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Introduction

A sinple "paradox" relating to tne enumeration of the elements in a
countable set may be described in tne following way.

Every second a genie throws ten balls into an urn. The balls are
numbered 1, 2,... and at every throw he adds the next ten numbers to
the urn so that at the n-tn throw the balls numbered 10n-9, 10n-8, 10n (n > 1)
are added. This goes on forever,

Anotiner genie removes one ball from the urn after each addition, but
he must guarantee that every ball will eventually be thrown out. If he

can see the balls, there is of course no problem, He can remove the balls

1, 2, 3,... successively and for any natural number k, he knows when it
enters the urn and when it is removed. It enters the urn at the [i%] + lst

throw and is removed after the k-th throw.l

For every k, the length of time Tk spent in the urn by the ball k

is given by

* This paper contains an expanded version of a talk given by the author under
the "Program of Visiting Lecturers in Statistics - 1967-68" under the sponsor-
ship of the American Statistical Association, Biometric Society and the
Institute of Mathematical Statistics.

lThis and the paradox discussed here are related to the so-called "Tristam
Shandy Paradox" - See Russell [6].



k
Tk=k-—l—[':[6], k=l,2,...

There are, of course, many more rules which will guarantee the eventual re-
moval of every given ball. Clearly, there are also rules whicn will leave
one or more, even infinitely many balls in the urn. Say if he removed
successively the balls 10, 20, 30,... all numbers which are not multiples
of ten would stay in forever.

To compound the sad fate of the second genie, we assume next, tiat he
cannot see the numbers on the balls and that the balls are, in fact, completely
indistinguishable. The problem is now, whether or not there is a way in
which the second genie can remove every ball from thé urn., Or, to state
the "paradox': Does tne ability of the second genie to enumerate all the
balls depend on the enumeration already given?"

We must still describe a rule, but one that does not depend on the
numbering of tne balls at all. The first such procedure that comes to mind

is to draw at each removal the ball at random from among those still in the

urn, This rule is appealing, because every ball in the urn at every drawing
is given the same chance of being removed. Before the n-th removal there
are 9n + 1 balls in the urn. We assume that, independent of the past, any
one of these balls has a probability (9n + :L)’JL of being taken out,
This rule will be satisfactory for genie II, if we can show that,
with probability one, every given ball is eventually removed from the urn.
Since the balls are completely indistinguishable, the genie must rely
on chance and a chance procedure with the stated property is the best one

can wish for.



We will prove below that "random removal" has this property, but
first we leave the world of fairy tales and formulate a more general

mathematical problem.

Mathematical formulation

Let ay < a, < ... be a strictly increasing sequence of positive

integers and let & be the family of all functiocns from the positive

integers into the positive integerg, wnich satisfy:
(1) f(n) < a s n>1,
f(n) # £(v), v #n

On the class of all subsets of %, we can define probabilities satisfying:

(2) P{f(1) = k} = - 1<k<a

_ al - =71

= 0, k > aq

and for all n>1 :
(3) P{f(n) = x|f(1),...,f(n-1)} =

L l<k<a k # £(v)

a -n+l ’ - > Vs

v=1,.,.,n-1

and zero elsewhere.



This assignhment of probabilities correéponds to the following scheme:
For every n > 1, the value of f(n) is chosen at random from among the
numbers l,2,...,an which have not been chosen previously. That the re-~
quirements (2) and (3) determine a unique probability measure on the class
of all subsets of ¥ may be proved from first principles or by appealing
to the general theorem 8.3.A, p. 137 in Loeve [3]2.

This assignment of probabilities corresponds to the requirement, which,
loosely stated, says that all functions in % ‘"equally probable". To see

this we prove:

Property 1:

Let (o ,...,am) be any m-tuple of natural numbers, no two of which

are equal, with di_f ai for i=1,...,m then:

(L) | P{f (1) = al,...,f(m) = am} =
[al(ae-l) ... (ai-i+l) - (am-m+l)]-l ,

regardless of the p-tuple chosen and is equal to zero for all other

m-tuples.

PrO9T:  yse the chain rule of conditional probability, then:

P{£(1) = op5...,F(m) = o} =
P{f(1) = o} P{£(2) = a,|f(1) = al}
- PEm) = o [£(1) = oy, f(mel) = ),

which yields (4) upon substitution.

3The uniqueness of the probability measure P also follows from property 1
below and the classical extension theorem for measures.



Remarks

The space of functions & with the probability assignment P(-)
may be identified witn tne following urn scheme. Suppose tnat the urn

contains initially a. balls, numbered 1,...,a One ball is drawn

1 1°
+ 1l,..., a, are added. Again a ball is

out and new balls, numbered a o

1

drawn out at random and removed, and balls, numbered a_ + 1,..., a

2 3

added and so on. If we denote by Xn the number of the n-th ball drawn,

are

then tne sequence {Xl, X,, ...} defines a function in % . We see that

the sequence 8y 32,... cnaracterizes the set & and the probability

assignment P(.) . The scheme, discussed in the Introduction, corresponds
= -+ .

to a, On + 1

Let the event that X =k be denoted by {Xn = k}, then

@©
U {Xn = k} = B is the event that for some n the number k is drawn
n=1

at the n-th drawing. Since the events {Xn = k} are disjoint, we have:
(=]

(5) P(B, ) = z P{X =Xk} .

We are interested in conditions on the sequence {an] under which:

(6)  Vxk: (B

k)=1.

Theorem 1

a. If P(Bk ) =1 for some k, > 1, then (6) holds.
o

b. Property (6) holds if and only if

8

(7) r 2 =

n=1 an—n+l



Proof:

* -
Let ko be a positive integer and n = min{n: a, > ko} then

8

(8) P(B}io) = P[ngn* (X, #%,)1= nEn* - _-——an}ml)

So that P(Bi ) =0 if and only if the infinite product diverges, or
o

equivalently if the sum (7) does.

However the divergence of thnis sum is independent of the value of ko
wnich proves part a .
Corollary

If (7) holds, then for any nonvoid set of indices [kl, kg""} we

have:
voo

(9) PN B }=1
i=l i

Prqof:

[+~] o]

PN B }=1-pU B}
. k. . k.
i=1 i i=1 i

but

[=+] o
c c
o<P{U B } < ¥ P(B )=o
- . k., -, k.
i=1 i i=1 i

by Theorem 1.



Remark

The corollary says that with probability one all positive integers
appear in an infinite sequence of drawings in an urn corresponding to a
sequence {an} which satisfies (7). We can therefore say that if and
only if condition (7) is satisfied "almost all functions in the class

F are one-to-one".

An example of a class of functions, which do not satisfy condition (7)

It is, of course, easy to give examples of such classes of functions,
just by choosing a, a fast growing sequence. The following example is
of some particular interest as it relates to the familiar proof of the
countability of the set of all rational numbers.

Let En be the set of all rational numbers in (o,l) which can be
written as irreducible fractions with denominator at most equal to n .

The number of elements in En is given by:

n n
(10) a = X [¥v)-1]= T @(v) -n+1, n>2,
n
v=2 v=2
3

set a; =1. ¢(v) if Buler's ¢-function.

Therefore, for n > 2, we have:

@

. _
(12) Eztﬁii = [vEQ olv) - 2(n--l)]-‘l .

However, it is known that:

n
(13) lim £ o¢v) =

_d 3
n=ow n v=1 11'2

SEuler's ¢(- )-function is defined as follows: @(v) is the number of
integers a, with 1l <a <v which are relatively prime to v .



See Erdelyi, Magnus, Oberhettinger, Tricomi [1]. Vol. 3, p. 172, formula

(32).
Therefore:
2
1 1 T
(14) Py et S M

SO that the series in (7) converges.

Remark

An interesting open problem is to find an expression for the probability

that a function is one-to-one if condition (7) is not satisfied.

Functions of at most linear growth,

or

Thne class & of functions corresponding to
(16) an=a+b(n-—l) a>1l,b>1,u>1,

is of particular interest.

Since a - n+ 1l=a+ (b-1)(n-1), the series in (7) diverges. Con-
sider any ball in tne urn just before tne n-tn drawing and let T be the
additional number of drawings required before tnis ball is removed, then:

n+v

(17) P{T > v} = T 1 - a—T‘sz)L v>o,

r‘(a'b'l +n+ v+ 1) F(fl—;—b + n)
F(——a;b +n+ v+ 1) I‘(a'b’l + n)
- b
a-b- 1
) Bl =+t n+ v‘vr 1, 5
a-b-1 -
B[ 5 + n, -6



in terms of Euler's gamma and beta functions.

random variable T is given by:

fa'e]
(18) E(T) = © P{T > v} =
V=0
1 ° a—g- oty e
by f u (1-u) du
a-b-1 1 V=0 o)
B n g
l p a2
= j u (1-u)” du
a-b-1 L Io)
B[ Tt 0, N
= + o

since the integral on tne right diverges.
This leads to the observation, that thougn tne ball in tie

time n will be drawn out eventually with probability one, tne

number of drawings required is infinite.

To illustrate the enormous growth of waitingtimes in terms
we consider an extremely simple case of (16) and appeal to some
winichl were proved in the theory of record observations.

Tlet

a=2 and b =1, so that the number of balls in the

the n-tn drawing is n + 1. (n > 1). We note that tinis is the

possible growing sequence an

Consider the following process. Before the first drawing,

Tne expected value of the

urn at

expected

of n,

results'

urn at

slowest

mark one

of the two balls and continue drawing until the marked ball is drawn.

When this happens, mark one of the balls in the urn just before

the next
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drawing and continue drawing until this ball is drawn. When this happens,
mark again one of thne balls in the urn and so on.
It is easy to see that by this procedure, we generate a sequence of

independent Bernoulli trials in which the probability of success at tne

n-th trial is Success is defined as the drawing of a previously

1
n+ 1
marked ball.

Suppose now that we define the random variable Lm as the total
number of drawings required until the m-th marked ball is drawn out.
Equivalently Lm is tne number of trials until the m-th success in a

sequence of independent Bernoulli trials in which tne probability of

success at the n-th trial is b, =7 i T

The random variable Lm was studied by Foster and Stuart [47] and
4
by Alfred Renyi [6] in connection with the study of recordbreaking obser-

vations. They proved among other things that:

(19) @) e

m

with probability one and that:

t 2
-u
(20) Pllog L <m + t/@} - I VAR
n -® Jen
log Lm-m
s0 that the limiting distribution of ————— 1is a unit normal
e
'distribution.
However if we set A = Lm - Lm—l’ m>1, L, = 0, tnen Neuts [51

has shown tuat:
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(21) (Am)l/m - e in probability
and
3 -u2/2 du
(22) P{log A <m + t/m} = j e —
n ~ \/ETT
s0 that the limiting behavior of Lm = Al + A2 + ...+ Am is practically
the same as that of the last term Am . This shows that for large m, the

waitingtime between the last two successes completely overshadows even the
sum of all the previous waitingtimes.

M. N. Tata [8] has investigated the sequence Lom=1,2,...
further and has shown, in particular, that the limiting distribution of

Lm+ 1

L
m

exists for m — «, but even it nas an infinite expected value.

This shows that tne penalty paid for making tie balls indistinguishable
is in the waitingtimes involved.

To end tnis discussion in the world of fairy tales, where it started,
we may say that the genie II will exhibit the k-tn ball, less than k
drawings after it was placed in tie urn, provided he knows tine numbering
on tihe balls. If ne has to go by cuance, ne can still be certain to
draw out any given ball eventually, but the number of drawings involved
in each case will be large with considerable probability. Since the
genies were doomed to this activity for an infinite lengtn of time, any-
way, it probably does not matter to them whether tney are guided by know-

ledge or by chance.
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