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1., Intrcduction ard Suvmmary.

Consider the following model, the practical applications of which will be
discussed elsewhere. An urn contains an unknown number, N, of white balls,
and no others. An estimate of N is desired, based on the fdllcwing sampling
procedure, DBalls ave dravn at random, one at a time, from the urn. A white
ball is colored black before it is returned, a black ball is returned unchanged.
The ball is always returned before the next ball is drawn. We are interested
in two problems: (i) what stopping rule t to use to terminate sampling, and
(ii) how to estimate N after we stop.

The present problem (also in a more general setup) has been considered
by several authors, notably L.A. Goodman [5], Chapman [l], Darroch [3] and
Darling and Robbins [2]. We shall refer to their results in the sequel.

Let v, bi denote the (random) number of white balls, black balls, respec-
tively, observed in the first i 'draws (Wi+ bi = 1) . We shall consider mginly

the following stopping rules.

Rule A. ILet A > O be a fixed integer. By = A.

Rule B. TLet B> O be a fixed integer. + -inf{ilbi = B} .

B

Rule €. Tet C > O be fixed.

—_ - - > : = . . . >
tq 1nf{1|bi > CWi} 1nf{1!1_“ (c + ;)wi}',
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Rule D. Let - ®< D<o be fixed.

= inffi > = inffils > . .
tD = 1nf{1|bi > max(l,wilog W+ wiD)} inf{ili > max(wi+ 1,w,log W, + Ni(D+l))}.

Rule E. Let {DJ.} be such that 1lim Dy == .

- » . >
ty 1nf{1‘bi > max(1,v, log W+ wiDWi)}

Sinqe v, < N each of these rules is bounded, and thus clearly stops with
probability one.

Rule B has been mostly investigated. See [5]. [1] and [3]. Rule D has
been considered in a recent paper [2] by Darling and Robbins, who show that for
any 0< o<1 and a suitable choice of D one can have PN(WD= N)Z1-¢
uniformly in N, where Wb is the total of white balls observed before stop-
ping. (See Section 6).

The motivation for consideration of rules A to E stems from a theorem
on the limiting distribution, as N -w

, of LAY in a sample of fixed size

i, for various relationships between i and N. We restate the theorem here,
since we shall need part of it in the sequel. Different parts of the theorem
have been proved by various authors. See e.g. Rényi [8], where also proper
references are given., Let u;, = N - W, = number of unobserved white balls in
the sample of size i (= number of white balls in the urn, after i draws).

Since there is a linear relationship between LIP b,

30 W ve shall express the

limiting distribution for one of these variables only. Let ¢ denote the dis-

tribution function of a standard normal variable. We have,

Theorem 1. ILet N~ «

. 1/2
. = A ; i = i .
Case A. If i = (2N N) where KN O then PN(bi 0)-1



Case B. If i = (2NKN)1/2 where XN “ A and 0< A<
: -A Gk
then PN(bi =X)~e MMk k=0,1,.,.
Cage C. If i = a where § N"l/z fa . <logN-p_ and £~ p=o
£ i N N N N7 By

w,- Bw,
i

then P_ (—- <x)-¥(x), -o<x<o |,
N (var Wi)l;2 -

Case D. If i =N log N + NaN where aN 2 a and -*<g<o®

then PN(ui =x) - e"k hk/k: , k=0,1,..., where A =e™®,

]

] - = -
Case E. If i =0NlogN + Na, where ay @ ®, then P.N(wi N)— 1.
We consider mainly the Maximum Likelihood Estimate (MLE) of N, denoted

ﬁ. It turns out that if when we stop we have seen w white and b black balls,

then ﬁ = ﬁ(w,b) and does not depend on the stopping rule used, though the dis~
tribution of ﬁ clearly will depend on the stopping rule.  The value of ﬁ(w,b)
is discussed in Section 2. In Section 3 we briefly consider Rule A. It satis-
fies PN(ﬁ =®) >0 for all N Z A. Rule B is discussed in Section 4 and it is
shown that ZBﬁ/N has an asymptotic chi square distribution with 2B degrees

of freedom, (to be denoted ng), as N = ®, In Section 5 Rule C is considered,
and bounds on the distribution of (ﬁ - N)N'l/a in terms of the normal distribu-
tion are given, Rules D and E are considered in Section 6. Let [x]* be the
largest integer not exceeding x. For Rule D it is shown that ﬁ - N+ [K]* has
an asymptotic Poisson distribution with parameter A = exp(-D-1) and for Rule E
PN(ﬁ=N) = 1. The exact and asymptotic distributions of the corresponding t's

is also considered, and is closely related to the distribution of _ﬁ.



2. Maximum Likelihood Estimation of N.

For any stopping rule t, the probability of having observed exactly w
white and b black balls when we stop clearly depends on t as well as on

N. ZLet PN(w,bIt) denote this probability. It can be shown that

i

(2.1) P (w,blt) = (N), h(v,p)/n"*® 1,2,..5, b=0,1,...
where (N)i = N(N-1) ... (N-i+l), aﬁd where h(w,b) depends on t but not on
N. (We shall see the particular form of (2.1) for Rules A to C later). Thus
for any w,b such that h(w,b) 0 ﬁ(w,b) is the positive integer which maxi-
mizes (N)W/Nw+b. Maximum likelihood estimation for our problem has been con-
sidered by Darroch [3], and for a mathematically equivalent problem by Lewontin
and Prout in [6]. (The claim of asymptotic normality of the MIE in [6,p.221] is
clearly generally false, as seen from Section 3 in conjunction with Theorem 1.)

Direct inspection yields

(2.2) N(w,0) == for w>2, N(1,b) =1 for b >

(The case w =1, b =0 is of no interest, since the first ball drawn is always

white, and thus more than one draw must take place in order to obtain information

about N.)

Nw+b

We shall treat (N)w/ as a function of a positive real variable N,

N ® w=1. We have

d{(g)w/uw+b} q:} N - (N)w

(2.:3) 3N = {2_. N3 -~ N P




Equating the right hand side of (2,3) to zero, yields that the maximum value

N = N(w,b), satisfies

w=1
(2 )-l-) w+b = \,‘
N(T'"sz) ,]'—‘O N(Wbb)'j

Clearly (2.4) has a unique finite solution, and

ﬂ'(w,b) = [T‘f(w,b)]% or [N(w,b)] or both,

vhere [x] is the smallest integer not less than x. The right hand side of
(2.4) is less than 1og {N/(N-w)} and greater than logf (T\f+l)/ (N-w+1)}. 'The

solution of

(2.5) T2 = loglx/ (x-w))

is given by x = (w+b)/M(s), where s = w/(w+b) and

(2.6) m(s) is the solution of s = (l-é'm)/m

and can be obtained from existing tables. Thus gl(w,b) is approximately given by
(2.7) f\T(w,b) X (wb)/m(s) vwhere s = w/(w+b) .

The interpretation of (2.7) is that the MIE is approximately proportional to the

Sample size, with the proportionality factor a function only of the proportion

of white balls in the sample drawn.



More accurate information about N can be obtained by considering the

ratio of (N)W/Nw+b to (N-l)w/ (1\?-1)W+b , Wwhich we denote by g, b(N)’ and
2

vhen no confusion is likely, by g(I)

N 1w+b
(2.8) gw,b(N) = = (1- ﬁ) , NZw .

Since (I\I)W/’VI\T"‘H-b is a continuous function with a unique maximm at N, and is
strictly increasing for N < T\TJ, strictly decreasing for N ~ 'ﬁf, there exists

a unique real value N such that
3* % 3%
(2.9) g(N) =1, g(N)>1 for N<N and g(N)<1 for N> N .

Thus ﬁ(tv,b) = [N%(W,b)]* , except when N is an integer, in which case N
is not unique, and can be taken to be N* or N* -1,

For any function Xk{(w,b), one can determine whether ﬂT(w,b) z [k'(w,b)]*
or ﬁ(vr,b) < k(w,b) by computing gw,b(k(w,b)) and noting if it is 2 1, or

< 1, respectively. Notice that always N(w,b) -

3. Rule Al

For a fixed sample size A, +the asymptotic distribution of vy is given in

Theorem 1, for the various relationships between A and N. The exact distribu~

tion is given by

k
(3.1 Bl= 10 = () ) (V) @ = ), s, = 1,0, w
§=0

vhere Slgk) is a Stirling number of the second kind, and is defined by the



identity (3.1), See e.g. LL,p.92]. (compare (3.1) and (2.1).)

Assertion 1, For every fixed A and Rule A

(3.2) P(N=2)>0 forall N>4, and lim P (N=®)=1.
N Z O
(3:3) For every fixed N lim PN(N =N)=1 .,
Iixed N 420,

Proof, (3:2) is immediate from (2,2) and Case A of Theorem 1. The assertion
can«’""actually be strengthened to a corresponding statement for every uniformly
(iﬁ N) bounded stopping rule , and other cases confirzﬁing with Case A of
Theorem 1. We shall show that for every fixed w, ﬁ(w,b) =w for all b
sufficiently large. Then (3,3) follows, since clearly for fixed N,
A{Emé ;Pﬁ(VA = N) = 1,

Set b = W2, and W=w+l in (2.8), to get g ,(w+l) < (w+l)e™'< 2e"t < 1,
" " W, W o
Thus N(w,wz) S w. But for any w,b N(w,b) > w, and the assertion follows,

(In Section 6 it will be clear how the value b = w> can be improved upon, )

,—l'"c Rule B.

The distribution of ty is given by (cf. [3], (16))

(k1) P(ty= k) = (W), _p (&-B) séﬁiB)/ ¥, k= B+l,es., BHN .

This follows directly from (3.1), since tB = k if and only if wk_l=k-=B and

the last draw results in a black ball. The asymptotic distribution of tB is



given by
2
tB
(4.2) lim PN(-ﬁ'f. x) = FEB(X)' , so<x<o

N= e

where F is the distribution function of a variable, (k.2) is a

'\12
2B . 2B
special case of [5, Theorem 6]. (See also [1, Section 31).

Assertion 2; For every fixed B and Rule B

~

" 2BN
et < p! = - < <
1\Tlin.’mm PN( 5 < x) Fop (x), ol x<®@ |

Proof. We shall show that
| 2 o N 2,
(4:3) [(t5- B)7/2B]" < N < t3/2B

and thus the assertion follows from (4.2). (4.3) follows if we show that for

every w and b= 0

(bok) -[wz/zb]* < N(w,b) < (wsb)o/ep .

To prove (4.4) it suffices to show that

(h5) | gw’b(wz-/zb) >1 and g‘_’,b('(w+b)2/2b) <1,

vhere g . is defined in (2.8), and where the second inequality must holid for
. iy ’ ) . -

all w and b > 0, but whete the first irequality must hold only for w > 2b,



since if w<2b then [w'/2b]" < w< N(w,b) , and thus clearly the left hand
inequality of (k.4) holds for w < 2b.

Set k =w + b, Using 1 - x< e™* we have

: P . e D
(+.6) g b((w+b) 2/2p) = m (1 -2k < k2—2blzk:-b) o /s

Now for every fixed b the right hand side of (4.6) tends to 1 as k — o,
and its derivative with respect to k is positive. Thus the second part of

(k.5) follows. Similarly, (using 1-x> expf;x/(i-x)})

(1- Zbywtb 5 Wo exp ~2b (w+b )
2

W =2bw w w =-2bw w2 - 2b

T g, 6/) -

and the right hand side of (4.7) tends to 1 for every fixed b, as w= o |
and its derivative with respect to w 1is negative for all w = 2b, and thus
the first part of (4.5) follows.

Actually (h;h) can be strengthened to

. (W42b/ 31 )%
(4.8) Lt L2l ]

2 .
< N(w,b) < [g-s+w(—23--§]%)+2-
and (4.3) can be replaced accordingly. The proof of (h;8) is similar to that of
(44}, but the aigéb¥a becomes tedious.

For Rule B there exists a unique unlformly minimum vailénce unbiased esti~
mator, (UMVUE), glven by Goodman [5, Sectlon 3] Set W= tp- B = numbeg of

B
white balls seen until stopping. Goodman shows that the UMVUE is given by

",’ P .
p B 2 1 1
(k.9) R S
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where Pl and P2 are polynomials of degree 2B-1 in WB . The MLE and the

UMVUE thus have the same asymptotic distribution. (4.8) yields for the MIE

=

2
B, 2.1
2B

RN <§<
* (3-FWgrc BN

where C.(B) and C,(B) do not depend on W.. This should be compared with
t ? § ) (i)
(k.9). Darroch [3,p.351] shows that the UMVUE equals S, / Sy op -
B B

follows directly from (4.1), since summation of (4.1) over k = B+l,... B+N

This

yields 1 for every N and B. Darroch also considers the MLE, but does not

obtain its asymptotic distribution.

5. Rule C.

Let WC denote the number of white balls seen until stopping. tC can

take on only the values [(C+1)k], k = 1,..., N, (the square bracket is super-
fluous for integer C), and ty = f(c+1)x] if and only if Wy = k. Set

C+l =y . The exact distribution of tC is given by
(5.1) P(w=k)=1>(t=[§/k])=(n) h(k)/N[Yk] k=1 N
* NM'C N‘°¢ k¢ ? rreee

where hc(k) are constants given by

k-1 .
= (k), h (i)y .[vk]

(5.2) (1) =1, n&) ={1- ) k{Yi‘j —, k22
i=1

The proof of (5.1) is as follows. There are (N)k possibilities of drawing

k distinct white balls, and N[Yk] ways of drawing any sample of size [vk] .
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We have denoted by hC(k) the number of ways of ordering k distinct elements,
(allowing repetitions), in [yk] places, in such an order that counting
from the left, the number of repetitions among the j first elements remains
less than C times the humber of distinct elements among the j first, for
all j < [yk]. since for every N = 1,2,... (5.1) is a distribution, i.e. the
sum over its elements is one, the induciion formula (5.2) follows.

It is easily scen that also for Rule C a unique UMVUE exists., It is a
iunction of Wy, which we denote by aé(wc). The sequence aC(k) is the
(unique) solution of the equations

k

(5.3) ZZ ag(1)(k); h (1) Vil | k, k=1,2,,..
i=1

The solution is given by the inductive formla

k-1

s Cvi]
(5:5)  ag(l) =1, a(e) = {x - El ag(1) (), n (1) ¥AL} h—lgm_

k > 2. (The UMVUE is not only integer valued. E.g, al(3) = 1.,8)
Consider now the MLE. If upon stopping we have w white and b black

balls then w,b must satisfy b > 0w and b-1<Cw, and thus
. =Y . -1
(5.5) (v + L/w)"™ < wf(w+ D) <y

and equality holds on the right hand side of (5.5) whenever C is an integer.
Thus for Rule C the approximation (2.7) yields approximately N ﬁftc/m(v-l),
i.e. the MIE is approximately proportional to the stopping time, with the
proportionality factor depending on ¢ only, How close this approximation

actually is can be seen from
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Assertion 3. Let s be fixed, let m(s) be as in (2.6) and let

(5.6) H(s) = (1-sm(s)) / (s-l+sm(s)) .
Then
(5.7) H—E) - H(s)1" < N(r,b) < %-?Sl) for all w,b with v'r_z'ﬁ =s .

Proof. The right hand side inequality follows since for w/(w+b) =

Ww+b R _n(s)wtb 1 -m(s) _
&,b ( m(s ) ~ Issm(s) (1 W+b ) Tesm(s) © =1
On the other hand, substituting %%5) -H for N in (2.8), where H> 0
is some fixed constant, and writing i = w+b, w = si yields for i > Hm(s)

(these are the only values of interest)

w+b

blie) - B = vy (-

Differentiating the above with respect to i and using the inequality
log(lsx) < sx (0 < x € 1) yields, after some algebra, that the derivative

is less than

(1 = 2E) )1-1 n®(s) (4{ (1esm(s) ) (F+1) s} (15 Jm(s )H (1) )
1=Hm(s) (im(s)){1(1-sm(s) )-Hn(s)}>

For this to be negative for all i > Hm(s) the value in the curly bracKets

in the numerator must be nonpositive:. Equating the curly bracket to zero and
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solving for H yields (5.6), and is easily seen to be positive. (5.7) follows,
In order to consider the asymptotic distribution of ﬁ, we need to kngw

(wvhepever € is not an integer) how close m((y+l/w)'l) is to m(y’l), for

large w. (See (5.5)). This can be obtained by differentiating m(s), as

given by (2.6). Some algebra yields

: -1 - ~1 -1
(5:8)  un win((v/@™) - nv™H} = w6y / @™ - o) .
Wt
The author has not succeeded in obtaining an exact asymptotic distribution
for tC and ﬁ, but we proéeed to give bounds on the limifing distribution in

terms of the standard normal distribution., ILet
o 42 S P TR w2 2, a1\2
(5.9) 0% = u(y")(yen(v"Y)/ (mly™t)-c), and o™ = oZ/(m(y' 1)) .

It becomes abparent later that there are good reasons to believe in the correct-
ness of the following

Conjecture. For Rule C and every fixed C > 0

, -1
(5.10) (tC-Nm(Y'”) < x) = &(x) <x<
.10 lim P x) = ¢(x e < < o

2 gow N A2 = >

and
. , ﬁf;;m .

5.11 llm P - <x = @X _m<x<co

( ) T N(§172;¥ < x) (x) ,

If the correctness of (5.10) is established, then (5.11) follows from Assertion 3,

(5.5) and (5.8).



1k

We have

Assertion 4. For Rule C and every fixed C > O
R ————

. b Nm(y™") .
(5-'12) Yim inf PN (_j_7§—_— f_ X) z @(X)D - < x < o
N2 e N (o]
and
ym i N =N
5.13 lim inf P < x) > (x mo< x< o

g_rg. (5.13) follows from (5.12), Assertion 3, (5.5) and (5.8). To
‘ ¥ 3 < : 5 < +
show (5.12), notice that for everyk k] S k implies tc < vk Set
Ky = fon + BNl/ 2 x]" . We shall find the values of « and B for which

Case C of Theorem 1 yields a useful approximation, namely
i ' < o

(5.14) | P(W[ka] < k) 3(x) .

We have

By ] = M=) ¢ 12 a8 4 o(t/?)

(5:15) |
var WWKM = n{e™ ¥ (12(1va)e )} + o(w) )

Hence for (51&) to hold we must have o = (1;e-C[Y) » which together with (2.6)
Srielés ® = m(y'l)/y . With this value of o we have from (5.15), (2.6) and

the definition (588), Var W[Ykl\] = NUg(m(Y;l)4C)2/y2+ o(N) Solving for 3,
f
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substituting the value m(y-l)/v for @, now yields B8 =o0/y . Thus we get,

for Ik = [m(y L)y + GNl/E/V]% .
P (t < Nm(y~ ) + xcﬂl/ )> P N(W[YRN] < kN) - ¥(x) ,

which yields (5.12).

We proceed to obtain an upper bound on PN(tC < [ijg, and for simplicity
we shall assume that C is an integer. Then tc = vk implies that the last
Y balls drawn were black, and the first +vy(k~l) draws resulted in exactly k

white balls, Thus, by (3.1)

(), sik) K ()
(3416) Byl = ¥) = Ryl ) S ) (e )

with strict inequality for all k > 1 ., Set

(5‘17) (k) = k! S((k l / kY(k-l)

We shall obtain an approximation of vC(k), using the result of Moser and

wyman [7], by which

_ v o.n(k) [ \k n(k) 1
say s Gtean: @) L e
( ) (k-l) {n(k)}Y(k-l) k! {ZUy(k-l)(en(k)-l—n(k))}

where, for abbreviation we have let n(k) = m(k/y(k-1)). (See (2.6).) (The
approximation to Sék) given in [7] cannot generally be taken as a limit

statement., It can, hOWevér, when k, n tend to ® so that k/n ™ @ where

0<a<1.) By Stirling's formula, (5.17) and (5.18) we have
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(k) |y }1/2

{ en(k) -1 k vy -n(k) Yy
G290 ) I Y- i n(1)

Ley(l_e-n(k))y

Clearly n(k) - m(y'l) as k™ ® , The rate of convergence can be obtained

through differentiation of m(s). This yields
(5.20) kn(x) - m(y™H)} = aa(yh) / n(y™) - ¢},

and some algebra shows that (5.20) implies

—l

oo fe ) - ) (-

) -C )-C

.

Thus (5.19), (5.21) and some algebra yield

k -m(y'l) Y -1 -1/2

-1 -1
where Py = (em(Y )--l){e(l-e"m(Y ))}-Y .
Detailed analysis shows that (5.22) can actually be strengthened to

k -m(y-l) Y -1 -1/2 -1

(5.23)  vy(e) = P Wiy - o) Y2 (v 0l
This yields

Assertion 5. For Rule C and integer C

b= Nm(y

(5.24) 1§qﬂszp Py (——§i7——__—— <x)<u @(x), “-®<x< o
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and
(5.25) lim sup Py (s i - N <x)<M, ¥x), ~°<x<o |
N = e ﬁﬂ - - C
where
-1
(5.26) My = (- Y iy o)ty 1 as cme .

Proof. (5.25) follows from (5.24) and Assertion 3. The proof of (5.2k4) is
similar to Feller's proof [k4,p.169-173] of the DeMoivre-Laplace Theorem, and

we therefore only outline it briefly. For fixed C set q(k) = (E)(§)Yk vc(k),

and k = 6k + m(v-l)N/y « Stirling's formula and some algebra yield

2

l 8
(521 q() ~ 7B (e V) Yy D-c)en(E) 4y Eyr. B /e

7
82 2, 83

where £(k) = ,“k Y (m(y )~C) - .k y2 1 + L )+ vee .
T oayH ey e a2 (v D)2

Suppose éi / N2 = 0. (This implies 6k/N = 0). Let o(x) ='(2n)-1/2 exp(-x2/2),
Using the notation (5.9) and (5.26) we can rewrite (5.27) as

-1/2_

(5.28) alk) ~ i, W Logs, 130y

Approximating the Riemann sum by the corresponding integral, yields, for any

integers o, B satisfying

N
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(o - My ™) /v)3/F - o, (By - m(y ")/ = 0

g
N -1 -1
(5.50) “© RN A
5030 Z q_ k - M { ~r - - - . } -2 O -
C v/ 2 1/2
ey N / afy N / oy
\ N
aN-l
One can show that @ @s above can be chosen, which satisfies E: PN(WC= k) = 0.
=1

(5.2L) therefore follows from (5.16) and (5.30) upon taking

BN = [Nm(v_l)/y + le/2 o/y]l. It is easy to see that 1im M, = 1. Lengthy
algebra also shows that d M, / d4C < 0, and hence (5.26) follows,

Some values of Mé are of interest. We have

=1.003, M.=1+2zx10"" .

M 9

= 1,070, M, = 1,013, M

1 3

It is worth while to remark, that the true variance, divided by 'N, need
not necessarily tend to the "asymptotic variance”, 02, given by (5.9). For
example, for ¢ <1 (5,1) yields PN(tC= 2) = 1/N, and thus the first term
alone adds to the actual variance approximately Nm(Y-l)z, whereas it clearly

has no influence on the asymptotic distribution.

6, Rules D and E.

The definition of t, as given, rather than inf{ilb, > w log w.+ w.D} is
necessitated in order to prevent us from stopping with one observation only, i.e.
with no black balls observed, which we would have to, whenever D < 0, according

to the latter definition, For D > O the modification is redundant., A similar

D%
remark goes for Rule E, tD can take on the values k +1 for k = l,...,[e D] 5

and the values [k log k + k(D+1)] for k = [e™]" + 1,..., N. We shall consider
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D as fixed, and abbreviate notation by setting

D

. k+1 for k< e .

(6:1) a = { Ze ;
k log k + k(D+1) for k> e

The exact distribution of t, can be obtainéd along the same lines as the
distribution of tc was obtained in Section 5, and similarily the UMVUE can
be obtained. We shall not consider this in detail, but shall find the asymp-
totie distrivation of tD and ﬁ; It is immediate from Section 4 that

PN(tD > emD)'* 1 as N=®, Let UD be the number of unobserved white balls
When we stcp. Then tD = [ak] if and only if UD = N~k: Rule D was first con-
sidered by Darling and Robbins, in a recent paper [2]. They prove that

(6.2) PN(UD =0)~ eix ﬁhere A= e-<D+l)

and thus suggest WD, the total of white balls observed, as an estimator for
N, (for D chosen large enough). A slight modification of their proof yields

the strengthening of (6.2) to become

Assertion 6. For Rule D and every fixed D, -®<p<o
. ) Y R Z
(6'3) PN(UD = j) - e ha/jz 3 j = O:)l:-.'u', where A = e (D+l) .

Proof. It is easy to show that for every fixed k, k=0,1,...

k
.
(6.1) msup P (U SK)S Y e agr

N— =

j=
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Notice that U_ < k implies w <k (where wu, is defined in Section 1),
D - [a'N_k} 1

and thus P (Uj < k) < (u[ 1S k). For fixed k define Dy by

-k

(6‘5) aN-.'.k. = N lOg N + N(DN * l) ©

Then by (6.1) and simple algebra it follows that Dy D as N=® , The
condition of Case D of Theorem 1 is thus fulfilled, and yields (6.4), It is
much more difficult to show that

k
(6.6) Liminf  PUj<k)> ) el

N

§=0
Since the proof is very similar to the proof of [21, we shall not repeat it here,
so as to save space.

As is well known, the maximal term (mode) of a Poisson distribution with
parameter A is the [X]* th term (except when M is an integer, and both
the Ath and A-1st terms are maximal,) It therefore seems plausible that
unless tD stops very early the value of the MIE will be approximately

Wy + [e’(D+l)]*, We have

Assertion 7. For any =®<D<w® > D

(647) ﬁ(Wa[W log w + wD]) > w +[e’(D+l)]*

and
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and
- - *
(6.8) N(w,[w log w + wD]) = w + [e (D+l)] for all w > Ky -
Proof, We use (2.8) with N=w + a, a > 0. This yields
w+a, w log w + w(D+1) >
(6.9) = (- w+a) ,Lw log w + wD] (w +a)
> ¥t g 1 )W log w + w(D+1) + 1
w+a ?

and as w = ® all members of (6.9) tend to e-(D+l)/a . The derivative of the

term to the left in (6.9) is negative for all w > e'(D+1), and thus setting

~(D+1) yields (6.7). Also the derivative of the right hand term in (6.9)

-(D+1)

a=e
is negative. PFor any a > e the limit in (6.9) is less than 1, and

thus for all w sufficiently large (6.8) follows. The constant K, depends
only on D, Forall D~ 0, w=1 and a=1 the value of the left hand

side of (6.9) becomes D« 1, and since the function on the left in (6.9)

1
(5)
ig, for every a and D a decreasing function, Assertion 6 can be strengthened
to yield

(6.10) ﬁ(w,[w log w + wD]) = w for w=1,2,..., whenever D> 0 |,

Assertions 6 and 7 yield

Assertion 8. For Rule D and any -® <D< ®
B -
(6.11) lim P (N = N-J+[h] ) = e A5, 5= 0,1,.44, Where A = e (D+1)

N—= =
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For Rule E

lim Py(N=m)=1 .

N= o

Thus the estimator proposed in [2] coincides with the MIE, for D > 0, and its

b
\

distribution is given by (6.11).
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