Non~central Distributions of the Largest Latent Roots
of Three Matrices in Multivariate Analysis®
by
/ ; . . ¥k
K.C.S.Pillai and T.Sugiyama

Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series 129

November, 1967

This research was supported by the National Science Foundation, Grant No.

GP-T7663.
¥

On leave from Aoyema Gekuin University (Japan).



Non-central Distributions of the Largest Iatent Roots
of Three Matrices in Multivariate Analysisl
by
K.C.8. Pillai and T. Sugiyama®

Purdue University

1. Introduction and Summary. The cdf of the largest latent root of

the.generalized B statistic in multivariate analysis in the central case

1s given by Pillai [9]3,{10],[12], [13], and also useful formulae [12] ap-
proximating at the upper end the cdf of the largest latent root.

Further , the above ¢ 4 ¥ has been obtained by Pillai as a series of in-
complete beta functions E9],[10], [14] and also independently by Sugiyama and
Fukutomi [17] . Recently, Sugiyama [ 19] has obtained the cdf of the same, as
power series. In the non-central MANOVA case, Hayakawa (7] and Khatri and
Pillai [15] have obtained the density in a beta function serieé form.  The
purpose of this paper is to find simpler power series expressions than these
obtained by the above authoré for the non-central density function and the

cdf of the largest latent root in the MANOVA situation, both in the generalized
beta case and by usual transformation in the generalized F case, We will also
obtain similar formulae for the non-central density functiongof the largest roots
for canonical correlation and equality of two covariance matrices.

2. Non-central distribution of the largest latent root in the MANQVA case.,

Iet X be apx n, matrix variate (p < nl) and Y a p x n, matrix variate (p < n2)
and the colums be all independently normally distributed with covariance matrix
%, B(X) =M and E(Y) = 0. Then it is well known that XX'= Ui is  non-central

Wishart with nl degrees of freedom and YY'! = Eé is central Wishart with

lThis research was supported by the National Science Foundation, Grant No. GP-7663.
On leave from Aoyame Gakuin University (Jdapan).



n, degrees of freedom and the covariance matrix % » respectively. The
generalized non-central statistics L be defined as the latent roots of
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Iet 1> El > ... > zp > 0 be the ordered latent rodts of the matrix

L , namely the roots of the Tollowing determinantal equation
- -+ =
Igl ﬂ’q{l EB)I °)

then the joint density function of zl,...,zp is given by Constantine [2],

James [6] .
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vhere Q is the non-centrality matrix,s M' © ~ M, determinants |Z] and

| I-L| expressed as products of the latent roots of their matrices,

2
C(oynymp) = 1 /2 (40, )/2)/r (0/2)0 (/200 (ny/2) and C(5) sve sonad

polynomials defined in [47], [5]. In this section, we obtain first the density

and c.d.f. of ¢ In this connection, we state below two lemmas:

l L]
Iemma 1. Let Dﬂ be a diagonal matrix with diagonal elements 1 > 22 See > zm > 0,

and let { be g partition of k . Then
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Lemma 2. Iet S(pxp) be a symmetric matrix, and CK(S) and C (8) bve zonal
~ "~ 0‘ ~~
Polynomials of degree k and s respectively corresponding to the partition

>
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Lemma 1 has been discussed by Sugiyama [18] and [19]- Tables of the coefficients

%? o of Lemma 2 are given by Hayakawa [7] end Khatri and Pillai [15] for various
2

values of k and s .

Now using Lemma 2
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and from (1), we get



(nmy)/2), C ()

(nl/2)K CK(E)kI

> (
(2) C(P,nl,n Jexp(tr- Q) |L|(nl-p -1)/2 il (z -4 )}Z Ez

1< k=0 K

). Y o ((wra-ny)/2) ) c (L)/st,

S=0 0,8
Now consider the integral
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In (3) transform q = zi/zl » 1 =2, «vo,p and integrate with respect to
q2,...,qp, we get
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Hence, from (2) and (4) we have the following formula
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Further, noting that Fp(a,6)=Fp(a)(a)6, we obtain the density of the largest

latent root in the following form
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where 1 > zl > 0, and
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Further, the c.d.f. of the largest latent root is given by
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Let Q=0 in (9). Then, since gg ¢ ~1land & =0, we obtain the following
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formule given by Sugiyama [19]
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And also, in (7), let n,=p+l, and x=1.

Then we have OFO(Q)= etr &

Since the roots gl,...,zp of the generalized beta case are related to the

roots fl,...,fP of the generalized F case in the following manner:
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we obtain from (9), the c.d.f. of the largest latent root in the non-central

generalized F case in the form
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THEOREM 1. Let Ei be the matrix having non-central Wishart distribution with

nl degrees of freedom and matrix of non-centrality parameter @ , and Eé be the

matrix having the Wishart distribution .with n,. degrees of freedom. Then the

2

pdf and the cdf of the largest latent root 21 of the equation

19~ (G 5) 4 =o

is given by (6) and (7). And the cdf of the largést latent root f, of the

equation

is given by (9).



7

3. Distribution of the largest latent root in the canonical correlation

X
case. Let the columns of ( Xl) be n independent normal (p+q)-dimensional
~

variates (p < q) with zero means and covariance matrix

Z11 L1

L)
Zip oo
Iet R be the diagonal matrix with diagonal element r

ri, rg,..., ri are the latent roots of the equation

12 Toreees rp » where

! Ta-1 t 2 o
1% % (1) X% - x| =0

and also P be the diagonal matrix with diagonal elements P1s Pps +ovs P

where pi, pg, vee, pi are the latent roots of the equation

DU o _
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Then, the distribution of r2, rg,..., r'2 » 1is given by Constantine [27 in the
? 1’ 2 ho

following form
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By the same method as before, namely using lemmas (1) and (2), we have the

following
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Hence, from (10) and (11), we have the following formula
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Integrating (12) from O to x with respect to ri , we have the following

c.d.f of the largest latent root in the canonical correlation case
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THEOREM 2. ILet <:N' /‘ be n independent normal (p+q) - dimensional
£ |
variates (p < q) with zero means and covariance matrix, ¥ . Then

~

the pdf and the cdf of the largest latent root r2

1 of the equation

xxxx)ytxx- Pxx'l =0
|~1~e o)~ Xpkym v 5 X1 =

is given by (12) and (13).

L. ©Non-central distribution of the largest latent root for test of

equality of two covariance matrices. Iet Sl and §2 be independently

distributed as Wishart W(nl,p,gl) and W(n2,p,zé), respectively. ILet the

-1 -1 ’
latent roots of §l§2 and zhgé be denoted SERERP gp D

respectively such that « > gy I gp >0 and o« > 6£ > e = 6£ >0 .

I4
and 51,..., 6

Let

w; = Agi/(1+xgi), i=1, «oe, D,
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where ) 1is a given positive constant in the tegt of the null~hypothesis H
that AA'= I and A= dteg. (5,-., 5;3) . Then the joint distribution of
wy is given by Khatri [87] in the following form
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where W = diag (wl,...,wp). Then, by the same method as before, we can ob~

tain the density function of the largest latent root w in the following

1
form
et | "-nl/gi T (g o)) E0E ™
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where 1 > w, > 0, and C3(p,n

1 177p) =

Let XA'= I , namely the central case. Then, since gg o 1 and o=5,
"~ ~ ,
the cdf of 1 is
pn, /2
P(wl < X) = Cs(P)nl)ne)eFl((p+l-n2)/2, nl/e.; (nl-’.P-'.l)/e; (i)l 'EP) Ul .

This is the same formula given by Sugiyama [18]. We note that if (p+l-n)/2

is an integer, the summation of s will be terminated in finite terms.
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Further, 8y O’s are constants which do not exceed-unity [lh]. Again when
bl
n2 =p +1 we get
1 1
-5n spn
4, 2 1 1 =1 2 1
Plo <x) = ] SR (nys x(T- (08)™))x
Iet x=1, a=%nl, and Q=I—(k&)—l. Then we have lFO(a; 9) = [I—Q|-a .

THEOREM 3. ILet §1 and 82 are the matrices having Wishart distributions

W(nl,p,zﬁ) and W(ng,p,Zé) s respectively. Then the pdf of 0= Kgl/(l+hgl),

where gl is the largest latent root of the equation
|§1'€ E’gl =0
is given by (14).

It may be pointed out that Khatri [8] has given the density of gy but

(lh) does not follow from his result by transformation.
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