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1. Introduction

We consider a single server queue witn Poisson input at rate
A > 0, and independent service times, witn distribution H(t). The
mean value of H(t) is denoted by o and we assume that for some

some T > o and finite X 2> 1 and all ¢t >0
(1) 1-H(t) < Ke M

This condition is satisfied in many practical cases. TFor example, if

1 - H(t) m'e-ctg(t) as t — o where e_etg(t) -0 as t - ® for all
e > o, then (1) is satisfied by rating M = - ¢ for some € > o .

If n(s) is the Laplace-Stieltjestransform of H(t), then (1) implies

that h(s) converges in tne open half-plane

P(M) = {s: Res>-1}.
Furthermore:
(2) n(s) > (s+1)™" (s(ik) + ﬁ], s> o

n(s) < (s+M)7" [s(1K) + 7], -T<s<o
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The first inequality implies that:

-1

s [h(s) - 11> - K(s+7), s>o0
so that upon letting s tend to o+, we obtain:

(3) OlﬂfKa

so that T > AK implies 1 > Aa. Therefore: 1 - oA < O implies

N <AK. But 1 < oA is the necessary and sufficient condition for a
transient queue, so thét for any such queue whnich satisfies (l), we al-
ways have T < AK satisfied. This also accounts for tne asymmetry in
the theorems given below.

Random times To’ T are defined as follows
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(1) T, =0 a.s.

(ii) Tn+l is the time instant in whicn all customers, if any,
present at time Tn complete service. If there are no
customers at Tn’ tinen Tn+l is the instant in wnich tne
the first customer to arrive after Tn completes service.

We assume throughout this paper that at t = o, there are i >0
customers in the queue and if i Z 1, a service is just beginning. Using
the results of {1] it is easy to modify our discussion for different
initial conditions.

If we denote by E(t) the queuelength at t+ and consider the

bivariate sequence of random variables:

>o}

{8(r ) T 1 -T5 n



we see that it is a semi-Markov process on itne nonnegative integers,

whose transition probability matrix is given by:

X J .
@) a6 = M B 0wy, a0, g2,
o}
e ao @), ase sz

in wiich H(l)(') is the i-fold convolution of H(:) .

2. The Busy Period

The mass distribution G(t) of tne length of the busy period

is defined easily defined in terms of the {Tn} sequence.

(5) G(t) = P[T < t, &(T)) = o, E(T ) to, m=1,..., n-1 for

some nlE(TO) = 1]

Let 'y(s) be the Laplace-Stieltjes transform of G(t) then y(s) is

the unique solution in P(o) to the equation:
(6) Z =hls + A - AZ] ,

which lies in |z] <1 for all s in P(o). If (-8) is tne

abscissa of convergence of y(s), then we have [5].

Lemma 1 a) If 1 - a\ > o, then +v(s) is tne Laplace-Stieltjes trans-
-1
form of a probability distribution witn mean A[l - oA] ~. Moreover if

1> AK then 6> [/T - /RK)® > o.



b) If 1 -0k =o0 then Y(s) is the Laplace-Stieltjes transform of a

probability distribution witn infinite mean, so that 6 = o.

¢) If 1- ok <o then Y(s) is the Laplace-Stieltjes transform of an

improper probability distribution. Moreover if o< 1< MK then 6 > o .
It then follows immediately from a classical theorem for Laplace-

Stieltjes transforms, [6, p. 40}, that:

Theorem 1l:
If MK> 1> o, then for some © > o and M > o,

(=) - a(t) < et

for all sufficiently large +t.

If AK <1, then for some M > o:

2
1-aG(t) <M e'[‘fﬁ - VK] t
for all sufficiently large + .

Remark:
In the first (transient) case G(») < 1, is the unique root of

the equation:
Z = h(A-\Z)

in (o,1).

We set:

(8) B =V/1-NK



3. The Markov Renewal Process.

Let Mij(t) be the expected number of visits to state j in

(0,t] given that §(TO) =i . In [5] we proved the following theorem:

Theorem 2:
(a) If 1 -o0n< 0, then the semi-Markov process, defined above,
is transient and exponentially ergodic, i.e. for all i,
there exist constants, o < Kij <®, 0< tij < @ and
o< Lij < o sguch that

.I < K ot

- >
(9) lMij(t) Ll = %5 for >t

where o = min[@8,A] and 6 is defined in lemma l.c

(b) If M > \K, then the semi-Markov process is positive re-
current and exponentially ergodic, i.e. for all i,j there
exist constgnts A, > 0, 0<K.. <o, 0<t, <o and

J - 1] - 1]

o< [ L,,l < o such that
- it

. ALt
(10) M, (4) - ——-L. | <K.e 9 for t>t .
i3 by j i3t = i - i

where ujj is the mean recurrence time to state
When i = j = o we know slightly more than that. For if moo(s)

is the Laplace-Stieltjes transform of Mbo(t), then

(1) m  (s) = X'_'):'g v(s) [ - ;\% v(s)T7t

The constant L _ in (9) is then equal to G(«)[1 - G(m*)]“l .



In (10) the constant by = x"l(l-m)'l and L is the usual
intercept of the linear asymptote to the renewal function Moo(t).
A general characterization of the "rates" hj was given in [4]

and [5], to which we refer for details.

Corollary 1. 1If ]-0A < 0 then for some L > o and some T > o
P(t)sne™,

If M> MK then for some L > o0 and some T > o :
-Tt
(12) | (t) -1+l <ne™ ",
Proof: It is known [3] that Po(t) satisfies the renewal type
equation:
P (t) = e-ht ft e—h(t-u) d M (u)
o + o lo

where the Laplace-Stieltjes transform of Mio(u) is given by:

(13) mo(e) = X2 m (s) = v(o)L - 22 v()Th .

1
If T > MK, the result follows by applying the key renewal theorem

with remainder term, proved in [4]. If 1 - Ao < o, the limit of
Po(t) as t tends to infinity is zero. The stated inequality follows
from the fact tunat the function in (13) is analytic in some strip to

the left of the imaginary axis.

4y, The Number of Customers Served During a Busy Period,

Let fn denote the probability that n customers are served

during a busy period, and set



(%) F(s) = % fs

F(s) is the unique solution of the equation
(15) Z = sn[A-AZ] ,

in the unit-disk |z| <1 . [3]

o

Theorem 3. Let T > AK, then % fn = 1. Moreover

n=0
a. If K> 1, then
2n~-1
(16) £ < /5t {7ﬁf£§%75} for all n>o
where o =1 - (K-1)A > o
b. If K =1, then
A lam
(17) fn < > [—————ﬁ] for all n>o .
' (A+1)

Proof: Define
(18) f£[s,F(s)] = n FZ(S) + sF(s I\ (K-1)-F(s ) (M#r )+s[ M= (K-1)2 ]
It follows from (2) and (15) that for real values of s

fls, F(s)1 <o if F(s) <1

s, F(s)] > o if 1<F(s) <1+ %

Assume first that X > 1, and consider the graph of the hyperbola

fls, F(s)] = o with the bounds given above. Tt follows that F(s)

. . 2 .
is well defined as long as s <— VTR - /5) =s > 1, and that

for s < s
- "o



/o
(19) |7 ()| < 3y VK - /)
From Cauchy's estimates on an analytic function we obtain that

(20) £ < max lF(s)[so_n

s|=s,

Combining (19) and (20) we obtain (16).
In the case K =1 (17) follows from (16) by letting K - 1, or from

a similar argument as above, using now the parabola f[s, F(s)] =o .

5. The Waitingbime Distribution in the Stationary Case.

*
Let W (x) be the distribution of the virtual waitingtime of a
customer arriving in the queue in its stationary phase. Let w(g)

be its Laplace-Stieltjes transform. Then [3]

1=
1 - )L[k];_(.s_)]

(21) W) =

Since we assume that N ® o and 1 - oA > 0, we obtain that
' * =1t *

1-W(x)<Le for some r > o. Since W (x) is a distribution
function, w(s) has its first singularity then at -7 or at the

solution of

1-nh(s) _ 1
(22) - = 3
in - M < s < o. We denote this solution by ¢ if it exists.

Lemma 2. If T > K\, then o> 1T - K\ .



Proof: Iet =~ TN+ I\ <8< o. We obtain from (2) that

S0 that

1 - h(s) s + M -AK
I z A (s+T) Zo.

The lemma follows fiom the monotonicity of the Laplace=-Stieltjes trans-

1-n(s)
oS8

fornm

Corollary: If T > KN then for some constant C > o

* -
l1-Wi((x)<ce -5 Jx for x> x_ . To improve the bound for o
im lemma 2, we prove:
Lemma 3: Iet -~ T < o be the abscissa of convergence of h(s) and

let 1 - H(t) = emﬂtg(t). Then (22) has a unique solution in

- N< s <o if and only if

©

@) COLES.

Proof: Let hl(s) = -l—js—rl(—sl be the Laplace-Stieltjes transform of

t
(%X [1 - H(x)ldx. Then hl(o) = 1, hl(s) >1 for -N<s<o and
o .

hl(s) increesing as s § ~ T. Hence (22) has a unique solution in

- <s <o if and only if

(2k) Lim  hy(s) > ==
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Let C= 1lim h(s) <=, then (24) is satisfied if and only if
s =1

C>1+ nx”l. By the assumption on 1 - H(%) we obtain that

C -1 ®
= lim h (s)a = g(t)at
e mGas [

which proves the desired result.

We remark that condition (23) essentially states that the
mean arrival time cannot be too large.

If g(t) ~t° as t - for o> -1 as is the case with gamma
distributions, then (23) is satisfied. In other cases (23) might
fail. For example, let 1 - H(t) = il vt (¢t + a)]-l for a > o,
Then (23) is satisfied if and only if a < Kzﬂz, {7, p. 16, #37.
Similarly for 1 - H(t) = e-ntt_zsineat, where (23) is satisfied if
and only if a > 2(xm)™T, [7, p. 13, #2].

Collecting the above results we obtain

Theorem 4: Tet =~ T < o be the abscissa of convergence of h(s)

and let 1 - H(t) = e-ntg(t).

(=~}

* -

(1) 1f X g(t)at < % then for some L > 0% 3-W (x) <Le The
o]

for sufficiently large x.

@

(1) If Y g(t)dat > % then for some L > o0 and all ¢ > o
"o

N e .
l-w(x)<Le lo-e]x for sufficiently large x .
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6. The Virtual Waitingtime

Let M(t) be the virtual waiting of a customer joining the

gueue at time %, and let
(25) w(k,x) = P[N(t) < x]J .

*
In particular, if M > K, W (x) = 1lim W(k,x) exists by Lindley's
tT - o
theorem [3]. We discuss now the exponential decay of W(t,x) to its
N .
limit W (x) as t = « under the initial condition P[T(o) = o] = 1.

We put

(26) M{u,s) = r ro e'Ut'Sthdxw(t,x) .

From {3, p. 51] one easily proves:
Lemma b: If u - s+ A[1 - h(s)] > o then
(27) M(u,s) = {u-s+h[l-h(s)]}-l{s~h[l-h(s)] - E;X%fquaﬂ

Theorem 5: Let B =/M - /XK > o. Then for both x and t sufficiently

large there exists a function M(x), independent of t such that

>
(28) [W(t,x) - W (x)] < u(x) eV Bx - B¢

o0
Proof: Let M(u,s) = J e-utdtQ(t,s) where [3, p. 51]
o



t
Qlt,s) = est-[l-h(s)]xt [1-s E e-su+[1-h(s)]xupo(u)du]
and

(=]

j g U8 Po(u)du = [s+h-ly(s)]-l .
o

2
We prove that M(u,s) is convergent if s> - B/ and u > - B .

Referring to (27) we know that s - A[1 = h(s)] converges at

s = - 8/M , for B< /T and hence -/N B >-1. By lemma l.a
y{u) converges for u > - Bz and since 1 + k[liﬁiEQ_] > o for
u> - 82 also ufu + A - Xv(u)]-l converges if u > = 82 .

The inequality (2) applied at s = - B/T yields

w+ B/ + A[1-h(-B/M] > u + 8N - BAK = u + 8° > o

so that M(u, -B/T) converges for u > = 82 . By a classical

theorem on Laplace-Stieltjes transforms [6, p. 40] we obtain that

(29) 6, = B/T) - w(e B = ofe™® *as oo
Let now

(30) 5 = e (e, - ()

then

-]

-sX 82
j e dJ(x) =e t[Q(t,s) - w(s)]

12

and this converges for g > - B/M . By the same theorem used above we

obtain that
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(31) J(x) = J(») = o[e-B/ﬁ‘xj as x - @,

Now J(») = o, Hence for some X, large enough there exists a

constant C(XO) sucnt that

I(x) < clx ) S

Combining this expression in (29) and (30) finishes the proof of

the theorem.

7. The Queuelength in Continuous Time.

Let E(t) be the number of customers in the queue at time t

and let
M (t) = PIE(%) = k|8(o) = 1] .

The connection between these functibns and ﬁhe renewal functions

is: [2]

&
(32) I, (t) = jo oM (t=u) g M, () if  §=o

. t .-
z [ ) DI e @) i g o

m=1 Yo J-m).
m
Let us introduce Qm(t) = ¢ Mt (;?) [1-H(t)] m = 0,1,...,3-1
(33) A= jo Q (t)at

We can assume + 0, since J = o was considered in cor. 1.



L

Theorem 6: a. If T > AK then there exist constants o < Kij < o

such that for sufficiently large +t

l J Aj n —rjt

(34) m.(t) - » L8

+J m=1 p‘mm < Kij ©

where r., = min A and A and are defined in Th, 2.
m mm

l<m<j

b. If 1 - o\ > o +then there exist constants o < Kij < @

such that for sufficiently large +t

-0t
(35) Hij(t) < Kij e

where o0 is defined in Th., 2.

Proof: We obtain from (32) and (33) that

i A, 3 t ©
|o, . (%) - y  imm | < % | j Q. (t-u)d M, (u) - - f Q.. (t)at]
J m=1 “mm m=1 o JI°H L bpmio 970

Applying the Key renewal tneorem with remainder term [47] we obtain

t 1 ® At
(36) I Io Qj_m(t~u)dMim(u) - E;;; XO Qj_m(u)du]_f Ci,j-m e

for some positive constants C, and sufficiently large t .

i,j-m
J
If weput K,. = % C ., =~ and v, = min A then (34) follows.
I e 1 Tlsmgy B

If 1~ o0\ <o the argument is similar to the proof of cor. 1.
Other queueing models may be stﬁdied by similar methods, for

example GlIMll and bulk queues with Poisson input as discussed in

L21.
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