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1. Introduction. How the distribution of various genotypes and its properties
vary from one géneration t0 another in a population undergoing a given system of
mafing has beeh and perhaps still ié the subject of extensive study among several
research workers. A great deal concerning this can be found in literature (see
Kempthorne [h]). There are left however a great number of cases which are either
still unsolved.or are such that their properties have not been fully explored.
One such case forms the subject of this paper. One of the key assumptions made
in most of the cases studied thus far is that of independent segregation of the
factors involved. The only case known in literature where the two factors are
assumed to be linked, is the one where the population is subjected to random
mating. In the present paper an attempt is made to eliminate the assumption of
independent segregation among factors.

To begin with, we shall study the case of two linked factors for a diploid
population undergoing selfing startubg with an arbitrary initial genotypic distri-
bution. later this is geﬁeralised to a case of great interest to plant breeders
namely that of mixed self-fertilization and random mating. Here it is assumed
that the initilal population is in eéuilibrium with respect to raﬁdom mating system.
The case with an arbitrary initial genotypic distribution is somewhat involved and
will.be reported elsewhere.iﬁ order not to overload a single paper (see Puri [7]).
The populations undergoing Such a mixed mating system have been studied by several
research workers in the past and more receﬁtly by Ghai ([l], [2]), all under the

assumption of independent segregation of the factors involved.



The model considered here is still restrictive in the sense that it assumes
an absence of selection and mutation and assumes also an equal mortality and fertility
over all genotypes. The model incorporating selection presents interesting prob-
lems and is left for a later study. Reader is referred to an interesting recent
paper on selection by Li [5].
2.0 A Markov Chain related to model where population is undergoing continued
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selfing. Consider the case of a diploid population with two linked factors in

mind each with two alleles and let A-a and B-b be the corresponding gene-pairs
with p (q = l—p) denoting the usual recombination value or the proportion of
cross-over gametes. Following the standard convention we restrict p to take
values between O and % - The case with p = O 1is that of complete linkage and

p is %— when the factors segregate independently. The four possible gametes are

AB, Ab, aB and ab, and the ten possible genotypes are

1. AB/AB 2. AB/Ab 3. Ab/Ab L. AB/aB 5. AB/ab

(1)
6. Abf/aB 7. Ab/ab 8. aB/aB 9. aB/ab 10. ab/adb

Let their initial genotypic frequency vector be given by

0 0) (o) _(o 0 o} 0)y.
€)1 (el (0, 0 01 (0 D 0,082

with vector f(n)

~

in an analogous manner corresponding to the nth generation,
where the components of these vectors add up to one and where the numbers in the
subscripts stand for the numbers of genes A or B present in the corresponding
genotypes. Also the letters ¢ and r stand for the coupling and the recessive
phases of the double hetrozygotes numbered 5 and 6 respectively in (1). The

prime in (2) denotes the transpose of a matrix.



We consider first the case where the above population is undergoing self-

fertilization indefinitely. The immediate problem is to find the genotypic dis-

(n)

tribution vector f

~

of the population at the nth stage of continued selfing.
To this end, we visualise a discrete time Markov chain {Xn; n = 0,1,2,...} with
the state space S consisting of the ten possible genotypes 1,2,...,10 as listed
in (2). The chain is considered to be in state i at nth step if a randomly
chosen genotype out of the population (assumed to be infinite in size) at the nth
generation turns out to be of type i with i =1,2,...,10. The initial prob-
ability distribution is governed by the vector f(o). The Markov property of the
chain is obvious, since the genotypic distribution at (n+l)st step (generation)
depends only on the distribution at the nth step. The only thing left in order
to specify the Markov chain completely is the one-step transition probability
matrix (Pij) which is stationary in the present case. This is obtained by con-
sidering for each genotype individually the genotypic composition it produces
after it is once selfed. For instance, given X =5 (i.e. AB/ab), the vector of

probabilities P5j= P(Xn+l= len= 5); 3=1,2,...,10, is given by

(€/2, pa/2, B°/h, pa/2, /2, v°/2, pa/2, /%, pa/2, /b,

where q = l-p, and so on. The matrix P = (Pij) obtained in this manner is

given by



1 0o o o o o o o o o

/% 12 1/ 0 0 0 0 0 0 o

o o 1 o o o o o o o

/b o o iz o0 0 o 14 o o

(3) P = q2/l+ pa/2 p2/2 pq/2 q2/2 p2/2 pa/2 pz/h pa/2 qg/h
B o/k pa/2 o/2 paf2 p°/2 &2 pa/2 oFfh paf2 /M

0 o 1/k 0 0 o 1/2 o0 0o 1/u

o o o o o o o 1 o o

o 0 0 0 0 0 o 1/ 1/2 1/h

0 0o 0 0 0 o 0 0 o 1

Thus following the usual Markov chain argument the genotypic distribution in

the nth generation is given by

(%) £(8) = prym . £(0)
The problem now is to find the nth power of P needed in (4). For this; on
solving the characteristic equation |P - A1 | =0 of matrix P for A, we

observe that the ten eigen values of P are given by

b4

1-2pq 1-2p
3 >3 1-

-

(5) (1L, 1,1,1, 3% 3, %

Fortunately for the present case the matrix P lends itself to a spectral repre-
sentation. Following the standard approach (see Karlin [3]) for finding the
spectral representation of a matrix by obtaining the left and right eigen vectors

for various eigen values, we find that



where
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with ML =TI and

~ ~ ~

I SUN = L-2pa = 1=2p
(10) 8 T{Tep) P T TT 2 B3 T T3 '

Here I is a 10 x 10 identity matrix. Also we have used the convention of

11 s + A = i =
writing anh n x n diagonal matrix (aij) with aij 6ij aii by

~

ﬁ = dg (all’ Bops et ann) . Using (6) and the fact that M L = E , we finally

~ ~

have

(11) P =MD L ,

(12) £(8) _ ooy £(0) ,
where

n 1 1 1 1 n n
(13) E = dg<l) 1L, 1, 1, —1’_1’ 'E; '—n) o’ ag) 33) .

e 2

n

2

Writing (12) descriptively for later use, we have the expressions for
fgg) for various 1i,j wvalues, given in table 1.
It is clear from (3) that the states 1, 3, 8 and 10 are absorption state
while the remaining six states are transient. Thus it follows from the theory
of finite Markov chains that with probability one the ultimate absorption takes

place to one of the four absorption states. The transient states here corres-

pond to those of hetrozygotes while the absorption states to those of homozygotes.
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Thus as expected, the hetrozygosity disappears eventually with probability one,

with the propositions of various homozygotes in the ultimate population given by

letting n -« in f( n) , yielding
(/
f(“) - féO) 2(f(0)+ fig)) " l[al gg)+ (l—a ) f(O)]
N 4éo>=f(o> 3684 £00)) 4 3(1ma)) £ 0 £0);
14
f(m):ng) _é_(f(o) (o)) N (l_a)fﬁ) ay f(o>]
1)< 056 ) ) ) 2

(=)_

where fij Q0 for transient states. Furthermore the population approaches to
homozygosity (fixation) as n— o at least as fast as (%—)n to zero.

2,1 Distribution of Time to Homozygosity. Having found that after continuous
selfing the population approaches with probability one to homozygosity, it is
natural to ask as to how much time does it take before it attains homozygosity
with respect to one or the other factor or both:s To this end, let TA and TB
denote the times when the population reaches for the first time to homozygous state

with respect to gene pairs A-a and B-b respectively, so that

(15) Pr(TAfm) TBS n) = PI‘(Xm 6{1) 2, 3, 8J 9, lO} and Xn e{l; 3s }"L) 15 8: 10}) .

let m<n . Using the fact that the states 1, 3, 8 and 10 are the absorption

states and are homozygous with respect to both factors, we have
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(m) Pr(x_ e{1,3}|X =

+

o+

féT) Pr(X_ e{8,20}|x =9) .

From the stationarity property of the Markov Chain it follows that

(f(n ), f(n-m)lfég)= 1)

Rﬂgfu,3H§; 50

(17)
PI‘(Xne{8,lOHXm= 9) = (f(n-m) (n m)lf(O) 1) .

Now on using the expressions for fl(j]l) in (17) from table 1, we obtain

08) ity < 5y ) = o500 D s D 0D D Dl

Similarly for m > n , we have

(19) Pr(TA <m, TB < n) = fég)+ fé8)+ fég)+ f(()g)+ fg)+ fgg) (2 ‘)m-n(fig)+ f](_g)) .

(n)

Using (18) and (19) and the expressions of fij of table 1, one easily obtains

after some algebra the joint distribution of TA and T, as given below.

B
4 (0), (0}, (o), ,(0)
Pr(Ty= Ty= 0) oo T g F Lo T Tao s
Pril,= 0,T,=n) = (3) (f\°>+ £0)) S for mz1,

pe(z,= m, T 0) = (3)%(e{0+ £{9)) | for mz 1,

(20
) 3 Pr(T Tp= n) = (ae)n(fi?_z (O)), forn>1 ,
Pr(TA= m, Tp= n) = (3)""pa(a 2) (f(o)"‘ f(o)) for lL<m<n,
Pr(TA= m, Tp= n) = (%)m-npq(ag)n l(f§32+ f(og); for 1< n<m.
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In the rest of the paper, we shall freely use the convention of replacing a
subscript by dot to indicate that a summation has been carried out over that

subscript; for instance

L) m) o (0), (0, (n)

-1 0l lle "1llr "21 °
(n) n) p(n)
llr fllc ; and so on.

Now using (20) it is easy to establish that

Var(T,) = 2f§_<.)>(3-2f§_?)) ; Var(Ty) = gf(O)(3 2f(O))
(0)
6f
(21) 4 Cov(T,,T) = [ 1+;;q - gfic_)) ffg)]
_ {3fll./(l+2pq)} (O) f(o)
L DTATB (o) (o)(3 gf(o))(3 Ef(o))]

As expected the correlation coefficient p between T, and TB depends both

A
on the initial distribution f( 0) and on how closely the two factors are linked.

The closer are they linked - that is smaller is the value of p - the greater is

(0)

the correlation between them. In particular if fll‘ =1 , then

(22) pp ¢ = (1-kpa)/(1+2pa)

(s

which is non-negative and is equal to 1 or O according as p =0 or
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Consider now another random variable T denoting the time when for the first
time the population attains homozygosity with respect to both the factors. One

can obtain the distribution of T by using the joint distribution of TA and TB

given by (20), but more easily by noticing that

(n)+ f(n)+ f(n)+ f( n) n=0, 1,2, ...,

(23) Pr(l < n) = f5 o2 " foo

so that for n> 1,

|l
1

(2k) Pr(T = n)

Pr(T<n) - Pr(T<n - 1)

(1,0,1,0,0,0,0,1,0,1)(() (1))

M” f(o) .

(1,0,1,0,0,0,0,1,0,1) L’(D"- p*1)

Here the last step follows from (12). Simplifying (24), we have

o) Bo(r = 0) = 200+ £{ge 20 1)
Pe(r = n) = (DP[ei 0+ £{04 090 4 o007 4 {00yt AR (e, )2

n>1 ,

which yields

E(T) = 2(f(°)+ fig)+ f§g) (o)) ?('ngq fi(])_)
(26) 9
wﬂm=6@“hfg%f$hf“%+2§®[%%me%q] (BT .

(1+2pq)



Tt is clear from (26) that the expected time it takes to attain complete
homozygosity, increases with p (Note that p takes values between O and 3)
with minimum value when p = 0, the complete linkage case and maximum when
P = %, the case where the factors segregate independently. For the special case

. (0)
with fll'= 1l , we have

(1) . p(r) = 23#4pd) oy gy o 2(1410pq-8p262)
(1+2pq) (l+2pq)2

From (27) one finds that behavior of Var(T) differs from that of E(T) in
that it does not always monotonically increase with p . In fact Var(T) is
equal to 2 at p =0, from where it increases with p until it reaches its

meximum value 11/L4 at p = 3(1-/T/3) ~ -211 after which it decreases to 8/3 at

2.2 Loss of Hetrozygosity. This section deals with the study of loss of
hetrozygosity for which there appears to be no standard single measure avail-
able in literature, particularly when more than one locii are involved. Two

of the measures however appear to be more in common use, hnamely Fn and Fz as
defined below for the nth generation.

Following Ghai [2], let Hén), Hin) and Hén) denote the proportion in the
nth generation of homozygotes, single hetrozygotes and the double hetrozygotes
respectively, so that Hén)+ Hgn)+ Hén)= 1. TLet H(n)= H§n)+ Hén) denote the
proportion of all hetrozygotes in the nth generation. Fn is then defined to

be the loss in hetrozygosity (single and double hetrozygotes combined) at nth

generation relative to that in the initial population and is given by

ey
(28) F o=1- 07
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Again if Zn denote the number of hetrozygous locii in a genotype randomly

drawvn from the population at the nth generation, we have

(29) P(Z = k) = Hl({n) ;1 k=0,1, 2.

*
Fn is now defined to be the loss in the mean number of hetrozygous locii

that is E(Zn) relative to E(ZO) , and is given by

(n), ,y(n)
% E(Z ) H 2H
. W En)”' ?)Jr o
E(Z 0 0
0 Hy WO+ 2Hy

Another quantity which is of some interest is Var(Zn) given by
= rln)y (n) (n), opy(n)y2
(31) Var(Zn) = (Hl + hHy7) - (Hl +2Hy ) .

Notice that the two measures Fn and Fz coincide for the case where only one

locus is under consideration. For our present case using the results of table 1,

we have

(32) F = (f§?)+ ffi’>c1-<%)n] - fig? [1- (22227 |
(f](_(?)+ £(0)_ 4(0)y

(33) Fo=1- (3,

and



1L

5z ) = (3)° 20

(34) _
Var(z_) = ()[f(O)+ f(o) (2) (o)]e+ p(R2R3)P ¢ (o)

It is interesting to note that whereas the measure Fn depends both on the
linkage fraction p and the initial distribution f( ), the measure F: on the
other hand is independent of both of these. As expected, both these measures
tend to unity as n - = . Again, E(Zn) is independent of p while Var(Zn) is
not. Var(Zn) increases with the decrease in P . These observations concerning
Zn are not new and can be found in a remark made by Kempthorne (page 80, [h]).

- Remark. Chai {2] has used the measure Fn in order to study the loss in het-
rozygosity for the case of k independently segregating factors where the pop-
ulation is subjected successively to mixed random mating and selfing. In this
case, he has observed that Fn for k independent locii cannot be expressed in
terms of the value of Fn obtained for a single locus except for the case where
the population is completely selfed in successive generations. To this we may
now add keeping (32) in mind that this observation still holds in the presence
of linkage even if the population is completely selfed. Here in order to obtain

Fn for a single locus it is understood that we ignore the other locus completely.

Contrary to the behavior of F , the measure F: _which turns out to be
n

% v _(¥yn
(35) Fo= 50— [1-(3)7]
for the case considered by Ghai {27, is independent of the number of independently
segregating factors involved. (Here v is the proportion of the population self-

fertilized at each generation and the remaining (1-v) kept under random mating).
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As such the above observation made for Fn no longer holds if we instead use

the measure F: . In this sense then F: may be preferred to Fn , for it does

not depend upon the number of independent or linked factors but only on the mode

of the mating system used.

2.3 BSome Genetic Properties of the Population Undergoing Selfing.

P N e a e e a e a e e et N A A e e Sl ¥ oV W WV W N WV V]

ILet us con-

sider two quantitative genetic characters, one governed by the gene pair A-a

and the other by 3B-b , both linked.

In Mather's notation [67], table 2 gives the

various genotypic frequencies in the nth generation along with their genotypic

values.
Table 2. Genotypic values and Genotypic frequencies.
BB ! Bb 15 %To’cal
i t
() | (n) S
f i) : T !
A 22 g 21 : 20 ! fz(r'x)
(a,,9,) % (d_,n, ) (@,-4,) |
() (). (n), o(n) ()
N I 107 Taet oy 10 (n)
a ! ; fl-
(h,a,) (n,hy) (n_,-a,) |
(n) (n) (n) :
oo o1 i Too | £ln)
ag ! fo.
(~a_,d.) (-a_,n) (-dg-dy) |
(n) (a) )
Total £, £,4 £ L1
Tet Mén) and Mén) be the genotypic means, céz) and cég) the genotypic

variances of the two characters respectively. Also, let Gén) be their covar-

iance and p

(n)

ab

their correlation coefficient.

b

The expressions for these
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quantities can be easily derived using results of tables 1 and are given as

h
(36) () a(2q,- 1) + i £{0)
(37) Mt()n)= a, (2ay- 1) + E‘é ffg)
L) RO L v
38 n kg, (1-q,) - S A
(38) d[qA( -, ) 2nl]+h = (1 2n)
fg?) ( )
- 2d4_h 2q,-1
ol 9
S{)_ 1 .(0), , .2 f(cl)) f(i)
(39) o '=a [hqB(l- ) - ;f_l 1+h = (1 - - )
#(0)
- 2d.n 23{ (2ag-1)
(ko) 0;2)= o£n)+ oén)
(n) (n)
oL

(hl) (n)

Pap =
/() éb) /ia) (n)

where

) oM=aa el O ERR - BB 4 (“<J%ul@m-<@ﬁ,
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(43) °1(>n) 4% <f(0) fég) ég) (()g) bayap* 29, 2ap- 1)

h
. _22% (f§0)~ fio) (o)) + : b [(f(O) (0)) (O)(qu- 1)]

8% . (0). #(0)) (0
+ on [(flE ) - ( qB l)] »

and a and qB are the gene frequencies of genes A and B respectively given

by

(1) qu= £ 2elm) 2004 2el0) g e (m)y 2 (m)_ (00, 4 (0)

keeping in mind that the gene frequencies remain unchanged from generation to
generation. It is interesting to note that the first component of the genetic

correlation coefficient (41) is entirely due to the presence of linkage and is
% . On the other hand the second component of (41) is based only

(0)

zero if p =

on the initial genotypic distribution £ and is independent of p. As ex-

(0)_
11-

One can egsily find the limiting expressions for the above quantities as

pected, the first component disappears again if £ 0.

n— o, Also one may study the behaviour of these quantities for several special
cases such as the one with complete dominance or with no dominance etc. Finally,
if instead the same character is governed by both the factors A-a and B-b and
if the affects are additive, one can derive the expressions for the genotypic mean
and variance in a similar manner. However, we shall not touch these various pos-
sibllities here any further. Instead in the next section, we proceed to consider

the important case of mixed random mating and selfing.
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3 Population undergoing mixed random mating and self-fertilization. In this

section we consider the case where each generation is produced by subjecting s
" proportion v of the previous generation to self-fertilization and the remain-
ing portion u = 1 ~ v to random mating, starting with an initial population

(0) (n) _(n) _(n) +(n)
with the distribution vector f of (2). Ilet Ty’ rlO > To and %0

denote the proportions of gametes AB, Ab, aB and ab respectively produced by

the nth generation, so that

(n), _.(n)
12 Pfl?r

1= To 2(f(n) §2)+ at

(£55 )+ £157+ or170e o

(n))

A
I._i
(@]
no
o
Nh—a

(k5)
(n)

(2). (), 3en), (0, pole)

(n
o1 ))

+ pf + qf

ég)= fég)+ %(f§3)+ fén)+ qf(n)+ pf(n))

(45) can be rewritten in the matrix form as

(46) o) pp(0)
where
(17) e @ (), 208, 22, 2 o)y
and
1 O
1 5 6] 5 5 5 0 0 0 0
1 p g 1
08) 0 5 1 0 5 5 5 0 0 0
48) B =
~ 1 p» g 1
0 0 0 5 5 5 0 1 5 0
a p 1 1
. 0 0 0 0] 5 5 5 0 5 1 .
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For the later developments, we need the following two lemmas.

Iemma 1. A population with genotypic distribution vector f(o) is in equilibrium

~

with respect to Iandom mating if and only if

(49) f(0) (tx{ (o) ? op(0)00) [r(O) 2 ,.00).(0) , (0) (0) , (0).(0) , (0) (0)

T11 T10'* ’ 11 Yor 7~ 11 Y00 ? 10 Yo1’ 10 Y00 ~
[r (o)] , 2 éi) ég), (0)]2)
and
(50) LL0).(0) _ (0} (o)

11 Too T 1o Tor

(0)

where T4 's are as defined in (45) for n =0 .

The proof of this lemma can be found in Kempthorne (pages 38-L1, [4]).

(0)

Lemma 2. For any distribution vector f satisfying the conditions of lemma 1 ,

(51) B(E')n £(0) _ (0] ; n=0,1,2, «.. .

The proof follows by direct computation and from the facts that £P= M D" L

and that rig) ég) §8) (g>

From hereon we assume that our initial population is in equilibrium with

(0)

respect to random mating so that the distribution vector f satisfies the

conditions of lemma 1. From (4), (46) and (51), it follows that if this pop-

(n) _ (o)

ulation is subjected successively to complete selfing, then r for
all n . In our case, this being true separately for both the portions of the

population under selfing and under random mating at each generation, we conclude
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(n)

that the gametic frequency vector r remains unchanged over all generations
even when the population is subjected simultaneously to both types of mating
systems in the manner specified above. Furthermore, from this it follows that

under mixed self-fertilization and random mating, the distribution vector of

the nth generation is given by

{H
i

H

(52) (n) " f(O) + V,E’ E’(n-l)

(0)

where f is as given in (L9). Interating (52) over n and using (11) we obtain

~

(53) #(m)_ L[I +v D +vD° + .uu + vn_an-le'f(o)+ o phe ()

~ ~ e ~ ~ A~ A A~

This simplifies further to

(54) £8) e

~

¢ M f(o)+ v LD
er ~7 ~ ~

where

v\n v\n vin
l--vn l--vn l--vn l--vn l-(E) l-(2) l-(§)

(55) G=dg( > > > f) s s
B R R &

1- (g)n 1- (V l-gpq )fl 1- (V l‘;gg )n

l+uy 1-2pgq. ’ 1-2p
Ay 71y (222 7 1w

(n)

One can immediately find the various elements of f

~

similar to those in table 1
from (54%). Again on letting n — o in (54%) we have the limiting genotypic dis-

tribution vector given by
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(56) f(m)=uL’GwM'f(O) ,
where
ol 111 2 2 2 2 2 2
(57) ~ dg(u’ wouw v o1t 1+ 1+’ 1+ 2-v(1-2pg)’ 2—v(l-2p)) *

=(I-vD)'l.

Using (54) one can as in section 2.3 study the behavior of various genetic
properties of the distribution at nth generation, with changes in u, p and
other basic elements. As expected, the expressions of these properties are bit
lengthy and we will not tackle them here. We close this section with the final
remark that in the presence of random mating the problem of ultimate attainment
of homozygosity as discussed in section 2.1 does not arise here.
L Concluding Remarks. In section 2.2, the author has avoided labeling Fn as
the coefficient of inbreeding, simply because he is unaware of any extension of
the concept of coefficient of inbreeding to the case of linked factors. In the
event there is no such extension available, this appears to be an interesting
problem for further investigation. Again the methods used in section 2 based
on the study of a Markov chain are similar to what Kempthorne [47] calls as the
"Generation matrix method". It is however more revealing to study these problems
in the light of theory of Markov chains where ever possible, as some of the already
available results of the fairly well developed theory of Markov chains can be applied
without any extra cost. The results of section 3 have been generalised to the case
where the initial population has an arbitrary distribution and will be communicated

elsewhere (see Puri {7]). Also, the above model can be made more realistic by
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Incorporating factors such as selection etc.._ Unfortunately however, this

makes the algebra somewhat more involved. Finally, I hope that the inadequacies

of this paper will not disguise my respects, admiration and affection for Dr.

V. G. Panse, to whom it is dedicated.
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