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In this note, thevsolution for the distribution of the
relevant random variables has beeﬁ obtained for Gani's
Ygeneral stochastic model" [1] for the attachment of phages
to bacteria, for the special case with r = 1, where r 1is
the upper limit to the number of phage patticles that can
become attached to a bacterium. This distribution is then
compared with thé corresponding distribution already obtained
by Gani [1] under his "simplified stochastic model". It is
found that in general the simplified model appears to be a
good approximation to the general model only when the total
number Yoo of bhages is much larger than the total number
ngy of bacteria., The distribution of the time it takes
before either all the bacteria (when Ngg < VOO) or all the
phages (when Ngg > VOO) are exhausted, is also considered

under the general model with r = 1.

*This investigation was supported in part by U. S,
Public Health Service Grant GM-10525-04%.



1. Intreduction

In a recent paper, Gani [1] has considered a stochastic
analogue of a deterministic model for the attachment of phages
to bacteria in suspension considered earlier by Yassky [3].
Among others, the underlying assumptions of these models are
(i) that the duration of observation is Short enough not to
cause any multiplications or deaths of both bacteria and phage
particles and (ii) that there exisfs an upper limit r to
the number of phage particles that can become attached to a
bacterium. In [l] Gani first considers a general stochastic
model, henceforth called 'model A', where it is assumed that
the probability of attachment during (t,t+t) of a phage to
bacterium already carrying i phageé is xini(t)vo(t)T +0(),
vwhere no(t), nl(t), -?°,nr(t) are the numbers of bacteria
at time t with 0, 1, 2, -++, r phages respectively, with
ng, = Z§=o ni(t) = n43(0) and the random variable _vo(t) is
the number of unattached phages at time t with vp(0) = vyq-
Here xi's(ki =0 for i Z r) are some nonnegative constants.
In particular it is assumed that Ay = ia‘+ B i = -

0, 1, 2, «**, *r -1 where B is nonnegative and a isvsuch
that A; are nonnegative. Having féund the differential
equation associated with this model rather untractable to
solution, Gani considers a simplified stochastic model, |
henceforth called as 'model B', where vo(t) instead is a

assumed to be nonrandom having the form originally given



.\by Yassky as

| Yoo (mo+B)
: Vo(t) = MmotR exp[rnoo(ma-i»ﬁ)t} ? (1)

where m = vy,/n40. Vo(t) as givén in (1) may be fegarded
as the mean number of unattached phages at time t. It is
assumed as before that the probability of attachment during
(t,t+t) of a phage to bacterium already carrying i phages
is xini(t)vo(t)w + o(1), where vo(t) 1is givén by (1). The
relevant distribution of the vector (no(t), cee, nr(t))
under model B turns out to be of the multinomial forﬁ.
 Reader is referred for details to Gani ([1], [2]).

.The purpose of this note is two-fold, First is to find
the exact distribution of the random variables involved under
model A for the speéial‘case with r = 1, where it was found
possible to solve the equations directly using the laplace
transform approach., The case of single‘infection (r=1) may
bé df interest by itself in its applications to this as well
as other fields. In the present case however when
Yoo << ngo the case with r = 1 may be regarded as a good
first approximation, The second purpose is to compare the _'
above distribution wifh the corresponding one obtained by

Gani under his simplified model B.

2, Gani's Stochastic Model A.
AN NN UL
We shall restrict ourselves to the case with r = 1, so

that it is sufficient to consider the distribution of nq (t),



since ng(t) = ny, - ny(t) and “Vo(t) = vy - ny(t). Let
P (t) = Pr(ny(t) =k); k=0, 1, -++, M, where M =

min(vgyg-0gg) - Following Gani, we have

ac = "M%0Y00%0
(2

It = Mook (rgg-k) Py

+ )‘O(VOO'k"'l) (nOO_k""l)Pk_l; k=1, 2, *=«, M.

Let

o]

Q. (8) Elﬂ;e-@th(t)dt; k=0, 1, oo, M Re(8) >0 . (3)

Next, the transforms of equations (2) are taken, using the

boundary conditions Pk(O) =1 if k =0 and zero if

k > 0, leading to the recurrence relation between Q'!s as
1

e+k0n00V00 ’

Q

- (%)
ko(vOO-k+1)(nOO-k+1)
Q = 558G (VoK) (figg-K)

Qk_i; k = 1; 2} cse, M ’

and thence to their wvalues

1
9+kon00V00

Q =

(5)

k[ Yoo! TNgo! k . ol
Q = xo_[ T T(o. =K t]'TT'[Q + Ag(vgo~1) (ngp-1) ] -
| G’oo ) (noo ) $20



»‘ReWriting the product in Q of (5) in terms of partial

fractions we have for k =0, 1, +++, M,

VOO ! noo ! k. : Clk ) . 6 .
k = (Voo"k)!(noo-k) O 6+x0(n00 l)(VOO l) . ( )
Where COO = 1 and
k . anq-1
Cgre = [ [=3) (mgotvgpi-1) ] (M
3=l - | S
i --
Finally, taking the inverse of Qk with respect to time t,
we immediately obtain the desired distribution of nl(t)

given for k=0, 1, 2, **+, M by

Pk(t) = 2 C kexp[ Ro(noo"i)(VOO-i)t] . (8)
(VOo”k) (UOO—k)! 1“0 v

Unfortunately the expressions for. E(nl) and higher moments
of nl(t) are rather involved and hence we shall not touch

them here; It is clear however thét since nl(t)' is a non-
decreasing function of t, nl(t) t M, a.s. as t — o,

Again if T denotes the time it takes before'either all the
bacteria or all the phage pafticles are exhausted, depending

upon whether Dop < Voo ©F Tgg > QOO’ we have

F(t)

H}

Pr(Tit) = Py (t)

V) l n X M .
= T e ~v00 K Cipg P [-Ag(mgo~1) (vgo=D)€] ,  (9)
[P00"Y00]) ! 1= o

with



Van! Dan!
0 00
F(x) = 0

M
- Z ¢ =0. (10)
(Ingg=vppl) !

i=0 iM

CMM = 1;.F(0) =

From (9), one can easi1y~find the moments of T, for instance

Vooz noo! Mgl -C%M b (11)
i0p0~Yoo 1) ! 120 Ag(mgp=1) (Vgg-1)

E(T) = 7

3. feme Mimiting results and comparison between the two models
For the case with r = 1, we must fake B =-a = AO’ o)
.that under model B, vo(t) of (1) assumed to be nonrandom
is given by
V00 (Pgo=voo) exP[ Ay (ngg-vpg) t]

vy (t) = : (12)
0 00700 ©*PL-79(Bg-vpe) t] |

Under model B, nl(t) turns out to be a binomial random
variable. More specifically, if pk(t)' denotes
Prin; (t) = k] under model B, then from [1] we have for

k=0, 1, «-», M50
. 00\ k. P00k |
P(®) = (20) a“-a) %0, (13)
®
where -

AL voo(l-exp[-xo(noo-voo)t])

N90~Vo0o €XP[-Ng(Bgp-=vpg) t] ()

It may be remarked here that beéause of the introduction of a
deterministic element in model B (namely, treating vo(t) as
nonrandom unlike in model A), one may be tempted to conclude

that varianée of nl(t) should be smaller under.model B than

under model A, This however is not necessarily true as will be



; exhibited below specially for the case where Voo < nOO’ the
case which arises fairly commonly in practice. One simple
explanation for this is as follows: when Voo < Dgo’ whereas

one starts with Y00 phage particles at time zero and the

'. number vo(t) decreases with t deterministically under

- model B, there is always a positive probability of nl(f)\
taking a value greater than the'availablé total number 'VOO
 of phage particles; in fact |

Y00
Pr(hy(t) > vgq) = 1 - <§o Py (£)

Nan-1 a v Nan=Van-1

= npn( 00 7). [T x 00y 00 700 T4 (15)

SO0\ v )
00 o |

It is this scatter of the disfribution of nl(t) beyond
point Y00 that is paftly responsible for a greater varia-
bility in nl(t) under model B than that under model A.

In the foliowing we shall study the behavior of the
distribution of ‘ny(t) under models A and B for three
different limiting cases: (i) when t — o (ii) when
'noo—» © and Ay — 0 such that Dgorg 6 and (iii) when

Voo — ® and Ao = 0 such that VOO)O - 1 .

Case (i). When Nog 2 Voo » it is easy to verify that in

both models as t = =, Pr(nl(t) = Kk) — 0 for k < ngo and
Pr(nl(t) = noo)-» 1. Oﬁ.the other hand when D50 > Yoo
whereas in model A, P, (t) - 0 for k # vyq and P, (t) — 1

as t = »; in model B however, for k =0, 1, .., ngg



: Nhn-k
. PR v 00
lim p (t) = < goj @ - 229

t

Voo | -
6 .
(“00 S )

Clearly in this case then, for large ¢t, the variance of
nl(t) under model A is neglible; whereas under model B it

is quite significant, unless Y00 ~ Ngg -

Case (ii). 1If we let ngg = @ and Ag— 0 in such a
manner that nOOAO - 0, then we’find under model A, for

k=0, 1, ¢, V005 that

(VOO> e"é(Voo"k)t . k
k

lin Py (t) = (1 -e% . an

Thus the random variable nl(t)_ tends to be binomially dis-
tributed in the limit, with

E(ny (£)) = voo(L = e™°%); Var(ny (1)) = vy e™°F(1 - 76 ()

The situation is somewhat different under the simplified
model B when we let Ngg — ® and Ay = 0 in a similar manner,
Here the limiting distribution is Poisson with parameter

voo(L - ¢ %) so that for =0, 1, 2, **-,

-6t
. kK -vgo(l - e7%%) (19)
. -0
lim p, (£) = %T [voo(l - e t)] e 00 .
and in the limit _ .
-5 v
E(ny(£)) = vog(l - e %) = Var(n;(£)) . (20) .

On comparing (18) and (20), we find that whereas the
E(nl(t)) is same for both models, Var(nl(t)) is again found

to be smaller under model A than that under model B,



(Co

Case (iii). 1If instead we 1ét Vog = © such that

AOVOO — b, one finds as expected that the limiting distribu-
tions of nl(t) under the two models coincide; the common

limiting distribution is binomial with the

e

- -1 k
Pr(ng (t) = k) = (ng") 00T ) ey (21)

for. k=0, 1, e, Vooo

In conclusion, we may remark that in general the simpli-
fied model B appears to be a good approximation to the
.8tochastic modél A, as far as the distribution of nl(t) is
concerned, only when Vo0 is much larger than nyg. However
this is restricted only to the case with r = 1; for the

case with r > 1, the present results are only suggestive:
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