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1. Summary. In this paper, the exact distribution of Wilks's likelihood

ratio criterion, 'A, is obtained, giving explicit expressions for the same

for p=3, 4, 5 and 6, where p is the number of variables (= the number

of non-null cheracteristic roots of a matrix wheh p< fz,the Gegree of freedom for
hypothesis, see below). The distribution is expressed as finite series except
where p and fa are both odd,in which case it is given in infinite series

form.- Lower percentage points are tabulated for selected values of fé > 10,

extending the tabulations of Schatzoff (1966) for the above values of p.

2. Introduction. Let zi(p x fl) (fl > p) and X, (p x f2) be distributed

in the form

"é'p(fl"'fz) lZl '%'(fl"'fa )

(2.1)  (20) expl-$er XK + () (K1)

and let the non-zero roots of the determinantal equation
L. t =
(2.2) lgﬁ AXX =0

be denoted by 0 <A < ... < hs <®, where s = min(p,fz). The likelihood

- This research was supported by the National Science Foundation, Grant
No. GP-4600 and GP-7663.



ratio criterion for testing, H: p(p x fa) = 0 against B *19 can be
expressed in terms of the following criterion suggested by Wilks (1932), and

Pearson and Wilks (1933):
s

(2.3) A= (xxt /Ixgx) ¢ xxd] = _Hl{l/(l+li)} .
i=

It may be noted that in the context of multivariate analysis of variance,
H 4 ] . .
X]Xl and 5252 s are the sums of product matrigces for error and hypothesis

respectively, and fl and f2 are the corresponding degrees of freedom.

Wilks (1935) has obtained the exact null hypothesis distribution of A
in the form of a (p-l) - fold multiple integral, which he was able to evaluate
for p=1,2; p=3 with f, = 3,4 and for p =L with £, = 4 only. A
number of asymptotic approximations pgg been given for general p and £, .
Bartlett (1938), observing the asymptotic behaviour of likelihood ratio sta-
tistics, obtained a chi-square aspproximation to -f2 1ogéA, for testing inde-
pendence of several groups of variates as an infinite series of chi-square dise
tributions. Wilks's A criterion is a special case of the statistics considered
by Wald and Brookner (1941), when the number of groups is equal to two. Reo
(19L8), using -{fl-%(p-f2+1)} logéA obtained the first three terms of a more
rapidly convergent series., Finally, Rao's approximation was shown to be a
special case of a more general result of Box (1949), who gave asymptotic
approximations to functions of general likelihood ratio statistics.

Schatzoff (1966) has given a method for obtaining the exact distribution
of A but has not given explicitly the density or the distribution function.

In this paper, the density and the ecdf are given in expliecit form for values

of p up to 6. Schatzoff (1966) tabulated the factors for converting xif
2



percentiles to exact percentiles of -{fl-%(p—f2+l)} logeA for p = 3(1)8

and values of f2 such that pfé S 70, using certain recurrence relations

on IBM 7094. The method used in the paper is by far simple compared to that

of Schatzoff so that the restriction pf2 f 70 has been overcome easily.

While Schatzoff's method is not suitable for handling the distribution problem.
for odd values of fz, the method of this paper gives the distribution explic-
itly in all cases, Also, unlike Consul (1966) who gave the distribution for

p up to U4, as infinite series, we are giving the distribution here in finite

series form except when both p and f2 are odd in which ease alone the series
is infinite. PFurther, the exact distributions of A given here for p =3, L, 5
and 6 are used to extend Schatzoff's tabled in these cases for selected vslues

of fé > 11, The results are preSented in Tables 1 to L,

3. Distributional properties of A. For purposes of notational ease, the

symbol A will be replaced by U. ILet us denote by Bla,biX] The density

function
(3.1) [1/B(a,0)1™ (1-x)* o<x<1

of a Beta variable X. The following theorems, which we state without proof,

appear in Anderson (1958, Chapter 8) and have been used in the next section.

Theorem 3.1. The distribution of Up’fZ’fl is the same as that of UfZ’p’f1+f2'P‘

This implies that without loss of generality we need consider only values

o >
Ty 2 P



Theorem 3.2. U
—_— p>f2>fl

dently distributed as BL3(f,-i+1),3f,;%.1 .

is distributed like Xl...Xp where Xi are indepen-

Theorem 3.3. U is distributed like Y2...Y2, vhere Y., are inde=-
Pruindrathudoliudo i At 2r)f2’fl 1 r i
. . - . 1. . . .
pendently distributed as B[fl+l-21,f2,YiJ, U2S+l,f2,fl is distributed as
2 2 . . . . .
ZyeerZy * Ty, Where Zi(l = 1l,.4.,8) are independently distributed as

f

B[fl+l-21,f2;zi] and Z .. 1is independently distributed as B[%(fl+l-p);?§-;z] .

1

L. The method of derivation. An immediate consequence of theorem 3.2 is that,

Y, (say), the distribution problem

it ™M

Iy
since ~ log U = ¥ (-logX.,) =
A | o=

in hand can be reduced to that of a sum of independently distributed random
variables. The latter distribution can be handled by taking successive convolu-
tions provided that the procedure yields expressions which can be easily inte-
grated at each stage. Schatzoff (1966) has proved that this is in fact the

case. But whereas he depends entirely on theorem 3.2 we make use of both theorems

3.2 and 3,3. And by doing so we get the exact distribution of U for
S PYRLY

p=3, 4, 5, 6 in much simpler form than otherwise is possible. For example,
for p =4 we convolute once as against three times, as Schatzoff (1966) has
done., Similarly for p=5 and 6 we convolute only two times as against &4
and 5 times respectively .

Consider the beta random variable of theorem 3.2. The density of Xi is

given by



) fl-1~% £,-2
, 1 . 2 N 2 2
(4.1) BL3(f,-1+1), = 3 xi] = K, X, (1-x,)
< < > 3
0 Xi 1, fl Z 1
where
f.-i+1 T f -i+1+f f -i+l f,
1 2 1 2 1 2
(k.2) K =[1YB(——, )] = [(=——=) [/ I(——) T(z) .

When £, is even, b = %(f2-2) is an integer and using binomial theorem the

right side of (4.1) can be written in the form

: . b 1 .
f.-i+1 f (£, -i-1+24)
1 2 4 by, ,2V1
(L.3) Bl s 53 xi] = K, E: (-1)” () x4 .
‘ 4=0
Now let us transform. Yi = - loge Xi , then the density of Yi is given by
g. . b —%Yi(fl-i+l+22)
(h.h) Ki i (-l)d (z) € ’ Yi -0, i= Leees P
=0

Similarly in the light of theorem 3.3 we consider the random variable,

Zi = X2i-l xzi, then the density of Zi is given by
1/o _os
§(¢l~21~l) fe-l
(k.5) | C; 24 (1 - /ki) ,
where

¢, =1 / 2B(fl-2i+1, f2) .



()

Note that in this case an application of the binomial theorem gives a
finite series unlike in (4.1). This is important for our method. Now make
the transformation from Y{ = -logeZi , and, as before, from (4.5) we get

the density of Y{ as

fe-l Yi
S =1 = (£ +4-2i+1)
2 2 271
(4.6) c. ), (P (5 e , 1 >0
L=

Finally, following Schatzoff (1966), consider the density of V = Vit Vs s

where the density of V, is given by

1
av
(4.7) {ak+l / T(k+1)} V? e T , v >0, k= non-negative integer ,
and that of V2 by
b v2
(4.8) be > Yy >0 .

Schatzoff (1966) has shown that the density of V takes the form

(4.9) P2 PV KL pe) e =

and
ktl , Kar+1

(10) {7 / D)} (L* Y ) (-1)™ (k-ﬁLI)T r b)r] + ® V(p-a) iy,
r=1 &=

a #:b .

The above results can be readily applied to obtain the distribution of Up £ T
2 2’ l
in the following section.



5. Exact distribution of U , . for p = 3,4,5,6, In this section, we

p? 2)1

consider the density and cdf of U for p = 3,4,5 and 6. We will
p,faﬂfl

start with p = 3.

Case (i): p = 3. We have U3’f2’f1 = X1X2X3 = 2.Xs, and hence
—_— 1
(5.1) - log U3’f2’f1 =Y+ Y3 .
Now use (4.4), (4.6), (4.9) and (4.10), we get the density of U in
3,8p,%)
the following form:
f2
= -1 f . +2m-bt
2 1
: £,-2 1, T‘ a1 S| e
(5.2)  [1/28(f)-1,8,)B(~5—, 2)1[ 2%, ) etog v
fo
f-1 5 -1 £, £,+4-3 fl+2m-l+
- .- ﬂr"m f -1 """ "‘1
L L -J?,-l) ,(?, \J /
£2=0 m=0 '
Z#Qm—l

which is a finite series for f2 even and infinite series for f2 odd. For

U we integrate (5.2) between (O,u), 0<u<1,

obtaining cdf of 3’f2’f1

obtaining



o

I

é@_ -1 fl+2m-2
E f -2 f [ T’ m 1 a 2
(5.3) =®lu < vl = [1/B(f)-1,5,)B(—%—, 2)] -
35%5,1y T T ﬁ:b (fl+2m-2)2
f
?2 1 f£-1
(2 )2 - (2-(f)+2n-2)1og u)
f
fz'l E? -1 fz fl+z-l fl+2m-2
Z (Cm-4-1) £ m £ +8-1 £, +2m- 40
E—O m=0
sdom-1

Case (ii): p = U4. 1In this case, -~ log U, ¢ ¢ = Y] + 7Y} and the density

2271
of UL £ is obtained in the following finite seriest
3 23
f,-3 . +4-3
2 1 éi =l fp-1 '}ﬁﬁ"*’
(5.4) L BB, T) Ll (5 ) gsp N(-10g V) U
1=l 4=0
-l f fl+z-3 fl+m-5
Lol léiféi y \U /4
4=0 m=0
Ln-2

Further,the cdf of UL Ff is given by

-Thb |
£,-3 f1”'l
2 f.-1 £ =1
2 2
(5.5) Py »<ul =4 T (50,5 )y -
h,fa,fi— o1 B(I -21+l ) [ = (ﬁ +z-1)2 L M2
(2-(fl+z-1) log u)
fz'l fg'l f +z-1 fl+m-3
fm fo=1 f£-1 2
ce LY O {3 o ]
L L m=2=2 4 £y -1 fl+m-
£4=0 m=0

£3m=2



Case (iii): p=5. For p=5, - log U = Yi + Yé + Y

5) 251

of U is given b
5,858 0 & Y

6 1
fl 6 afz_l

(5.6) Ky 2 [Z (-1)* £(2n-3,20-1,n) U* (log U)°

n=2

if .
£,-3 3f,-1
T (-u)®

2

and the density

243

+ M-EZ /. zir—jf-—) £(4,4+2,n) {Tﬁﬁ:%:§7 (Un-U£+3) - Ufﬁ—log U}

2=0 n=0
432n-3

"'l 2f "l

mn-1
- ”Z 3 L‘(I%Z?-m—ly £(2n-3,m,n) 0" log U

m=0 n=2
md2n-1
-lf—l—l— -1
8%2 :% £+m+n ( ) (Un 5
- f ,@,m,n - U
Lo AT
43m-2 ,2n-3
f -1 —fz—l
L4n+1
\" vo(-1) :
+ L L L i) £(4,2n-1,n) U" log U
£=0 n=1
432n+3
=11 -l 5f. =1
2:., \g-, = 2 ( l)£+m+n U-n
L8y 5 - £(£,m,n) (V% U
L_' - _2 - 2455
oo o (mot-2)(2n-n-1)
£+m-2,m+2n-
where
iy
foml f,=1 -—2’3-1
£(gmm) = (5 (2 )Z )

43
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and

-l

f 2
K = [1/23( _23)] .nl [l/ZB(fl-2i+l,f .
i=

The series (5.6) is finite when f, is even but infinite for f, odd. The
cdf can be obtained from (5.6) by integrating between (o,u) and is available
in an unpublished report (by Arjun K. Gupta, Department of Statistics, Purdue

University).

Case iv: p = 6. In this case, noting that - log U6 £ =Y! + Y' + Yé s

sInsty 1
we get the density of U6 s in the form
3 23
£5-5
3(£,-3) \ 2 z 2
(5.1 kU T L) (D e (a,02,048) o (og v)
4=0
o7 | 51:_”. 4
+ hz Z -g——ll—— £, (4,242 n)(2U - Uz(2+(n-z-l+)1og U))
£2=0n=0 n=-f-%
E%n-h
fel -l f-1
2772 2 n-4
- o L+min —_—
AN -1 42 2
+ 8 Z L L' m_z(_gg(n_mj fl(f,,m,n)(u / - U )
1=0m=0n=0
£+m-2,n-h
*Efé-l
-l 24 LJ ?T—-—-—) l(z m, 2+4) Uﬂ/ log U
z+m-2
_1 ] f-
ié 2t (-1 L+mn E%g E%E
- 82 Z Tm-%-2) (n-m=-2) fl<'€’>man)(U -U")
4=0m=0 n=0
L3m-2 ,m=n~2
51 m-2
+ 4 y ZJ —£E%%§7 l(z m,m+2 ) U log U]
Z~01n~0

L4m-2



where

f.-1 -1 f.-1
£ (kmn) = (5 )2 (2

and

3
n [1/eB(f;~21+1,1,)] .
i=1

v ]

K, =

6. Computation of percentage points. The expressions developed in the prece-

ding section were used for the tabulation of percentage points of A . Values
were first computed of UP F g om CDC 6500 to a minimum accuracy of five
272771

significant digits based on four arguments [p,f ,fl,a), where o« is the lower
probability level. For larger values of f.(> 3%) Rao's approximation (Rao
(1948)) was used, These values were then used to obtain correction fac-

tors for converting chi-square percentiles with pf2 degrees of freedom to the

exact percentiles of - {f. -3(p~f,+1)} log U . Finally, tabulation of
1 2 p,fg,fl :
the correction factors, C = [percentile of - {f -i(p-f. +1)} log U 1/
1 2 e p,fz,fl

(percentile of ng ), was made for each pair (p,fz) with arguments
2

M= fl-p+l and « . These factors are given to three decimal places although

they were obtained generally to an accuracy of four decimals. The correction
factors are presented in Tables 1 - 4 for M = 1(1)10, 12(2)20, 24, 30, Lo, 60,
120, »; Table 1 gives the percentage points for p = 3, f, = 12(2)22 and

A .05
® = z#85,.23,.025, .0l and .005; Table 2, for D

L, f, = 11(1)13(2)23 and

@ as above; Table 3, for p =5 f, = 12(2)16, o = .05, .0l,and Table k,

f, = 11(1)13 and o = .05 and .01 . In referring to these tables it may be

pointed out that by theorem 3.1 the distribution of UP £f is the same as
>

2’71

and hence interchanging the role of p and f, does

that of U o

£,50,5 +E,-P
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not affect the value of M.

7. Uses of the tabulations. There are at least three tests of multivariate

hypotheses for which the tabulations in the paper are useful, namely, (Pillai,
1960)
I that of equality of the covariance mabtrices of two p-variate normal
populations;
II that of equality of the p-dimensional mean vectors of £ p-variate
normal populations having a common covariance matrix; and
ITT that of independence between a p-set and a g-set of variates in a
(p+q)-variate normal population.
Test of hypothesis II is the one discussed so far in this paper using

Wilks's A given in (2.3). 1In the context of IT f, = 4-1 and f, = N-£ ,

2 1
where N 1is the total of the sizes of the £ samples., As in section 2,

*
_ + ‘r s . _ : s .
E ~‘§1Xl is the Within S.P. matrix and E = X2X2 is the Between 8.P. matrix

s
and A= 11 (l—Bi), where ei’s are the non-zero characteristic roots of
i=1

*, # - ’
ST(s+8)Y and 8, = A /(1+N.), 1 =1,,sa Sa
~ e ~ 1 1 1
Now consider the test of III, i.e. Hy: zﬁE = 0 against 212 + 0, where

212 is the population covariance matrix between the p and ¢q set of vari-

~ P

ables. Use as test criterion A = 1 (1-ei), where ei's are the charac-
. i=1l

. s -1 =1,
teristic roots of E]]S]2§22§12, where Ell

of observations on the p-set of variates,

is the S.P. matrix of the sample

§22 that on the g-set, and §12’

the S.P. matrix between the observations on the p-set and the q-set, p <q
and p+q < k, the sample size. Here A is the (2/k)th power of the likelihood

. . . 'l| - p .
ratio criterion and equals lEll - S]ESEZElZl / lgll! = 151 (l-ei). In this

context fl = k-g-l and f2 = q.
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For test of hypothesis I also the criterion A =

i =g

(1—9i) is useful,
i=l
' s s . -1
where ei s are now the characteristic roots of the matrix ,El(EleZ) 4

where El and §2 denote the usual S.P. matrices computed from two indepen-

dent p-variate samples of sizes ng and n, respectively. Here if

Y., i =1,... are the characteristic roots of XL._% where I
l, )'JP’ ]2) ovl

are the covariance matrices of the two p-variate normal populations, then

and

Z

the null hypothesis can be written as Ho: Yl T L. = Yp = 1. Further, consider
D
the one-sided alternate hypothesis H;: ¥, >1, i=1,.04, P ﬁ& Y; 7P .
, =
The tabulations in the paper may be used for this test with £, = n,~-1 and

2 1
%Z = n2—l. Unlike the tests of hypotheses II and IIT, tabulations for larger
values of f2 are also important in this test. Further, it should be pointed
out that the A~test in this case is not related to the likelihood ratio cri-
terion. However, it has been shown for p = 2, through power comparisons with

respect to each Yi’ that this test compares favorably with other good tests

for the purpose (Pillai and Jayachandran, 1968).

The authors wish to thank Mrs. Louise Mao Lui, Statistics Section of
Computer Sciences, Purdue University, for the excellent programming of the
material for the computation in this paper carried on CDC 6500, Purdue University's

Computer Sciences Center,
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Table 1. Chi-square adjustments to Wilks's criterion U,

Factor C for lower percentiles of U (upper percentiles of x2), p =3

M\ @] .100 .050 .025 .010 .005 .100 .050 .025 .010. .005
41,716 1.791  1.660 1.,9%9 2,013 | 1.780 1.857 1.931 2.026 2,095
2 1.382 1.410 1.437 1.470 1.bos5 | 1.k27  1.458  1.486 1.523 1,549
E 1.256 1.272 1,287 1.306 1.319 { 1.292 1.309 1.326 1,346 1.361

1.188  1.199 1.209 1.221 1.230 | 1.2127 1.229 1.24k0 1.254 @ 1.26L

5{ 1.146 1,154 1,161 1.170 1.176 } 1.171  1.179 1.188 1,198 1.205
6] 1.117 1.123 1.129 1.136 1.1k1 | 1,138 1,145  1.152  1.159 1.165
M 1.097 1,101 1,106 1,111 1,115 | 1.115 1.121 1.126 1.132 1.136
8 1.081 1,085 1.089 1.093 1.097 | 1.097 1.102 1.106 1.111 1.115
9 1.069 1,073 1.076 1.080 1,082 { 1,084 1.088 1.091 1.095 1.099
108 1.060 1.063 1.066 1,069 1.071 | 1.073 1.076 1.079 1.082 1.085
12} 1.046 1.048 1.050 1.053 1.054 | 1,057 @ 1.059 1.061 1.064 1,066
4 1.037 1.039 1.040 1.0k2 1,043 | 1,046 1,048 1.0k9 1,052 1,053
16/ 1.030 1.032 1.033 1.034% 1.035 ) 1.037 1.039 1,041 1.0k2 1.oLk
18f 1.025 1,026 1.027 1.029 1,029 | 1.031 1.033 1.034 1.035 1.036
20 1.021 1.022 1,023 1.024 1,025 | 1,027 1.028 1.029 1.030 1.03L
24 1,016 1.017 1.017 1.018 1.019 ] 1,020 1.021 1.022 1.023 1.023
30f 1.01r 1,011 1.012 1.012 1,013} 1.01% 1,015 1.015 1.016 1.016
kol 1,007 1.007 1.007 1.008 1.008 { 1.009 1,009 1.009 1,610 1.010
60f 1,003 1,003 1.004 1,004 1,004 | 1.o0k4 1.00k 1,005 1.005 1.005
120} 1,001 1.00r 1,001 1,001 1,001 | 1.001 1.001 1.001 1.001 1.001
©{ 1,000 1.000 1,000 1.000 1,000 { 1.000 1.000 1.000 1.000 1.000

Xor L7.2122 50,9985 54.4373 58.6192 61.5812| 54,0002 58,1240 61,7768 56,2062 6943360
2

\\\ £, = 16 f, = 18
M\ ¢} .100 .050 .025 .010 .005 .100 .050 .025 .010 .005

1.835 1.916 1.995 2.095 2,169 | 1.886 1.971 2.053 2.158 2.235

2] 1.4k69 1.501 1.532 1.571 1.599 | 1.508 1.542 1.575 1.616 1.646
3 1.325 1.3bk  1.362 1.38%  1.400{ 1.357 1.377 1.396 1.h20  1.437
W 1,245 1.258 1.271 1.285 1.296 | 1.272 1.286 1.299 1.315 1.327
5 1.195 1.20k 1,213 1.224 1,232 1.218 1.228 1,238 1.249 1.258
6 1.159 1,167 1.174 1.182 1.188} 1.179 1.188 1.195 1.204 1.211
71 1.133 1,139 1.1k 1,152 1.157 (| 1.151 1.158 1.164 1.171  1.177
8 1.11k 1,119 1.123 1.129 1.133 ] 1.129 1.135 1.140 1.146 1.151
sﬂ 1,098 1,102 1,106 1.111 1.115} 1.112 1,117 1.121 1.127 1.130
0 1,085 1,089 1.092 1.097 1.099 | 1.099 1,103 1,107 1.111 1.11k
12§ 1.067 1,070 1,073 1.076 1.078{ 1.078 1.081 1.08% 1.087 1.090
14 1.054 1.057 1.059 1.061 1.063 | 1.064 1.066 1.068 1.071 1.073
16 1,045 1.047 1,049 1.051 1.052 | 1.053 1.055 1.057 1.059 1,081
18f 1.038 1.039 1.0k1 1,043 1,04k | 1,045 1.046 1.048 1.050 1.051
20{ 1.032 1,034 1.035 1.036 1.037 | 1.038 1.0b0 1.0l 1.043 1,04k
eh} 1,025 1,026 1.026 1.027 1.028 | 1.029 1.030 1.031 1.032 1.033
30| 1.017 1,018 1.018 1.019 1.020} 1.021 1.021 1.022 1.023 1.023
Lo 1,011 1.011 1,011 1.012 1.012} 1.013 1.013 1.03k 1,01k 1.015
60} 1.005 1,006 1.006 1.006 1.006 | 1.006 1.007 1,007 1.007 1.007
120 1.002 1,002 1.002 1,002 1.002 | 1.002 1.002 1.002 1.002 1.002
©{ 1,000 1.000 1,000 1.000 1,000{ 1.000 1.000 1,000 1,000 1.000

xif 60,9066 65.1708 69.0226 73.6826 76.9688| 67.6728 72.1532 76.1920 81.0688 84,5019
2

P = number of variates; fl = error degrees of freedom; f, = hypothesis degrees of
freedom; M = £ -p+l; C = {percentile for -{fl-%(p-f2+l) log U}/ (percentile for ¥
with pfp degrees of freedom). €
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Table 1 (Cont'd.)

Y;; £, =20 £, =22
M\ | .100 .050 .025 .010 .005 .100 .050 .025 .010 - ,005
1} 1.932 2.021 2,106 2.216 2.297 | 1.975 2,067 2.156 2.269 2.353
2! 1,544 1,580 1.61k 1.657 1.689 | 1.578 1.616 1.651 1.696 1.729
3} 1.387 1.h08 1.428  1.453  1.h72 ) 1.415  1.438 1,459  1.485  1.504
4t 1.298  1.313 1.327 1.34k 1.356 | 1,322 1.338  1.353 1.371 1.384
5({ 1.240 1.251 1.261 1.27h 1.283 | 1.261 1.273 1.284 1.297 1.307
6] 1,199 1.208 1.216 1.226 1.233 | 1.218 1,227 1.236 1.246 1.254
71 1.168 1.176 1.182 1,190 1.196% 1.185 1,193 1.200 1.209 1.215
8} 1.145 1.1512 1.157 1.163 1.168 | 1.160 1.167 1.173 1.180 1.185
9f 1.127 1.132 1.136 1.142 1.146 ) 1.1k2  1,1h7 1,151 1.157 1.161
10 1.112  1.116 1.120 1.125 1.128 | 1.124 1,129 1.133 1.139 1.141
12| 1.089 1.092 1,095 1.099 1,102 | 1.099 1.103 1.106 1,110 1.113
i 1,073 1.095 1.078 1.081 1,083} 1.082 1.085 1.087 1.091 1.093
16f 1.061 1.063 1.065 1.067 1.069 | 1.069 1.071 1,073 1.076 1,078
18} 1.052 1.053 1.055 1.057 1.059 | 1,059 1.061 1.063 1.065 1.066
20f 1.0k 1.046 1,048 1,049 1.050} 1,051 1,052 1.054 1,056 1.057
24l 1,03+ 1.035 1.036 1.038 1.039} 1.039 1.040 1.0k1 1.043 1.044
30{ 1.024 1.025 1.026 1.027 1,027 § 1.028 1.029 1,030 1.031 1.031
ho{ 1.015 1,016 1.016 1.017 1.017{ 1.018 1.018 1.019 1.020 1,020
60| 1.008 1,008 1,008 1.009 1.009{ 1,009 1.009 1.010 1.010 1.010
120] 1.002 1.002 1,002 1,002 1.003 | 1.003 1.003 1.003 1.003 1.003
© | 1.000 1,000 1,000 1.000 1,000} 1,000 1,000 1,000 1.000 1.000
Xifz 74.3970 79.0819 83.2976 88.379% 91.9517] 81.0855 85.9649 90.3489 95.6257 99,3304
p = number of variates; fl = error degrees of freedom; f2 = hypothesis degrees of
freedom; M= f,-p+l; C = [percentile for -{fl—%(p—f2+l) log, U}] / (percentile

for x2 with pf, degrees of freedom).
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Table 2. Chi-square adjustments to Wilks's criterion U.

Factor C for lower percentiles of U (upper percentiles of xz), p=L

\\ £, =1 T, =12
M\ & .100 .050 .025 .010 .005 .100 .050 .025 .010 .005
1 2,258 2.256  2.277 2.318 2.347 2.288 2.299 2.322 2.362 2.396
2 1.330 1.353 1.37h 1.h02 1.422 1,350 1.373 1.396 1.hk2h  1,Lhé6
3 1.221 1,235 1.247 1,262 1.27h  1.238 1.252 1.26k 1.280 1,292
4L 1,164 1,173 1.181 1.191 1.198 1,177 1.186 1.195 1.205 1.213
5 1,127 1,134 1.1k0  1.1k7 1,152 1,139 1.ik5 0 1,152 1.159 1.165
6 1.103 1,108 1,112 1.118 1.122 1.112 1.118 1.122 1,128 1.132
7 1.085 1.089 1.092 1.097 1.100 1,093 1,097 1.101 1.106 1.109
8§ 1.071 1.0795 1,078 1.081 1.084 1,079 1,082 1,085 1.089 1.092
9 1.061 1,064 1.066 1.069 1.071 1.068 1,070 1.073 1.076 1.079
10 1,053 1,055 1,057 1,060 1.062 1,059 1,061 1,063 1.066 1.068
12 1,041 1.043 1,04k 1,046 1,048 1.046 1,047 1,049 1,051 1.053
14 1.033 1.034 1,035 1.037 1.038 1,037 1.038 1.039 1.041 1.042
16 1.027 1.028 1,029 1.030 1.031 1.030 1.031 1.032 1.033 1.034
18 1.022 1,023 1,024 1,025 1.026 1,025 1,026 1,027 1.028 1.029
20 1,019 1,020 1.020 1,021 1.022 1,021 1.022 1,023 1.02k 1,024
24 1,014 1.015 1.015 1,016 1.016 1,016 1.017 1.017 1.018 1.018
30 1,010 1,010 1,010 1,011 1,011 1.011 1.011 1.012 1.012 1.013
Lo 1,006 1.006 1.006 1.007 1.007 1,007 1,007 1,007 1,008 1,008
60 1,003 1,003 1,003 1,003 1.003 1,003 1.003 1.00k 1,004 1,00k
120 1,003 1.001 1.001 1,001 1,001 1.001 1.001 1.001 1.001 1,001
© 1,000 1.000 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ngz 56.3685 60.4809 64,2014 68,7095 71.8925 60.9066 65,1708 69.0226 73.6826 76.9688
‘i\ T, =13 _ £, =15
M\e¢ .100 .050 .025 .010 .005 .100 .050 .025 .010 .005
1 2,327  2.330 2.364 2,406  2.4h2 2.hoo 2,416 2.4k 2,490 2,529
2 1.369 1.393 1.405 1,446 1,468 1.L06 1,432 1.456 1.488 1,511
3 1,254 1,268 1.281 1.298 1.310 1.28% 1,299 1.313 1.331 1.34k4
b 3,190 1.200 1.209 1,220 1,228 1,216 1.226 1.236 1.248 1.256
5 1.150 1,157 1.163 1i.171 1.177 1.172 1.180 1.187 1.195 1.202
6 1,122 1,127 1,132 1.139 1.143 1.1k1  1.1h7  1.153  1.159 1.164
7 1,102 1.106 1,110 1.115 1.119 1,118 1.123 1.128 1.133 1.137
8 1.086 1.090 1.093 1.097 1.100 1,101 1,105 1.109 1.113 1.118
9 1.074 1.077 1.080 1.08% 1.086 1.088 1.091 1.094% 1,098 1,101
10 1,065 1,067 1,070 1.073 1.075 1,077 1,080 1,082 1,086 1,088
12 1,050 1.052 1.054 1,057 1.058 1,060 1.063 1.065 1.067 1,069
4 1,041 1,042 1.044 1,045 1,047 1,049 1,050 1,052 1,054 1,055
16 1,033 1.035 1.036 1.037 1.038 1,0b0 1.0k2 1,043 1.045 1.046
18 1,028 1.029 1.030 1.031 1.032 1,034 1,035 1.036 1.038 1,039
20 1.024 1,025 1,025 1,026 1.027 1,029 1,030 1,03L 1.032 1,033
2y 1,018 1.019 1.019 1.020 1.020 1,022 1.023 1.023 1.024 1,025
30 1.012 1,013 1,013 1,014 1,014 1,015 1,016 1.016 1.017 1.017
4% 21,008 1.008 1,008 1.008 1.009 1,010 1.010 1.010 1.011 1.011
60 1.00: 1,004 1,004 1,004 1.00k 1,005 1.005 1.005 1.005 1,005
120 1,001 1,001 1,001 1.00L. 1,001 1,001 1.001 1.001L 1.002 1.002
© 1,000 1,000 1,000 1,000 1,000 1.000 1.000 1.000 1.000 1.0Q0

Xif 65.422k 69,8321 73.8098 78.6157 82,0008 74.3970 79.0819 83.2976 88.3794 91.9517
2

P = number of variates; f, = error degrees of freedom; f, = hypothesis degrees of

freedom; M = f_ -p+l; C = "Lpercentile for ~{f -3(p-f +1 1og2U}]/(percentile for ¥
. 1 2

with pf2 degrees of freedom).
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Table 2 (Cont'd.)

f2 = 17 f2 = 19
M .100 .050 .025 .010 .005 .100 ,050 .025 ,010 .005

[0
1 2,065 2,486 2.517 2.567 2.608 2,528 2.550 2,584 2,637 2.632
2 1.bho 1.468 1.boh 1,527  1.551  1.473  1.502 1.529 1.563 1.589
3 1.313 1.329 1.344  1.363  1.377 1.340 1.357 1.373 1.393 1.k
Yy 1,240 1.252 1.262 1.275 1.284 1,264 1,276 1.287 1.300 1.310
5 1,193 1.201 1.209 1.218 1.225 1,214 1,223 1.231 1.241 1.248
6 1,160 1,166 1.172 1,180 1.185 1.178 1,185 1,191 1.199 1.205
7 1.135 1.1k0 1.1k5 1,151 1.155 1,151 1.157 1,162 1.168 1.173
8 1.116 1.120 1.124F 1,129 1.133 1.131 1.135 1l.1ko l.145  1l.1kg
9 1.101 1.105 1,108 1.112 1,115 31,114 1,118 1.122 1,126 1,130
10 1,089 1.092 1.095 1.098 1.101 1,101 1,104 1,107 1,111 1.11k
12 1,00 1.073 1.075 1.078 1.080 1,080 1,083 1,086 1,089 1,091
4 1.057  1.059 1.061 1.063 1.065 1,066 1.068 1.070 1.072 1.07h4
16 1.048 1,049 1,051 1.052 1.054 1,055 1.057 1.058 1.060 1.062
18 1.040 1.042 1,043 1.0hk 1,05 1,047 1.048 1,050 1.051 1.052
20 1,035 1,036 1,037 1.038 1.039 1,040 1,042 1,043 1.o04hk 1.0L45
2y 1,026 1,027 1,028 1.029 1,030 1,031 1.032 1.033 1.034 1.035
30 1.019 1.019 1,020 1,020 1.021 1,022 1.023 1.023 1.024 1.025
Yo i1i.012 1.012 1,012 1.013 1.013 1,014 1,014 1,015 1.015 1.016
60 1,006 1.006 1.006 1,006 1.007 1,007 1.007 1,007 1.008 1.008
120 1.002 1.002 1,002 1,002 1.002 1.002 1.002 1.002 1.002 1.002
© 1.000 1,000 1,000 1,000 1,000 1,000 1.000 1.000 1.000 1.000

pr 83.3079 88,2502 92.6885 98.,0284101.7760 92,1662 97.3510101.9990107.5820111.4950

£, =21 T, =23
;ﬁ\a .100 .050 .025 .010 .005 .100 .050 .025 .010 . 005

1 2,585 2.610 2.6h6 2,703 2.750 2,639 2,666 2,705 2.76k 2,813

2 1.50k 1.534 1,562 1,598 1.624 1,533 1,564 1.593 1.630 1.657

3 1.367 1.38% 1.hk01  1.k22  1.437 1,301 1.,b10 1.428 1.hbg  1.L65

L 1,287 1.299 1.311 1,325 1.335 1,309 1.322 1.334 1,349 1.359

5 1.23% 1.243 1.252 1.262 1.270 1,253 1,263 1.272 1.283 1.291

6 1.196 1.203 1.210 1.218 1.224 1,233 1.221 1.228 1.237 1.243

7 1.167 1l.173 1.179 1..186 1.191 1,183 1.189 1,195 1.202 1.208

8 1.145 1.150 1.155 1.160 1.164 1,159 1.165 1,170 1.176 1,180

9 1.127 1.132 1.136 1.140 1.abh 1.1k0 1,145 1,149 1,154 1,158
10 1.113 1.117 1.120 1.12h%  1.127 1.125 1.129 1,132 1.137 1.1h40
12 1.091 1.09% 1.096 1.100 1.102 31,100 1.103 1,106 1.109 1.112
ik 1,074 1.077 1.079 1.081 1,083 1,083 1.086 1,088 1,091 1.093
16 1.063 1,06k 1,066 1,068 1,070 1,070 1.072 1.07k+ 1.076 1.078
18 1.053 1.055 1.057 1.058 1.060 1,060 1.062 1,063 1.065 1,067
20 1,046 1,048 1.0k9 1,050 1.051 1,052 1.054 1,055 1.057 1.058
24 1,036 1.037 1,038 1,039 1,040 1,0b0 1.,0k2 1,043 1.0hk 1,045
30 1.026 1.026 1,027 1.028 1,028 1,029 1,030 1,031 1,032 1.032
Y 1,016 1.017 1.017 1,018 1,018 1,019 1,019 1.020 1.020 1.021
60 1,008 1,009 1,009 1,009 1,009 1,010 1.010 1.010 1.010 1.011
i20 1,002 1,003 1,003 1,003 1,003 1.003 1.003 1.003 1.003 1,003
© 1,000 1.000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1.000

Xif 100,9800106.3950111.2420117.0570121.,1260109. 7560115 .3900120.4270126 ,4620130.6810
2

P = number of variates; f, = error degrees of freedom; f. = hypothesis degrees of

freedom; M = f.-p+l; C = ~Lpercentile for ~{f.-I(p-f,+1J log U}]/(percentile for X
. 1 2 e

with pf, degrees of freedom).
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Table 3. Chi-square adjustments to Wilks's criterion U,
Factor C for lower percentiles of U (ypper percentiles of X ), p =5

£, =12 £, = 1k £, = 16
M\ .050 .010 .050 .010 .050 .010 |
1 1.643 1.768 1.683 1.813 1.722 1.855
2 1.350 1.396 1.383 1.431 1.k15 1.465
3 1.2Lo 1.265 1.267 1,294 1.294 1.323
L 1.179 1.196 | 1.203 1.221 1.226 1.245
5 1.141 1.153 1.161 1.174 1.181 1.196
6 1.11k 1.124 1.132 1.143 1.150 1.161
7 1.095 1.103 1,111 1.119 1.127 1.136
8 1.081 1.087 1.095 1.102 1.109 1.116
9 1.070 1,075 1,082 1.088 1.095 1.101
10 1,061 1.065 1.072 1.077 1.083 . 1.089
12 1.047 1.051 1.057 1.060 1.066 1.070
14 1.038 1,040 1.045 1.048 1.053 1.057
16 1.031 1.033 1.038 1.040 1.045 1.0L7
18 1.026 1.028 1.032 1.034 1.038 1.0k0
20 1.022 1.024 1.027 1.029 1.033 1.034
ol 1.017 1.018 1.021 1.022 1.025 1.026
30 1.012 1.012 1.014 1.015 1.018 1.019
Lo 1,007 1.008 1.009 . 1,010 1.011 1,012
60 1.00k 1.00k 1.00k 1.005 1.006 1.006
120 1.001 1.001 1.00L 1,001 1.002 1.002
® 1.000 1.000 1,000 1.000 1,000 1.000
'Xif 79.0819 88.379k 90.5312 100.4250 101.8790 112.3290
2
p = number of variates; fi = error degrees of freedom; f2 = hypothesis degrees of

freedom; M = f,-p+1; C = [percentile for -[fl-%(p—f2+l)logeU}]/(percentile for x2
with pf, degrees of freedom).
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Table 4. Chi-square adjustments'to Wilks's criterion U.
Factor C for lower percentiles of U (upper percentiles of xz), P=6
£, =11 £, f, =13

M\« .050 .010 .050 .010 .050 .010
1 1.589 1.704 1.605 1.722 1.621 1.739
2 1.321 1.363 1.335 1.378 1.349 1.393
3 1.220 1.243 1.232 1.255 1.2hy 1.268
L 1.164 1.180 1.175 1.191 1.185 1.201
5 1.129 1.140 1.138 1.150 1.148 1.159
6 1,105 1.114 1.113 1.122 1.121 1.130
7 1.088 1.09k4 1.095 1.102 1.102 1.109
8 1.074 1.080 1.081 1.086 1.088 1.093
9 1.06k 1.069 1.696 1.075 1.075 1.080
10 1.055 1,060 1.061 1.065 1.066 1.070
12 1.04k4 1.047 1.048 1.051 1.052 1.055
14 1.035 1.037 1.038 1.040 1.0k2 1,04k
16 1.029 1.030 1.032 1.033 1.035 1.037
18 1.024 1.026 1.027 1.028 1.029 1.031
20 1.020 1.022 1.023 1.024 1.025 1.026
2l 1.015 1.016 1.017 1.018 1.019 1.020
30 1.011 1.011 1.012 1.013 1.013 1.01k
40 1,007 1.007 1.007 1,008 1.008 1.009
60 1.003 1.003 1.004 1.004 1.00k4 1.004
120 1.001 1.001 1.001 1.001 1.001 1.001
@ 1.000 1.000 1.000 1.000 1.000 1.000
nge 85.96k49 95.6257 92.8083 102.8160 99.6169 109.9580

P = number of variates; f

1
=

= error degrees of freedom; f

2

= hypothesis degrees of

freedom; M = f,-p+l; C = Lpercentile for - {fl-%(p-f2+l)logeU}]/(percentile for xz

with pf,

degrees of freedom).
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