The Transient Behavior of the Queue with Alternating Prierities,

with speciel reference to the Waitingtimes

by
Marcel F. Neuts(*), Purdue University
and

Micha Yadin(**), Technion and Kansas State University

Department of Statistiecs
Division of Mathematical Sciences
Mimeograph Series No. 136

January, 1968

(i) The research of this author was supported in part by the Office of Naval
Research, Contract NONR 1100(26). Reproduction in whole or in part is per-
mitted for any purpese of the United States Goverrment,

(%%) The research of this author was supported in part by NSF Grant Ne,GP-7L02
at Kansas State University.



The Transient Behavior of the Queue with Alternating Priorities,

with special reference to the Waitingtimes

by
*
Marcel F. Neuts( ), Purdue University
and

*%
Micha Yadin( ), Technion and Kansas State University

Y. Introduction

The queue with alternating priorities is recognized to be of considerable
practical importance. It may be visualized as consisting of two units I and
II, with a single server alternating between them. 1In this paper we consider
the case, where the server alternates between the units according to a 'zero-
switch” rule [1,2,10] i.e. he continues service in a unit until all customers
there have been served and then he switches to the other unit, provided that
there is at least one customer there.

Specifically, let the input processes to I and II be independent Poisson
processes of rates ll and A2' The service times in I and IX form indepen-~
dent sequences of independent random variables with common distributions Hl(')
and Ha(-) respectively. The mean service times are dl and %y respectively.

Under the "zero-switch" rule, the server stays in a unit, until the queue

in it becomes empty. Thereupon he switches to the other unit, unless the queue

in front of the other unit is empty. In that case he waits for the first pew

The research of this author was supported in part by the Office of Naval
Research, Contract NONR 1100(26). Reproduction in whole or in part is permitted
for any purpose of the United States Government.

The research of this author was supported in part by NSF Grant GP-ThO2 at
Kansas State University.



arrival and beginz service in the corresponding unit. The event that new

arrivals appear simultaneously in both queues has, of course, probability zero.
Units I and II need not be distinet in reality. Physically they can con=«

gist of a single station with customers arriving at a rate hl + h2 and being

of Type I with probability hl / ll 4 he and of Type II with probability

kz / hl + h2 .

A more general class of switchihg rules will be discussed elsewhere.

ITI. The buay periods,

We will denote the distribution of the busy period for an M|G|1 queue
with input rate Ai and service tirme distribution Hi(') by Gi('), i=1,2,
It is knowm, from the classical theory cf the MlGll queue - Takécs [8] - that
if the busy period starts off with Vv > 1 customers initially, one of which
is begirning cervice, then the distribution of the duration of the busy period
is given by the V~fold convolution G§v)(-) of Gi('). Moreover the Laplace-
Stieltjes transforn "{i(s) of Gi(-) is the unique root in the unit disk of

the equationg
1 5 = h.(s + A, - Az es~>0
(1) 5 ( ;- M%), R )
vhere h,(g) is th2 Lenlace-~Stieltjec transform of Hi(-), i=12 .

Nexht we define the Dusy periods for the gueune with alternating priorities.

uppose thay at vt = 0, there is one customer in unit I and none in unit II

(9]

and the customesr Just hegins service, The length of time un%il both units are

sirmmiltaneosusly empby for the first tim~, is called a I-busy period. If there

N

is only one customer, bub he starts in wnit IT at +t = O, we call the corres-

ponding timelength o JI-busy period. We denote by Kl(') and Ké(-) the




distribution functions of busy periods of types I and II respectively and
their ILaplace-Stieltjes transforms by Bl(s) and Gz(s) respectively.
The transforms el(s) and 92(5) may be obtained by application of the

following theorem.,

Theorem 1.
. . -1 . .
(a) The convex combination (A,+ Ay) [hlel(s) + 1292(5)] is the unique

root in the unit disk [zl < 1 of the equation:

(2) (7\1 + ha)z =

hlhl(s + Al+ Ay - hlz - hzz)

+ h2h2(s + A+ Az - Alz - laz) s

for every s with Re s >0 .,

(b) For every s with Re s > 0, the pair Gl(s), ©,(s) is the unique

solution to the system of eguations:

(3) zy hl(s + hl+ hz - Alzl - Agzz) ,

h2(s A+ Ay - Az, - hzzz) ,

in the region |z,| <1, Izl <1

(¢) For every s with Re s > 0, the pair Gl(s), 92(3) is the unique solu-

tion to the system of equations:



(4) ) = Yy(s * Apm Azp)

Z, = y2(s + hl- )\lzl s

in the region [zll <1, [22| <1 .

(@) Either © o+)=92(o+)=1, or 91(0+)<l and ©@,(o+)<1 . The

l( 2(

first alternative holds if and only if

(5) Moy + Ao, <1y

*
It hlal + hzaé > 1, then the equation (2) has a real, positive root v < 1,

In terms of this root, we have:

* *
(6) 8,(0+) =h (A, + A5 =AY =AY ) <1,

* *
= - L) <
92(o+) hz(hl + hz hly kév )<1 .

(e) 1If Alal + lgaé < 1, then the means of Kl(') and gé(-) are given by:

= -1
(7) i ei(0+) - dl(l - )‘lo"l - }"20!2) ’
- 0l(o+) = o (1 - Ao, - A )"l
2 2 11 22 7

and they are both infinite when Ao, + Ao, =1 .



Proof:

AE () + A(0)
The mixture VY does not depend on the switching rule
1 2

or the order of service of the customers. It may be considered as thé busy
period of an M|G|1 queue with input rate Al + Kz and service time distribu-
tion (kl + Az)'l [llHl(~) + K2H2(-)]. Part (a) is therefore just an application
of Takhcs' theorem [8] p. 58.

Next we verify that el(s) and 92(8) satisfy the system (3). Suppose
that during the first service in a I-busy period Vl customers of type I and
v2 customers of type II arrive (Vl > 0, V2 > 0). We modify the service dis-

cipline as follows. If V. > 0, we serve a first customer of type I and go

1
on serving all new arrivals until the queue becomes empty, apart from the Vl- 1
customers of type I and the Vo customers of type ITI. We successively do the
same with the next customers of type I and also with the Vo customers of

type II. Since we so generate vy I-busy periods and V2 II-busy periods

which are all mutually independent, we obtain:

o AV
(8) Ky (x) = Z X
V=0 V. =0
1
~(A )y VooV Y () (V)
[mEomin Tt g S el anwm
o]

where Kgo)(-) = Kéo)(-) = Uo(~) is the degenerate distribution.
Upon taking transforms, (8) yields the first equation of (3) with
2, = Gl(s), Z, = 92(5). The second equation is obtained by applying the same

argument to a II-busy periocd.



The uniqueness of this solution to the system(3) follows by consideration

of the equivalent system:

(9) 2 = hl(s + hl+ Ay - Alz - hzz) s
,(Al+h2)z = klhl(s+kl+k2~klz—l22)
+ Ah,(s + A+ A, - hlz - haz) R

. R -1
in which z = (Kl+ A) [l z, + A,z 2] .

A similar argument shows that Gl(s) and ea(s) are the solutions to
the system (4). Consider a I-busy period and let there be V new arrivals in
unit IT during the first phase in unit I. Each one of them may be considered

as the first customer of a II-busy period, in the same manner as before,

yielding:
Ay oY
0 g = Z &7 B lemaam
V=0 .

which yields the first equation in (4).
The uniqueness of this solution is proved by considering the equivalent
expressions:

(11) = Yl[s + Ay = A¥o(s + A= Azg)]

2y

Z, = y2(s + hl - llzl) .

The standard argument, involving Rouché's theorem, shows that the first

equation in (11) has a unique root in |zl| < 1, which upon substitution



gives a unique root in |22] <1l.
The remeining statements follow directly from the equations (2), (3)
and (b4).

Part. (b) of this theorem was proved earlier by P.D. Welch [9].

ITI. An Imbedded semi-Markov process.

The queue under discussion has several interesting imbedded semi-Markov
processes. Its time dependence may be studied in several different ways by
relating the processes such as queue lengths or waitingtimes to those semi-
Markov sequences. This method is now classical =— see Neuts [3,4,5]—
and we will not present it in detail here. Instead we will discuss a number
of shortcuts to save on notation.

Macroscopically the queue goes through alternating busy and idle periods.
The idle periocds and busy periods are mutually independent and the former
have a negative exponential distribution with mean (Rl + 12)-1 . The latter
are either I-busy periods or II-busy periods, whose successive types form a
sequence of Bernoulli trials, with probability Xl(hl + la)-l of a I-period.
O there are i

1

> 0. Furthermore a customer in uwnit I is Just

We suppose that at ¢

customers in unit I and 12 in

wnit II, with i, > 1,

1 i
beginning service. In this case, there will be an initial I~busy period dif=-
ferent from the other I-busy periods. It is easy to modify our discussion to
cover other initial conditions for the queue.

The initial instants of the successive busy periods (and also their end-
points) form a sequeﬁce of regeneration points for the entire queueing process.
Therefore we may initially limit our discussion to the queue characteristics

within a busy period. TIater, it will be easy to "patch" all busy and idle

periods together to obtain the complete time dependent equations,



We now consider the queue within a busy period.

Let T =0 and let the queue lengths at T be (il,ia)f Further
assume that a service is starting in unit I and let Tl; Tyseees Iy denote
the lengths of the successive time intervals spent in units I and II. The
even intervals correspond to service in unit II and the odd ones to service
in unit I. - By the word "task" we understand the time interval spent, without
interfuption, in one unit. A I-task will be spent in unit I and a II-task
in unit II. N is a random variable, corresponding to the number of tasks
(in unit I or unit II), before the queues become empty. Note that N could
be infinite. We denote by Kl’ Kos e the numbers of customers in the system

at times T Tl+ T2,... . A fortiori we have ¥K_= 0 if N is finite.

N

then the bivariate sequence {Tn,Kn,n > 0} has

12
If we define Ké =i,
the basic properties of a semi-Markov sequence, except for the fact that the
even and odd-numbered transitions are governed by different transition prob-
ability matrices. - This could, of course, be avoided by adding a third variable -
which indicates whether the server spends the corresponding phase in unit I or
in jnit II. For simplicity, we chose not to do so.

Note that the odd kappa-variables Kl’ K35..w-~express nunbers of cuse -
tomers’ in it IT, whereas-the even ones describe numbers of custemers in
unit IT. -

The transition probabilities are given by:

(12) Plr,<x, w0, =3k =i}

=13 :
_ JX- e-ley (hgy) (i)
(o)

L L) > (]
G deg, ~ (v), 324, .



(13) For n>1:

d GJ(_i) (¥)

(14) For n>1:

< K = 3 K = i >
P{T.'Zn--x’ on = 9 I op-1 = * —l}

_ XX "hly (AlY)

= 37 a G2i) y) .

o
The following probabilities are of basic importance, Let Rn(il,iz;,j;x)

be the probability that a busy period starting at t = 0 with (i CuS=

101p)
tomers, lasts for at least n +tasks, that the n-th task ends not later than
time x and that at the end of the n-~th task, |Jj customers are waiting.

By r_n(il,iz;j,s) we denote the laplace~Stieltjes transform of Rn(il’iz;j’x)

and write all formulae in the sequel directly in transforms. We have:

j‘ie

. . ] 3 —(S+)\2)‘y‘ ()\23’) (11)
(15) ry(iy,1533,8) = Jo e G a6~ (¥) >
for j 2 izv .
- ~(s+h,)y (A,y)
(16) r2n+l(il’i23vjas) = z r2h(ll’12’ ,S) j ""?'f'— d G(V)(Y) F
: v=1

for j>20, n>1 .
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(17) ren(il’iz.;j’s) =

— )
Z Top-1 (1ps3p3V58) I e
v=1 ©

—(s+h A y)d
(s+ l)y E_%il_ 4 Gév)(y) ,

for j=20, n>21 .

Taking generating functions on j, we obtain for |z| < 1:

i i
. . 2 1
(18) rl(ll,lz;Z,S) =z " v, (s + h2- lzz) ,

(19) r2n+l(ilaizizys) =

[ “(sth,)y (Ayy)]
0e -—J-:—_

z =’ Z ron(iy5153V58) dGJ(.v)(y) =

=0 v=1
= Ty [il,iz;Yl(s+12 - hgz),s] - ran(il’i2;°’s)’ n>1 ,
(20) r2n(il,12;z,s) =
r2n_l[il,ie;Y2(s + A= M2),s] -, o (3y,1550,8), n>1 .

Formulae (18) - (20) may be simplified by the introduction of the following

iterative sequences of functions:
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(21) 9. (z,8) = z ,
9,,1(z:8) = Vils +A=dy g (2,5)], n20 .
¥(2,8) = z ,
¥1(2o8) = Yols + A=Ay (z,8)], =n20 .

It is easy to verify that:

(22) 9oL 255] ='¢2n-1[Y2(S + Ay=hy2),8] n

-
v
()

Va1l 2:5] = @[V (s + Apm Apz)s] 5 m

iV
(@]

i
Vv
H
-

bonlzs8] = Yo 4Y (5 + A= Xp2),s]

$2n+l[z,s] = ¢2n[Y2(s + A - hlz),s] R n>0 .

In terms of these iterates, defined in (21), it is possible to write (18) - (20)

as a single formula:

(23) rn(il’iQE‘z:S) =

i i i i
2 1 2
9,1 (2,5) 4.2, (2,8) =01 (0,8) ¥, p(0s8)

for n> 1. We set w_l(z,s) = ¢_l(z,s) =0
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Functional iterates, as defined in (21), are reminiscent of the theory
of branching processes. In fact, the imbedded semi~Markov process, diééﬁssed
here, is related to that appearing in a discussion of the M|G|l queue by
Neuts [3] . This suggests another approach to the distribution of the busy
period, summarized below. |

The asynmetry of formula (23) stems from the fact that we assumed that the
server starts off with a I-task.

Let us define for i 3z,s) which

>0, > 1, the transform rn(i

1 2 1°%2
has the seme definition as rn(il,iz;z,s), except that the server starts off

with a II-task, then:
i i i i
~ o s 2 1 2 1
(24) rn(ll,lé;Z,S) = ¢n (z,5) @n_l(zss) - ¢n_1(0,s),¢5_2(°,s)

for n>1 ..

. Another Derivation of the distribution of the Busy Periods.

For il =1, i2 = 0, we obtain:

.(25) rn(l,O;z,s) = @n(Z,S) - @n_l(oss)’ n z r .,

which for 2z = 0, is the L.S.-transform of the probability.Rﬁ(l,O;O,x) that
a I-busy period lasts for exactly n tasks and ends no later than x.

The probability that the I-busy period lasts for at most n tasks and
n
- ends no later than x 1is given by z Rv(l,O; 0,x) and its transform is
v=1

simply Qn(o,s). Repeating verbatim the argument given in [3], we prove the

following theorem.
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Theorem 2

For s > 0, the functional iterates ¢h(o,s) are monotone increasing in
n for every s and converge to Bl(s). Their analytie continuetions in
Re 8 > 0 converge to Ql(s) for all Re 8 20 .

An analogous result holds for vn(o,s) and 92(8).

Theorem 3
If the server starts in unit I (or in unit II) and if the initial queue-

lengths are i, and i,, with i, 21, 1,20 (or i, >0, i,>1), then

1 1 2 1
the duration of the initial busy period has a probability distribution with

11,0 .t
L.S. transform Gl (s) 62 (s) .
Proof':

The probebility, that the initial busy peried consists of at mest N tasks

and has a length at most x, is given by:

N

2 Rv(il:i2§0:x) ’
v=1

which, upon transformation yields:

N

i i
(25) ), Ty(igs1p30,8) = qt(0,8) ¥, (0,8)
v=1

i i
which tends to ell(s) 0,%(s) as N tends to infinity.

The mumber of tasks during a busy period.

Formula (25) gives the transform of the joint probability distribution of
the duration of the (initial) busy period and the number of tasks in it, If

we denote the number of tasks during a I-busy period, respectively a II-busy
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period, by B> respectively B,, then:

(26) Pa, <0} = (0,0 ,

P{B, < n}

q{n(0,0) ) n _>_ 1 s

yielding proper distributions if and only 1f A oz + hza'z 1. When
hlal + 7&2012 , we can find an easy upper bound for the probaib'ilities (26).
To this effect, we note, as was done in [3], that ¢ (z,0) and ¥,(z,0) are

strictly increasing, strictly convex functions in [0,1] for n > 1. Since

their graphs lie entirely above their tangents at 2z = i, we obte,i’n":

. / A Q’
(27) P (050) < 1 = ) (22
n+l ?~10!2 : »

q’2n+l(°’°) <1 Q 1-X Q 1-7(2012) ?
‘!'2n(°’°) <1 - 1k, oz) (1-X s

Ao n+l Ao n

12 21 :
Yopep(0:0) <1 = 1-A2a2> ( 1-Xlal) >

by straightforward differentiation in (22) after setting s = O,
The distributions in (26) were studied by random walk methods by M. Yadin

[lO], in the case where the service times are negative ekponential.
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IV. The Virtuel Waitingtime Process

In contrast with the MlGIl queue, three different concepts of virtual

waitingtime can be given here,

a. Suppose & (virtual) customer arrives at time ¢, If he arrives in
unit I, his waitingtime in the system will be @encted by T]l(t) and
if he arrives in unit II, by T]2(t). For fixed t, T]l(t) and ﬂe(t)
will, in general , be dependent random variables. We will study their
joint distribution below.

b. If we fail to Adistinguish between the units in which the customer
arrives, we may define the virtual waitingtime Tl(t) as:

N NOERW N

' (28) () = T .

It is easy to obtain the distributica of T(t) frem the joint distribution of
'ﬂl(t) and Tla(t) , but it is difficult to obtain the distribution of T(t)
directly
c. Suppose that, at time +t, both Poisson arrival processes are interrupted,
then we denote by 'ﬁ(t) the additional time required to serve all the
customers of either type present at time t. fThe distribution of ?I'(t)
may be obtained easily along with the joint distribution of the queue~
lengths in both units at time t. We will posipone its discussioh to
a later section.

We assume that t = O is the beginning of a I-task and that i. > 1,

1

i2 > 0 customers are then present,

1. The Probability that the server is idle at time t.

Clearly the events {ﬂl(t) = 0}, {'ﬂz(t) = 0}, and {ﬁ(t) = 0} are

equivalent.
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The endpoints of busy periods, regardless of their types form a renewal

process, with renewal function M(t) given by:

o0

(29) n(g) = | & amp) =

(o]
il i2 =1 -]l
= 0, 3(£)8,2(8) {1-(g4h 4hy) N0, (D)0, ()11

for Re E>0 .

By an elementary renewal argument, we get:

(30) Bl (t) = ofiy,i} = B{M,(¢) = oli 1,

jt ~(A;+h, ) (t=u)

Péﬁ(t) = Olil,iz} = a M(u) ,

so that:

) [ % B{T(t) = o}at = (€ + A A m(g) =

o

n

1,4 ot -1
0,7(5) 8,2(D)E + A= A0 (8) + Apm A8,(817 .
Using the Key renewal theorem and (31), we obtain as t = =,

(32) e p{N(t) =0} = 1-Rra -0, ,

when del + lzag < 1 and zero if and only if the reverse inequality holds.
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2. The joint distribution of 'ﬂl(t) and “2(’°) .

We will calculate the transform:

= -5 M, (t) - 8,0, (t)
(33) Q(g,sl,sa) = j e5% Efe "1 l( °2 2( } at
)

® o ® «Ef-s X-5,¥
=Jq j I e e at a PN, (t) < x, My(e) <y} .
0O o ©O

Remark: All the probability distributions and expectation, which we consider
here, are conditional upon the given initial conditions. For simplicity of
notation, we do not write them every time,

We first "remove" the mass at (0,0) in the joint distribution by writing:

c0

(34)  Q(E,sy,s,) - I e B{n (t) = My(t) = 0} at =
o)

@ o® o2 -§t-slx-52y
I J J € at @ plo <M (t) <x, 0<T(t) <y} .
o O O

The term, subtracted on the left is given in (31). In the term on the right, we
need consider only those pathfunctions of the process for which t belongs to
a busy period.

We proceed by giving a careful decomposition of the event
(35) B(X,y,t) = {O < ﬂl(t) E x, 0< nz(t) f_ y}

into mutually disjoint simpler events.
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Step 1: Iet L, and L& denote the epochs at which the v-th busy

period begins and ends. Let I, be the type (1L or 2) of the v-th busy

period, then:

2 ©
(36) B(x,y,t) = U U fo< 'ﬂl(t) <x, 0< TlZ(t) f_ ¥y o
k=1 v=1
L, <t<Ll, I, =k .
For v =1, we have:
(37) L,=0, I, =1 a.S.

fo<m(t)<x, 0<M(E) <y, L} >¢, I, =2} =p,
because of the given initial conditions.

Step 2: Consider any of the events in (36) for v > 2. During the interval
[Lb’t) some tasks may have been completed. ILet LC be the epoch at which the
last task-completion before t occurs. If there is no task=-completion in
[Lb,t), set L =1L, . Let N, > O be the number of task completions in
[Lv,t). With this notation the timepoint t belongs to the (N, + l)st task
of the Q:th busy period. If Nv + 1 is odd, then this task has the type I,
whereas if N, + 1 is even, the task containing t has the type (1, + 1)

mod 2., We may write:
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(38) fo<m@t)<x, o<N(t)<y, L,St<L}, I,=Kk
= ple fo<M(t)<x 0<M(t) Sy, W<Et<L, L=k, N= 2p+1}
. uO fo< M) <x, 0<M(t) Sy, WS E<L, L=k, N= 20} .
P=

Step 3. We consider the pzth~function of the‘process between La and t .
Suppose that the task, containing t is of type I and that it began at time
LC =u<+t . BSuppose that at time wu, there were 0 > 1 customers of type I
in the system (and, of course, none of type II). Conditional upon all this
information, the task containing t may be considered as a busy period in an

MIG[l gueue with input rate A, and service time distribution Hl(-) and

1
with B customers initially. This "busy period" must go on for a length of
time, at least +t-u. The virtual waitingtime nl(t) is then equal to the time
required to serve all customers of type I, who are present at time +t. These
customers may either be leftovers from the first B or may be new arrivals
during the interval [u,t). The virtual waitingtime ﬂz(t) is more complicated.
The server must first complete the I-task begun at time u and must then serve
all II-customers, who have arrived in the interval [u,t), if any. The time
required to do all this is the virtual waitingtime ﬂz(t)s

Should the task, coantaining +t, be a ITI-task, then the preceding descrip-
tion applies, with the role of I and II-customers reversed.

In order to express the integral in (34) as simply as possible, we first

derive a number of auxiliary results, working our way backwards through the

verbal description given above,
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(A). Auxiliary problem 1.

Suppose we have an M]Gll queue with f customers at t = 0, one of
vhich is beginning service. (8 > 1). The input rate is Al and the service
time distribution is H1(°) . There is also an independent secondary Poisson
arrival process with rate Kz of customers of type II. These have a service

_time distribution Ha(-) and may be served only after the busy period of
.ordinary (type I) customers has ended. We counsider this queue at time t and
ask for the probability that:

(i) At time t, the server is still serving customers of type I.

(ii). The total service time ﬂ*(t) of all I-customers present at time
t dis less than or equal to x .
(iii) The last customer of type II to arrive before time t leaves the
system not later than + + y . Denote this probability by xés)(x,y). It
is clearly zero for x>y .

Now, let ?ée)(x,v) be the probability that, at time t, the initial
busy period in the MIGIl queue has not yet ended, that ﬂ*(t) does not
exceed x and that the initial busy period ends before f + v . This prob-

ability was calculated by Neuts [6] . We obtain

(39) x,ﬁﬁ’) X,¥) = S‘ J JJ —)\t()\;) & 18 (yr-v) dev o ¥ (B)(x',v),

whence:
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(o) J e” dtjj ST nyép)(x,w =

o

B -Et =A t (A t)6 =8,% -85¥
A CY j f o, 1Py
§=0

i Jw e-[§+h2-h h2(s2)]t e I J ~8,X =8, .

‘o

EICSON

B)(X

but this is just the transform of wt ,¥) which was obtained in Neuts [6],

formula (16), evaluated at § + Kz- kahe(sz). Substituting we obtain:
-(s X+8 y) (8)
RN N ey Xy (559) =
0 >
{sl+ Sp= § = Ayt Ahy(s,) + AhyDs o+ spt A= lyl(se)]-- hlyl(sz)}'l
[vﬁ[g + Aym hzhg(se)] - hB[s + Syt A= A Yl(sz)]} .

(B) Auxiliary problem 2.

Considering the queue with alternating priorities, let there be 1l >1

I~customers and i2 > 0 II-customers at t = O, which is the beginning of a
I-task,
What is the probability that at time +:

(i) the server has never been idle in [0,t) .

(i1) the virtual waitingtimes nl(t) and ﬂ2(t) satisfy:

(42) o<M(t)<x, 0<TW(t)Sy .
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Denote this probability by lAi 212 (x,y,t), then we have:
1
L (g,ip)
(43) W11, (x,75%) = 1%, (x,y) +
Lo [o<]
EZ Ei J‘ j J d Ry (11’12’B u) Ay V! 1Xég)( ‘
B=1 n=1

EE EL z[ J J d Ry, (3951558,0)d X1,y 2X§B&( Lyt

f=1 n=0

(ig5ip)

in vhich %, (x,y) is the same probability as in part A except that at
the beginning of time already i2 > 0 customers of type II are present. The
transform of this probability is easily expressible, analogous to (41). The
prefix 1 or 2 to the xX-probabilities in the formula (43) indicates whether
formula (41) should be applied with the parameters of unit I or II playing the
role of the principal queue in part A. | |

Upon taking transforms in (L43) and applying (b41) we obtain:
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0

© o ~(s,x+s,y)
~Et 12 =
(k) Io e dt JO Io e dx,y lAil,iE(:gy,t) =
-1
{sl+s2-§-h2+k2h2(s2) + Alhl[sl+s2+hl-hivl(s2)] - hlyl(sz)}

il il i2
{Yl [§+h2-k2h2(s2)] - by [sl+sz+hl-klyl(s2)]} h, (s2)

. -1
+ {sl+s2-§-h2+h2h2(s2) + llhl[sl+sz+hl—hivl(s2)} - klyl(sz)}

24 E: rgn(il,iz;ﬁ,g) {Y§[§+h2-h2h2(sa)] - hi[sl+sa+%l-kiyl(sz)]}
B=1 n=1

-1
+ {sl+s2-§-hl+hlhl(sl) + hehe[sl+sz+hz-h2Y2(sl)] - ngz(sl)}

Z z r2n+l(il,12;B,§){Yg[§+hl-hlhl(sl)] - hg[sl+se+h2-7\2Y2(sl)]} .
B=1 n=0

It il =0, i, > 1 and if at t = 0, the server starts off with a II-task,

then an anglogous argument leads to:
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oo ® © wg X=5.¥
(L5) _f 5t dtj J e T 2 d o oAy 4 (x,y,t) =
o o o ¥ 1°72

-1
{sl+s2-g-hl+hlhl(sl) + hehe[sl+s2+h2Y2(sl)] - have(sl)}

ip i =
{yz [E+A.=A_h (sl)] - h, [sl+52+h2-h2v2(sl)]}hl (52)

171

-1
+ {sl+s2-§-kl+llhl(sl) + h2h2[sl+s2+l2-KéY2(sl)] - 12Y2(s1)}

z z Tpy(3151538,8) (YRLEn, Ay (s)] - nl s +sy#hy-hgVo(sy )13
f=1 n=1

-1
+ {sl+sz-§-R2+K2h2(s2) + llhl[sl+sz+kl-lel(52)] - hlyl(sz)}

Z z Top (1151p38,8) {Ygtg”‘z”‘ehz(sz)] - hgtsfsz*"l‘)‘f’l(sz)n'
B=1 n=0

In terms of the above probabilities, the probability required in formula
(34) may be easily expressed. We relate the virtual waitingtimes at t to

the last beginning of a busy period before +t. We obtain:

(46) Plo<M(t)<x, 0<W(e)Syl= jA ; (6y,t) +
1’2

topu -(?»l+7t2)(u-v)
+ I IO e lAl’o(x,y,t-u) hl du d M(v)

t ou =M, ) (u-v)
* IO Jo € te er,l(X,y,t-u) }‘-2 du 4@ M(v) s
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whence:

®  -5,X-5,
(47) f uj p{0< T (8) < x, 0< y(t) < 3}

X,y

t -5 . X=S
i dt J I € d A, (X’y,t)
c Yo X,y 1 11,1

Am(E) @ o o -5 x5,y
~Et J‘ 177 2
+ m o at dx,y lAl,O(X,y,'b)
A m(E) -8 x..

il 1 12
= 8(sy,85) (¥ LB A N,(5,)] = by Ts+s,ihy gy (5501} 1,7(s,)

+ 8y (s1,%) L Z op(1153538,8) {Y§[§+h2-)\2h2(s2)]

B=1 n=1

- hB[s 18ty A Yo (55)1)

+ 85(s,,8,) Ea }2 rpoiq(iy5103858) {vg[§+xl_h by (s1)]
B=1 n=0

- hg[sl+s2+h2-xzya(sl)]}

191 (g) e (§)
¥ "’;?Y-h el(g)+7\2.x ,(5) {81 (s1585) LY LER,An,(s,)]

-h [S +52 l lYl(S )}}
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+8.(s,8) ) ) 1, (1,058,8) {¥2 [§M, A (s,)]
B=1 n=1

B
- hl£s1+se+hl lel(sa)]}

+ 8y(s958p) Z z r2n+l(1,o;6,§){vg[g+x ~A;h, (s1)]
B=1 n=0

-h [sl+s2+h2-h2Y2(sl)]}}

i iy
A,9.1(8) 0,7(8)
B K 8 (E) P, h,0,(8) {52(31’32){Y2[g*"l"‘lhl(sl)]

-h [s 1+Sothy h2y2(sl)]}

+ Sz(sl, 2) E; ES (05138 §){Y2[§+h -A.h l(sl)l
B=1 n=1

p
—h2[ Sl+32+)\2-7\2\'2 (Sl)] }

@ w

* Sl(sl, 2) z z r2n+l(o,l;B’§){Y§[ g+h2-)‘~2h2(82)]
8=1 n=
- hg [sl+s2+hl-hiyl(sz)]}} ,
where:
(48) sil(sl,sz) = sl+sz-€-h2+h2h2(sz) + A [s +8thy =h Yl(sz)] - lel(SQ) ,

and
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) = s +8,=§-A A h, (s )4Ah [sl+s +\ -szz(sl)] - A ¥o(s)) .

This formula may be somewhat simplified, using the following observations:

(49) E: z; r2n(il,12;B,§) {Y§[§+12 2(52)] - hl[s +s2+x Y Yl(se)]}
B=1 n=1

Similarly, we

E: {r2n i1’125”1[5*"2'}‘2*‘2(82)]’é]
n=1

- 2n[11’125h1[sl+52+h1'h1V1(82)]’g]}

L}

55 {ﬁén YL o-M b, (s5)], g] ¢2n 1[Y P ACWIE g]

n=1

qbl[hl[s +Sp+hy -\ Yl(s2)] §]¢2n l[hl[sl+s2+ll-k Yl(sz)] §]}

{ont oo e0,8] 1,2 [y ().
n=1

i
- wzi[hl[sl+32+hl-k Y1 (5201 g] *2n 1[h Csptspthy =AYy (sp)d, g]}

have:
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(50) L L Tagulipogss YIS Ay (e
p=l n=0

- hg[le’Sz*"e""zYa(sl)]} =

= z {°P;i+2[h1(sl)’§] “’;iﬂ[hl(sl)’g]

n=0
i i,
- cp'2n+1.[h2[sl"se”"l"‘l”z(sl)l’5] Yo h2[31+32+h1'11Y2(51)]’5]}
and
(51) EE E: 75, (0,138,8) {Yg[§+K1'“1h1(sl)]'hg[sl+se+hz‘h2Y2(sl)]}
B=1 n=1
= 2: {¢2n+1£h1(31)’§] = Von h2[51+52+h2‘*2Y2(31)]’51} -
n=1
and
(52) X Z ?2n+1(0’15‘3’g){Yi[g”‘e')‘zha(Sz)] - h§[51+52+}‘1‘)‘1”1(32)3}
f=1 n=0

=), '{¢2n+2[h2(sz)’§] - q’2n+1.[hl[“""Jf'sz“”‘:f"l\’l(Se)]’g:l} 3

n=0

by use of the formulae (22), (23) and (24). Formula (47) may now be rewritten

as follows:
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© O 0O - ( s :4.3”_-‘__,-) .
"'gt l <
(53) _fo "% at jo _jo e 4, BlO <M (8) < x, 0< T(t) < 3}

©

% i i2
= 8,(s1,8,) /, {¢én+1[h2(sz)’§] Vo he(sz)’§]

n=0

i i
1 2 ]
- q”2n,hl[Sf’s‘z‘”‘l’)‘l\’l(s‘a)]’E’] ¢2n—l[hl[Sl+52+hl—hiyl(s2)]’g }

* 8,(81,5,) §1{¢;i+e[h1(51>’€] tpZiﬂ[hl(sl)’g]
n=0

i

i
l = h)
= (foz'n_l_l[ﬂz[ sl+sz+)‘-2 ")L2Y2 (Sl )] s g] \L’Zn ﬂ2[ Sl+52+)\2-}L2Y2 ( Sl)] s g]}

il( ) 2 ) -

0, %(g) 0.%(g z

1 o

* g+xlnklel(g)+A24x292(E7{hlsl(sl’sz) ;éb {¢bn+1[h2(32)’§]

- 9, hl[sl+sz+hl-hiyl(s2)],E]}

+ A85(8585) EZ '{¢2n+2[h1(31)’§] - ¢2n+l[h2[Sl+82+x2'l2y2(sl)1’gj}
n=0

¥ Ap8,(8585) §: {¢2n+1[h1(sl>’§] - 1"en[hzt‘"’1’“°‘2+7‘2"‘2”2(81)3’ﬂ}
n=0

©

* A58 (sy58,) E: {$2n+2[h2(82)’§] = Vonea h1[51+52+h1‘k1Y2(51)]’g]} } .
n=0

Finally, using formulase (33), (34) and (53) we obtain the following theorem.
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Theorem k4
The transform Q(E,sl,sz) of the joint probability distribution of ﬂl(t)

and ﬂz(t) is given by:
: i i
(54)  Q(g,s5,5,) = ©%(E) eza(g)[g+xl-hlel(§) + lg-xaea(g)]'l {1 +

A18(s9585) Z {‘P2n+1[h2(52)’§] = %o h1[51+82+7‘1"‘1\’1(52)]’g]}
n=0

<]

*+ Ay85(5y58;) Z {‘P2n+2[h1(sl)’§] - (P2n+l[h2[ sfsz*"z"‘ayz(sl)’g]}
n=0

*+ Ay8,5(s958,) Z {Wznﬂ[hl(sl)’g] - o Bl S:L*Se*"z"‘eyz(sl)]’g]}
n=0

* A8, (s1,85) Z {¢2n+2[h2(52)’§] - q‘2n+1[hl[sl”sa")‘l‘)‘l\'l(se)]”5']} }

n=0

* 8(sy55,) ). {‘P:iu[ha(sa)’g] *Zi[h:e(sz)»ﬁ]

n=0

i ' i
- ‘Parlx[hl[ s #8pHh AV, (s,)], g] ‘Vzi-l[hlc S +Spthy =AYy (s5) ’§]}

* 8(8955,) Z {‘P;;zz[hl(sl_) ’g:]*’ziiu[hl(sl)’g]
n=0

i i
1 2 |
= Popedl hz[sl”sz*"z"‘zyz(sl)]’g:l‘l'zn hz[sl‘*sz*)‘z‘-'}‘zYa(sl)]"5]}'
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Corollary 1.

By setting 8y = 0O or S, = 0, we obtain the marginal distributions of

ﬂl(t) and T,(t). Provided Y ot) = Y2(0+) = 1, a condition which is always

1

satisfied in the equilibrium queue, the formula (54) then simplifies somewhat

since:

(55) Sil(sl’°) sH(sy,0) = 8 #Ah(s)) = - B,

il
i

-1 -1
S, (0,8,) = 8,7 (0,8,) =5, + Ahy(s,) -2, =€

hl[sa + )\l - )\]_Yl(sa)] = Yl(SZ) s

holsy + Ay = A¥o(sy)] = ¥p(sy)

Corollary 2.

The distribution of TM(t), the virtual waitingtime of an arbitrary customer

A
s R . . - . . 1
arriving at time t, as defined in (23) is found by setting s, = xz—;—x; s

A
2 . .
and s, = XET?TX; s in formula (54). Unfortunately the resulting formula

does not simplify.

Coroliary ;.
The limiting joint distribution of ﬂl(t) and ﬂz(t), if it exists, is
found by taking the limit lim § Q(g,sl,sz) in (54). It is easy to see that
E~ ot
o msote < > .
this limit is zero, when 1< Aiyl + 1202 . If 1 hlal + kzdz , We obtain

the limiting joint distribution, which is then a proper distribution.
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* *
The transforms Ql(sl) and Qz(sa) are given by:

S

' 1
56) Q*(s ) = lim  § Q(E,s,,0) = (Ll-Aja -2 0,)
( 1\l £+ o+ 1 1’1272 {sl+Xihl(sl)-Xl
A ° _
* sk by (s])-A] E: [1-¢2n+l[y2(sl)’°]]
_ n=0

}\. o]
2
+ l"q’ [Y s )3] H
s+ h (s)-4 ngo[ onl Y2 (51 °]}

and
S
(57) B(s,) = lim € Q(5,0,8,) = (1,0 ) {emgse -
8= o+ sp*hohs (85)-A,
Ay ;
¥ Sg”‘ghg(sa)')\a L I:l-(PQn[Yl(SZ)’OJ]
n=0
My ®
* 5, A by (8,) K, 2 [l’w2n+1[Yl(82),0]]} .
n=0

These formulae are obtained from (54) by passage to the limit and cancelling
out the common terms., It is not possible in general to find closed form expres=-
sions for the sums appearing on the right. ¢
* *
As a check on our calculations, we may verify that Ql(o+) = Q2(0+) =1,
However, this requires de 1! ngital’s rule and the following formulae, which

are also needed in the calculation of the moments.
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H

(58)  vi(or) = ~(ahe)™

-1
Yé(0+) = "CI2(1"7\'20!2) P
. 3 w 2
1" - nee - "o __
Yl(0+) - l"‘l(l )\la,l) b p"l - Io X d Hl(x) b
3 2
vion) = ), wy = [ fam

and differentiating with respect to 2z, with the second variable equal to zero:

n+l
(PQn+l(:L 0) = (1)2\l> <1-A a)
(Pén(l’o) = *én(l’o) = l -A cv) ( -h 2% 2

1
¢én+1(l’o) = Q -\ o{> ( -}\ 2% " >

2n }\lota 2n
Py (1,0) = Q_ sy
(M e
Ao 2
271
+( (1,0) , =n>0
1-7\lczl -
2
Aot A 2n=-2 Ao 2n
(Pgn(l’o) = 21 3 <l~f ;-A} <l-i- 2 ¢>
(1-r,2) 171 272

[=]
iV
=

(1 -\ cv Vé’n-l(l’o)’

and analogous formulae for t,lr'2'n(l,0) and ¢'2'n+l(1,0). If we define:
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A= ) @i (10) By = 2 ¥2na (1,00 s
=0 n=0
@0
Aa = z CPEn(:L:O) B2 = z ‘V (1,0) s
n=0 n=0
then
2
A A
Ay =2 (o) [1- gl 2] + A2vP0) 8, ,
(l-h ) (1-k o,
2 . 2 2.2 2 2 2 2
s [1 M Ao % ]'l hoy 5
o (l-l o )3 (l-k @, ) (1-r @ )2 (1-r2, 2 (1-A o )2 L
11 11
and two analogous equations, with A,B and 1,2 interchanged. Solving for
Al’Bl’A and BE’ we obtain:
2.2 2 2 3 "
- N -1 (1M a2) A2 ) A }\2 %o
(59) Ay =1|1- 5 5 L
(1-rj20)" (1-h2,) (1-r @ ) (1-klal-h2a2) (1-h 2,)”
2,2 2 2 2 '
5 - [1 Xl l2 ¥y Oy ]-l X h a, ui
2 - - 2 2- (1-A & -X’a )(1-A ) L1-A_ &
(1-hlal) (1-A2aé) 22 11
A, a. Wl
+ 171 2 }
(l"k 2)

and corresponding expressions for A2 and B

1
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These expressions are obtained by differentiating once or twice in the
functional equations (1) and (21). We assume throughout that the service time
distributions have finite second moments.

Taking the limits as s, @ o+ and s, = o+ in (56) and (57), we find

that Qi(o+) = Oy(o+) = 1, showing that the limiting distributions are
proper for a stable queue. 1In order to find the limiting expected waitingtime,

we first differentiate with respect to s; or s, in (56) or (57) and take

the limits as s, ® o or s2 - 0.,

1
Denoting these expectations by EWl and sz respectively, we find

after repeated applications of de 1l'Hopital's rule that:

1 " 2
(60)  E(Wy) = 3 %20120,21{%“1 (12 )2 (102,
127172

2
(1hgry (3 ) (1A 2,) )

2 2 | 22 ]
+ k2a2(1+h2a2)-hlqlh2a2(1+kla1)

2 2 2222 }
1
+ A [(1'}‘1"’1) (1-h2y)" + "17‘2"‘1"2] >

and an analogous expression, with the indices 1 and 2 interchanged for E(W2).

V. The Queuelength Process.

We denote by §l(t) and §2(t) the numbers of customers in units I and
IT at time t+. In this section we will study the joint distribution of §l(t)’

and E,(t). Clearly E.(t) = E,(t) = 0, if and only if the server is idle, so,
2 1 2

(61) P{E, (t)

g,(t) = 0| §(0) =iy, §,(0) = i,}

1!

{1y (t) = Tp(t) = 0 | §(0) = 1), &,(0) = ip)

and its transform is given by formula (31).
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Next, we define:

(62) M (3153p58) = PrLE (8) = 315 §p(8) = 3, | §,(0) = 37, 8,(0) = 1,)
and
(63) (3, 53ps%) = Bpl8 (8) = 3y, () = 35 | §(0) = 1y, §,(0) = i,} ,

where the subscript 1 or 2 denotes, that at time t, the server is in unit I,
respectively ITI. We recall, that in our choice of initial conditions, the
server starts a service in unit I at time t = O.

As in the case of the virtual waitingtime process, we need to perform a

few auxiliary calculations, which relate to the MlGll queue.

(A) Auxiliary problem 1.

Consider an MIGIl gqueueing process with input rate hl and service time
distribution Hl(-) and B > 1 customers at t = O. Further there is a sec~

ondary, independent Poisson arrival process of rate A We wish to calculate

2.
the probability that:

1) The queue is never empty in [o,t)

2) At time t, there are customers of type I, jl > 1

91
3) At time t, there are 32 customers of type 1T present, given that

Y - - >
there were i, at t=0. j,21,20 .

We denote this probability by , = (jl’je’t)' We have:
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(i,,1,)
(6)"“) 1 B 1z (jl,jzat) =
Jo~1p oL T
e-hzt (At) }2 }; J‘ “A, (t=u) A (t-u)]
T )

n=0 v=1

[1- B (t-u)] a G(n) ()

where the probability mass-functions G(n)(u) are defined as follows,

Bv
Géo)(u) y U(w), where U(*) is the distribution degenerate at zero, and
for n> 1, Gés)(u) is the probability that, in an M|G|1 queue of input rate
}“l and service time distribution Hl(‘), with [ customers initially, the
initial busy period involves at least n services, that the n-th service is
completed before time wu and that at the end of the n-th service, there are v
customers waiting. The quantities Gég)(u) were studied first by Takacs [7].

We recall here, that if gég)(g) is the Iaplace-Stieltjes transform of
(n)(u), then:

z[zB - v2()]
(65) Z Z g2 ) 2’ = L .

Z (g+)\ )
n=0 v=1 l

See also Neuts [6], formula (6).

Using formulae (64) and (65), we find easily:

: . 3 J (1 »i,)
1 92 i)
(66) Z Z f (3153,8) at
—l ,32—0
_ 1y (G Az #hahoz)) 23 zietzB-vB(g+k Az )]
g+)\l-7&lzl-7-?\2 -\ p2Z o zl-hl(g#\ ‘Alzl+)\2-h2 2) 2 1 2 272
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(B) Auxiliary problem 2.

Consider an M|G|l gueveing process with input rate hl, servicetime
distribution Hl(-) and B customers initially. Further, there is a secon-
dary, independent Poisson process of rate hz, which is the arrival process
for customers of type II, with servicetime distribution Hz(-). There are i,
customers of type II initially. We are interested in the probability of an
event, which is the intersecticn of the following two. Firstly, we require
that in [o,t), the M|G|l queue of customers of type I is never idle. Secondly,
we suppose that ot time t, both arrival processes are interrupted. The server
must first attend to all customers of type I then present and when their service
is completed, all those of type II, present at t, must be served. We denote
the time required until there are no more I-customers by wl(t) and the addi-
tional time until there are no more II-customers by wz(t). We ask, in addi-
tion to the above, that wl(t) < x, we(t) <. .

We denote the required probability by lQ(ﬁ,la)(x,y,t). It must satisfy
the relation:

(8,1,)
(67) lQ (X:Y>t) =

) © jl - 32—12
X y t sS4, =A,t (ALt)

Z . z Z z jo Jo J.o Jt ' ) : E§2-12]:

O3y V=L 3t (x) (vp) () ()

dq=v
-y (5-u) (2 (t-u)]

(Jl"‘\)):

(3;-1)
1

(35)
d H2 2 (yl) s

e

d Géﬁ)(u) a Hy(v-u) 4 H (t+x,~v)
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for all x> 0, y > O. The probabilistic argument yielding (65) is fairly
easy. We denote by u the time of the last service completion (of type I)
before t, by v the time of the first service completion after t and we
denote the numbers of customers at time t by J; and j,. Formula (67) is
then obtained by suming over all allowable values of wu, v, jl and 32.

Upon taking transforms, we find:

@y © @ =(s.x+s,y) (8,i,)
€8) [ eSa[ [ e T g ;19 2% (%,y,t) =
o) o o 4
i2 hg(sl) - Y§[§+k2-kgh2(se)]
h2 (82) .

sl—gnkl+hlhl(sl)-h2+h2h2(32)

The calculations leading from (67) to (68) are rather lengthy and involve

formula (65) crucially.

C. Auxiliary problem 3.

Consider the queue with alternating priorities, which starts in unit I

(11,1,)
1’72
X it S LS s s

with initial queuelengths i, 2 1 and i, 2 0. By ell (Jl’JZ?t) we
denote the probability that at time +t:

1. The server has never been idle.

2. He is serving in unit I.

3. gl(t) = jl ?.. 1, €2<t) = 32 i 0.

. (1:1p) . . (1,15)
We also define 912 (Jl,Jz,t) and for i, >0, i, 21, 921 (Jl,Jz,t)
(iy51p)

and 622 (jl,jz,t). The definitions are completely analogous, except for

the initial unit served and the unit being served at time +t. These are indi-

cated in an obvious way by the modified indices. We will give details of the
(i1515)
1’72

calculations only for the probabilities ell (jl,jz,t) and state the
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results for the others. The proofs are completely analogous. We have:

(i »1 ) (1 i)
(69) 8yt Z (3padget) = gE T C (3psdpet) +
o] w .b
+z z j ]_E('B,O)(jl’jgat'u) d Rgn(ilaj?;Bsu) ’
n=1 p=1 °

by consideration of all possible switches of unit, which may occur in [o,t).

From formulae (22), (23), (64) and (66) we obtain:

[e¢]
ot (11,12) o Jq 32
(70) EZ Y’ I e (31’32’t) at Z Zs =
171 350

1-hl(g+h -A 12 1HAo=h 22) : zy

g+hl-klzl+A2-h2z2 l-hl(g+hl-k Z,+hy=AsZ5)
- . . » © 03
i, i i, i - -
1% 2 M1 T .

Zl Z2 - 22 Yl (C+)\ -A Z2) + L: L: r2n(ll’l2’6’g) )

B=1 n=1

[zg - Y§(§+A »Y 22)]}

l-hl(§+hl-klzl+\2-A2 2) . ' 2y .
§+hl-llzl¥Xé hzza zy- l(g#Xl-hlzl+h2-A2 2)

1—1
Lw2n<zl,g>w2n (00t s 20 ]}

H
N
ﬁrﬂs
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Likewise:
® [+-] (. . )
T v j‘“’ g \ots)
(71) Lo Lo e 6.5 (31535,8) at =
=1 370
l-h2 (€+7\l-7klzl+}\2-7\222 ) ] Z2 ]
Q+ll-hlzl+l2-azzz z2-h2(g+h1-hlzl+X2-X2zé7
w - -
i i i i
1 . 2 1 2
E[‘Pzn+1(22’9)"’2n(22’§)"92n+2(Z1";)‘l'zn+1(zl";).-.‘i )
n=0
<Lt 1272¢,, .
(72) Z Z fo € ¢ 921 (Jlaazat) dt =
J-=0 Jj,=1
1 2
1-hl(§+hl-hlzl+h2-h2z2) Zq
§+Xl-hlzl+12-A2z2 zl-hl(g+hl—klzl+X2-X2z2)
m 13 * 03 3
T orote 11 2 1
L L9020y, )b (2558 Womsn (72:6)]
n=0
and:
[ea] € (. )
- — o . i ,i
\ Lt 1>z, . n
(73) z_, i, jo eQ 922 (Jl,Jzat) at =
3j-=0 Jj,=1
1 2
l-h2(§+hl-hlzl+h2-h2z2) . z, .
g+hl-hlzl+kéikez2 z2-h2(g+Kl-Xlzl+h2412zé7
24}
f il 12 T [!i2 il i2 ) il -
B1 % * L l"2:1(22’(')“’2n-1(22"3)“92:1+1(”"1"°)‘Pzn(zl"g)J} .

n=0
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Formulae (70)- (73) lead to transforms for the Hl(jl,jz,t) and Hz(jl,jz,t),

defined in (62) and (63). We summarize these results in the following theorem.

Theorem 5
The joint distribution of the queuelengths gl(t) and €2(t) and the type

of the unit served at time t is given by the transforms:

o 1 f o
(7)'5') L L Zl Z2 o € ¢ Hl(Jl:Jgpt) at =
jl=l jo=0

l-hl(€+kl"klzl+h2'h222). . | zy
Q+hl-hlzl+k2;K2z2 zl-hl(g+hl-klzl+A2;Xéz2)
i 4 o i i 1 i
1t 1 = 1 2 A\
2y %y * 25 [@2n(zl’g)¢2n-1(21’§)"¢2n+1(22’5)Wzn(ze’g)J
n=0
i i '
1,.\ 12 ®
68.7(¢) 8,7(¢) o
* T ;% ) (C)ix T L {*1[@2n(21’€)'¢én+1(22’5)]
17%1%1 2™ o

r ey L
+ A L¢2n+1(zl’g)‘¢2n+2(22’§)]J } >

and
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«© [~}
o Jy do @ -
\ 12 -Lt . .
(75) [_‘ L Zl Z2 ,Jlo € b n2<31:329t) dtc =
Jl-.-.O 32=1
1- 2(g+hl-ulzl+k2-h222) . z, i
g+hl-llzl+h2-k222 za-he(g+Xl-hlzl¥Xé-n2227

o e i i i i
{ z [(?gi_i_l(zeag )‘bgi(zzng )-@2i+2(zl,§ )¢2r21+l(zl’ L )]

n=0
i i .
ell(C) Gez(g) (k T ‘- (2..0) ( g)]
+ D : > Z,,0)~ Z.,
SN (E e N (o B = LPon+1\P20% /" Popi0l%)
vor ST
Ay L szn(zz’g)“¢2n+1(zl’9)]J Joe
n=0

for Re { > O, !zl] <1, §z2§ <1 .

Proof:

The usual argument yields the results immediately. Either the server has
never been idle by time t or he has. The second term, relates the queuelength
at time t to the time of the beginning of the busy period to which time t

belongs.

Corollary 1

< - - 1_ - - = . -
It klal+h2a2 1, +then t%f%n Il(Jl,Jz,t) ﬂl(Jl,Jg) and

tli?n H2(Jl’32’t) = He(jl’j2) exist and are positive. If hlml+h2a2'z 1,

these limits are zero,
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Proof:

The existence of the limits follows from the key renewal theorem for semi-
Markov processes., This is immediate from the time-domain versions of the
equations (74) and (75). We do not give the details here, but refer to Neuts

(L4} for a detailed discussion of a simpler case.

Corollary 2.

o < 3 .
If Alrl+ﬂ2d2 1, then :

o) [+e]
- - 3 1-~h (?\ - 12 +/\ -A Z,)
(76) DD O i St S S e Al 272 |
l 11 2 2 2

3=l =0
o]
2y \
N GO NS (1-hyy-Agp) L?‘ [‘Pen(zllo)
s A | 2%
n=0
] l ll—) ’ ]}
D1 (2250) | + Mg Vo g (21,0045, 5(5,,0)
® ® A
(77) VooV g o (3 )le Jp _ IBp(hy =gy Hhy-hoty)
L Ls 9299021 % = '1'*x e
j.=0 j.=1 171 272
J3 1
2o ;i (T
(L-hjo =M o) ) Al (z,,0)
ze-ha(Xl;\lzl+u2-n2z27 1’1 22 Atb (*1l¥en+1'\ %2
0] Ml
-(P2n+2(zl’ )_J + 2 wen(zeao)'\’2n+l(zlyo)
Proof':

Since the limits exist, their generating functions are given by multiplying

by £ in (74) and (75) and taking the limit as ( = o+
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Corollary 3
Upon setting z, = 25 = 1 in (76) and (77), we obtain the limiting prob-
ability that the server is in unit I, respectively unit II. Denoting these

34
l

probabilities by H; and Hé, we obtain:

(78) M= Aoy, = Ao,

by using formulae (58) .

Remark: From (76) and (77), one may obtain several other interesting results
in a routine fashion. Asymptotic moments of the queuelengths follow by straight-
forward differentiation and by using formulae (58) to obtain the limiting values

as o, Z 1, Zo Z 1 .

VI. The Waltingtime N(t).

If at time +, both arrival processes are interrupted, 'ﬁ(t) denetes the
additional time until the queue becomes empty. By Qll(x,t) we denote the
probability that at t, wunit I is being served and ﬁkt) < x. Likewise,
le(x,t) denotes the probability that at +t, unit II is being served and
'ﬁ(t)_g x, conditional upon the usual initial conditions.

The Laplace-Stieltjes transforms:

~ . rm ‘_gt > -
(79) Qe0) =) e as jo T e a(xt)
ang

S , J’m -Lt Fw -sx Q

o(6,6) = | emhdt et a OQu(xt)
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are found by exactly the same argument as that leading up to (7h4) and (75),
except that the result of the auxiliary problem 2 instead of auxiliary problem
1 intervenes.

We list only the major steps and the final results.

~

(80) Qll(syg) =

E A " 2 -l
{Q_S+A1-Alhl(s)+h2-h2h2(s)}

i i i i
{02 (a0 L (8) 1,2 (s)y MTEwhyohgy(s)]
) frp lig,aphy (8),80mp T4y, 15, (G¥hg=hohy(s)),C1)
n=1
. | o1 ot G2
+ [g+Al_Alel(g)+h2-A292(g)J o, (C) e, (¢)
{A V' {r, [1,03n, (8).C0-r, [1,05Y. (CHh,-Ah, (2)) C’}
1 L ttantTr TNt en~"27271 277272 v

T . T . Al - 11 }
ernn_o,l,h2(s).)g_, r2n+l[0’l’v2(€+Al }Llhl(s))ig_!}) .

Upon simplification, using (22) - (2L), we obtain:
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(81)  [g-s#h -Ahy (8)+h = h,(s)] N;l( ,0) =

i i i
by 1(s) 1,2(s) = v, Heah, A ()] na2(s)

v T [oskin (), C10,2_ 00 (5),01- cpgn,,l[ha(s) C0.20n(0),01]
n=1

+ TG A8, (§)Hhy-hn8,(0)] 7 eil<g> eiz<c)
- 1 171 272 1 2 ’

[02a2,(6).61 - wppqTiy(e). 3]+

n=0

=

* Ay [V2n+1 by (2),€] - bppalip(e).C1]}

n=O

and an analogous expression for le(s,g). When )l 1+k2d2 < 1, the probab-
ilities Qll(x,t) and le(x,t) have non-trivial limits as t = © , In the

classical way we obtain the transforms of these limits:
~ . o~ l
(82) Ql(s) = g;imb g C&l(s>G) = (l-hl’l-h2C2)[S—K +A hl(S)-l +A hz(s)]
¢ 9
s [‘Panﬂ[hz(s)’OJ - ‘Pzn[hl(s)°°3]

r

A Uansal(8),00 = iy (0),03 ]}

W

ja]
il
O

and:
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(83) t;);é(s) = limo g 512(S’€) (l-)\‘ o =A "’2)[S—\l+}\lhl(5)"}\2+)\2h2(s)}-l

. i1 e
S
[o=]
O N [ [h. (s),0] - [h,(s) o‘]
M1 WPonspt VB0 T Bop g LSS )P
n=0

v’ T
* )\2 Z_, [‘t,2n+l[hl(s ) 50} - ¢2n[h2(s ) /O} J} .
Nn=

Letting s tend to zero, a single application of de l'HGPital’s rule yields

that:

~ ~

(8l) Ql(o) = klal , Qz(o) = A,

which are the limits as t +tends to infinity of the probabilities, that the
server is, at time t, in unit I, respectively wmit II.
We immediately obtain the limiting distribution of 1(t). Its Laplace-

Stieltjes transform '5(5) is given by:
(85) Qs) = Lehjoy =hooly + Q) (s) + Qy(s) = (1-A o =A )

{lf[s-kl+hihl(s)-h2+kzh2(s)]'1[11 n}img ¢én[hl(s),ol-hlhl(s)

b
+ A, lim ¢2n[h2(s),0] - A2h2(s)} S

n—»oo

but it is easy to show that in a stable queue, both limits appearing in (85)

are equal to one.
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Simplifying, we obtain:

(1-\ - A a2)s
(86) a(s) = RN l(s)-7\2+7\ RO .

This is a remarkable result, since f€s) is also the transform of the limiting
distribution for the virtual waitingtime in an M G!1 queue with input rate

Rl + AZI and service time distribution

AH () + A, ()
hl + 12

. < r
for which Alal + lzaa 1.[8].

Concluding remarks.

It is not surprising, in view of the complex nature of the gqueueing
process studied here, that few simple results are obtained. This paper again
shows the power of the imbedded semi-Markov process in the study of queues with
Poisson input. The inequalities (27) show that for very stable queues, i.e.
Alai + hzaa not close to one, the infinite series of transforms actually
converge rapidly, so that the first few terms will approximate the distributions
accuratély. The computation of higher moments of the limiting distributions is
also routine, but tedious.

We further remark that exactly the same method will yield corresponding
results for the case in which the server must switch from one unit to another
according to an irreducible finite state Markov chain, when there are two or

more units. We have limited our discussion to two units, mainly because of

the profuse notation already required there.
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