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Summarx

Two general cases of multiple linearly interconnected linear
birth and death processes are considered. It is found that in
general the solution of the Kolmogorov differential equations for '
the probability generating function (p.g.f) g of the random
variables involved is not obtainable when subjected to standard
methods; although one can obtain moments of the random variables
from these equations. A method is considered for obtaining an
approximate solution for g. This is based on the introduction of
a sequence of stochastic processes such that the sequence [f(n)}
of their p.g.f.!'s tends to g as n — « in an appropriate manner,
The method is applied to the simple case of two birth and death
processes with birth and death rates xi and by i=1,2, inter-
connected linearly with transition rates v and & (see Figure 3).
For this case some limit theorems are established and the proba-
bility of ultimate extinction of both the processes is considered,
In particular, for the special cases (i) xl =6 =0, - "with the
remaining rates «= time dependent and (ii) Ay = 5 = 0, with the
remaining rates constant, explicit solutions for g have been

obtained and studied.
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1. Introduction

Two or more interconnected birth and death processes (B-D
processes, for short) arise so often in practical situations-
particularly in the field of biology ~that they deserve special
attention leading towards their theoretical investigation. The
interconnections of B-D processes may arise, in biology for
instance, due to mutations occurring in self-reproducing entities
such as bacteria, viruses, etc. It is well known (refer Mitchison
(1954 )that when susceptible bacteria are exposed (in vitro or in
vivo) to antibiotics, resistant strains of bacteria develop -
possibly due to mutation., A similar phenomenon appears to occur
when populations of insects are exposed to insecticides, such as
D.D.T. The development of:so-called 'resistant - strains of ‘bacteria,or
of insects which can multiply freely in the presence of antibiotic
or insecticide is a well known phenomenon of great importance in
medicine and public health, The development of such strains is a
very undesirable phenomenon in the chemotherapy of infectious
diseases, particularly because such resistant strains can spread
and infect other persons, who then cannot be treated effectively
with the antibiotics,

More recently, the studies concerning the production of blood
cells indicate several stages in the cell-differentiation process,
Here, the interconnection between any two consecutive stages of
the cell appears to be due to some inner changes in the cell;
although at each stage it is free to undergo a growth process.
Readers interested in this application may refer to a series of

papers by Till, et., al (1964), Siminovitch et al (1963) ,Fowler
et al (1967),
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The work concerning the mathematical aspects of interconneeted
birth and death processes which has been done in the past,although
small‘in-amGUHt,needsva;brieffmeﬁtion;Armitage (1952) ‘.. has con-
sidered the case of two interconnected growth processes in a
probabilistic manner but under a rather restrictive assumption;
namely that the population growth at each of the two interconnected
stages is deterministic. Wiggins (1957)has studied a case of two
interconnected processes where mutation is assumed to occur only
from normal cells to mutants. Furthermore, the normal cells may

die but do not multiply and the birth and death rates involved are

assumed to be independent of time.

One of the reasons that not mﬁch attention has been devoted to
interconnected B-D processes in the past, even though they arise so
often in practical situations, is the mathematical intractability
to Bolutién. of the differential equations concezuing these. - .-
processes., . . Because of this, there has recently been a trend
towards considering -not the original model of interconnected B-D
processes~ but a much more simplified one where the B-D processes
are in effect left disconnected., Nissen Meyer (1966)has considered a
simplified model concerning the effect of antibiotics on bacteria
where the two B-D processes are left disconnected for obvious reasons,
Here the number of mutants appearing during time interval (0,t) is
assumed to be a Poisson process with Poisson parameter
v fg E[X(t)]dr, where E[X(t)] is the expected number of susceptible
bacteria at time t. Also, the susceptible bacteria are assumed

to grow with no direct connection with the growth process of the
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mutant bacteria. Gani and Yeo (1985)constderéd the case of ‘two one-
way connected B-D processes in connection with phage-reproduction
where mutation may change a normal phage into a mutant one. Having
found the equations of these processes intractable to solution,
they consider a rather simplified model where the instantaneous
risk of birth of a phage at any moment t is assumed to depend on
the expectation of the number of phages of that type at time ¢t
rather than on the number itself.

In view of the growing importance of the interconnected B-D
processes it is intended to consider such processes in this paper
and to indicate in the simplest case of two interconnected B-D
processes, a method which yields an approximate solution to the
problem of obtaining the distribution of the random variables
involved. The method, however, is also applicable to the multiple
interconnected B-D processes in an analogous manner.

Throughout this paper, we shall restrict ourselves to the
case of linear B-D processes. In section 2, we introduce the simple
case of s interconnected B-D processes, while in section 3 we
consider briefly a more general case which appears to arise in the
blood cell®s growth and differentiation process. In section 4
we restrict ourselves to the case of two interconnected B-D processes,
although the methods used there are equally applicable to more

general cases,

2. kinearly Intercomnected B-D processes.

Let the system have s states denoted by Si,i=1,2,'°~,s

as shown in Figure 1. Let Xi(t) denote the number of particles
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Figure 1 Linearly Interconnected BfD'Progesses

in state S; at time t, with xi(O) =m,, It is assumed that for

i=1:2:..':s:

Pr[an S;-particle multiplies to two in (t,t+1)] = AT+ o(T)

Pr[ = " " dies in (t,t+1)] = iT + o(7)

Pr[ " " " transfers to state Si41 in (t,t+1)] = V3T + o(1)

Pr[ " v o " nooon S;.1 " " ]= 647 + o(1)

Pr[ " " " undergoes no transition in (t,t+1)3:1-(ki+ui+vi+5i)1
' + o(1)

Pr[ " " " " more than one tranmsition in (t,t+1)] = o(1).

Furthermore, it is assumed that all the events that might occur
to a particle in (t,t+t] are independent of the events occurring to
other particles and of the events that occurred to this particle in
the past. With these assumptions the vector process {Xl(t),°--,xs(t)}
is a Markov process. Here the transition rates Al’”i’vi and éi
are nonnegative and are assumed to be dependent on t unless other-
wise specified, Let for Xy = 0,1,2,¢+-,; i=1l,2,°+;s;

le’.,,,xs(t)= Pr[xi(t)=xi;l=1’2’"':Slxi(o)=mi;i=1,2,-o.’s]



-6 -

and G(ul,"‘,us;t), or G for short, be their generating function
(p.g.f., for short); with ]uil; 1, i=1,2,***,s, Following the
standard argument, the Kolmogorov forward differential equation

for G is given by

S

with

'O) = ; Q. 1, (2)

where Gt and Gu denote the respective partial derivatives of

.

that m, = 0 for i 4 j and that m; = 1. Because of the assump-

i
G. We use here the convention that 61 = Vg =Ug.q =Uy = 0. Let
3 denote the p.g.f. of the probabilities Py ... x(t) given
1’ it

tion of independent growth of the particles, it is clear that

n
G(uq,***,u_jt) = 1
1 S j=1

(g5 (e, ugse)] 3, 3)
so that without loss of generality we assume that for some

1 <3 <s, Eﬁ =landm; =0 for it j. The equation for 85
accordingly is given by (1) with G replaced by 85¢ It is this
equation which has been found untractable to solution. One way
however is to use it in a well known manner to obtain moments of
the process (Xl(t),--',XS(t)]. For instance, if ¢,(t) = EX, (t),
then the vector ¢'(t) = (8,(t),***,6 (t)) satisfies the following

differential equation
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at 2(8) = A &(p) (4)
subject to the initial condition ﬁi(O) = 5ij,i=1,2,--°,s, where

TE O = @@, e o),

and é is the s X s matrix

L 0 o
i
- - - v s e e o 0 ',
V1 (prupevg=8y) 850...0
,‘ ' o » ece & » *
L | 1(5)
0 0 0 0mvgp Ogpmigy=vgg=6g.) 6,
0 0 0 00 Vool (hgig=39

In principle, if all the rates are assumed to be constant, the
equation (4) can be solved by standard methods. The solution will

of course depend upon the characteristic roots of the matrix A,

of Xi(t); the expressions for these , however, get rather involved,
On the other hand, 1f the rates are time dependent, there doesg not
appear to be any simple way of solving the equation (4), 1In the
special case when _O, i=1,2,++,s, (or instead if vi =0,i=1,2,++ g)
and the remaining rates are time dependent, one can again solve the
equation (3) without andy real difficulty and can also find the

higher moments For instance, when i = 0, i=1,2,:--,5, m1=l and



mj=0 for j > 2, we have

ﬁl(t)

It

t
exp[\/- Wl(T)dT}
0
(6)

t t
J vi_l(T) exp{\/- wi(s)ds] ei_l(T)d1; 2<i<s,
0 L

1t

¢4 (t)

where wi(1) = Ai(1) - ui(T) - vi(T). For the case with s = 2,
these have been given by Gani and Yeo (1965).When all ¥;'s dnd v,'s
are constant with‘all the Wi's being distinct, (6) reduces to the

simpler form

¥, t
() = el
i~1 i i -1 th, )
88 = (M) DT Gy) Jedi2zizs )

k]

In particular, if the v;'s are all equal to v say, then (6)

simplifies to

gi(t) = %;;%rﬁ

ti'lewt; i=1,2,°+,s; Vo = 1. (8)

If a particle is known b undergo a certain unknown number S
of stages with a B-D process at each stage and if it is possible to
observe the random variable XS(t) for various time points, then the
fitting of the expression (7) or (8) to these will easily yeild an

estimate of the number s. Determination of the number of stages
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involved in the formation of cancer tumor (see Neyman and Scott (1966)
is still an unsolved problem and a modified form of the expression
(7) may help answer this question. The question as to how many
stages are involved in the cell differentiation process for the
production of certain blood cells starting from a stem cell (see
Fowler et al(1967) may again partly be answered by fitting
expressions such as (7) to the appropriate data. The process

here is more general than the one considered above and is presented

briefly in the next section.
3. A more general model with linearl intg;gggpggggg B-D processes.

A discussion with Dr. J.E. Till of the Ontario Cancer Institute,
Canada, led to the following possible model for the process concerned
with the blood cells' formation and their differentiation starting
with a gtem cell. Hypothetically, stem cells are the progenitor
cells with the capacity to produce differentiated blood cells and

Siminovitch et al(1963)).
new stem cells-{see:Fowler“et‘aleQE?}ANormally, when the body does
not need red blood cells or some other forms of blood cells such as
erythroblasts, the stem cells are in the resting state So (see
Figure 2). Anytime that some of the blood cells are killed and the
body needs their replacement with fresh blood cells, the resting
stem cells go into action and go through various stages - possibly
more than one, say Sl,Sz,'“,Sk - where at each stage they undergo
a B-D process with birth and death rates Ai and ui,i=1,2,°",k.
While the cell is in stage S and is undergoing a B-D process,

its transition to one of the 4§ chains of stages (starting with



—[0 —~

Nothy

10

Figure 2

**weveossumssecnne

A
ey
4T

m: -

Aokt
Y
o ———1 e —
-—n m: O
&
Nos s
jirHii v
——| jrme——
- m:  ———
it
g e
| S:F:. ~\Z
—_— —t
- S| fe——
3y

A System of Linearly Interconnected B-D Processes

Vr::u\.h::
—
in;
Js_.,}:.
———
}




- 11 -

stage Sjl for the jth chain, with j=1,2,-+-,4; see Figure 2)may
take place with rates vjo,j=1,2,"',e. The transition of a cell

at kth stage to one of the j chains is a step towards its differen-
tition and eventually ending up with a particular type of blood cell
specific to that chain., Typically, in the jth chain the cell goes
through nj interconnected stages starting with Sj1 where at

each stage the cell may undergo a B-D process, except possibly the
last stage where A,

j,n.
the state of the needed blood cell of jth type. This description is

may be zero since the cell is already in

well exhibited in Figure 2, where for every two consecutive stages
the transitions are shown both ways with rates v's and
8's. Each box represents a stage with the corresponding birth and
death rates A's and u's indicated on the top with appropriate
subscripts corresponding to that box. For the cell-differentiation
problem it is not unreasonable to assume that the transitions between
ény two consecutive stages are only one-way so that all the d's are
zero except possibly the first one, the 61.

While the above model and its application to the relevant data
will be discussed elsewhere, our aim here is merely to point out
the fact that the models based on interconnected B-D processes and
as complicated looking as in Figure 2, do arise in practical situa-
tions., Unfortunately , however, the corresponding differential
equations for the p.g.f. of the random variables involved remain as
untractable to solution as ever. In the present case, for instance,
if Xs(t) denotes the number of cells at time ¢t in the sth stage

of the first k stages with s=1,2,°*°*,k; in(t) denotes the number
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in the ith stage of the jth chain, with i=1,2,-'-,nj;j=1,2,-~-,z;

and G(UO’ul""’uk’ull’""uz,n st),or G for short, denotes the

p.g.f. of the usual probabilities

P ° 00 (t))
Xo;XI: :xg,nz

then the Kolmogorov forward differential equation for G is
given by
k-1

Gy =S§0[vs(us+1'us)+6s(us-1'us)'(l'us)O‘sus'“s)]Gus

y
*LL 2 V30051700 +o (o 7o) = (Lou) (geyeig) 16y,
j= |

)/
+J§ [VJI(U J1)+5 l(uk ujl) (1 u 1)(KJ1 Jl Jl)]G jl
) n,
+J§1 % 5 [in(qu+1 Jl)+<5Jl(uJi 1” Jl) (1-u Jl)()\J:L 51 31)]G i
(9)

One needs to solve (9) with the appropriate side condition, for
example: G evaluated at t=0 is equal to ug - As before, the standard
methods fail to yield a solution for this equation, although one can
obtain expressions for moments from (9) when all the rates are con-
stant. No way appears to work even for obtaining moments if the

rates are time dependent. However, if all the 6's are zero and

the remaining rates are time dependent, one can easily obtain moments.
For instance, if £(t) with appropriate subscripts denotes the

expected value of the corresponding X(t), then we have
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exp[J§ vp(1)dr] A\\\\
}

exP[J; WS(T)dTJ{J;VS_l(T)gs_l(T)QXP['J;WS(U)dU]dT};lészk:

N

£ (6)

1(10)
Jl(t)“exP[J W 1(T)dT][J Vs 0(1) k(T)exP[ J W l(u)du]dT}:J =1,2, :ﬁf7

gji(t)=exP[ngji(1)d1](J;Vji_l(T)iji_l(T)exP['J;Wji(u)du]dT]5 g

—-"/'
for i=1,2,'-~,nj; j=1,2,°**,4, where
Wo = Vg3 ws = xs-us-vs for 1 < s 2 k-1;
. » (11)
Ve = MeHi ‘jfl V503 Vi T M1 TWyq T Vi
\/ .
If all the ¢¥'s and vt's are constant with all the y's distinect,
we have
B y s-1 s V.t
t(t)y =(NIv)szT A_e 0 <s <k,
[ s Y= r r=0 r ’ - -
(12)
k-1 i-1 i v. .t k ¥t
g,.(t JI' r
le( ) = (rgov ) ( Hov 2l leJ + §Ocr ],
i= 1,2,"',nj; j=1,2,"',z,lwhere
-1
A, = : (Vp=¥y) (13)
p=1
p+r
"1 k _1
-1 I (Pt 1T 0¥ ™) (14)

p+r
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i 1. Kk 1 .
G = L1 Oy LT (v . (15)

pfr

While we shall discuss elsewhere the fitting of these expressions
to the data on the cell differentiation, we wish to emphasize here
that the mathematical problem of obtaining the distribution of the
X(t) process at any time t still remains, Even in the simplest
case of two interconnected B-D processes, one fails to find a way
out for obtaining an explicit expression for p.g.f. G. In the next
section, while restricting ourselves only to this simple case, we
shall demonstrate (subsections 4.3 and 4.4) an approximating recur-
sive approach for obtaining G, while using the Kolmogorov backward
equation for G instead., The method, however, appears to be fairly
general in its applicability to more complicated cases of inter- °

connected B-D processes.

4.0 Two linearly interconnected B-D processes.
AV a ¥, VL W)

In this section we restrict ourselves to the case of two B-D
processes as exhibited in Figure 3. The Kolmogorov forward differen-

tial équation for the p.g.f. G(ul,uz;t) of probabilities P (t)
X%,
is given from (1) by

A .
L4 -~

Gt+[(l—ul)(klul-ul)+v(u1-u2)]Gu1+[(1-u2)(x2u2-u2)+5(u2-u1)]Gu2=0 (16)

Moty Apip

S, |« , S,
1 S 2

Y

bg;ffigﬁré 3 Two Linearly Interconnected BﬁDﬁE{QCesﬁ?s
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Let m1=1 and m,= 0, so that G(ul,ue;O) = u;. In its present
generality equation (16) is not tractable to solution when subjected
to standard methods, However, in the special cases, (i) A =6=0,
where all the remaining rates mdy be time dependent and (ii) Ay =

6 = 0, where all the other rates are constant, the duthor was success-
ful in solving (16) for G(ul,u2;t) explicitly. These cases are
presented respectively in subsections 4.1 and 4.2. Before

proceeding to these we consider briefly the case when all the rates
are positive constants. Besides Xl(t) and X2(t) we consider also
the random variables Yl(t) and Yz(t) which denote the numbers of
transitions during (0,t) from state S; to S, and from state S, to

2
S; respectively. Let for i,j=1,2,

gi(ul’u2’v]_>v2-"t)
(10
X, (t) X, (t) Y, (t) Y_(t) (1
LA, e, T, e

Then it is easy to establish that the p.g.f.'s gy and g, satisfy

the integral equations

81 (U174, Vy V3 t)

2
[u2+xlg1 (ul,ug,vl,vggt-T)

+ vvlgg(ul,u2,v1,v2;t-1)}dT (18)
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85(u1,Up, V7, V55t)
-8t t -9.1
2
= uye 2 +‘/- e ° [u2+x2g2 (ul,u2,v1,v2;t-1)
+ 6v2g1(u1,u2,v1,v2;t-1)}d1, (19)

where 91 = Wy+Ag+v and 92 = WytAy+ 8. These equations can be
easily transformed into Kolmogorov backward equations for 81

and 85 given by

dgy 2

3t = xlgl - Olgl + YV185+ U (20)
dg2 o
—dt = MoBp 9,8, +8v,g Hu,, (21)

with the side condition gi(ul’UE’vl’VE;o) = ui;i=l,2.

Equations (20) and (21) again are not tractable to solution. One
may use these for obtaining moments; the first moments are given

under Xl(0)=1,X2(0) = 0, by

/EX (t)= ——l——[(a AL+ +c3)ealt =(a, =N+ +6)ea2t]
i AP s Ry 2™ Mgt
a.t a.t
EX,(t) = g—[e & - e 2]
1%
! -
VOEY ()= gt (ah g8 (e L -1y~ Laonr #6)(e 2 -1)]
1Y% el 1At a2 ey

|

’ 5y 1, 9t 1, %t
EY,(t) = 2% [ 2=(e ' -1) - L(e 2 -1)]
\\\‘ 2 al a2 al\ a2

where
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- 2
0y ;0= %{(xe-u2-6+x1-ul-v)1((xa-ue-é-xl+u1+v) +4v6)°] (23)

4.1 cCase with A =8 =0, Here we allow all the
ANANAMNNUNANNY
remaining rates to be time dependent, so that Wiggins' case (1957)
is only a special case of this. The equation (16) can be easily
solved by standard methods when Ay = 6 = 0. Thus, omitting the

details we find that

G(uy,up5t) = Pog(£)+uy Pyo(e)+ 2 u, Py, (1) (24)

where
Po(t) = L-exp[-/ (uy+v)dv)
- ng(T)exP [-f;(xg-u2+u1+v)ds]
- (exp[-f;(xe-ue) ds]--.

1

+ f:exp[-f;(xg—uQ)dt]xz(s)ds}- dt, (25)

t
Pio(t) = exp{-Jo(Q1+V)dT]’ . (26)

Roic (€)= expl=f (Apmiep)dt] [ vCT)emp [~/ (hyru sy +v)ds]
t s k-1
'[fTXQ(s)exp[-fo(xz-ug)dt]ds]
'(eXP[-f;(%g-uz)dSJ

+ f:exp[-f:(xz-ug)dt]kg(S)ds}'(k+1)d1, (27)

for k = 1,2,"'3
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When all the rates are constant, it is well known that Xl(t)-» 0

a.s., whereas Xa(t)-» 0 a.s. as t = o if o 2 A On the other

2.
hand if Ko < Ay Xa(t) — 0 with probability P o and to o with

probability 1 - Pog = Pg,w where

Ky + V(uz/AQ)
Wy + v

Pgo = limt__wO POO. (t) = (28)
4.2 Case with Ay=0 =0 Assuming that all the remaining
rates are constant we shall attempt here to solve the backward
equations (20) and (21) instead, although one could treat the
forward equation (16) in a similar manner. Since 6 = 0, Y (t) = 0.
Again with Ay = 0, (21) easily yields solution for 85 which now

is only a function of u, and t, and is given by

"Hgt
gz(ue;t) = [1 = (l'ua)e ]' (29)
Rewriting (20) we have
dg1 2 'ugt 0
T = Mg - Glgl +\(u1+vvl)-vv1(1-u2)e . (30)

The problem here is to solve this subject to the side condition
gl(ul,ug,vl;O) = u;. (31)
Substituting z = gl-(Qllexl) in (30) we have

€2 - nz2 - 1 {(uy+v-n )2+4x v(1-vy) }-vv, (1-u )eup‘2t
dac = M1 L A 1 1/ 77vv it

1 1 ' t

t) .2 h (t
=§5§-%t S Y ¢ ml (32)



- 19 -

say, where the functions §$ and h satisfy the relations

- (£)
( %7%71 = Ny

4 (33)
1 (VI =
K\ $(§§) = 4;\'1;(u1+v-)\1)2+4>\1v(1-v1)]+vv1(1--u2)e 2 . ,

Once (33) is solved for b and h, (32) immediately yields

h(t 1 t é g 2 31
=) = ﬁ% y e ¢2<t> £ 2 (b G

where D is the constant of integration to be evaluated from the
side condition (31). Eliminating h from equations (33) we have

2
b (0= L0, Y (L) +vhgvy (Luye 2 Jh(e) . (35)

With change of variable from t to s where

1/2 -(u,/2)t
S = % FV)\lvl(l'u2>) e (ug ) 1 (36)

(35) yields

Ay 2 Ungv(l- |
"é+ a'jz u1+; — + AdSaleh + s%1p = 0. (37)

5
Ho

Referring to Kamke (pages 437-42 (1945)), its solution is immédiately
given by

Za(i s) = € J, (1 s) + C, Ya(i s) (38)
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where

2 1/2 |

Lq+V=A Un,v(l-v,)

(1 + i (39)
Ho

Ha

and Ja(y) and Ya(y) are Bessel functions as defined in Kamké(1945).

In our case the appropriate values of the constants Cy and Cy

turn out to be C2 = 0, C1 = i'a, so that the relevant solution of

(37) is given by

b(s) =Ly (13 DX ey, (50)
i@ a r=0 i AGEFEID) a
Thus we have
-(ns/2)t
bey =y (x e 205 (41)
and
-(ho/2 ~ (it / 2 E
h(E) = volx e 2 )t><»;§I e 2D (42)
where
1/2
* = ﬁ%‘tvxlvlfl'ue)) (43)

Finally substituting these in (34) and using the side condition
(31) we obtain the desired solution for B

as
-(u,/2)t |
: 8] Yalxe 27y oy -(ny/2)t
81 (uy,uyvyst) = 2h T ~(i /DT o e
(x e y G
(&%)
+ 11/ -2 -<u'2/2)t

0, , -1
[ (oy- Q%I)Wag(x)'Wa(x)wa(x);%le

- [t drt ]‘1
17 wa2(x e -(u2/2)1) ’
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This solution is rather involved altiough it is expressed in terms
of the function wa(y) whose properties are well known. Furthermore,
it is suggestive as to how the solution in t..e more general case

with A, > 0 and & > 0 may be complicated. Again, it also appears

difficult to express (44) in terms of probabilties P (t).
X1:%2:77
On the other hand, letting t — = in (44) we have for |u2[ <1,
. 01108
t11m gl(ul,uz,vl;t) = __§XI__

1 (45)
- <L 8.-(0 2-4% (L +VV )}5] = p(v,), sa
= Taplo17 01 T vy = p(vy), say.

Since Yl(t) is a nondecreasing function of t, Yl(t)T Y a.s. as
t - » where the p.g.f. of Y turns out to be equal to p(vl).
Notice that p(l) =1 if and only if M IVt in which case

Y is an honest random variable. On the other hand if N>V Ly
Pr(Y = «) = 1-p(1); here p(l) = (v+ul)/x1 is also the probability
Pgo of ultimate extinction of both X,(t) and X, (t).

4,3 Case where 6 = 0 QRQNEEQNEQQEEQER%NFateS are positive constants.
[aV AV oV VoV U oW Vv V) s

This is a case more general than the ones considered in the last
two subsections. Here it was found difficult to obtainvan exact
expression for the p.g.f. gl(ul,uz,vl;t) from (20). The expression
for & of (21) is known for the present case (see Bartlett (1955))
and is given by
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(7\2'U-2)t
(u 't) _ ()‘2u2-u2)‘u2(1"u2)e v
82 2, - (7\2'M2)t )
(k2u2-u2) - xg(l-ue)e
The method that will yield an approximate solution for &1 is based on
the introduction ofva_sequence'of.stochastic-pfocesses
(%, ™ 6), %, (6), v, @ ey ' with the initial condition

%, ™ (0) = 1,%,™ (o) - % ™ (0) = 0, n-0,1,2,**+, sucn that

(46)

sequence {f(n)(ul,ug,vl;t)} of their p.g.f.'s tends to
gl(ulug,vl;t) as n-— x , Here since & = 0, Y2(t),E 0. For
convenience we define for n = 0, f(o)(ul,ue,vl;t) =1, for £t > 0,
This would imply that starting with Xl(o)(O) = 1, the particle is
considered as dead right from the start. For n = 1, we defined the
process [Xl(l)(t), Xe(l)(t),Yl(l)(t)) as follows: The starting
particle in state S; may either die with rate Wy or may undergo
a transition to state 82 with rate v where it undergoes a simple
homogeneous B-D process with rates Ay and Lo respectively, or
finally it may give a birth with rate Ay with the property that
as soon as the event of birth takes place it follows from then on
the process corresponding to n = 0; whereas its progenyvfollows the
process with n = 1. 1In general the nth process is defined in a
similar manner except that here the particle after giving a birth
follows the (n~1)th process whereas its progeny follows the nth
process. Similar to (18) we have the integral equation for f(n),
n=1,2,***, as

o.t -Ql(t-T)

£ (@)= upe Vel (£ (0™ (1) avvpg, (1) dan ()

which yields the differential equation
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(n) -
QgE__ = klf(n 1)f(n)-elf(n)+ hqtVVi8s (48)
with
£ (ug,05,v730) = vy )

Here the arguments uy,U, and vy of f£f's and g, are suppressed for
convenience. In the following, we shall use this convention without
reservation, Because of the recursive character of the equation (48),

it can be solved for f(n) recursively yielding for n=1,2,°*°""

-0

t.(n-1)
f(n) Cup e 1t+Aljof (1)dr

(50)

-0, (t-1 +A'th(n'1) 8)ds
+Jte1( )1"[ (

[u1+vv1g2(1)}d1.

Remark  Notice that the process corresponding to n= 1 is
equivalent to the original process with M o= 0, the case which
was studied by Wiggins (1957). Also, one of the essential features
of the nth process is that the particle starting at t = 0, is allowed
to yield at most n births after which it is considered as dead.
It may however die with rate Wy OF undergo transition to state S,
with rate v before even touching the limit of n births.
Taking O hL P 1,0 S u, s 1, O vy = 1, we have the folloWing

theorem.

Theorem 1 (i) (f(n)(ul,ue,vl;t)] is a monotone nonincreasing

sequence for every fixed (ul,ue,vl;t) and is Uniformly bounded.
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(11) {f(n)(ul,ue,vl;t)} converges to gl(ul,u2,v1;t) uniform-

ly for t ¢ [0,T], O 2 wp 2 1, 0 < u,

A

1, 0 vy s 1; where T 1is

finite but arbitrary.

Proof (i) {f(n)} is a sequence of p.g.f.'s and hence

If(n)l <1 for all =n. That it is a monotone nonincreasing sequence
can be easily proved by an induction argument while using (50),.
(i) [f(n)(ul,ue,vl;t)} being a bounded monotone sequence,

must converge as n — » pointwise for every point <u1’u2’V1;t)' Let

£(uy,u,,vy5t) = lim f(n)(ul,uz,vl;t). (51)

n - o

Again since 0 < (l-f(n)) } (1-f), by monotone convergence theorem,
jtf(n)(1)d1 } th(T)dT for evéry finite t, where the other argu-
mgnts uy,u, ang vy of f.'s are suppressed for convenience. From
this it follows that f;f(n'l)(w)f(n)(T)dT } f;fg(T)dT, and hence as

n -
. =0 - :
ft e 1(t T)f(n'l)(w)f(n"l)(r)d'; } j; e
0

-9, (t-
(¢ T)f2(1)d1 (52)

for every finite t, Using this while taking limit of (47) as
n -+ 00, we have

-Qlt+ Jte'el(t-T)(u1+N1f2(1)+VV1g2(1)}dT' (53)

f(t)=u,e
1 0
Comparing this with (18) and using the fact that such equations have

unique solutions, we have
f(ul,uz,vl;t) = gl(ul,uz,vl;t). (54)
Thus as n—x the sequence [f(n)) converges pointwise to gl.That this

convergence is uniform as stated in the theorem follows easily now
from Dini's:theorem(see page 425 Apostol(1957)),keeping in mind that
all the f's are continuous functions of their arguments.
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Theorem 2, For every‘fixed (ul,u2,v1) with

0 < uw <1, 0z u, <1 and O = vy =1, the limits

ol
i

Lin g5(u53), Py = Lim £ upupvp56)  for

n=20,1,2 <., and p = lim gl(ul,ue,vl;t) all exist and
Tt

the following relations hold,

(1) Py
(ii) P =1lim p
o O

(iii) f(n)(t) ! gl(t) 28 n — o, uniformly for

t e [0,x),

We need the following lemma for the proof of this theorem,

Lemma. TFor every fixed (ul,u2,v1) with G < u; < 1,

Osu,<1 and 0 <v; <1, assume that Pl = %;m f(n-l)(t)

exists, If

W™ (e) =y e7(B1 = Ay Pt [en(8y = Ay Pyp) (E - )
(o]
(v vi q + pydde (55)

where ¢ = lim gz(uz;t) = min(l,ug/x2), then  lim f(n)(t)
E— t—ioo ‘ oo

exists and for n = 1,2,

+ , we have
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Py ® lim £ (e) = 1im h® ey -
oo teo S TR R

| € e(n-1)
Proof, Since 1lim exp[-elt + N [ f (t)dt) =
= o]

=0
and for every fianite b > 0 ,

b .
Lim [ exp[-0;(t=1) + 7, [ £P(s) ge)
t~w O T

(v v1 2,(7) + py)dt = 0,

we have from (50)

t t
Lim £ ¢y = 1im [ exp[-6y(E=m) + 2 FEPD) 6y a1
%o oo T

(v Vl 82(1) + Hl)dT

Similarly from (55), we have for every finite b > (,

lim h(n)(t) = lim ftexp[-e = M P,_q)(t=-1)]
t— t-x b 1 +a-l

(v vy q + py)dr

(56)

0,

(57)

(58)

(59)

In order to prove (56), it is sufficient to show that for a

given arbitrary e > 0, it is possible to choose b(e) > 0

such that for any t > b(e)

1)
(s)ds] (v Vi8o * Ml)dT

=
1]

t t
= |[ expl-0;(t-) + 2y g(n=
T

t
é exp[-(8; - A Ppop)(E=1)]1 (v Vi a4+ pgddr]< e,

(60)
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by + v
-2
2 Al + v

Chose a positive constant 17 1less than minfe

Y+l .
5 X ] . Having chosen 1, choose b(e) large enough such
1

that for 7t > b(e)

‘f(n'l?(T)' Ph.yl =5 lgp() = a] = m . (6L)

Rewritting the left hand side of (60), we have

t t
D = |(v vy 4+ iq) é exp[(-81 + Ny p,.1)(t-7) {exp[ny {f(n2§gdf
-1 t £ (n-1)
-M pn_l(t-f)y}dm + v vy é exp[-Ql(t-T) + Ay 4 £A7 7/ (s8)ds]
(2,(7) - a)ds (62)

Again, by virtue of (61), for Db(e) <1 = ¢t ,

]{E(n'l)(s)ds - (t=1) Pn~ll < {tlf(n‘l)(s) - Pn_llds < (t=1)7 ,
(63)
and hence
t
|1-exp(ny £ (syds - (e=1) b1 ]| 5 exp[a, n(t-1)] -1 .

(64)

From this it follows that for any & > b(e)
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lw)
A

< (vv1q+u1) fg'b exp[(-91+x1pn_1)1]{exp[xlnw]-l}dw

o t-b
+ vV f8 exp[ (-8 +Ay)7]d1

v vv q Vv, 1 (65>
Y1V19ty _ Ay L
- =)
0 -Ay (P *+1) ®1"MPp-1 O17M

A

2h, +v

A

where in the end we have used the facts that 0 S Ppa1 S 1,
vy (n) - (n)
0 <g=<1 and 1 < —ﬁxz . Thus limt__’oo £V (t) = lim,  BY/(t).

From this and (59) the lemma follows.

Remark Since Py = 1l = f(o)(t) , from the above lemma it
follows by induction argument that “or n=0,1,2,°-", f(n)(t)-¢ P,

as t - o00o; and P,'S satisfy the relation

VYV Q-+
17
p = -l ,n=1,2,0e, (66)
n B17MPhog ’
Proof of Theorem 2. The beginning part of the theorem 2 and

part (i) follow in part from the above lemma. For (ii1) 1let

- (8, -A)t - (8;-A1P) (t-1)

h(t)=u,e + (VW Q) f; e dt,0svi<l.  (67)

Then following the lines of argument used in proving the above lemma

it can be shown that

P =1lim g (t) = lim h(t). (68)
t - o

t -

However on simplifying right side of (67) and taking its limit as

t - o, we obtain
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P = @I—:—3G};- . (69)

On the other hand limn_boo P, also satisfies the relation (69).
This is clear from (66). This proves (ii). Thus we have shown so

far that

p=1lim lim £™(t) = 1im 1im £™ () = 1im g, (t). (70)
n — 0 to [t o 00 -

From this and the assertion (ii) of theorem 1, assertion (iii) of
Theorem 2 easily follows. This completes the proof of theorem 2.
Solving (69) for p we have

1
. _ o 5
lim g; (ug,u,,vy5t) = P(vy,9)= §%I[91'(91 ‘4X1(u1+VVIQ)]2]- (71)

00

If p,, = Llim Pr(X,(t)=X,(t)=0) which is also the probability of
00 o0 1 2

ultimate extinction of both Xl(t) and X2(t) , then we have

, 1
—2_7\1—1-[91'{912'47‘1(“1*"‘1) ) SPRRPY
Poo=P(L: =1 (uy+v)/a, (P PHTRERAI D (72)
1 (ugixg;“1+vikl)

\
When Pyo © 1, with probability l-poo, (Xl(t),Xe(t)) -(0,®)0r (w,)
as t - » according as WitV > Al and Ko < AQ Or g + v < xl

and Ho < A, respectively,
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If we ignore the ranhdom variable X2(t), one can obtain

explicitly the expression far the p.g.f. gi(ui,vl;t) of Xl(t)
and Yl(t) as follows: Replacing 8y by unity in (20) we observe
that cur new gl(ul,vl;t) satisfies the equation

dg

1 2

& = M8 - 918t vvit g, (73)

which can be solved easily subject to the side condition

gl(ul,vl;O) = Uy, yielding

gl(ul:V]_;t) )
- e g , (T4
- raops R |
\F17720))
where vl(vl) and v2(v1) are with positive and negative signs
respectively,
1 2 3
'ﬁf[el + (8,5 - Map(vvp+ug) )70, (75)

Now being a nondecreasing function of t, Yl(t)f Y a.s, as t — x,

where the p.g.f. of Y is given by
) 5 1
1i 1, 5 = X = m—— - - 2_
Lin 81 (1,vy5t) = ¥ (vy) 27\1[91 (81 7~42; (vvy+u1) 1¥1=p(vy,1). (76)

From this we easily obtain



- 31 -

1
and for r=1,2,°°-,
—~ r 7
1 | (2r-2)1 . (Agv)™ !
P(Y=r) = XI g ri(z-1)! r-3 (78)

These probabilities add up to ome only when L1tV > Aqe
When itV < A ve(l) < 1, so that P(¥=x) = l-Té(l).

.4 Case where all the rates are positive constants

This is the case where we allow transitions from both ways
between states 51 and 82 . Let us denote random variables of
section 4,0 by {Xll(t), XlQ(t)’ Yll(t), Y12(t)] if Xl(O) =1
and X;(0) =@ and by {X,;(t),X,,(t), Y5 (8),¥po(t) )} if X;(0)= 0
and X2(O) = 1, with their p.g.f.'s gl(ul’UE’vl’V25t) and
gz(ul,ug,vl,ve;t) respectively. We introduce two sequences of
stochastic processes namely; [Xll(n)(t),X12(n)(t),Yll(n)(t),le(n)(tﬂ
with %, ™) = 1, x,((0) = 7, ™) = v, ) =0, and
(%51 ™ (©), %, (0), v, @0y, v,, ™ (1)) wieh %™ (0) = 1,

xéi(n)(o) = Ygl(n)(o) = Y22(n)(0) =0, for n=0,1,2,°*°., Let the
sequences {fl(n)(ul,ug,vl,vg;t)} and {fg(n)(ul,uz,vl,ve;t)]
denote their respective p.g.f.'s. For convenience, define for
t >0, fi(O (ul,ug,vl,vg;t) = 1; i=1,2. As beforg in a recursive
manner we define the nth process of the two sequences as follows:

The starting particle i; state Si(i=1,2) either dies with rate hys
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or undergoes a transition to state Sj(jéi,j=1,2) and there it
follows the growth according to the (n-1)th process of the jth
sequence, or gives a birth with rate xi with the feature that
after this event it follows the (n-1)th process of the ith sequence
whereas its progeny follows the nth process of the same sequence.

With this definition, the analogues of (48) are given by

T Af (n)
/ 1 n-1 n n n-1
j 35— = Klfl( )fl( >-91f1( )+u1+vv1f2( )
79
ag, ™ £ -1 @) g ¢ (), ., ¢ (n-1) 7
—dt — = Molp o "T9xEyt THuotOVLT .

These can be solved recursively yielding

- te (n-1)
fl(n) Cu e 0.t + xlfofl (1) dn

-Q o t £ (n-l) d
JE e 1¢¢ 1>+x1f1 1 (s) s{ﬁ1+vvlf2(n-l)(?l}dt‘

+
0 (€0)
t. (n-1
o e-92t+k2f0f2(n ) (1)dn
2 =Yy
-0, (t-1)+n,J b, (7-1) -
2 o) o d .
. f; e 1 (= S[u2+5v2fl(n'1)(1)}d1. (81)

The;fbilbwing theorem is the analogue of results given in theorems
1 and 2 , and is given without proof as it follows along similar

lines.
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Theorem 3 (i) (fl(n),fe(n)} is a monotone nonincreasing

double sequence for every fixed (ul’u2’v1’v2’t) and {fi(n)} is

uniformly bounded for all n, and i=l,2.

(ii) For every fixed point (ul,ue,vl,vg) with 0 < u; < 1,

0 2 vz l, i=1,2, the limits qy = limbqwgi(ul,ug,vl,vg;t);

Pin = 1imuqui(n)(“1'”2’V1’V25t) for n=1,2,--+, all exist and the

following relations hold.

L1*VV1Ps na1 Wo + 8VoPy 1y

(a') Py, = 5 Pr = - 2 n=1J2J...)
la = 9;%\D) b1 en ©2"APs po1

(b)  q; = lim s i=1,2,

N0 Pin

(c) [fl(n)étj’faQq}(t%l (84 (£), g, (t)-as n-e,uniformly for
.t e}[0,).,
Letting n -+ «, in theorem 3, [(ii)a], we observe that 9, and q,

satisfy the equations

. 2_ _
< (82)
2
L__AQqe 0,9, tup+0v,qy = 0,

With v1=v2=1, the solution of these equations for q; and 5
are the probabilities of ultimate extinction of (Xl(t),xg(t)) when
Xl(O) =1, X2(0) = 0 and Xl(O) =0, XQ(O) = 1 respectively. One
may study (82) as two parabolas in (ql,qe) plane, and the problem
is to find the solution for (ql,qe) which lie in the unit square
with points (0,0) and (1,1) as its diagonal vertices., Explicit

solution in terms of i and V, appears rather involved, Thus,
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from now on we restrict oursaives to the case with vy =v,= 1,
Clearly (1,1) is a solution of (82). Also, from the geometry
of two parabolas, one can easily establish that the necessary

condition for (1,1) to be the only admissible solution of (82) is
Vg2 N5 8+ by > Aye (83)

Writing (82) differently with V] =V, = 1, we have

1, 2
B = 51019 - M9 ] (&%)

ql = %[ggqg - 7\2‘:122 = u2]- ' (85)

Now given that the conditions (83) are satisfied, in order that the
two parabolas (84) and (85) do not intersect each other again in

the unit square after once intersecting at point (1,1) , the
necessary and sufficient condition is that the slope of the parabola
(85) at point (1,1) be less than or equal to that of (84) at the same
point, The slope S; of (84) at (1,1) is given by

dqg Mq+V=A
o2 _ 1
5, —azq' - L1, (€6)
q1~.=q =
and that of (85) is given by
sy = 2 = e (87)
2~ dqy  Bp¥0Ay T

q1=q2=1
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Thus given (83) , the necessary and sufficient condition that (1,1)

be the only admissible solution of (82) is Sy = S; or

(ul + Vv - %1) (u2 +6‘- Ke) vé (88)

vy

Combining (83) and (88), we observe that in order that (1,1) be
the only admissible solution of (82) with vi=v,=1l, it is necessary

and sufficient that

A+ B>¢, (89)

where

O] b=

A=v + hy = MsB = 5+u2 - A, and C = [(A-B)2+4v6]
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