On the exact distribution of Wilks's criterion

bу

K. C. Sreedharan Pillai and Arjun K. Gupta

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series No. 138

January, 1968

This research was supported by the National Science Foundation, Grant No. GP-4600 and GP-7663.

On the exact distribution of Wilks's criterion

by

K. C. Sreedharan Pillai and Arjun K. Gupta Purdue University

- 1. Summary. In this paper, the exact distribution of Wilks's likelihood ratio criterion, Λ , is obtained, giving explicit expressions for the same for p=3, 4, 5 and 6, where p is the number of variables (= the number of non-null characteristic roots of a matrix when $p \leq f_2$, the degree of freedom for hypothesis, see below). The distribution is expressed as finite series except where p and f_2 are both odd, in which case it is given in infinite series form. Lower percentage points are tabulated for selected values of $f_2 > 10$, extending the tabulations of Schatzoff (1966) for the above values of p.
- 2. <u>Introduction</u>. Let $X_1(p \times f_1)$ $(f_1 \ge p)$ and $X_2(p \times f_2)$ be distributed in the form

(2.1)
$$(2\Pi)^{-\frac{1}{2}p(f_1+f_2)} |\Sigma|^{-\frac{1}{2}(f_1+f_2)} \exp[-\frac{1}{2}tr\Sigma^{-1}[X_1X_1' + (X_2-\mu)(X_2-\mu)']] ,$$

and let the non-zero roots of the determinantal equation

$$\left| \begin{array}{c} \mathbf{x}_{2} \mathbf{x}_{1}^{*} - \lambda \mathbf{x}_{1} \mathbf{x}_{1}^{*} \right| = 0$$

be denoted by $0 \le \lambda_1 \le \ldots \le \lambda_s \le \infty$, where $s = \min(p, f_2)$. The likelihood

^{*} This research was supported by the National Science Foundation, Grant No. GP-4600 and GP-7663.

ratio criterion for testing, $H_0: \mu(p \times f_2) = 0$ against $\mu \neq 0$ can be expressed in terms of the following criterion suggested by Wilks (1932), and Pearson and Wilks (1933):

(2.3)
$$\Lambda = |X_1 X_1'| / |X_1 X_1' + |X_2 X_2'| = |X_1 | |X_1 | |X_2 | |$$

It may be noted that in the context of multivariate analysis of variance, $X_1X_1^i$ and $X_2X_2^i$, are the sums of product matrices for error and hypothesis respectively, and f_1 and f_2 are the corresponding degrees of freedom.

Wilks (1935) has obtained the exact null hypothesis distribution of Λ in the form of a (p-1)-fold multiple integral, which he was able to evaluate for p = 1,2; p = 3 with f_2 = 3,4 and for p = 4 with f_2 = 4 only. A number of asymptotic approximations has been given for general p and f_2 . Bartlett (1938), observing the asymptotic behaviour of likelihood ratio statistics, obtained a chi-square approximation to $-f_2 \log_{e} \Lambda$, for testing independence of several groups of variates as an infinite series of chi-square distributions. Wilks's Λ criterion is a special case of the statistics considered by Wald and Brookner (1941), when the number of groups is equal to two. Rao (1948), using $-\{f_1-\frac{1}{2}(p-f_2+1)\}$ $\log_{e} \Lambda$ obtained the first three terms of a more rapidly convergent series. Finally, Rao's approximation was shown to be a special case of a more general result of Box (1949), who gave asymptotic approximations to functions of general likelihood ratio statistics.

Schatzoff (1966) has given a method for obtaining the exact distribution of Λ but has not given explicitly the density or the distribution function. In this paper, the density and the cdf are given in explicit form for values of p up to 6. Schatzoff (1966) tabulated the factors for converting $\chi^2_{pf_2}$

percentiles to exact percentiles of $-\{f_1-\frac{1}{2}(p-f_2+1)\}\log \Lambda$ for p=3(1)8 and values of f_2 such that $pf_2 \leq 70$, using certain recurrence relations on IBM 7094. The method used in the paper is by far simple compared to that of Schatzoff so that the restriction $pf_2 \leq 70$ has been overcome easily. While Schatzoff's method is not suitable for handling the distribution problem for odd values of f_2 , the method of this paper gives the distribution explicitly in all cases. Also, unlike Consul (1966) who gave the distribution for p up to 4, as infinite series, we are giving the distribution here in finite series form except when both p and f_2 are odd in which case alone the series is infinite. Further, the exact distributions of Λ given here for p=3, 4, 5 and 6 are used to extend Schatzoff's tables in these cases for selected values of $f_2 \geq 11$. The results are presented in Tables 1 to 4.

3. Distributional properties of Λ . For purposes of notational ease, the symbol Λ will be replaced by U. Let us denote by B[a,b;X] The density function

(3.1)
$$[1/B(a,b)]X^{a-1} (1-X)^{b-1} 0 \le X \le 1$$

of a Beta variable X. The following theorems, which we state without proof, appear in Anderson (1958, Chapter 8) and have been used in the next section.

Theorem 3.1. The distribution of U_{p,f_2,f_1} is the same as that of U_{f_2,p,f_1+f_2-p} .

This implies that without loss of generality we need consider only values $f_2 \ge p$.

Theorem 3.2. U_p, f_2, f_1 is distributed like $X_1...X_p$ where X_i are independently distributed as $B[\frac{1}{2}(f_1-i+1), \frac{1}{2}f_2; X_i]$.

Theorem 3.3. U_{2r,f_2,f_1} is distributed like $Y_1^2\dots Y_r^2$, where Y_i are independently distributed as $B[f_1+1-2i,f_2;Y_i]; U_{2s+1,f_2,f_1}$ is distributed as $Z_1^2\dots Z_s^2\cdot Z_{s+1}$, where $Z_i(i=1,\dots,s)$ are independently distributed as $B[f_1+1-2i,f_2;Z_i]$ and Z_{s+1} is independently distributed as $B[\frac{1}{2}(f_1+1-p);\frac{f_2}{2};Z_i]$.

4. The method of derivation. An immediate consequence of theorem 3.2 is that, since $-\log U_{p,f_2,f_1} = \sum\limits_{i=1}^p (-\log X_i) = \sum\limits_{i=1}^p Y_i$ (say), the distribution problem in hand can be reduced to that of a sum of independently distributed random variables. The latter distribution can be handled by taking successive convolutions provided that the procedure yields expressions which can be easily integrated at each stage. Schatzoff (1966) has proved that this is in fact the case. But whereas he depends entirely on theorem 3.2 we make use of both theorems 3.2 and 3.3. And by doing so we get the exact distribution of U_{p,f_2,f_1} for p=3, 4, 5, 6 in much simpler form than otherwise is possible. For example, for p=4 we convolute once as against three times, as Schatzoff (1966) has done. Similarly for p=5 and 6 we convolute only two times as against 4 and 5 times respectively.

Consider the beta random variable of theorem 3.2. The density of X_{i} is given by

(4.1)
$$B[\frac{1}{2}(f_1-i+1), \frac{f_2}{2}; X_i] = K_i X_i \frac{f_1-i-1}{2} (1-X_i) \frac{f_2-2}{2}$$

$$0 < X_i < 1, f_1 \ge i$$

where

(4.2)
$$K_{i} = \left[1/B\left(\frac{f_{1}-i+1}{2}, \frac{f_{2}}{2}\right)\right] = \Gamma\left(\frac{f_{1}-i+1+f_{2}}{2}\right) / \Gamma\left(\frac{f_{1}-i+1}{2}\right) \Gamma\left(\frac{f_{2}}{2}\right)$$
.

When f_2 is even, $b = \frac{1}{2}(f_2-2)$ is an integer and using binomial theorem the right side of (4.1) can be written in the form

(4.3)
$$B\left[\frac{f_1-i+1}{2}, \frac{f_2}{2}; X_i\right] = K_i \sum_{\ell=0}^{b} (-1)^{\ell} {b \choose \ell} X_i^{\frac{1}{2}(f_1-i-1+2\ell)}.$$

Now let us transform $Y_i = -\log_e X_i$, then the density of Y_i is given by

$$(1,1) K_{i} \sum_{\ell=0}^{b} (-1)^{\ell} {b \choose \ell} e^{-\frac{1}{2}Y_{i}(f_{1}-i+1+2\ell)}, Y_{i} > 0, i = 1,..., p.$$

Similarly in the light of theorem 3.3 we consider the random variable, $Z_i = X_{2i-1} X_{2i}$, then the density of Z_i is given by

(4.5)
$$c_{i} z_{i}^{\frac{1}{2}(\hat{x}_{1}-2i-1)} (1-\sqrt{z}_{i})^{\hat{x}_{2}-1} ,$$

where

$$c_i = 1 / 2B(f_1-2i+1, f_2)$$
.

Note that in this case an application of the binomial theorem gives a finite series unlike in (4.1). This is important for our method. Now make the transformation from $Y_i^* = -\log_e Z_i$, and, as before, from (4.5) we get the density of Y_i^* as

(4.6)
$$c_{i} \sum_{\ell=0}^{f_{2}-1} (-1)^{\ell} {f_{2}-1 \choose \ell} e^{-\frac{Y_{i}!}{2}(f_{1}+\ell-2i+1)}, Y_{i}! > 0$$
.

Finally, following Schatzoff (1966), consider the density of $V = V_1 + V_2$, where the density of V_1 is given by

(4.7)
$$\{a^{k+1} / \Gamma(k+1)\} v_1^k e^{av_1}, v > 0, k = non-negative integer,$$

and that of V2 by

$$(4.8)$$
 be $v_2, v_2 > 0$.

Schatzoff (1966) has shown that the density of V takes the form

$$(1.9)$$
 $b^{k+2} e^{b} v^{k+1} / \Gamma(k+2)$, $a = b$

and

(4.10)
$$\{a^{k+1}b / \Gamma(k+1)\} \{[e^{a v} \sum_{r=1}^{k+1} (-1)^{r+1} \frac{k!}{(k-r+1)!} \frac{v^{k-r+1}}{(a-b)^{r}}] + e^{b v}(b-a)^{-(k+1)}k!\},$$

$$a \neq b .$$

The above results can be readily applied to obtain the distribution of U_p, f_2, f_1 in the following section.

5. Exact distribution of U_{p,f_2,f_1} for p=3,4,5,6. In this section, we consider the density and cdf of U_{p,f_2,f_1} for p=3,4,5 and 6. We will start with p=3.

Case (i): p = 3. We have $U_{3,f_2,f_1} = X_1X_2X_3 = Z_1X_3$, and hence

(5.1)
$$-\log U_{3,f_2,f_1} = Y_1' + Y_3.$$

Now use (4.4), (4.6), (4.9) and (4.10), we get the density of U_3,f_2,f_1 in the following form:

(5.2)
$$[1/2B(f_1-1,f_2)B(\frac{f_1-2}{2},\frac{f_2}{2})] [\sum_{m=1}^{\frac{f_2}{2}-1} (-1)^{m-1} (\frac{f_2-1}{2m-1}) (\frac{f_2}{m}) (-\log U) U]^{\frac{f_1+2m-l_1}{2}}$$

 $0 \le U \le 1$,

which is a finite series for f_2 even and infinite series for f_2 odd. For obtaining cdf of U_3, f_2, f_1 we integrate (5.2) between (0,u), $0 \le u \le 1$, obtaining

(5.3)
$$P[U_{3,f_{2},f_{1}} \leq u] = [1/B(f_{1}-1,f_{2})B(\frac{f_{1}-2}{2},\frac{f_{2}}{2})] \left[\sum_{m=0}^{\frac{f_{2}}{2}-1} \frac{f_{1}+2m-2}{(-1)^{m-1}u} \frac{f_{1}+2m-2}{2} \right] \left[\sum_{m=0}^{\frac{f_{2}}{2}-1} \frac{f_{2}-1}{(f_{1}+2m-2)^{2}} \right] \left[\sum_{m=0}^{\frac{f_{2}}{2}-1} \frac{f_{2}-1}{(f_{2}+2m-2)\log u} \right] \left[\sum_{m=0}^{\frac{f_{2}}{2}-1} \frac{f_{2}-1}{(f_{2}+2m-2)\log u} \right]$$

Case (ii): $p = \frac{1}{4}$. In this case, $-\log U_{\frac{1}{4}}$, $f_{\frac{1}{2}}$, $f_{\frac{1}{1}} = Y_{\frac{1}{1}}^{i} + Y_{\frac{1}{2}}^{i}$ and the density of $U_{\frac{1}{4}}$, $f_{\frac{1}{2}}$, $f_{\frac{1}{1}}$ is obtained in the following finite series:

(5.4)
$$\frac{2}{\prod_{i=1}^{n}} \frac{1}{2B(f_1-2i+1,f_2)} \left[\sum_{\ell=0}^{n} {f_2-1 \choose \ell} {f_2-1 \choose \ell+2} (-\log u) \frac{f_1+\ell-3}{2} \right] + 2 \sum_{\ell=0}^{n} \sum_{m=0}^{n} \frac{(-1)^{\ell+m}}{(m-\ell-2)} {f_2-1 \choose \ell} {f_2-1 \choose m} {u \choose m} {u \choose \ell} \frac{f_1+\ell-3}{2} - u$$

$$\frac{f_1+\ell-3}{2} - u$$

Further, the cdf of U_{l_1}, f_2, f_1 is given by

(5.5)
$$P[U_{l_{1},f_{2},f_{1}} \leq u] = \frac{1}{2} \prod_{i=1}^{2} \frac{1}{B(f_{1}-2i+1,f_{2})} \left[\sum_{\ell=0}^{f_{2}-3} \frac{\frac{1}{2}^{+\ell-1}}{(f_{1}+\ell-1)^{2}} {f_{2}-1 \choose \ell} {f_{2}-1 \choose \ell+2} \right]$$

$$(2-(f_{1}+\ell-1) \log u)$$

$$+2\sum_{\substack{\ell=0 \\ \ell \neq m-2}}^{f_2-1}\sum_{\substack{(-1)^{\ell+m} \\ (m-\ell-2)}}^{(-1)^{\ell+m}}\binom{f_2-1}{\ell}\binom{f_2-1}{m}\frac{\frac{f_1+\ell-1}{2}}{\frac{u}{f_1+\ell-1}}-\frac{\frac{f_1+m-3}{2}}{\frac{u}{f_1+m-3}}\right].$$

Case (iii): p = 5. For p = 5, $-\log U_{5,f_2,f_1} = Y_1' + Y_2' + Y_5$ and the density of U_{5,f_2,f_1} is given by

(5.6)
$$K U^{\frac{1}{2}} \left[\sum_{n=2}^{\frac{1}{2}} (-1)^n f(2n-3,2n-1,n) U^n (\log U)^2 \right]$$

$$f_{2}^{-3} \frac{1}{2}f_{2}^{-1}$$

$$+ 4 \sum_{n=0}^{\infty} \sum_{n=0}^{\frac{1}{2}} \frac{(-1)^n}{(2n-\ell-3)} f(\ell,\ell+2,n) \left\{ \frac{2}{(2n-\ell-3)} (U^n-U^{\ell+3}) - U^{\frac{2}{2}} \log U \right\}$$

$$\ell = 0 \text{ n=0}$$

$$\ell \neq 2n-3$$

$$f_{2}^{-1} \frac{1}{2}f_{2}^{-1}$$

$$- 4 \sum_{n=0}^{\infty} \sum_{n=0}^{\frac{1}{2}} \frac{(-1)^{m+n-1}}{(m-2n+1)} f(2n-3,m,n) U^n \log U$$

$$m = 0 \text{ n=0}$$

$$m \neq 2n-1$$

$$f_{2}^{-1} \frac{1}{2}f_{2}^{-1}$$

$$- 8 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{\ell+m+n}}{(m-\ell-2)(2n-\ell-3)} f(\ell,m,n) (U^n - U^{\frac{2}{2}})$$

$$\ell \neq m-2, 2n-3$$

$$f_{2}^{-1} \frac{1}{2}f_{2}^{-1}$$

$$\ell \neq 2n-3$$

$$f_{2}^{-1} \frac{1}{2}f_{2}^{-1}$$

$$\ell \neq 2n+3$$

$$f_{2}^{-1} f_{2}^{-1} \frac{1}{2}f_{2}^{-1}$$

$$\ell \neq 2n+3$$

$$f_{2}^{-1} f_{2}^{-1} \frac{1}{2}f_{2}^{-1}$$

$$\ell \neq 2n-2$$

$$\ell \neq$$

where

$$f(l,m,n) = {f_2-1 \choose l} {f_2-1 \choose m} {f_2 \choose 2} {-1 \choose n}$$

and

$$K = \left[1/2B\left(\frac{f_1^{-4}}{2}, \frac{f_2}{2}\right)\right] \prod_{i=1}^{2} \left[1/2B(f_1^{-2i+1}, f_2)\right]$$

The series (5.6) is finite when f_2 is even but infinite for f_2 odd. The cdf can be obtained from (5.6) by integrating between (o,u) and is available in an unpublished report (by Arjun K. Gupta, Department of Statistics, Purdue University).

Case iv: $\underline{p} = 6$. In this case, noting that $-\log U_{6,f_2,f_1} = Y_1' + Y_2' + Y_3'$, we get the density of U_{6,f_2,f_3} in the form

(5.7)
$$K_1 U = \int_{\ell=0}^{\frac{1}{2}(f_1-3)} \left[\sum_{\ell=0}^{f_2-5} (-1)^{\ell} f_1(\ell,\ell+2,\ell+4) U^{\frac{\ell}{2}} (\log U)^2 \right]$$

$$f_{2^{-3}}f_{2^{-1}} + 4\sum_{\substack{\ell=0 \text{n}=0\\ \ell \neq n-14}} \frac{(-1)^{n}}{(n-\ell-\ell)^{2}} f_{1}(\ell,\ell+2,n)(2U^{\frac{n-\ell}{2}} - U^{\frac{\ell}{2}}(2+(n-\ell-\ell)\log U))$$

$$\begin{array}{c} f_2 = 1 f_2 - 1 f_2 - 1 \\ + 8 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^{\ell+m+n}}{(m-\ell-2)(n-\ell-4)} f_1(\ell,m,n)(U^{\ell/2} - U^{\frac{n-4}{2}}) \\ \ell = 0 m = 0 n = 0 \\ \ell = m-2, n-4 \end{array}$$

$$f_{2^{-5}}f_{2^{-1}}$$

$$-4\sum_{\ell=0}^{\infty}\sum_{m=0}^{\infty}\frac{(-1)^{m}}{(m-\ell-2)}f_{1}(\ell,m,\ell+4)U^{\ell/2}\log U$$

$$\ell+m-2$$

$$\begin{array}{c} f_{2}^{-1} f_{2}^{-1} f_{2}^{-1} \\ -8 \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{\ell+m+n}}{(m-\ell-2)(n-m-2)} f_{1}(\ell,m,n) (u^{\frac{m-2}{2}} - u^{\frac{n-\ell}{2}}) \\ \ell \neq 0 m = 0 \\ \ell \neq m-2, m \neq n-2 \\ f_{2}^{-1} f_{2}^{-3} \\ \vdots \\ f_{2}^{-1} f_{2}^{-1} f_{2}^{-3} \\ \vdots \\ f_{2}^{-1} f_{2}^{-1} f_{2}^{-3} \\ \vdots \\ f_{2}^{-1} f_{2}^{-1} f$$

where

$$f_1(\ell,m,n) = {f_2-1 \choose \ell} {f_2-1 \choose m} {f_2-1 \choose n}$$

and

$$K_1 = \frac{1}{2} \prod_{i=1}^{3} [1/2B(f_1-2i+1,f_2)]$$

Computation of percentage points. The expressions developed in the preceding section were used for the tabulation of percentage points of Λ . Values were first computed of U_{p,f_2,f_1} on CDC 6500 to a minimum accuracy of five significant digits based on four arguments (p,f_2,f_1,α) , where α is the lower probability level. For larger values of $f_1(>30)$ Rao's approximation (Rao (1948)) was used. These values were then used to obtain correction factors for converting chi-square percentiles with pf, degrees of freedom to the exact percentiles of $-\{f_1^{-\frac{1}{2}}(p-f_2+1)\}\ \log U_{p,f_2}^{-1}$. Finally, tabulation of the correction factors, $C = [percentile of - \{f_1 - \frac{1}{2}(p - f_2 + 1)\} \log_e U_{p,f_2,f_3}] /$ (percentile of $\chi_{pf_2}^2$), was made for each pair (p,f_2) with arguments $M = f_1 - p + 1$ and α . These factors are given to three decimal places although they were obtained generally to an accuracy of four decimals. The correction factors are presented in Tables 1 - 4 for M = 1(1)10, 12(2)20, 24, 30, 40, 60,120, ∞ ; Table 1 gives the percentage points for p = 3, $f_2 = 12(2)22$ and $\alpha = 35, ..., .025, .01$ and .005; Table 2, for p = 4, $f_2 = 11(1)13(2)23$ and α as above; Table 3, for p = 5 f₂ = 12(2)16, α = .05, .01, and Table 4, $f_{p} = 11(1)13$ and $\alpha = .05$ and .01 . In referring to these tables it may be pointed out that by theorem 3.1 the distribution of $U_{p,f_{2},f_{1}}$ is the same as that of U_{f_2,p,f_1+f_2-p} and hence interchanging the role of p and f_2 does

not affect the value of M.

- 7. <u>Uses of the tabulations</u>. There are at least three tests of multivariate hypotheses for which the tabulations in the paper are useful, namely, (Pillai, 1960)
 - I that of equality of the covariance matrices of two p-variate normal populations;
 - II that of equality of the p-dimensional mean vectors of *l* p-variate normal populations having a common covariance matrix; and
 - III that of independence between a p-set and a q-set of variates in a (p+q)-variate normal population.

Test of hypothesis II is the one discussed so far in this paper using Wilks's Λ given in (2.3). In the context of II $f_2 = \ell-1$ and $f_1 = N-\ell$, where N is the total of the sizes of the ℓ samples. As in section 2, $S = X_1 X_1^i \text{ is the Within S.P. matrix and } S^* = X_2 X_2^i \text{ is the Between S.P. matrix}$ and $\Lambda = \prod_{i=1}^{s} (1-\theta_i)$, where θ_i 's are the non-zero characteristic roots of $S^*(S^* + S)^{-1} \text{ and } \theta_i = \lambda_i/(1+\lambda_i), \quad i = 1, ..., s.$

Now consider the test of III, i.e. H_0 : $\Sigma_{12} = 0$ against $\Sigma_{12} \neq 0$, where Σ_{12} is the population covariance matrix between the p and q set of variables. Use as test criterion $\Lambda = \prod_{i=1}^{p} (1-\theta_i)$, where θ_i 's are the characteristic roots of $S_{11}^{-1}S_{12}S_{22}^{-1}S_{12}^{-1}$, where S_{11} is the S.P. matrix of the sample of observations on the p-set of variates, S_{22} that on the q-set, and S_{12} , the S.P. matrix between the observations on the p-set and the q-set, $p \leq q$ and p+q < k, the sample size. Here Λ is the (2/k)th power of the likelihood ratio criterion and equals $|S_{11} - S_{12}S_{22}^{-1}S_{12}^{-1}| / |S_{11}| = \prod_{i=1}^{p} (1-\theta_i)$. In this context $f_1 = k-q-1$ and $f_2 = q$.

For test of hypothesis I also the criterion $\Lambda = \prod_{i=1}^{p} (1-\theta_i)$ is useful, where θ_i 's are now the characteristic roots of the matrix $S_1(S_1+S_2)^{-1}$, where S_1 and S_2 denote the usual S.P. matrices computed from two independent p-variate samples of sizes n_1 and n_2 respectively. Here if Y_i , $i=1,\ldots,p$, are the characteristic roots of $\Sigma_1\Sigma_2^{-1}$, where Σ_1 and Σ_2 are the covariance matrices of the two p-variate normal populations, then the null hypothesis can be written as $H_0\colon Y_1=\ldots=Y_p=1$. Further, consider the one-sided alternate hypothesis $H_1\colon Y_i\geq 1$, $i=1,\ldots,p$, $\sum_{i=1}^p Y_i\geq p$. The tabulations in the paper may be used for this test with $f_2=n_1-1$ and $f_2=n_2-1$. Unlike the tests of hypotheses II and III, tabulations for larger values of f_2 are also important in this test. Further, it should be pointed out that the Λ -test in this case is not related to the likelihood ratio criterion. However, it has been shown for p=2, through power comparisons with respect to each Y_i , that this test compares favorably with other good tests for the purpose (Pillai and Jayachandran, 1968).

The authors wish to thank Mrs. Louise Mao Lui, Statistics Section of Computer Sciences, Purdue University, for the excellent programming of the material for the computation in this paper carried on CDC 6500, Purdue University's Computer Sciences Center.

Table 1. Chi-square adjustments to Wilks's criterion U.

	Factor	C for l	ower per	centiles	of U	(upper pe	ercentil	es of χ	2), p = (3
			$f_2 = 12$				f	$_{2} = 14$		
<u>Μ\ α</u>		.050	.025	.010	.005	.100	.050	.025	.010	.005
1 2 34 5	1.718 1.382 1.256 1.188 1.146	1.791 1.410 1.272 1.199 1.154	1.860 1.437 1.287 1.209 1.161	1.949 1.470 1.306 1.221 1.170	2.013 1.495 1.319 1.230 1.176	1.780 1.427 1.292 1.217 1.171	1.857 1.458 1.309 1.229	1.931 1.486 1.326 1.240 1.188	2.026 1.523 1.346 1.254 1.198	2.095 1.549 1.361 1.264 1.205
6 7 8 9 10	1.069	1.123 1.101 1.085 1.073 1.063	1.129 1.106 1.089 1.076 1.066	1.136 1.111 1.093 1.080 1.069	1.141 1.115 1.097 1.082 1.071	1.138 1.115 1.097 1.084 1.073	1.145 1.121 1.102 1.088 1.076	1.152 1.126 1.106 1.091 1.079	1.159 1.132 1.111 1.095 1.082	1.165 1.136 1.115 1.099 1.085
12 14 16 18 20	1.037 1.030 1.025	1.048 1.039 1.032 1.026 1.022	1.050 1.040 1.033 1.027 1.023	1.053 1.042 1.034 1.029 1.024	1.054 1.043 1.035 1.029 1.025	1.057 1.046 1.037 1.031 1.027	1.059 1.048 1.039 1.033 1.028	1.061 1.049 1.041 1.034 1.029	1.064 1.052 1.042 1.035 1.030	1.066 1.053 1.044 1.036 1.031
24 30 40 60 120	1.011 1.007 1.003 1.001 1.000	1.017 1.011 1.007 1.003 1.001	1.017 1.012 1.007 1.004 1.001	1.018 1.012 1.008 1.004 1.001	1.019 1.013 1.008 1.004 1.001	1.020 1.014 1.009 1.004 1.001	1.021 1.015 1.009 1.004 1.001	1.022 1.015 1.009 1.005 1.001	1.023 1.016 1.010 1.005 1.001	1.023 1.016 1.010 1.005 1.001 1.000
v ²	17 2122	50 0085	54.4373	58 6102	67 5870	E) 0000	EQ 7010	61 776	66.2062	60 2260
x _{pf2}	+1.50100			JO-0192	01.7012	J4•0902	20 alz40		00.2002	69.3360
	.100		$f_{2} = 16$	- 1			f,	, = 18		
				.010 2.095 1.571 1.384 1.285 1.224	.005 2.169 1.599 1.400 1.296 1.232	.100 1.886 1.508 1.357 1.272 1.218			.010 2.158 1.616 1.420 1.315 1.249	.005 2.235 1.646 1.437 1.327 1.258
M 2 1 2 3 4	.100 1.835 1.469 1.325 1.245 1.195 1.159 1.133 1.114 1.098	.050 1.916 1.501 1.344 1.258	f ₂ = 16 .025 1.995 1.532 1.362 1.271	.010 2.095 1.571 1.384 1.285	.005 2.169 1.599 1.400 1.296	.100 1.886 1.508 1.357 1.272	.050 1.971 1.542 1.377 1.286	= 18 .025 2.053 1.575 1.396 1.299	.010 2.158 1.616 1.420 1.315	.005 2.235 1.646 1.437 1.327
M 2 34 5 6 78 9	.100 1.835 1.469 1.325 1.245 1.195 1.159 1.133 1.114 1.098 1.085 1.067 1.054 1.045	.050 1.916 1.501 1.344 1.258 1.204 1.167 1.139 1.119 1.102	f ₂ = 16 .025 1.995 1.532 1.362 1.271 1.213 1.174 1.145 1.123 1.106	.010 2.095 1.571 1.384 1.285 1.224 1.182 1.152 1.129 1.111	.005 2.169 1.599 1.400 1.296 1.232 1.188 1.157 1.133 1.115	.100 1.886 1.508 1.357 1.272 1.218 1.179 1.151 1.129 1.112	1.971 1.542 1.377 1.286 1.228 1.188 1.158 1.135 1.117	2 = 18 .025 2.053 1.575 1.396 1.299 1.238 1.195 1.164 1.140 1.121	.010 2.158 1.616 1.420 1.315 1.249 1.204 1.171 1.146 1.127	.005 2.235 1.646 1.437 1.327 1.258 1.211 1.177 1.151 1.130
M 2 3 4 5 6 7 8 9 10 12 14 16 18	.100 1.835 1.469 1.325 1.245 1.195 1.159 1.133 1.114 1.098 1.085 1.067 1.054 1.045 1.038	.050 1.916 1.501 1.344 1.258 1.204 1.167 1.139 1.102 1.089 1.070 1.057 1.047 1.039	f ₂ = 16 .025 1.995 1.532 1.362 1.271 1.213 1.174 1.145 1.123 1.106 1.092 1.073 1.059 1.049	.010 2.095 1.571 1.384 1.285 1.224 1.182 1.152 1.129 1.111 1.097 1.061 1.061 1.051 1.043	.005 2.169 1.599 1.400 1.296 1.232 1.188 1.157 1.133 1.115 1.099 1.078 1.063 1.052 1.044	.100 1.886 1.508 1.357 1.272 1.218 1.179 1.151 1.129 1.112 1.099 1.078 1.064 1.053 1.045	1.971 1.542 1.377 1.286 1.228 1.188 1.158 1.135 1.117 1.103 1.066 1.055 1.046	2 = 18 .025 2.053 1.575 1.396 1.299 1.238 1.195 1.164 1.140 1.121 1.107 1.068 1.057 1.048	.010 2.158 1.616 1.420 1.315 1.249 1.204 1.171 1.146 1.127 1.111 1.087 1.071 1.059 1.050	.005 2.235 1.646 1.437 1.327 1.258 1.211 1.177 1.151 1.130 1.114 1.090 1.073 1.061 1.051

p = number of variates; f_1 = error degrees of freedom; f_2 = hypothesis degrees of freedom; $M = f_1 - p + 1$; $C = \frac{1}{p}$ [percentile for $-\frac{1}{2}(p - f_2 + 1) \log_e U$]/(percentile for χ^2 with pf₂ degrees of freedom).

Table 1 (Cont'd.)

	$f_2 = 20$				$f_2 = 22$					
M c.	.100	.050	2.025	.010	.005	.100	.050 -	.025	.010	.005
1 2 3 4 5	1.932 1.544 1.387 1.298 1.240	2.021 1.580 1.408 1.313 1.251	2.106 1.61 ¹ 4 1.428 1.327 1.261	2.216 1.657 1.453 1.344 1.274	2.297 1.689 1.472 1.356 1.283	1.975 1.578 1.415 1.322 1.261	2.067 1.616 1.438 1.338 1.273	2.156 1.651 1.459 1.353 1.284	2.269 1.696 1.485 1.371 1.297	2.353 1.729 1.504 1.384 1.307
6 7 8 9 10	1.145 1.127	1.208 1.176 1.151 1.132 1.116	1.216 1.182 1.157 1.136 1.120	1.226 1.190 1.163 1.142 1.125	1.233 1.196 1.168 1.146 1.128	1.218 1.185 1.160 1.142 1.124	1.227 1.193 1.167 1.147 1.129	1.236 1.200 1.173 1.151 1.133	1.246 1.209 1.180 1.157 1.139	1.25 ⁴ 1.215 1.185 1.161 1.141
12 14 16 18 20	1.089 1.073 1.061 1.052 1.044	1.092 1.075 1.063 1.053 1.046	1.095 1.078 1.065 1.055 1.048	1.099 1.081 1.067 1.057 1.049	1.102 1.083 1.069 1.059 1.050	1.099 1.082 1.069 1.059	1.103 1.085 1.071 1.061 1.052	1.106 1.087 1.073 1.063 1.054	1.110 1.091 1.076 1.065 1.056	1.113 1.093 1.078 1.066 1.057
24 30 40 60 120	1.034 1.024 1.015 1.008 1.002 1.000	1.035 1.025 1.016 1.008 1.002	1.036 1.026 1.016 1.008 1.002 1.000	1.038 1.027 1.017 1.009 1.002	1.039 1.027 1.017 1.009 1.003 1.000	1.039 1.028 1.018 1.009 1.003	1.040 1.029 1.018 1.009 1.003 1.000	1.041 1.030 1.019 1.010 1.003 1.000	1.043 1.031 1.020 1.010 1.003 1.000	1.044 1.031 1.020 1.010 1.003
$x_{pf_2}^2$	74.3970	79.0819	83.2976	88.3794	91.9517	81.0855	85.9649	90.3489	95.6257	99•3304

p = number of variates; f_1 = error degrees of freedom; f_2 = hypothesis degrees of freedom; $M = f_1$ -p+1; $C = [percentile for -{f_1-\frac{1}{2}(p-f_2+1) log_e U}] / (percentile for <math>\chi^2$ with pf_2 degrees of freedom).

Table 2. Chi-square adjustments to Wilks's criterion U.

Factor C for lower percentiles of U (upper percentiles of $f_2 = 12$ f₂ = 11 .100 .050 .010 .025 .010 .025 .005 .100 .050 .005 C. 2.248 2.256 2.347 2.288 2.277 2.315 2.299 2.322 2.362 2.396 2 1.330 1.353 1.374 1.402 1.422 1.396 1.424 1.446 1.350 1.373 1.221 1.235 1.247 1.262 1.274 1.238 1.252 1.264 1.280 1.292 1.164 1.181 1.213 1.173 1.191 1.198 1.186 1.195 1.205 1.177 5 1.140 1.147 1.152 1.127 1.134 1.139 1.145 1.152 1.159 1.165 6 1.103 1.108 1.112 1.118 1.122 1.112 1.118 1.122 1.128 1.132 7 1.085 1.089 1.092 1.097 1.100 1.106 1.109 1.093 1.097 1.101 8 1.075 1.078 1.081 1.084 1.089 1.071 1,079 1.082 1.085 1.092 9 1.064 1.066 1.068 1.061 1.069 1.071 1.070 1.073 1.076 1.079 10 1.053 1.055 1.057 1.060 1.062 1.066 1.068 1.059 1.061 1.063 12 1.041 1.043 1.044 1.046 1.048 1.046 1.047 1.049 1.051 1.053 14 1.033 1.034 1.037 1.038 1.039 1.041 1.042 1.035 1.037 1.038 16 1.027 1.028 1.029 1.030 1.031 1.032 1.034 1.030 1.031 1.033 18 1.022 1.023 1.024 1.025 1.026 1.025 1.026 1.027 1.028 1.029 20 1.020 1.020 1.022 1.024 1.024 1.019 1.021 1.021 1.022 1.023 24 1.014 1.015 1.015 1.016 1.016 1.016 1.017 1.017 1.018 1.018 1.010 1.010 1.010 1.011 1.011 1.012 1.013 30 1.011 1.011 1.012 40 1.008 1.006 1.006 1.006 1.007 1.008 1.007 1.007 1.007 1.007 60 1.003 1.003 1.003 1.003 1.003 1.004 1.004 1.004 1.003 1.003 1.001 1.001 120 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 56.3685 60.4809 64.2014 68.7095 71.8925 60.9066 65.1708 69.0226 73.6826 76.9688 $f_2 = 15$ $f_2 = 13$.025 .100 .050 .010 .005 .100 .050 .025 .010 .005 2.340 2.327 2.364 2.406 2.442 2.400 2,416 2.444 2.490 2.529 1.446 1.369 1.393 1.405 1.468 1.406 1.432 1.488 1.511 1.456 3 4 1.254 1.268 1.281 1.298 1.310 1.284 1.299 1.313 1.331 1.344 1.236 1.256 1.209 1.220 1.228 1.248 1.190 1,200 1.216 1.226 5 1.150 1.157 1.163 1.171 1.177 1.172 1.180 1.187 1.202 1.195 6 1.122 1.127 1.132 1.139 1.143 1.141 1.147 1.153 1.159 1.164 1.106 7 1.102 1.110 1.115 1.119 1.118 1.123 1.128 1.133 1.137 8 1.086 1.093 1.090 1.097 1.100 1.101 1.109 1.118 1.105 1.113 1.091 9 1.074 1.077 1.080 1.084 1.086 1.088 1.094 1.098 1.101 10 1.065 1.067 1.070 1.073 1.075 1.077 1.080 1.082 1.086 1.088 1.057 12 1.050 1.052 1.054 1.058 1.060 1.063 1.065 1.067 1.069 1.042 1.044 14 1.041 1.045 1.047 1.049 1.050 1.052 1.054 1.055 16 1.033 1.035 1.036 1.037 1.038 1.040 1.042 1.043 1.045 1.046 18 1.028 1.029 1.030 1.031 1.032 1.034 1.036 1.038 1.035 1.039 20 1.024 1.025 1.025 1.026 1.027 1.029 1.030 1.031 1.032 1.033 24 1.018 1.019 1.019 1.020 1.020 1.024 1.025 1.022 1.023 1.023 30 1.012 1.013 1.013 1.014 1.014 1.015 1.016 1.016 1.017 1.017 40 1.008 1.008 1.008 1.008 1.009 1.010 1.010 1.010 1.011 1.011 1.004 1.004 1.004 1.004 60 1.004 1.005 1.005 1.005 1.005 1.005 120 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.002 1.002 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 65.4224 69.8321 73.8098 78.6157 82.0008 74.3970 79.0819 83.2976 88.3794 91.9517

p = number of variates; f_1 = error degrees of freedom; f_2 = hypothesis degrees of freedom; $M = f_1-p+1$; $C = \frac{1}{p}$ [percentile for $-\frac{1}{2}(p-f_2+1)\log_2 U$]/(percentile for χ^2 with pf_2 degrees of freedom).

Table 2 (Cont'd.)

			$f_0 = 17$, = 19		
Mα	.100	.050	$f_2 = 17$.025	.010	.005	.100	.050 f	.025	.010	.005
1	2.466	2.486	2.517	2.567	2,608	2.528	2.550	2.584	2.637	2.682
2	1.440	1.468	1.494	1.527	1.551	1.473	1.502	1.529	1.563	1.589
3	1.313	1.329	1.344	1.363	1.377	1.340	1.357	1.373	1.393	1.408
4	1.240	1.252	1.262	1.275	1.284	1.264	1.276	1.287	1.300	1.310
5	1.193	1.201	1.209	1.218	1.225	1.214	1.223	1.231	1.241	1.248
6	1.160	1.166	1.172	1.180	1.185	1.178	1.185	1.191	1.199	1.205
7	1.135	1.140	1.145	1.151	1.155	1.151	1.157	1.162	1.169	1.173
8	1.116	1.120	1.124	1.129	1.133	1.131	1.135	1.140	1.145	1.149
9	1.101	1.105	1,108	1.112	1.115	1.114	1.118	1.122	1.126	1.130
10	1.089	1.092	1.095	1.098	1.101	1.101	1.104	1.107	1.111	1.114
12	1.070	1.073	1.075	1.078	1.080	1.080	1.083	1.086	1.089	1.091
14	1.057	1.059	1.061	1.063	1.065	1.066	1.068	1.070	1.072	1.074
16	1.048	1.049	1.051	1.052	1.054	1.055	1.057	1.058	1.060	1.062
18 20	1.040	1.042	1.043	1.044 1.038	1.045	1.047	1.048	1.050	1.051	1.052
	1.035	1.036	1.037		1.039	1.040	1.042	1.043	1.044	1.045
24	1.026	1.027	1.028	1.029	1.030	1.031	1.032	1.033	1.034	1.035
30	1.019	1.019	1.020	1.020	1.021	1.022	1.023	1.023	1.024	1.025
40	1.012	1.012	1.012	1.013	1.013	1.014	1.014	1.015	1.015	1.016
60 12 0	1.006 1.002	1.006 1.002	1.006 1.002	1.006 1.002	1.007	1.007 1.002	1.007	1.007	1.008	1.008 1.002
ω ω	1.000	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002 1.000	1.002
	00.000									
$x_{pf_2}^2$	83.3079	88.2502	92.6885	98.0284.	TOT • 4,400	92.1662	97.3510	101.9990	107.5820	111.4950
7			$f_2 = 21$	·-···			\mathbf{f}_{g}	_ = 23		·
$M \alpha$.100	.050	f ₂ = 21 .025	.010	.005	.100	.050 f	.025	.010	.005
$\frac{M}{1}$.100 2.585	2.610	2.646	2.703	2.750	2.639	2.666	2.705	2.764	2.813
M α 1 2	.100 2.585 1.504	2.610 1.534	2.646 1.562	2.703 1.598	2.750 1.624	2.639 1.533	2.666 1.564	2.705 2.705 1.593	2.764 1.630	2.813 1.657
M α 1 2 3	.100 2.585 1.504 1.367	2.610 1.534 1.384	2.646 1.562 1.401	2.703 1.598 1.422	2.750 1.624 1.437	2.639 1.533 1.391	2.666 1.564 1.410	2.705 1.593 1.428	2.764 1.630 1.449	2.813 1.657 1.465
M α 1 2 3 4	.100 2.585 1.504 1.367 1.287	2.610 1.534 1.384 1.299	2.646 1.562 1.401 1.311	2.703 1.598 1.422 1.325	2.750 1.624 1.437 1.335	2.639 1.533 1.391 1.309	2.666 1.564 1.410 1.322	2.705 2.705 1.593 1.428 1.334	2.764 1.630 1.449 1.349	2.813 1.657 1.465 1.359
M α 1 2 3 4 5	.100 2.585 1.504 1.367 1.287 1.234	2.610 1.534 1.384 1.299 1.243	2.646 1.562 1.401 1.311 1.252	2.703 1.598 1.422 1.325 1.262	2.750 1.624 1.437 1.335 1.270	2.639 1.533 1.391 1.309 1.253	2.666 1.564 1.410 1.322 1.263	2.705 2.705 1.593 1.428 1.334 1.272	2.764 1.630 1.449 1.349 1.283	2.813 1.657 1.465 1.359 1.291
M α 1 2 3 4 5 6	.100 2.585 1.504 1.367 1.287 1.234 1.196	2.610 1.534 1.384 1.299 1.243	2.646 1.562 1.401 1.311 1.252	2.703 1.598 1.422 1.325 1.262	2.750 1.624 1.437 1.335 1.270	2.639 1.533 1.391 1.309 1.253	2.666 1.564 1.410 1.322 1.263	2.705 2.705 1.593 1.428 1.334 1.272	2.764 1.630 1.449 1.349 1.283	2.813 1.657 1.465 1.359 1.291
M α 1 2 3 4 5 6 7	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167	2.610 1.534 1.384 1.299 1.243 1.203 1.173	2.646 1.562 1.401 1.311 1.252 1.210 1.179	2.703 1.598 1.422 1.325 1.262 1.218 1.186	2.750 1.624 1.437 1.335 1.270 1.224 1.191	2.639 1.533 1.391 1.309 1.253 1.213 1.183	2.666 1.564 1.410 1.322 1.263 1.221 1.189	2.705 1.593 1.428 1.334 1.272 1.228 1.195	2.764 1.630 1.449 1.349 1.283 1.237 1.202	2.813 1.657 1.465 1.359 1.291 1.243 1.208
M α 1 2 3 4 5 6 7 8	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145	2.610 1.534 1.384 1.299 1.243 1.203 1.173 1.150	2.646 1.562 1.401 1.311 1.252 1.210 1.179 1.155	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180
M α 1 2 3 4 5 6 7	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167	2.610 1.534 1.384 1.299 1.243 1.203 1.173 1.150 1.132	2.646 1.562 1.401 1.311 1.252 1.210 1.179	2.703 1.598 1.422 1.325 1.262 1.218 1.186	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158
M α 1 2 3 4 5 6 7 8 9 10	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127	2.610 1.534 1.384 1.299 1.243 1.203 1.173 1.150 1.132 1.117	2.646 1.562 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140
M α 1 2 3 4 5 6 7 8 9 10 12	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127 1.113	2.610 1.534 1.384 1.299 1.243 1.203 1.173 1.150 1.132 1.117	2.646 1.562 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140
M α 1 2 3 4 5 6 7 8 9 10 12 14	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127 1.113 1.091 1.074	2.610 1.534 1.384 1.299 1.243 1.203 1.173 1.150 1.132 1.117 1.094 1.077	1.252 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100 1.081	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127 1.102 1.083	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.103 1.086	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.066 1.088	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137 1.109 1.091	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140
M α 1 2 3 4 5 6 7 8 9 10 12 14 16	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127 1.113 1.091 1.074 1.063	2.610 1.534 1.384 1.299 1.243 1.173 1.150 1.132 1.117 1.094 1.077 1.064	1.252 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079 1.066	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100 1.081 1.068	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127 1.102 1.083 1.070	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.103 1.086 1.072	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.106 1.088 1.074	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137 1.109 1.091 1.076	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.112 1.093 1.078
M α 1 2 3 4 5 6 7 8 9 10 12 14	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127 1.113 1.091 1.074	2.610 1.534 1.384 1.299 1.243 1.203 1.173 1.150 1.132 1.117 1.094 1.077	1.252 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100 1.081	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127 1.102 1.083	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070 1.060	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.103 1.086 1.072 1.062	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.066 1.088 1.074 1.063	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137 1.109 1.091 1.076 1.065	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.112 1.093 1.078 1.067
M α 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127 1.113 1.091 1.074 1.063 1.053 1.046	2.610 1.534 1.384 1.299 1.243 1.173 1.150 1.132 1.117 1.094 1.077 1.064 1.055 1.048	1.252 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079 1.066 1.057 1.049	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100 1.081 1.068 1.058 1.050	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127 1.102 1.083 1.070 1.060 1.051	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070 1.060 1.052	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.103 1.086 1.072 1.062 1.054	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.066 1.088 1.074 1.063 1.055	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137 1.109 1.091 1.076 1.065 1.057	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.112 1.093 1.078 1.067 1.058
M α 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 24	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.145 1.127 1.113 1.091 1.074 1.063 1.053 1.046 1.036	2.610 1.534 1.384 1.299 1.243 1.203 1.173 1.150 1.132 1.117 1.094 1.077 1.064 1.055 1.048	2.646 1.562 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079 1.066 1.057 1.049	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.124 1.100 1.081 1.068 1.058 1.050 1.039	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127 1.102 1.083 1.070 1.060 1.051 1.040	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070 1.060 1.052 1.040	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.086 1.072 1.062 1.054 1.042	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.068 1.074 1.063 1.055 1.043	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.157 1.109 1.091 1.076 1.065 1.057	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.112 1.093 1.078 1.067 1.058
M α 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.145 1.127 1.113 1.091 1.074 1.063 1.053 1.046 1.036 1.036	2.610 1.534 1.384 1.299 1.243 1.203 1.173 1.150 1.132 1.117 1.094 1.077 1.064 1.055 1.048	1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079 1.066 1.057 1.049 1.038 1.027	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100 1.068 1.058 1.050 1.039 1.028	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127 1.102 1.083 1.070 1.060 1.051 1.040 1.028	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070 1.060 1.052 1.040 1.029	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.103 1.086 1.072 1.062 1.054 1.042 1.030	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.066 1.088 1.074 1.063 1.055 1.043 1.031	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137 1.109 1.091 1.076 1.065 1.057	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.158 1.093 1.078 1.078 1.067 1.058
M α 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 24 30	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.145 1.127 1.113 1.091 1.074 1.063 1.053 1.046 1.036	2.610 1.534 1.384 1.299 1.243 1.203 1.173 1.150 1.132 1.117 1.094 1.077 1.064 1.055 1.048	2.646 1.562 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079 1.066 1.057 1.049	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.124 1.100 1.081 1.068 1.058 1.050 1.039	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127 1.102 1.083 1.070 1.060 1.051 1.040	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070 1.060 1.052 1.040	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.086 1.072 1.062 1.054 1.042	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.068 1.074 1.063 1.055 1.043	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.157 1.109 1.091 1.076 1.065 1.057	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.112 1.093 1.078 1.067 1.058
M α 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 24 30 40	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127 1.113 1.091 1.074 1.063 1.053 1.046 1.036 1.036 1.036 1.008 1.008 1.002	2.610 1.534 1.384 1.299 1.243 1.173 1.150 1.132 1.117 1.094 1.077 1.064 1.055 1.048 1.037 1.026 1.017 1.009 1.003	1.025 2.646 1.562 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079 1.066 1.079 1.049 1.049 1.027 1.017 1.009 1.003	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100 1.081 1.068 1.058 1.050 1.039 1.028 1.018 1.009 1.003	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.144 1.127 1.102 1.083 1.070 1.060 1.051 1.040 1.028 1.018 1.009 1.003	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070 1.060 1.052 1.040 1.029 1.019	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.103 1.086 1.072 1.062 1.054 1.042 1.030 1.019	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.066 1.088 1.074 1.063 1.055 1.043 1.055 1.020 1.010 1.003	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137 1.109 1.076 1.065 1.057 1.044 1.032 1.020	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.158 1.073 1.078 1.067 1.058 1.045 1.032 1.021
M α 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 40 60 120 ∞	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127 1.113 1.091 1.074 1.063 1.053 1.046 1.036 1.036 1.026 1.008 1.002 1.000	2.610 1.534 1.384 1.299 1.243 1.173 1.150 1.132 1.117 1.094 1.077 1.064 1.055 1.048 1.037 1.026 1.017 1.009 1.003 1.000	1.025 2.646 1.562 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079 1.066 1.057 1.049 1.038 1.027 1.017 1.009 1.003 1.000	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100 1.081 1.068 1.058 1.050 1.039 1.028 1.018 1.009 1.003 1.000	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.127 1.102 1.083 1.070 1.060 1.051 1.040 1.028 1.018 1.009 1.003 1.000	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070 1.060 1.052 1.040 1.029 1.019 1.010 1.003 1.000	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.103 1.086 1.072 1.062 1.054 1.042 1.030 1.019 1.010 1.003 1.000	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.106 1.088 1.074 1.063 1.055 1.043 1.055 1.010 1.020 1.010	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137 1.109 1.076 1.065 1.057 1.044 1.032 1.020 1.010 1.003 1.000	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.112 1.093 1.078 1.078 1.058 1.045 1.045 1.032 1.001 1.003 1.000
M α 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 40 60 120 ∞	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127 1.113 1.091 1.074 1.063 1.053 1.046 1.036 1.036 1.026 1.008 1.002 1.000	2.610 1.534 1.384 1.299 1.243 1.173 1.150 1.132 1.117 1.094 1.077 1.064 1.055 1.048 1.037 1.026 1.017 1.009 1.003 1.000	1.025 2.646 1.562 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079 1.066 1.057 1.049 1.038 1.027 1.017 1.009 1.003 1.000	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100 1.081 1.068 1.058 1.050 1.039 1.028 1.018 1.009 1.003 1.000	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.127 1.102 1.083 1.070 1.060 1.051 1.040 1.028 1.018 1.009 1.003 1.000	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070 1.060 1.052 1.040 1.029 1.019 1.010 1.003 1.000	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.103 1.086 1.072 1.062 1.054 1.042 1.030 1.019 1.010 1.003 1.000	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.106 1.088 1.074 1.063 1.055 1.043 1.055 1.010 1.020 1.010	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137 1.109 1.076 1.065 1.057 1.044 1.032 1.020 1.010 1.003 1.000	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.112 1.093 1.078 1.078 1.058 1.045 1.045 1.032 1.001 1.003 1.000
M α 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 40 60 120 ∞	.100 2.585 1.504 1.367 1.287 1.234 1.196 1.167 1.145 1.127 1.113 1.091 1.074 1.063 1.053 1.046 1.036 1.036 1.026 1.008 1.002 1.000	2.610 1.534 1.384 1.299 1.243 1.173 1.150 1.132 1.117 1.094 1.077 1.064 1.055 1.048 1.037 1.026 1.017 1.009 1.003 1.000	1.025 2.646 1.562 1.401 1.311 1.252 1.210 1.179 1.155 1.136 1.120 1.096 1.079 1.066 1.079 1.049 1.049 1.027 1.017 1.009 1.003	2.703 1.598 1.422 1.325 1.262 1.218 1.186 1.160 1.140 1.124 1.100 1.081 1.068 1.058 1.050 1.039 1.028 1.018 1.009 1.003 1.000	2.750 1.624 1.437 1.335 1.270 1.224 1.191 1.164 1.127 1.102 1.083 1.070 1.060 1.051 1.040 1.028 1.018 1.009 1.003 1.000	2.639 1.533 1.391 1.309 1.253 1.213 1.183 1.159 1.140 1.125 1.100 1.083 1.070 1.060 1.052 1.040 1.029 1.019 1.010 1.003 1.000	2.666 1.564 1.410 1.322 1.263 1.221 1.189 1.165 1.145 1.129 1.103 1.086 1.072 1.062 1.054 1.042 1.030 1.019 1.010 1.003 1.000	2.705 1.593 1.428 1.334 1.272 1.228 1.195 1.170 1.149 1.132 1.106 1.088 1.074 1.063 1.055 1.043 1.055 1.010 1.020 1.010	2.764 1.630 1.449 1.349 1.283 1.237 1.202 1.176 1.154 1.137 1.109 1.076 1.065 1.057 1.044 1.032 1.020 1.010 1.003 1.000	2.813 1.657 1.465 1.359 1.291 1.243 1.208 1.180 1.158 1.140 1.112 1.093 1.078 1.067 1.058 1.045 1.045 1.032 1.001 1.003 1.000

p = number of variates; f_1 = error degrees of freedom; f_2 = hypothesis degrees of freedom; $M = f_1 - p + 1$; $C = \frac{1}{p}$ percentile for $-\frac{1}{2}(p - f_2 + 1) \log_e U$]/(percentile for χ^2 with pf_2 degrees of freedom).

Table 3. Chi-square adjustments to Wilks's criterion 2^U . Factor C for lower percentiles of U (upper percentiles of χ^2), p=5

Fa	ctor C for low	ver percenti	les of U (u	pper percentil	es of χ^-), p	= 5	
	f ₂ =	12	f ₂ =	14	f ₂ = 1 6		
M α	.050	.010	.050	.010	.050	.010	
1	1.643	1.768	1.683	1.813	1.722	1.855	
2	1.350	1.396	1.383	1.431	1.415	1.465	
3	1.240	1.265	1.267	1.294	1.294	1.323	
14	1.179	1.196	1.203	1.221	1.226	1.245	
5	1.141	1.153	1.161	1.174	1.181	1.196	
_) -			
6	1.114	1.124	1.132	1.143	1.150	1.161	
7	1.095	1.103	1.111	1.119	1.127	1.136	
8	1.081	1.087	1.095	1.102	1.109	1.116	
9	1.070	1.075	1.082	1.088	1.095	1.101	
10	1.061	1.065	1.072	1.077	1.083	1.089	
12	1.047	1.051	1.057	1.060	1.066	1.070	
14	1.038	1.040	1.045	1.048	1.053	1.057	
16	1.031	1.033	1.038	1.040	1.045	1.047	
18	1.026	1.028	1.032	1.034	1.038	1.040	
20	1.022	1.024	1.027	1.029	1.033	1.034	
24	1.017	1.018	1.021	1.022	1.025	1.026	
30	1.012	1.012	1.014	1.015	1.018	1.019	
40	1.007	1.008	1.009	1.010	1.011	1.012	
60	1.004	1.004	1.004	1.005	1.006	1.006	
120	1.001	1.001	1.001	1.001	1.002	1.002	
, co	1.000	1.000	1.000	1.000	1.000	1.000	
x _{pf2}	79.0819	88.3794	90.5312	100.4250	101.8790	112.3290	

p = number of variates; f_1 = error degrees of freedom; f_2 = hypothesis degrees of freedom; $M = f_1-p+1$; $C = [percentile for -{f_1-\frac{1}{2}(p-f_2+1)\log_e U}]/(percentile for <math>\chi^2$ with pf_2 degrees of freedom).

Table 4. Chi-square adjustments to Wilks's criterion U. Factor C for lower percentiles of U (upper percentiles of χ^2), p = 6

	f ₂ :	= 11	f ₂ =	12	f ₂ = 13		
Mα	.050	.010	.050	.010	.050	.010	
1	1.589	1.704	1.605	1.722	1.621	1.739	
2	1.321	1.363	1.335	1.378	1.349	1.393	
3	1.220	1.243	1.232	1.255	1.244	1.268	
4	1.164	1.180	1.175	1.191	1.185	1.201	
5	1.129	1.140	1.138	1.150	1.148	1.159	
(7.705	3 331			03		
6	1.105	1.114	1.113	1.122	1.121	1.130	
7	1.088	1.094	1.095	1.102	1.102	1.109	
8	1.074	1.080	1.081	1.086	1.088	1.093	
9	1.064	1.069	1.696	1.075	1.075	1.080	
10	1.055	1.060	1.061	1.065	1.066	1.070	
12	1.044	1.047	1.048	1.051	1.052	1.055	
14	1.035	1.037	1.038	1.040	1.042	1.044	
16	1.029	1.030	1.032	1.033	1.035	1.037	
18	1.024	1.026	1.027	1.028	1.029	1.031	
20	1.020	1.022	1.023	1.024	1.025	1.026	
·		_					
24	1.015	1.016	1.017	1.018	1.019	1.020	
30	1.011	1.011	1.012	1.013	1.013	1.014	
40	1.007	1.007	1.007	1.008	1.008	1.009	
60	1.003	1.003	1.004	1.004	1.004	1.004	
120	1.001	1.001	1.001	1.001	1.001	1.001	
ω	1.000	1.000	1.000	1.000	1.000	1.000	
$x_{pf_2}^2$	85.9649	95.6257	92.8083	102.8160	99.6169	109.9580	

p = number of variates; f_1 = error degrees of freedom; f_2 = hypothesis degrees of freedom; $M = f_1-p+1$; $C = [percentile for - {f_1-\frac{1}{2}(p-f_2+1)\log_e U}]/(percentile for <math>\chi^2$ with pf_2 degrees of freedom).

References

- Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York.
- Bartlett, M.S. (1938). Further aspects of the theory of multiple regression. Proc. Camb. Phil. Soc. 34, 33-40.
- Box, G.E.P. (1949). A general distribution theory for a class of likelihood criteria. Biometrika. 36, 317-346.
- Consul, P.C. (1966). Exact distributions of the likelihood ratio. Ann. Math. Statist. 37, 1319-1330.
- Pearson, E.S. and Wilks, S.S. (1933). Methods of analysis appropriate for k samples of two variables. Biometrika 25, 353-378.
- Pillai, K.C.S. (1960). Statistical tables for tests of multivariate hypotheses. The Statistical Center, University of the Phillippines, Manila.
- Pillai, K.C.S. and Jayachandran, K. (1968) Power comparisons of tests of equality of two covariance matrices based on four criteria. Biometrika, 55 (to appear).
- Rao, C.R. (1948). Tests of significance in multivariate analysis. Biometrika 35, 58-79.
- Schatzoff, M. (1966). Exact distribution of Wilks's likelihood-ratio criterion.

 Biometrika, 53, 347-358.
- Wald, A. and Brookner, R.J. (1941). On the distribution of Wilks' statistic for testing independence of several groups of variates. Ann. Math. Statist. 12, 137-152.
- Wilks, S.S. (1932). Certain generalizations in the analysis of variance. Biometrika, 24, 471-494.
- Wilks, S.S. (1935). On the independence of k sets of normally distributed variables. Econometrica 3, 309-326.