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§1. Introduction

A function ¢(t) defined on (0,») which satisfies (-1)" @(n)(t) >0
for all t >0 and n=0,1,... is called completely monotonic on (0,»). The
classical theorem of Bernstein states that ¢(t) is completely monotonic on

0,©) if and only if (t) has a representation of the form
2 !

(s}
(1.1) @(t)=j e Xt du(x) t >0

0

where u(x) a Borel measure on [0,»). (See e.g. Widder (1946)).

A considerable number of extensions and generalizations of the above re-
sult have been given. After a suitable change of variable the integral trans-
form (1.1) can be written as a convolution on (-»,®) and is a special case
of a large class of convolution transforms which can be inverted by means of
a sequence of differential operators. For the special case (1.1) this in-

version reduces to

(1.2) lim ﬁi%%i (&t @(n)(g) = £(t)
e

when du(x) = f(x)dx and mild conditions are imposed on f. The convolution

transforms are studied extensively in Hirschman and Widder (1955).
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Equation (1.1) is also a special case of representation theorems obtained
by Choquet (1955) (see also Phelps 1966 and references therein) for functions
which are alternéting of order «. For such classes of functions it is shown
that the external functions are those for which o(t+s) = o(t) o(s) and that
semi-group operations play an important role. If we consider the convex set
of completely monotonic functions on (0,») such that (0+) = 1 then the
extreme points of this set are the functions @x(t) =X for x > 0. Var-
ious other extensions and numerous applications are available in the literature.

The purpose of this paper is to consider a class of generalized completely
monotonic functions on (O,é), defined in terms of certain differential in-
equalities and to establish a representation theorem and an inversion formula
analogous to (1.1) and (1.2).

The basic definitions and the theorems are stated in section 2. Section 3
contains some preliminary lemmas which may be of independent interest while the
proofs of the main theorems are contained in section k4.

The author wishes to express his sincere thanks to Professor Samuel Karlin

for introducing him to the subject material of the paper. Thanks are also due

to Professor James W. Yackel for a number of helpful discussions and comments.



§2. Definitions and Statement of Theorems

Let {wi(t)}:_o be an infinite sequence of functions which are positive
on [0,»), each of class Cw[o,w), and define a sequence of differential opera-

tors

d £t .
(2.1) Dif(t) RO 0,1,25000
1

Definition 1. A function (t) defined on (0,») is called a ''generalized

completely monotonic'' function on (0,») (abbreviated GCM on (0,=)) with
© ‘ © ’

respect to {Wi(t)}i_o provided ¢(t) is of class C on (0,») and satis-

fies the inequalities

n+l D :

D 1+, olt) 20

(2.2) oft) 20 and (-1) n n-1

for all t ¢ (0,»), n=0,1,2,...

In a recent ﬁaper Karlin and Ziegler (1965) (see also Karlin and Studden
(1966)) consider the class of generalized absolutely monotonic functions (GAM)
on an interval (a,b) defined by requiring that

«o(t) >0 and DnDn_l...Dow(t) >0

for all t ¢ (a,b) and n=0,1,2,... . Introducing the special functions

Sn-1

t 51
w (6) = w (6) | w(e) [ wy(g)e-] W (g) ag...ag
. a a . a .
n=0,1,...,t € [a,b]

they show, under mild assumptions on the sequence {wi(t)}, that each GAM func-

tion ¢ on (a,b) has a representation



<o

(2.3) oft) = ) p(a¥) w ()  t e (aD)

n=0

where

D ..e.D (%)
- ) t _ . _ n"'l () _
po(t) = ﬁ » 0a(t) = py(ts0) = e, nel2,..

The function un(t) is the unique solution of the n+lst order differential

equation

DnDn"l coe DO u = O

subject to the boundary conditions u(l?(a) =0 1i=0,l,...,n-1 and

n
u(n)(a) = 1 wi(a). The representation (2.3) corresponds to an expansion of
1=0 .

of (t) about a finite point in terms of {uh} while the representation (1.1)
and the analog we shall obtain below in (2.9) correspond to expansions at .
It should be noted here and in the following that the classical situation cor-

responds to the special choice wi(t) =1, i=0,l,... . In this case

n
n t-a)
We shall have need of an alternate definition of the convex cone of GCM

functions which is expressed in terms of certain determinant inequalities.

Definition 2. A function ¢ defined on (0,») belongs to K(uo,ul,...,un)

and is called convex with respect to uo,ul,...,un if for every set of ni2

. n+2 ot
points {ti}i___l satisfying 0 <t; <t, <...<t

1 5 the determinant inequality

+2



uo(tl) ves uo(tn+2)

ul(tl) . ul(tn+2)

(2.4) (-1)™ : >0

uh(él? ces un(tn+2?

olty)  eer olt )

prevails.

Consider the intersection cone

[e=)
+
(2.5) c = K n[ n K(uo,too,un)]
. n=O .
where Kt denotes the cone of continuous non-negative functions on (0,=).
It is proved in Karlin and Studden (1966) (see also Karlin and Ziegler (1965))
that the convex cone C coincides with the class of GCM functions. Note that
when wi(t) =1 the cones k(1) and K(1,t) correspond to the nonincreasing
and convex functions respectively.
Throughout the entire paper we shall assume that the sequence {wi(t)}:=o
is such that there exists a function f(t) defined on [O,w) such that
L. 0<f(t) <1l 1t e [0,»)
2. 1-f(t) < wi(t) <1 +£(t) t e [0,2), i=1,2,...
3. lim f(t) =0
+~—x0 .
0
k., j £(t) dt < =,
[o) .
We assume further that wo(t) = 1 otherwise we would replace ¢ by @/Wo'

These assumptions state that the functions wi(t) are asymptotically one at

t = @» in a rather strong sense.



Let
Jx o 5
wn(gn)f wn_l(gn_l) ces J wl(gl)dgl...dgn 0 5 t <x
t g . t . , ,
(2.6) Yn(t;x) =
0 t >x
and Yo(t;X) =1 for t<x and O for t >x. The analog of e** for
the GCM functions is
(2.7) ¥(tsx) = X0 DX 0<t<e
- - ? 0<x <™
where
. @
v ~x(g-t
(2.8) P(t;x) = l+f e (5 ) zxk T (g) v } (t;€) ag
: : "t AR

k=1

and £ (g) = W (§) .":J.-: k=l’21'.f? '

Theorem 1. Under uhe assumgﬁlons lvh, L function w(t) definéd on (O,w) is

a8 _GCM function if and only if m(t) possesses a representation of the form

»»»» RARSE L

(2.9) - ddérﬂwﬂﬁ&f"teww)

o}

yhere Kk 1is a Borel measure on [0,).

We note that in the situation where wk(t) = 1+g(t) k = 1,2,... for some

fixzed function g the expression (2.7)reduces to

¥(t;x) = e-x(t+G(t??

t
vhere G(t) = J g(€) dg., The expression (2.9) in this case may be derived

directly from (1.1).



In order to state the analog of (1.2) we introduce the operators Ih de~

fined, at least on GCM functions, by

(2.10) (L) (8) = (-1 2(0,8) 5@ L oo..oed t>o.

Theorem 2. Suppose that for g given measure p on [0,») the integral

[so]

(2.12) e = [ ) ax)
o .

converges for all t > ag >0 and that a and b are continuity points of

p. Then under assumptions l-k4

b
(2.12) 1m [ (g e)(t)at = u{(a,b)}
. n—e g .

Theorem 2 immediately implies that the measure u corresponding to each
GCM function ®(t} is unique. We shall prove the representation in Theorem 1
first for the casé where ¢(O+) < o and then extend the result using Theorem 2.
The more precise analog to (1.2) is given below under conditions which are

clearly stronger than necessary.

Theorem 3. If

OO

(2.13) olt) = [ ¥(t5%) £(x) ax
(e}

where f(x) is bounded and continuous on [O,») then

lim L o(t) = £(t) t > 0.

I~



With the aid of Theorems 1 and 2 the following result is immediate.

Theorem 4. Let X denote the convex set of GCM functions for which @(0+) = 1.

Then the extreme points of K are the functions qk(t) = y(t;x), x > 0. (The

extremal rays of the cone of GCM functions are rays {x@x(t)lx >0}).

O
Note that the set K consists of those GCM functions for which I du = 1
o

and the representation (2.9) is an extreme point representation.



§3. Preliminary Lemmas

Iemma 1. Under assumptions 1-k

(3.1) (E-t-F(§%+F(t?) < v (t58) < gg-tfﬁéf)-p(t?)
and
(3-2) T < p(e ) < HFC)EEND,

Proof. The bounds in equation (3.1) follow from assumption 2. To verify

(3.2) we apply (3.1) to obtain

P('th) S 1 + JFD e-x(g-t? Xf(g) eX(§-t)+X[F(§)-F(t)]dg
. . £

o X[F(=)-F(t)]

The left side of (3.2) follows similarly.

Lemmg 2. Under assumptions 1l-4

Pn(t;x)

m t,xe[O,w?

n+l -xt

(3.3) D e+ D ¥(t;x) = (-x) wn+l(t)e

where the above derivatives are taken with respect to the t variable and

(3.4) P_(t5%) = L+ ft HEE) N ke (8 v (65Em) ag
k=1 |
an
£ S-1 52
(3-5) Yy (B385m) = ft Wn+k(§k-l)Jt wn+k—l(gk-2)"'jt nap(8) )38y 28
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Proof. Since the differentiation is on the t variable the factor P(0;x

plays no role. The validity of (3.3) is proven by induction.

assumed wo(t) =1

Since we have

D (e” P(t;x?? - é% [e™ 4 x f e_ngl(g)dgff e *8 E:xkfk(g)Yk_l(t;g)dgj

X . t kD

Note that dt k(t g

integral and sum are readlly Justified on the basis of Lemma l.

Do(e-XtP(t;i??

-xt

—2
i, (8) [ jt ) w0 (8) v (55851) ag)
. L .

-xwl(t) e ¥t Pl(t;x).

The induction step is clear from the above considerations.

(t ¥, l(t g,l) and that differentiation past the

Therefore

-xe -xe_thl(t)- (t)f ~x§ Tx f (g ¥ 2(t+§,'l) ag

Remark. On the basis of (3.3) it can be established that the functions ¥(t;x)

have an expansion as in (2.3) where we take a = 0. That is,

o]

(05x)
¥(t5x) = 1+ ) (- 1)n 8 -%7%;-3f;-un(t)-
n=1

Lemma 3. For x>t >0

n
X
(3.6) v, (w5x) = ﬁziiil— ZE ‘ft £ (g) ¥, _;(t;¢€)
k=1

n-k

X—
n-k)! dg
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end for > >t > 0.

n/% '

3.7) ¥ (t;2) = (—-tﬁl 1+Tk £ (e)v. (b n!
( o { k 1 J; (g k-l( ® (n-xt)k(n-k)l
x(E-t),
-xt

Proof. Equation (3.7) follows readily from (3.6) while (3.7) is proven by
induction. The case n=1 is immediate. Assuming (3.7) true for n we then

have

Yn+l(t;X) =‘f a1 (M) ¥y lEsm) an

fx ¥, (£5m)dn +f £ (M ¥ (e5m) an
L

X n a 4 n-k
Sy jt £.(8) v 1 (658) b aey an
k=1 . .

“t

.4
. £ (M) wn(t;n} an .

The term (n-t)n can be integrated directly. For the n terms in the sum we
interchange the order of integration on € and 1 and integrate the term

(n-g)n_k. We thus have
2t n+l-k
¥y (85%) = g‘(ﬁr z ff (&) ¥, (458) ‘mﬁrdg

which completes the induction.
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Lemma 4. Under the assumptions 1~k the functions

Y (t;2)
-EL—-é%- n > tx
Yn(oyz)
(3.8) ¢ (t5x) =
0 n < tx

converge uniformly in x to ¥(t;x) for fixed t > O.

Proof. By lLemma 9.2, p. 437 of Karlin and Studden (1966) the functions

@n(t;x) are nonincreasing in x. If lim @n(t;x) = ¥(t;x) the uniformity

will follow since it is easliy seen that the limit function V(t;x) is con-

tipuous in x.

n

Considering equation (3.7) we note that the ratio of the terms (% -t)
and (%)n %, converges to e, Tt thus suffices to show that
n/x k . n! x(E-t) n-k
(3.9) D ERXCRMNCT [1- Ty gg

+ (n—xt)k(n-k)!

k=1

converges for t >0 to

cHEE) Nk 2 (8) v (458) ag.
k=1 '

(3.10) jm

t

The integrand fn(g) in equation (3.9) has the bound

nx
fn(g} <

< (v HEELEED)L ()

n-xt

<c f£(g)

SRl
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QO
and J f(g) d€ < ». By the lLebesque dominated convergence theorem it suffices
o

to show that the integrands converge for fixed €, x and t. We now write the

o
integrand as I an(k) where
k=1
k n! x(E-t) n-k
x £, (8) ¥ _,(t;8) [1- ] n 2>k
a (k) =
0 n<k.
t
The term X is uniformly bounded in k so that

(n-xt)k(n—k)l

1

k-
la_(i)} < ¢ x* 2(g) I(E"t_)“‘l(?l({fi-ﬁth)1

which is summable. Appealing again to the Lebesque dominated convergence
theorem the result follows since

1
1im L =1

o (n-xt)k(n-k)l

and

lim [1- ELE;El]n-k = e-x(g—t).

n-xt



1L

4. Proofs of the Theorems

(es]
Theorem 2: If the measure u is such that I ¥(t;x)du(x) <o for all t >0,
o

then on the basis of the inequality (3.2) we have

o > jo v(t;x) du(x)

S J“ o~x[t+2F (=) ] du(x)
2J, .

so that
* -A
(4.1) J e au(x) <o A > 2F(x).
o
In this case
® n+l -A
(k.2) I KT e TRE du(x) <= for all n and A > 2F(=).
o .

Now by Lemma 2

P (t;x)
n+l Loy _ .ntl -xt “n*”’
( l) Dn...DOY(t,x) = X wn+l(t)e X"
n+l -x[t-2F(«) ]
< wn+l(t) x e .
Therefore
(4.3) D D o(t) = JO D,++-D, v(t;x) du(x)

at least for t > LF(®). We then have that
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(b.b) L o(t) = an y(t;x) du(x) for It—1> LF ()
o] .
where
. n+l e
(125 fy ¥esm) = vy (B 7, G B BT

b
To complete the proof of Theorem 2 it suffices to show that if gn(x)=j Ihm(t;x)dt
- “Ya

then
(k.6) g, (x) < g(x) where f g(x) du(x) <=
: (o]
and
1 x ¢ (a,b)
(’-l--?) r];-]-_il gn(x) =
0 x ¢ (a,b).

Using the bounds from Lemma 1 we observe that for t e [a,b]

(1-£(3)) exp{-x[F(=)-F(2)1} S w_,;(F) B (55%)
< (14£()) exp {-x[F(=)-F(P)1}.

Moreover the function

nx

(nx)n+l e t

N+
tn 2 nl

hn(t;x) =

is a density function on (o,»)} with mean x and variance xg/(n—l), i.e.
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(eo] (eo]
f hn(t,'x)dt =1, I t hn(t,'x) dt = x
0 ‘ o] :

and

2
X

Jo (t-x)g hn(t;x? & = =75 .

Since P(o;t) is bounded and continuous on [a,b] equation (k.7) follows.

To verify (4.6) we again use Lemma 1 and the expression for I V¥(t;x)

in (4.5) to obtain

b
(.8) 5,00 < (@) T SDTN [ (sma.
Since J N du(x) <o for A >2 F(eo) it suffices to show that
O . .
b -K2x

(u.9) L hn(t,'x)dt <K e vhere X, > 5F(oo‘).

b
We note that J hn(t;x)dt =1 for all x so that it suffices to obtain
a

(4.9) for x greater than some number which is independent of n. Now

- X
b b (nx)n‘l'le t
f hn(t;x)dx =J 5 dt
a a t7 Tnl
J‘nx/a o2
= ! dz
nx/b *
nx
- = nx/a n -z/2
se ] e
nx/b B
nx

- = ne-z/2

< e 2bkJﬂ'-Z'-"-'-'-,—-'-'--(flz
- nh
o]
- BX
- e 2b 2n+l
nx
-E+nlog2

=2 e .
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The exponent is decreasing in n whenever x > 2b log 2. Therefore

n_x
b nO log 2 ~ 5%
J hn(t;x)dx < 2e e
a

provided n >n_ and x >2b log 2. Choosing n, such that n_ > 2b(5F(»))
completes the proof.

Proof of Theorem 3.

The proof here proceeds similar to Theorem 2. On the basis of (4.3) we

have
O
L, o(t) = j L, ¥(t;x) £f(x)dx for % > 4F(=),
. o . .
where
o (trx) = 0y p (R B(O,E) ntl :
(h.lO? L Y(t,x? - Wn+l(t? Pn(t’x? P(0;x) n gn(x,t)
, Ly _ D . . ] .o
and gn(x,t) == hn(t,x?. The function gn(x,t? >0 satisfies
* a n+2
JO gn(x;t) dx = 1 jo xgn(x;t?dx = (—E—)t =t

oult) [ (et gex - 8 220

Proceeding essentially as in Theorem 2 we write

L, q,,(t.) ”olh Y(t;x? f(x? dx

= | L ¥(t;x) £(x) ax
s n
Ix-tnl <e : -

-

L, v(t;x) f£(x) dx.
|-t | > ¢ -
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Considering the integral over ]x-tn] < ¢ we observe in (4.10) that the term
n n,_y ntl s . . -1
Wn+l(€? Pn(t,x) —= can be made uniformly close to one. Since [P(o,x?] £(x)

is bounded and continuous on |x-tn| < e it follows that the first integral

approaches f(t). To verify that the second integral converges to zero we

note that
ol e n+l n Ax
L, Y(t,x? f(x} < == wn+l(t? P(o,t? Be g.n(x,t?
where sup f(x) <B and A > [QF(w)-F(%)]. An argument similar to the
oS x < . .
above readily shows that
lim J ¥ gn(x,t) dx = 0.

e lx-t l > €
n—-

Proof of Theorem 1

We shall first establish the representation in Theorem 1 for those GCM
functions such that {0+) < ®. Once this has been established we can extend
the result by noting first that o (t) = o(t+e) for € >0 has  (0) <o

and is contained in the cone generated by the system {wi(t+e)} « In this case

x
i=0
o P (t;x)
— _Xt € ’
(k.11) oftre) = [ ™ Py au (%)
where Pe(t;x) is defined as in (2.8) using the system {wi(t+e)}. A change

of variable shows that

ool
«©

P_(t5x) = 1+J e"x(g"e't? Zxkfk(g) ¥y _; (t+e;8)dE.
: t+e k=i : :

It then follows from (4.11l) that



19

oo

o(t) = f ¥(t;x) dve(x) for t > e
. o]

where
X€
_ e "P(03x)
av () = S o ().

However by Theorem 2 the measure corresponding to any ¢ is unique so that

dv€ = dy is independent of ¢ and hence

o o]

o(t) = J

¥(t;x) du(x).
o . .

We now consider the case where  is a GCM function such that (0+) < .
We shall assume without loss of generality that «(0+) = 1. The case o(0+) = 0
is trivial since (, 1s nonincreasing and hence identically zero.

Appealing to Karlin and Studden (1966) p. 387 or by repeated integration

by parts we find that for 0 <t <c

n

c - ka(c)
(k.12) o(t) - o(c) = ft\yn(t;x} G polxlax + ) v (t5c) EAC)
k=1
where
(4.13) Gun(c) = (-1)° D ...Dglc), k=1,2,...

We first show that the k terms in the sum on the right side vanish as ¢ - =.

G—7—yk¢(X) (0,)
Since is nonnegative and nonincreasing on (0,»)} we have
wy {x



c/2
¢ _o(3) G _jelc)
- AN L
= c w, - (c)
w1 (3) k-1
C
e k-l‘P(e)
- 2m c
W1 (3)

k c c
S'Ak c [@ ;E? - w(gk-l)]

where Ak is independent of c.

The above inequality together with the fact that

implies that

. G o(c)
lim k@ R
o -girgy Yk(t,C) =0 k =1,2,...

since 1lim m(ii) = p() exists.
g0 2 :

The representation (4.12) thus reduces to
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o0

J

e ¥ (65x)
= ), ¥;?6;;7 Yn(O,X? Gn+l m(x) dx

o(t) - ¢=) ¥ (65x) & ) olx) dx

t

n
nn/t Yn(t:g)

- du_(x)
Yot ¥ (0,7) T

where

[ee]
The measure “n(x) are uniformly bounded since j dun(x) < ¢(o+)-p(=). By
. o+ . .

the Helly theorem we select a subsequence Ky converging to u¥*. By Lemma 4

i
the functions
n
¥, (t53)
"‘—'I'l_- n Z 'tX
AN
Yn(oyx/
g (t5x) =
0] n < tx

converge uniformly to ¥(t;x) for fixed + > 0. Therefore

o(t) - (=) = f +Y(t;x) dp*(x).
o S

If we define u by adding mass (@) to p*¥ at x = 0 we obtain the repre-

sentation

o(t) = J

v(t;x) du(x) .
. o , ,
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Thus every GCM function possesses a representation of the form (2.9). To
verify the reverse implication we appeal to the alternate Definition 2 of the

GCM functions. On the basis of Theorem 4.2 p. 400 of Karlin and Studden (1966)

n
(653 ' S4B
the function ¢ (t) = =———=— is contained in the cone kK 0N [ N K(u ,...,uk)]
° ¥ (05%) k=0 °
n*7’x -

so the ¥(t;x) is a GCM function. If the integral (2.9) converges for t >0

then the inequalities (2.4) are satisfied and o is a GCM function.
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