
described in 4.3. We ucs the convolution technique to derive the

algebraic forms of the exact probebility and distribution functions.

Consider the distribution of Xl

-1 ir -1
- 2
1 (l_xl) 2

o\ /2 3f

(5.3.1) £(x,) RNCERENE N N )

. 1t A2\ .
(—==), (& — -1+
ot - 2 '3 2 (1-X. ) 2
A T j! 1
j=0 (-2).
2%
by substituting for ]Fl from (5.2.5).
Now nmake the transformstion
. Xm
(5.3.2) o= lcg Xl , Y = - =
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We get
/2 - ) fl+2k)Y
-}\ --—-——
(5.3.3) £(y;) = —(1;—-_1?‘5 2 ()\Je)J X( )(b+‘]) 2 "1
=0
J
Y. >0

\. £,
where b = 5— -1 .

Also we have the probability density function of Xi , (1= 2,...p)

o
: %(fl-l-i) = -1
(5.3.4) £ (%) = KX (1-x,)
0<X. <1
1 -y
where
f.-i¥l F
: _ 1 o2
(5.3.5) k, = [B(—=5—, 5 )]
Transform
. ax,
(5.3.6) Y, =-lgX, , d¥, =- -;Z- .

VWe get, after applying binomial theorem, the density of Yi as

b E- (£ -+1+2z i)
(5.3.7) £(x) =% ) (-1 (e 2" , Y. >0 .
4=0
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Similarly in the light of the theorem 5.2.11 let us consider the

random variables defined by

(5.3.8) 2 =%y Fogn

then the density function of Zi is given by

1
(£ -21-2) f.-1
- 1 2

(5.3.9) £(z) = C; Z, (1-VZ)
where
(5.3.10) C, = L1] 2B(f1-2i,f2)] .
Making the transformation
(5.3.11) Y; = - log Z

t
and expanding by binomial theorem, we get the density of Yi as

-1 ¥,
' g Toml - zo(£,+e-21) '
(5.3.2) £(¥,) = ¢, ) (-1)* (% )e , L0 .

£=0

Finaglly, since the distribution of Log U is the distribu-

PJ fa) fl

tion of

n 4o

log Xi » Wwe evaluate the convolution integrals of the
i=1l

type (4.3.14) discussed in section 4.3. The convolution is performed
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at successive stages to obtain the probability density functions. The
distribution function is obtained by integrating the probability func-

tion thus derived.

5.4 Exact Probability and Distribution Functions of Ub £
? 2’ 1

5.14-.1- P = 2
We write the Wilks' statistic as a product of independent variables
Yo,r 0, = %1 %2
or taking logarithm of the inverse we get
(5.4.12.1) - 1og U =~ log X

2,2,,8, 1~ g %

=Y, +Y, =W, (say)

where Yl is distributed as in (5.3.3) and Y2 is distributed as

b %
£.-1 £ .. - —5(r, +22-1)
(5.k.2.2) ¥, ~1B(F— 20 ) (-1F e 27

£=0
Then
(5.4.1.3) W, ~ f(Yl) * f(Y )
2, & @), &) b
- {4 - +
~xet/ E“‘j {2 Z%‘%.Lem(”)(b
5=0 ( ’é‘J k=0 =0
Frek o Tytesel

. (e 2 ° - e- 2 25} ,
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where
(5ekelolt) v=1, +f,
and
£, T £f.-1 f
0, 2
(5),4'-]7-5) k = [2!3(‘2_1: —g') B (_;2_" —2) ] )

_which may be essily vai‘ifiecl".by reference to (4.3.1%) - (4.3.16) .

If now we make the transformation W=-1l0g U we -obtain
SR 2 ), 21,4
- o
(5 k. 1.6) ixeN/? Y 2 O f2)
o - 3=0 ("—2')5
fi#ek-2  f,424-3
b+,J b 2 — B }
{Z Z ?_Mkl G w B -u B )
k=0 4=0
To £ind the distribution function of U, , integrate. (5.4.1.6)

2,05,

between the limits (o,u), o <u<l, weget

- 22/ @, &)
2’ 2 Je
f. 42k T +20-1

1 1

b+j b - 5 e
(3 3 & 0 (o - )
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Let us consider a special case when f2= 4 . In this case we get the

probability and distribution functions of T

o4 £ respectively;

1

2 £73 (fl+h) (f.)d 341

- Tz 2’52 (1F gn
(5.4.1.8) U uf e U Y Y. 31 E B2 (k)
'j-{) J k=0 k. "l

211
<2U 2 _ (ex+1) U + (2k-1) )

and

fl-

CHERIE CRIPE L g QJ{e)J

2k+1

(*y (Bl (Pk#idu , 2w ©

f.-1 "  f.+1 f_+2k

J+l

Z (-l)

k

(hk -1) k 1 1 1
where value of k becomes
f -l
k = [2[]3(--— 2) B (—-— 2)]
5.1".2 P = 3

We write Wilks' statistic as

(5.&.201) U3,f2,fl = Xl . X2 . x3

]
o]
N



Taking the logarithm of the inverse

(5.4.2.2) - log U’fe’fl - log X - log z,

! =
Loty =W (say),

vhere. Y., is distributed as in (5.3.3) and Y]'_ is distributed as

1
f2-1 f1+,0J-2
¢ fory s T
(5.h.2.3) Y1 ~[1/2B(£-2,,)] z -0F (5 e
2=0

106

Then the convolution technique gives the exact probability density func-

tion of W3 ags follows

(
e N 2
(5-""-2ah’) W3~ / l

j=0 (—5) k=0
) £.42k by T2l
5 3 . -1 ( fp-1 b+3>
Wy e 23 ) 53@-21{- ) ) (
k=0 =0
¥k
T 42k £ +4-2

where

£, I
(5.4.2.5) K=[1/2B (55 -§) B(fl-2,f2)] .

). J
2 0%l (Y ok () (D)
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Now transform
W=-1log U

to get the probability density function of U as
30Ty

f.-2

_].___ =2
(5.4.2.6) U ’f2’f1~ K e-)ﬁ/e oy z (22)3 ( /2)J {z( 1) <2k+2>
Jj=0 (5—)3
bej To7t ,
D) e T e ()G
k=0 p=0
2¥ek+2

@o® Y

Integrating (5.4.2.6) between limits (o,u), o cu<1, we get the

distribution function of U, as follows.
Torty

2 e (v/2),
3
(5.4.2.7) B[U f,f<u]-2ke)‘/2 g z "2 (1342)

27y ‘2
J=0 (2)3

b+j

{? (:f' +2k) é ,D<b+a> (2-(£, +2k)log u)-

b+j. 2
+2y 2 '('75__'")<a 1><bl?><f+2k f+,e,-2>1
k=0 ¢=0

232k+2
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We consider a special case when f2 =k ., In this case we get the

probebility and distribution functions of U. b respectively,
27

fl-h - (f +l;)
- J
(5.4.2.8) U, 2 ~Ke? /2 Z é) il L) [1 6U1/2+203/2+3U
3=0
J+l
1 2 o3/ sy
(1-208 U) + Y (-2)° (9} >{k+1 -+
k=1
| e
(l * E)(EE-1) (25 ) )]’ ]
and
2 i;-':'e- = ('f']'-_t)i) ( 2 J 6 1/2
(5.4.2.9) P[U, , . <u] =2Ke™ /2, ) 2/2) [ - fq‘i
2Tty ] L 3
j=0
£
3/2 '2"1' it
i}l + 28 2 (242 (1 - 1og u)) +y( 1)%( J”1)
3 k=1
6ul/? o312 3_u

{(fl-e)(k+l) - (2k+l)(fl-l) (2k—1)(f +1)

k
<:%" 1(1k+1)(2k-1)(2k+1)(f +2k ) )} ]

where Xk now becomes,

T
k=[1/ 2B(z%, 2) B (£- 2, ¥)] -
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50"".3 P = l'-

Writing Wilks' statistic as

(5.4.3.1) Ul"fz'f = xl-- X, x3 - X,

and teking the logarithm of the inverse, we get

(5.4.3.2) - log Uﬁ,fa,f - log X, -log Z, -log X,

1

i

neY ey

w3 + Y)_,. = Wl'_ (Say) 2

where Wé is distributed as in (5.4.2.4) and

b Y,
£.-3 f -5—(f, *2m-3)
(5.4.3.3) Y~ (1 [B(F—, z1) (1" () & 1 :

m=0

Then by evaluating the convolution integral we obtain the exact proba~

bility and distribution functions for UL £ regspectively as follows:
,2,1
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12 .
~k e"‘a/2 ve y (v/2), (f/a)J

. J=0 (-23) I
J

(5'14'03-1") Ull-,fa,f

1 )k+m

) [ Zﬁm T (2k+2,m,k) {%m(um-s/e_uk)
km

.U log U} +2 ZZ ((;L}E)k-E)(Qm-Zk-37 f(/e’m,k)('uk_‘fl"B/e)

kg4m
MRk
k+m-1
+) %%;%513'3')' £(em-1,m,k) 3/2 105 U
k m=l :
2 L2
o KU 2 - 3/2)]

-8 EEE Ty | ) R G
ksm

2

g42k+2,2m-1
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and

£
(5.4.3.5) U, ¢ ¢ <u]-2ke’*/2 2 z "/2) (2/2)d

2t a-o( 2), 2
(l)k-l'mk

[zy (2m-2k- 3)(f +2k)

£(2k+2,m,k) {2-(fl+2k)1og u

2m-2k-3
2(f +2k) (£ +2k)u S
(2m-2k—3) (1’ 17253 -1 /}
.o L"’l f, +k+4m f( k m 3/2
—P%n 2,1,k)
%%z (7-2k-2 ) {(Pm-2k-3 ) Cfll+2k f +P_m-3>
1$2k+2

5, Z( L)l m§3/2
. (2m-2k-3) (£, #2m-3)°

£(2m-1,m, k) (2~ (£, #2m-3)1og u)

42

- Jtk4m
357 (ke ) (e - Fos )
1% éme
24Pm-1

where

(5.4.3.6) k-l'llB(e, 2)B(f_2f)3(__; fﬁ)],
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(5.4.3.7) £(g,m%) = ( 2 )( o) ()

and the indices g,m and k¥ run from o to fe-l, b and b+j respec-

tively unless specified otherwise.

A speclal case when f2 =4 is now given. The probability and
distribution functions ef UL b.f respectively, obtained as before,
272

are as follows:

-2

1 £,
2 2 (=5,
(5.4.3.8) U leen/ey 2 2 J U /QL [1 120%.180(2+10g U)
byb, £~ 6 (£5/0)
s 3
J—O
J+1 1
+ hU3/2(11-3 log U) +30F + 3 y (-1)" (J+1) {2k+3 11;21
k=1
. &u 5 (2+(2k+1)10g U) - 2k - P o+ U3/2
(2k+1)

<l ’ (21-;+1) (2k+3)(2k-l)(k+l) >} ]
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and

o 1
(E52); (22)]

1 2
2 (f2/2) 3!

(5.4.3.9) P[U, b, b, 2 <ul=3% Kk e

" - Z12u2 6u
£ -

f.-2

6-(£,-1)(2431
X (fl-l_)a (6-(2,-1)(2+310g u))

2
. \;3/2(641'1 (11 - 3 log u)) + -

fi 4
J+1 1
+3i(l)(3"‘1{ bk v _6u
y (2k43)(£, -3) (k1)(£-2)  (2k+1)(£,-1)
(log u + 2 -2
B+l fy-1
ST )
(2k-l)(fl+l) (k+1)(2k-1)(2k+1) (2k.+3)(f +2k )

where now Xk becomes

:E‘ f-3
[1]3(-—-,2)B(f—2’+)B(——-— 2)] -
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S.4b.4b p=5"
Writing Wilks’ statistic as

(5.4ik.1) .Us"f'a,‘fiéxl“xe X, %, X

!
P4
[
N

end taking the logarithm of the inverse, we get

(5.h.h.2) - Iog U.

= - log "Xl,- log Z_I'- 1og Z2

5’ 2’fl

L]
]
+
]
-
+
s

= w3.+—xé ‘= WS (say)

vhere W. 1is distributed as in (5.%.2.4) and

3
£,-1 !
o fo71 (f +n- h)
(5.4.4.3) y-~[1gen(f-uf)] 2 1" (% Ye?
n=0: '

Then by evaluating the convolution 1ntegral we: obtain the exact proba-

bility and distribution functions for U respectively as followse

S,fe,f
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£-2
2 ¥ ("/21.1 (1L/21J

(5.h.h.4) U ke /2y Z
5,f ,f ,

[ 2 (-1)k F(2k+2,2k+t, k) (1log U)2 uE

n-lL
b EE % £(2k+2,n,k) (%——gk—x:) (w2 . %) ttrog U>

n+2k+h

(-1)"” £( 2,2k, k) US 1og U

(e 21«:2;

.tz; r
?;gw%
"\F)Za >~

a=l
C (o)t 2
ZZ (Z-Ek-E)(n-Qk.h) £( 2,0, )(U5-U
4n

k2
k+4

F273 1k 1722
Z ;-‘21{-2 £(£,4+2,K) U log U
2

242k+2

8o
w1 WwM

)J&"‘k"'n =

N Bzzz (r~2k-2)(n-2-2) f(!?un,k)(U -uc) ]
kon
2¥2k+42
27 -2

and
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o gul=2ke °/e f/QZ(v/e) (2/2)}

(5.4.4.5) PU, £
1t j=0 3! jt

[; [CFDtul £(2k+2, 2k, k) (£, 42k)Z(Log u)>-4 (£ +2k)log u+8)
(f '*21{)3 1l 1

2(f,+2k)

1
(n-2k-L)

( l)n +k
+l ZZ o h)(: o f(,q,,n,k){2-(fl+2k)log ut

n+2k+)+
(¢ 4px) DoBkeh

1 —2
( (£ nk) D}

- L—l:)f"*k k -
*h ZZ (1-2k-2 )1(1f1+2k,)2 f(z,ak*h:k)(?-(fl@k)log u)

X g
12k
n-b
- (_1),@+k+n U.k u 2 v
+ 8 £(o,n,k) ( o=z =
z%g (g-2k-2)(n-2k-} ) (2 28 T Fyed )
1$2k+2
nﬁkﬂl
-5y £(4, 442,k }(2- (£, +4-2)1og )
z% -2k—2)(f +9e2 )2 *
pE2k42
YTy (nEEE w? u? -
-8 y}jz (2-2k~-2 )(n-¢-2) f(ﬂ’n’k)<fl+z-2 B £, n-b > ]
kgon
k42
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where

£, %
(5.k.4.6) k = [1]8 B(-5, —5) B (£,-2,%,)B(£,-4,%,)]

£f.-1 f,-1 R
(5.4 7) (gmk) = (2 ) (2 ) (O,

and the indices g,n, and k run from O to f2-l,‘f2-1 and bt
respectively unless specified otherwise.

A special case when fa = 4 is now given. The probability and
distribution functions of U5’ b f respectively, obtained .as before, are

as follows:

. 6. (flm) 21513
(5.5.4.8) Us e, ~ X /2 2 z ?2 J (xJ/’?‘)
3=0 ("Té’)j
I:J;l( 1) (J+l) { . 20(8k+1) 80(8k+1) 32
2k+3 (1+1)° (2x41)?

- %m) U5/2_ 60 U log U @k+1 k+l>}

+5U2(31-610gU)

Jj+l

130 ° Z (_l. (J+1)( + 8 i )]
k=1

(1+1)2 (k42 ) (2k-1 ) (2k+1)° (243 )



118

and
f.-b £+
l o 1
2 ( ) x J
A.b.9) PIU =2k')‘/2 2 2 '3 ( /2)
R A ) * .Zo(fe/z). EE
J= Jd
i 60 z 20u
J"‘l u
[Z( 1) g ) { (k"’2)(f Y (2k+3)(f1-3) * (k+1)(fl-2)
k=0
6 k411 %0 3/2
(fi—2 - a1~ S leew ('E%)’(F’-‘ﬂ
P

_ k2 L :
(fl-l *ogpr S e w)- (2k-1)(fl+l)

W5
£

>
u (%‘g+3l-6logu)
1 I3

+30 u z ( 1) ('j-l-‘l)G 6u )>]

k=1 1 (01)P (e ) (21 )2k ) (2k+3)(f 2k

where now k becomes

| 3 173 ot
x = [1]30 B (3= , 2) B (£,-2,4) B(-5—, 2) Bl5—, 2]]

S5.4.5 General p
The techniques of the preceding sections and that of Chapter v

lead us to give the form of the noncentral distribution of U
p,fz’fl

in the linear case for general p and general f2 .

The probability density function of Y = - log U oy £ in the
a2 |
linear case is of the form.
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m
J Y
2,. 2 (v/2). 2/0yd -=(f.~b, )
(5.4.04.1) £(¥) = ( I k) e /22 -(——} ( Ec. e 21 BT 48k yop
=1 1 Tose); Jk
3=0 =0
where
(5.4.5.2) k, = [1]B (-.%—(flﬂ-i),% £,)1 »
For example wvhen p =1
o
f2 -—-l+
mj=-§—-1+j, e (1)( ),bk=-2k,dk=0.
By substituting
Y=+ logU
we get the form of the prébability density function of U in
P’fg’fl

the lineasr case as follows

(v/2
(5:4.5.3) U o o ~ ?Iki) e /2}: v )J O 12)320 2y bk)( logU)dk,
oToefy  4m

The corresponding distribution function, by straight forward integration,

is obtained as
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bk)

m
2), 3
(5l¥5’+)P[U Su'_]=( ')‘/22 S/ J (7\/2) Z

’fl i=1 2/2

2

a -
5 @ Lt ) ¥,
£,-b (dk-rk+1) !

y K

P 22/n o (v/2), J 2(fl'b ) 4
= (iglki) e /2 . 3 (2/2) E: oy 8 h (f
3=0 (2 ) 3 pa1

1%

S
(-log u) h 2

where ¢ b

5k Pk dk’ LW ahj and Sh are constants and can be determined

from p, f2 and fl . However it is not known explicitly how to find
the values of these constants, a task which is by no means easy for
large velues of p or f2 .

5.5 Power Function of Wilks'! Test

Formulse derived in section 5.4 can be used to evaluate the power
function of the enelysis of dispersion test when the alternative hypoth-
‘esis is of rank one. However, the calculations using ebove formulae
are limited to p =2(1)5 and for all £, .

exact expression for p =2 and has suggested two epproximetions for

J. Roy (1966) has obtained

P > 2. We shall leave this topic for future work.



121

CHAPTER VI

SUMMARY AND CONCLUSION

6.1 Summary

The study of some central and non-central distribution problems
in multivariate analysis has been carried out in this dissertation.

The primary objective has been to ilnvestigate the distributions of Wés),
the second e s £ in the s non-zero roots of a determinantal equation,
and that of Wilks' A . The two test statistics are related in the sense
of being symmetric functions of the charscteristic roots of a determi-
nantal equation.

The approach used for the study of Wés) is to derive its moments
and with the help of moments suggest an approximation to its distribu.
tion, and further carry out accuracy comparisions by comparing moments
of the exact and approximate distributions. In the centrsl case the
first four moments were evaluated using certain recurrence relations
on Vandermonde determinants but in the non-central case only the first
two moments. The non~central moments, however, were obtained by alter-
nate methods, first by evaluating certain integrals involving zonal pol-
ynomials and then by using generslized Laguerre polynomials. The second

method 1s simpler since for these cases, certain 8 |, coefficients

2>

involved in the generalized Laguerre polynomials are available in

Constantine (1966). But his tabulations are limited up to order k = L.
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Consequently, the third and fourth moments could not be evaluated
explicitly, instead they are presented as linear functions of certain
generalized Laguerre polynomials. During the course of this study cer-
tain determinants were evaluated, which are presented in Chapter II
and some of them in'Appendix A in a consolidated form. These results
helped to evaluate the variances of Wés) and Wﬁs), the third and
fourth e s f's respectively. Certain coefficients ga,ﬂ,i obtained in
i

the expansion of a,

mials, are presented in appendices B and C respectively.

ZK and certain integrals involving zonal polyno-

For the study of Wilks' A , convolution technigues have been used
to derive the exact probability density function in the central as well
as the non-central linear case. In chapter IV the exact probability

density functions of Uﬁ ¢ ¢ bave been derived for p = 3(1)6 and

,2,1
for all f2 .

ever ©p or f2 is even. However, for larger values of p the formu-

These results are generally in finite series form when-

lae become too involved for presentation as well as for programming
purposes. Some special cases when f2 = 3,4 have been worked out.
Respective distribution functions are obtained by direct integration
of the density functions. The fesults confirm that for p =3 with
f2 = L4 Anderson's result is correct and Wilks' result is incorrect.
The formulae derived in this chapter helped to calculate exact per-
centage points of A for p = 3,4,6 and extensive tabulation for
various values of f2 is achieved.

The non-central probability density function of A , necessary

for the study of the power function, has been derived in Chapter V
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for p = 2(1)5 . Distribution functions are obtained by difect inte-
gration of the probability density functions. Special cases when
£, = L are slso discussed.

This is well known (Gihash 1964, Kiefer & Schwartz 1965) that
Wilk's A is unbiased, counsistent and admissible. The power function
of Wilks! A is a monotonic - increasing function of each of the non-
centrality perameters (DasGupta, Anderson and Mudholkar 1964). Very
little, however, is known about the actual magnitude of the power,
and further studies have to be done. A thorough investigation has to
be carried out to look for these properties for Wés) . Also power
computations of Wés) have to be done in order to see how it stands

as compared to Wilks'® A or other existing tests of multivariate hy-

potheses, which have been shown to have some desirable properties.

- 6.2 Suggestions for Further Research

Some of the problems, whose solutions promise new insight into
the realm of the multivariate distribution aﬁd testing theory, are -
listed below.
(1) Tt is seen that there are many reasonable criteria to be used.
One has been suggested in Chapter II. Unfortunately, there is no
theory to tell what is a good class of tests nor how to choose
among the proposed tests when we want power against certain kind
of alternatives.

in the null as well as non~

(i1) The exact distribution of wés)

null case has to be investigated.
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(1ii) The properties of Wés) namely, unbissedness, consistency,
odmissibility, some good lower bound to the power and possibility
of getting suitable confidence intervals; have to be explored.
Also the computation of power of Wés) and its comparison with
the existing tests has to be carried out.

(iv) We have evaluated Ffirst two moments of Wgs) and Wﬁs) .
Their third and fourth moments have to be evaluated and approx-
imations to their distribution have to be suggested. It will be
nice to explore their exact distribution and for that matter exact

distribution of wgs) .
(v) The non-null distribution of Wgs), i=2,3,..8 is unexplored.
And even for i =2, we could evaluate only the first two moments.

Evaluation of higher moments will require evaluation of a in

K,v

the expansion of zonal polynomials beyond k =k .

(vi) Exact power computations of Wilks' A can be carried out
using the results of Chapter V for p = 2(1)5 for general f2
and fl » This will also provide a check of the existing approx-

imgtions for the same.
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APPENDIX A

CONSOLIDATED VALUES OF DETERMINANTS WITH dq > qs-l+ 1

Tt has been shown in Chapter II that the moments of wgs) (i=1, ese8),
the ith esf in the s E's, can be obtained as linear compounds of deter-
minants of the type W(qs,...,ql), 4 20 - Further we have evaluated
in that chapter , the values of each determinant involved in the first
four moments of Wés). However, the evaluation of the determinants was
done in successive stages using a reduction formula (Pillai,1965) which
reduced the original determinant into two parts, the first part con-
sisting of a linear compound of lower order determinants and the second
a determinant of the same order with a chanéed to qs-l . The sec-
ond part vanishes if qS = qS_l+l , but otherwise successive feductions
should be carried on the second part as for the original determinant.

In that chapter the values of the determinants were presented giving

the results for each stage separately but these are now consolidated for

determinants with qs > qs-l+l and presented below.

(A1) K(s,mW(s+2,8,8=3,000,1,0)

= <:Z Méngill [88(5+-l)(s+2)m,3+12s(s+-2)(52+3s+6)m2
2 . 3i

+2(s+2)(3sh+l5s3+h732+59s+2h)m+(s6+955+h3sh+123s3+l96s2+20hs+1hh)],



(a2)

(43)

(AL) K(s,mW(s+2,s,8-2,8-4,...1,0) = [( g ) (S422)M(S'Fs_fiﬁ'.,}'ﬂ):]1:16s(s+l)mlL
2 5%

+2(Ls 5+l9sh+TOs

+(s6+655+25s

K(s,mW(s+2,5+1,5,8~4,¢00,1,0)

_ /s N\ M(s-1,.v.,5%3) - b
_< : ) TR [16(s-1)s"(s+1)m

+ 1652(5-1)(52"-254'10 )m3
+hs (s—l)(6sh+l8s3 +1.25s,2 +T7s+432 )m2
+2(s-1)(hs6+17s5+107s1*+3 53s3 +169s2+1278s+2520)m

+s(s+l){s(s—l)(sh+hs3+hls2+38s+)+32)+l)+’+0}] s

K(s,mW(s+2,5+1l,8,8~3,5-5,+4.1,0)

< 542 ) M(s-z,...,s+3) |'l6(s-l)52(s+l)mh

+B8(s-1 )s (25 +Hhs+23 ).m3

+hs(s-1)( 6le+2].853 +143 sg+89s+62h )m2

+2(s-1)(hs6+17s5+125sl*+3 73s3 +643s2+8385+5880 Jm

45 (s+1) s (s-1) (s +ha3 i Ts2 thls +624 ) 1288017,

+8s (J+32+9s 420 )m3 +( 6sh+2153+6552+505 5 )m2

3195574708490 )

LI

#553+19574395-135) |
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(A5) K(s,m)W(s+2,s-1,58~2,5~3,8-5,04.1,0)

_ l’(ﬁ (s+2)M(s-2,5-1) "4(S+1)m2+2(2s2+7s+17)m
. 25 . 3! i

+ (8346524238442 )] ,

(86) K(s,mW(s+3,5+1,5-2,8-4,...1,0)

=5 ( 3;2 )M(:él:’g"’sﬂg) [8s(s,+]_)(s+3)m3

+ hs(3s3+l952+69s +117 )m2

+ 2(357+265 14353 1450247865 +576 )

L

+ (54118”4775 +3hls3+9u652+182hs+2880)] ,

(AT) K(s,mW(s+3,s,s~1,8-4,4¢..,1,0)

= < ; > M(s;é-; :.;sﬂ) [:32(5'1)5(S+l)(s+2)(s+3 )m5

+ l6s(5s5+3554+105s3+1h532-505-240)mﬁ

5 L

+ 8(5-1)(IOS6+lOOs +505s +1550s3+2785s2+2670s+1080)m3

6

+ 1(10s5+1108 T+6355 04226557 47658 * +512583 415502 402086120 Ju

6 5 3

+ 2(589+655 5508 T+20008 456795 +101158 41177085 +78608°

+16565+1440 Jm

5 4 3

+ (s1°+15s9+120s8+630s7+2193s6+5115S +8630s " +10800s

+1209652+252003+302uo)] ,
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(A8) K(s,m)W(s43,85,5-2,8-3,5-5,04.1,0)

=3 < >M<S -2, ; ’S+l) [16s(s+1)(s+2)(s+3)m

+8s (4? +3l+s3+13252+27hs 228 )m3

+( 6s6+66s 5+365.s)++122053+23 57s2+2226s +672 )m2

6 L

+2(hs7+5us +378s5 +1692s +1L862s3+867052+9)+285+5152 Jm

8

+s +16s7+13hs6

+Tl+035+275’(s}++6921+53+l221252+l50)+Os+9)+08] ,

(A9) K(s,mW(s+2,5,5-1,5-3,8=5,4+4,1,0)

= ( i > M(SéE; .);o,s+l) \’16(5-1)3(S+l)(8‘*‘2)m1*
27 . 4l .

+8s (hsh+l)+s3+3252 +10s-60 )m3

J++l60.<.'.3+9752--223-381L )m2

+)+(6s6+3Os5+1133
128 (hs6+26s5+l26s4+28853 +1+5852+598s 228 )m

+(s+2)(sT+6s6+3hss+72s)++15753+30632+1728)] ,

(a10)  K(s,mW(s+2,s,5-2,5-3,8-k,5-6,...,1,0)

( )M(s =3 "-;S"'ll r8s(s+l)(s+2)m

+hg (3s +15s +1L55 +54 )m2

12(3s7 4218 19553420557 +29554210 )

150498 +52$LL+17"(S3+3T652+663s+63O] ,
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(A11)  X(s,mMW(s+3,s-1,8-2,8-3,5-4,5-6,...1,0)

- (5 )Mt o))

+1+(3s)++2753 +11152+237s +198)m2

3

+2(3s5 +36sh+2155 +78032+1570s+1260 Jm

+(s6+15s5+115sl‘+573s3+180hs2+31085+2160)] ,

(Aa12)  K(s,m)W(s+2,s-1,5-2,5-3,5-4,8-5,8=T,.++1,0)

3. (¢ )M(S‘z’li""“l) [(s41)(s42)0

+2(2s3 +11s2 +355+42 )m
15485343052 +108s +108:|

and
(813)  K(s,mW(s+1l,5,5-1,5-2,8=5,000,1,0)
=|_<f; ) M(s-2,...,s+1)/28.5:’[ [16(s+l)s(s-1)(s-2)m“

+l€s(s-l)(s-2)(2s2+35+1l)m3

3

+h(s-l)(s-2)(6sh+125 +65sg—s+2h0)m?

5

12(5-2) (hsP+67 +5hs ™ 6853 6252~ 6985 +1680 )m

+55+146%- 60 12695 *-9008 725965718005 +5760 |
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APPENDIX B

EXPANSION IN TERMS OF ZONAL POLYNOMIAIS

Note that

i B o
(B1) ay 2, (W) = Z 8 1,1 2 (W), 1i=1,2
5

where W is the symmetric matrix, and ZK(W) is a zonal polynomial
which corresponds to a partition ¥ of %k and the summation is over
all partitions § of 2 +k =d and g's are constants. Explicit
formuls for g6 are not known, but we give tables of g6

KsMy 1 KoMl
lower orders which we came across while evaluating the first two non-

in

central moments of Wép) « We must note here that

(z2) o) = s 2 ()

where c(k) is the degree of the representation [2K] of the symmetric

group of 2k symbols. We read the tables as follows
(B3) &, Z,o\(W) == 2, (W) + =2, 2. (W) .
2 “(2) 6 “(31) 3 “(217)
These tables are calculated from the tables of zonal polynomials of

degree one to six in James (1964) and of degree seven to eleven which

he and A. Purkhurst sent to Prof. X. C. S. Pillai in a private communication.
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APFENDIX C

EXPECTED VALUES OF ag 2,

2 2 2
The expressions for E(a_ Z }, E(a 2 ), B(a: 2 )
27137 2 (32)7 =72 31%)

E(az Z 5 ), E(ag Z 3 ) and E(ag A 5 ) which were used in the
(271) (21°) (17)
evaluation of E(Wép) )2 are given below:

@) 25z 5) -2 D, (2,2 )[r {p-1)*-20(p-1°(p-16) £3
+ (p'-66p3+501p7- T2lp+288 )62
3 2
+ 4(8p’-181p~+797p-696)f

+ 96(3p°-29p+65)]

(@) B(&2 Z(3p)) = D (ps0 )z (2-2) e -2p(p-1)° (o2 )e
+ (ph-98p3+957p2-1500p+6h0)f2
+ 4(12p5-375p° 17k Tp-1496 )2

+ 32(20p°-187p*384 )]
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(03) (e a2y " D, (p,2)5 (0-1)°r 2p(p-1 ) (-2 )2
1
+ (p*-98p34981p7- 152l +640)5°
+ h(12po-381p-+1921p-1688)F

+ 32(20p°-211p+516)]

(ch) (3 2 o) " D, (2,2)15" (p-1)P*-2p(p-1) (p-2)¢>
1
+ (p'-98p3+1005p2-158p+640)°
+ 4(12p°-367p" +2095p-1880)

+ 32(20p°-235p+630)]

(05) B2 ) =D (o,0)E (-1t " -2p(p-1)P p-2k)e?
~(217) : :
+ (p*-98pS+1037p2-1580p+6k0 )£°
3 2
+ L(12p°-395p +2327p-2136)f

132(20p2-267p+838)]

(c6) E(a2 2 ) =D (p,0)p" (p-1)*-2p(p-1)%(p-2h)e”

(1°)
+ (pr-98p3+1085p°-1628p+640)E°
3, 2
+ k(12p°-40Tp +2675p-2520)F

+ 32(20p° - 315p +1180)]
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