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§0. Summary. Kiefer and Wolfowitz (1959) proved that the optimal
design for estimating the highest coefficient in polynomial regression is
supported by certain Tchebycheff points. Hoel and Levine (1964) showed |
that the optimal designs for extrapolation in polynomial regreséion were
all supported by the TchebychefT points. These results were extended by'
Kiefer and Wolfowitz (1965) to cover nonpolynomial regression problems ins
volving Tchebycheff systems and the large class of designs supported by I
the Tchebycheff points was characterized. In the present paper it is sho%n
that the optimal design for estimating any specific parameter is supported
by one of two sets of Tchebycheff points. Different proofs of the Kiefer}
Wolfowitz results are also presented. |

§1. Introduction. Let T = (£_,f;,...,f,) demote n + 1 linearly
independent continuous functions on a compact set® . For each x e?kf an
experiment can be performed. The outcome is a random variable y(x) with

n
mean volue ¥ eifi(x) and a common variance 02. The functions
i=0 :

fo,fl,...,fn , called the regression functions, are assumed known while

eo,e € and 02 are unknown. An experimental design is a probabil%ty

l,-.-, n

measure £ on % . The problem concerned with here is that of estimating

*This research was supported in part by the Office of Naval Research Contract
"NONR 1100(26) and the Aerospace Research Laboratories Contract AF 33(6153)67C124k
gt Purdue University. Reproduction in whole or in part is permitted for any
purposes of the United States Government. e
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n
a linear form (c,8) = = c, 8, It will always be assumed that

2
c,
i
0

MB

> 0.

. . _ _ _ n
For a given design £ let m s = mij(g? = infjdg and M(g?_l'mij(g)lliéj=0'
A linear form (c,8) is called estimable with respect to & if c¢ 1is con-
tained in the range of the matrix M(g). If c¢ 1is estimable with respect

to £ let

2
Ve,8) = o 1

where the sup is taken over the set of vectors d such that the denomina;or
is nonzero. If c¢ is not estimable with respect to § we define V(c,§)= @,
Suppose & concentrates mass gi at the points X5 5 i=%,2,...,r and
§iN =n, are integers. If N uncorrelated observations are made, takiﬁg
N§i observations at Xi , then the variance of the best linear unbiased ?s-
timate of (c,8) is given by 02N-1V(c,§). An arbitrary measure or desién
E is called 'c-oytimal if € minimizes V(c,E). For a more complete ﬁis-
cussion of the above model see Kiefer (1959) or Karlin and Studden (1966b5.
We assume throughout that :x;: [—l,l].. Hoel and ILevine showed that ;f
£, (x) = ,1i=0,1,...,n and c = £(x_) with lxol >1 then the c-optimal
design is supported‘on the Tchebycheff péints Sv= cos %F) v = O,l,...,n.;
These are the points where ITn(x)I =1, Tn(x) being the nth Tchebycheff
polynomiel of the lst kind. | i
Kiefer and Wolfowitz consider more general systems of regression of_
functions and a related set of Tchebycheff points. Let T¥* denote the sét
of all c¢ such that a c-optimal design is supported on thé entire set of
Tchebycheff points. The set T¥ is divided into 2 different sets R¥* and

8% = T% - R¥ which they explicitly characterize. Moreover they show thgi



the set R¥ includes the set A¥ of all vectors c¢ for which (c,8) is
not estimable forany design on fewer that n+l points. The set A* may

be characterized by stipulating that c¢ e A¥ if and only if the determinants

fo(xl) cee fo(xn) cq

fl(xl) fl(xn) ey
(1.1) :

fn(xl) fn(xn) cn

do not vanish whenever the x, are all distinct.

In Sections 2 and 3 we offer different proofs of the Kiefer-Wolfowitz
results and more emphasis is placed on the fact that their sets S¥* and
R¥ can be characterized ingmenner similar to the determinant charécteriza—
tion of A%, More explicitly the set R¥ is precisely the set of ¢ fqi
which the éeterminants (1.1) are of one ;trict sign for XpsXpsenesXy aﬁ

order subset of the Tchebycheff points 55 <s. <.,... < sn and S¥ con-

1
sists of those vectors ¢ for which the determinants (1.1) alternéte in;
sign as we progressively omit successive S, The proofs offered here rgly
heavily on the elegant result of Elfving which is stated in Theorem 2.1.{
A close inspection of the analysis used by Kiefer and Wolfowitz and the
analysis uéed here shows certain similarities, however much of the pre-
liminary discussion and game theory has been eliminated using the Elfving
result. |
In Section 4 it is shown that the vectors cp= (O,...,O,l,O,...,O) ~

(a one only in the p+lst component) are in R¥ if n-p is even while

if n-p is odd the cp-optimal design is supported on the Tchebycheff points



of one lower order. The case p = n was originally proven in Kiefer and
Wolfowitz (1959). The above shows that in the case of ordinary polynomial

regression the optimum design for estimating Qp is supported by the set

Sv = ~COo8 %? ; vw=0,1,...,n, when n-p 1is even and by the set ’
tv = =CO0S ﬁ%z s v=0,1,...,n-1, wvhen n-p is odd.

Section 5 contains some additionél remarks which show that certain
linear combinations of the vector cp are also supported by the Tchebycheff
points while Section 6 contains a simple counterexample which shows the m;ni-
max design is not necessarily supported by the minimal number of n+l points

.,f  form a Tchebycheff system.

When fo,flj" 2 n

§2. Designs Supported by Tchebycheff Points. The following result due

to Elfving (1952) characterizes the c-optimal designs & and will be fre-

i

quently employed throughout the paper.

Theorem 2.1. Let R, = {f(x):(fo(x),...,fn(x)|x e X1, r_ ={-f(x)|x e)(f

and R = the convex hull of R+Uﬂ_. A design go is c-optimum if and only

if there exists a measurable function o(x) satisfying |o(x)| =1 sucﬁ

that (i) j@(x)f(x)g(dx) = Bc for some P and (ii) pc is a boundary pdint

-1

of R. Moreover Bc lies on the boundary of R if and only if BE= vo‘

where v_ = min V(c,E).
° g

Every vector c € @ can be put in the form

k §
. = f A
(2.1) c E: ep, flx) ;
=1 :
k .

where €v= +1, Pv >0 and X pv = 1. The integer k may always be tagen
, 1 . :

to be at most n+2 and at most n+l if ¢ is a boundary point of R.

The following simple lemma will be needed.



Lemms 2.1. A vector ¢ of the form (2.1} lies on the boundary of R if

and only if there exists a nonmtrivial ''polynomial'' u(x) = Z ava(x) such
N —

that |u(x)|] <1 for x e [-1,1], €, u(gcv) =1, v=1,2,...,k, and

Tacs=1.

y V'V

Proof. If the required polynomial exists and a = (a ,al,...,an) then
(ayc) = = P, (a,£(x)) = & P, €, u(x ) =1 and (a,y) <1 for ally e R.
The Vectxr a defines a.sup;ortlng plane te L at ¢ so that c¢ is a
boundary point of fi.

If ¢ is a boundary point of R then a supporting plane exists, i.é.
there exists a vector a + O such that (a,c) =1 and (a,y) <1 for
all y e f. (Note that the origin is in the interior of R;) Therefore
1= (a,c) = §1PV ev(a,f(xv)) and |(a,f(x))|=|u(x)|{< 1 for ail x e [-1,1].

. V= ,

In this case ev(a,f(xv)) =1 for v=1,...,k since we have assumed

> 0.
p,~ 0
Remark 2.1, For an arbitrary vector c + (0y...,0), Bc lies on the bound-
ary of R for some B >0 and hence Bc = € P, f(x for some {eqp }
v—l v
n ,
and {xv]. if (a,f) = = a;f; denotes the polynomial of Lemma 2.1 then
. _o . :

n
the minimal value of V{(c,E) 1is 6'2 = (& aici)2 = (a,c)2 since

0
(Bc,a) = 1. Moreover
2
inf V(c,§) = 1nf sup (c,b )

g - b J(b f(x ) g(ax)

> sup inf (e, b)
e [(0,2(x))%e(ax)

2 (C’a)2~



Since the first and last terms are equal

1nf sup (c, b) = sup inf (e, b)

b J(b f(x)) (dx) b £ J(b f(x)) £(dx)

¥

We shall assume throughout the paper that the set of functions

fo,fl,...,fn form a Tchebycheff system or a T-system on [-1,1] and that

n .
U(x) = aifi(x) 1 for some set {ai} . A T-system f_,fy,...,f 18

. ) n
i : n

such that every linear combination 2 aifi(x) (= a? >0) has at most =n
i -0

distinct zeros on [=1,1] or equivalently the determinants

(=)

fo(xo} fo(xl) oo T(xg
0,1,.04,n £1(xg) f1(x) ... fl(xn)

(2.2) F( ) = . . .
,xl,...,xn- . R .

fn(xo? fn(xl) ces fn(xn)

are of one strict sign provided -1 < x| < Xq <eew <X < 1l. For definite-
ness we shall assume 'bhat the determinants are positive. We shall call any

linear combination Z a; T, (x) a polynomial. The classical example of‘a
i=0 -

T-system consists of the ordinary powers fi(x) = xi, i=0,1,...,n. In ?his
case the determinant (2.2) reduces to the classical Vandermonde determinént.
A simple constructive method of generating more general T-systems will be
given in Section k.

The following important property of T-systems will be used (see Kar;in
and Studden (1966a), Theorem II. 10. 1) e {f, }n is a T-system on [-1,%]
then there exists a unique polynomial W(x) = Z a f. (x) satisfying thé

i=0 *
properties



(1) ol <2
(ii) there exists n+l points -1 < 5, < Sy < .ee < 5, <1 such that.
W(si) = (-1)*™*, 1 = 0,1,...,n. Moreover when U(x) =1 is a polynomial
equality occurs in (i) only for x = 8,87s+++s5, and s = -1 and s = +l.

For any vector c($(0,...,0)) considerable use will be made of the de-

terminants

fo(so) .. fo(qul) fo(sv+l) ces fo(sn? c,

fl(so) cos fl(sv_l> fl(sv+l? ces fl(sn) ¢y

(2.3) Dv(c? =

fn(so) cen fn(sv—l) fn(sv+l) cee fn(sn) c,

The sign of Dv(c) will be denoted by dv(c); if Dv(c) = 0 the sign mgy

be defined as -1 or +l. We further let Lv(x) =X avifi(x) denote thé
. 1 )
lagrange interpolation polynomial defined by requiring that Lv(sj)=5vj’

Vs = 0,1,...,n. In terms of the determinants (2.2) Lv(x) has the more
explicit form

O,-'o’ \)-l)\), \)+l,-on,n)

S ,QQI’S ,X,S ,l.l,s
0 v~1 +1 n
Lv(x) = Y .

For any vector c¢ and any polynomial u{x) = X aifi(x) we shall use the
i . i
notation u(c) = = a;c;« In this case we have
. i

(-1)"7V D (e) = 1 (e) B(



Now for any polynomial u(x) we have

n
u(x) = Z u(s ) I (x).

v=0
Since the coefficients of fi on either side are equal we find that
n
u(e) = Zu(sv? L(c)-

v=0

Letting u{x) be successively the polynomials f _,fy,...,T =~ we find that

n
c = EZf(sv? Lv(c?
v=0
n
= z (__-1?n-v dv(c?lL\)(c?lf(sv).
v=0 ’
Therefore
n
(2.4) Be= Y (-1*Va(e)p sy
. v=0 ' '
where
L (c) D (c)
. - nl el i nl MO g 0Lyt
ZlL.(c Z |D.
j=ol 5( )I J.=ol J(c?l
and
n n
B = () Imy(e)™ =7 2, I

J=0 J=0



Iet R denote the class of vechors c¢ such that e Dv(c) >0 for

v =0,1,...,n where e is fixed to be +1 or -1 for a given c (i.e. thg Dv(c)
v = 0,1,...,n all have the same sign in a weak sense)and let S denotei
those ¢ for which e(-1)Y Dv(c) <0, v= O,l,...,n.b The following theo?em

is a slight generalizatioﬁ of Theorexn 3.1 of Karlin and Studden (1966) ané

Theorem 3 of Kiefer end Wolfowitz (1965).

et e

Theorem 2.2, Suppose theb {f,}. is a T-system such that U(x) =1 is 8
polynomial.
(a) For any desiga &
2
[w(e)] c eR
(2.5) d(e,8) >

[U(c)}g c eS8

where W(x) is the oscillatory polynomial defined above.

(b) EBquality occurs in (2.5) for & = §  concentrating mass

15, ()] o, ()]
v n T n
vEOlLV(C?l violDV(C)l

the p

ints 5y VT 0:1;000 50

(c) The design € s the orly design supported on s, <. <8

sttaining equality in (2.5). Ff c ¢ R them § is the only design

attaining equolity in (2.5)
Proof. f(a) ¥or c e RU S the gquenity Be in (2.4) is a boundary poink

of R. Moreover for c € R, fW(c) = 1 so that the minimum value of
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V(c,E) is 6'2 = [W(c)]z. Similarly [U(c) ]2 is the minimal value of

V(c,gj for c¢ ¢ S.

(b) The design §_ is c-optimai in each case by Lemma 2.1 and the i
properties of U and W.

(¢c) For c € 8 end any c-optimal design supported on so,sl,...,sn;

equatlon (2. h) holds for some set ( l)n Va (c P,y v=0 31;.0.,n, where

= (U(c)) . However this set of linear equations has a
unique solution since F(so""’sn ) £0. For c e R we have
o,'..,
2
c,d
v(e,8) = =% 13, N(e)a
> Vilc 2
2 o
JIGIEDRCE:

> (1(c))? .

The last inequality is strict unless § 1is supported on so,sl,...,sn
since |W(x)] <1 for x ¢ §,s8ys-++s8,. The last sentence in (c) now
follows sinée the c~optimum design supported by So’sl"f"sn is égain
unique.

Remark 2.1. As observed by Kiefer and Wolfowitz the above theorem is a
consequence of the fact that the convex hulls A and B of the two sets
{f(sv)}g and {(-1)*7V f(sv)}g both lie in boundary faces of the set R
definéd by Theorem é.l. Tt is easily seen that the B 1is the entire facge
since |W(x)|.= 1l only for x = so,sl,...,sn, i.e. the intersection of é
and the hyﬁe:plane defined by W(ec) = 1 is precisely B. The union of ﬁ

and its symmetric image is the set R.



11

The set A is properly contained in the face of R determined by
U(c) = 1. The complete face in this case is the convex hull of the whole
curve {f(x)lx'e [-1,1]}, so that with the assumption that W(x) =1 is 'g
polynomial évery vector c = 2 pv f(xv) is a boundary point of- e The‘

‘\) .
usefullness of 8 will be apparent in the next section.

§3. The Kiefer-Wolfowitz Theorems. Kiefer and Wolfowitz (1965) de-
fine five sets of vectors T¥,R¥,S¥,A% ,H¥. The first set T* consistslof "
those c¢ such that a c-optimal design exists on the full éet of Tchebychéff
points so,sl,...,sn. The next two sets R¥ and S¥* consist of those ¢ ﬁhich

for some B % O are of the form

n

n
Bc = E evpvf(sv? pv>0,§pv=l
v=0

where the ev alternate in sign for ¢ € R¥ while the e\J are the same

sign for the vectors in S% . The set A¥ consists of those c¢ for Wh@ch

fo(xl) cen fo(xn) c,

fl(xl) cae fl(xn? ey

(3.1) . o,

fn(xl? . fn(xn? c,

provided the x, are distinct and lie in [-1,1]. The set A¥ is shown.
to consist of those ¢ such that (c,8) is only estimable fo; designs -

supported by at least n+l points. Fiﬁally to define H¥* it is assumeq
that the regression functions fo,fl,...,fn are defined én some intervai
containing [-1,1] and c e H¥ if and only if c¢ = Bf(xo) for some

|x | >1 and B £ 0.
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With suitable further assumptions (see below) on fo,fl,...,fn it is

shown that:

(1) R¥ contains a neighborhood of ¢ = (05e40,0,1)
(ii) H¥ c A% c R¥ |
(iiij The vectors ¢ € R¥ have unique optimal designs while the vectors
| ¢ € S*¥ have unique designs among those supported by So""’%n

(iv) R* and S* are disjoint and R¥ U 8% = T* :
In Séction 2 we have formulsted our sets R and S entirely in te?ms
of the determinants (2.3) or (3.1) using only the points 8981505 #f
we define RO and SO as the subsets of R and S respectively such %hat
the determinants Dv(c) : 0,v = 0,1,...,n then it can readily be seen tgat
RO= R¥ and So= ST Moreover the sets RO and SO are simply the int?r-
jors of the sets R and S respectively. The majority of the results ki)-

(iv) above follow from Theorem 2.2.

(i) To prove (i) it suffices to assume that the determinants

fo(so) cer £ (Sv-l? £ (Sv+l) ceo fo(sn)
(3-2) : :

n_l(so) ceo fn-l(sv—l) fn-l(sv+l) . fn-l(sn?

for v = 0,1,...,n are all nonzero and of the same sign. This will be true
whenever the functions fo’fl""’fn-l form a T-system on [-1,1].

(i1) That A¥ C R* is clear while H¥ < A¥ provided f,fi,...,f is
a T-system on (-«,®). In fact c = ﬁf(xo) e A¥ for fixed x ¢ [-1,1] pré-
vided ;T ;05T .is a T-system on [-l;l] U-{xo}. |

(iii) This follows directly from Theorem 2.2.

(iv)- That R¥ and S* are disjoint and both are contained in T¥ is

immediate once we note their identification with RO and So. For complete-

ness we will now prove that R* U 5% = T¥ (or R¥ U S* D T*) with the
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aid of Assumption 2 in Kiefer and Wolfowitz (1965). Assumption 2 states
that every polynomial Z a; i (x) either has lessvthan or equal to n-l
changes of direction on ( -1, l) or else is constant on ( l,l) (A funétion
u(x) changes direction at ¥y e (-1,1) if wu(x) has a local maximum orv
minimum at y. In particular if u(xj is consfant on an open subintervél
of (-l,l) it is said to have infiniteiy many changes of direction). With
this assﬁmption we may prove that R* U §% D T% (and hence that R* U S% = T%)

as follows. If ¢ e T¥ then

n
Bc = }: €, P, f(sv?
v=0
n
for some B % 0, e =+1,p >0 and £ p = 1l. Moreover by Lemma 2.1
v v N oV
there exists a polynomial ux) = Z aifi(x) such that |u(x)] <1 for
.o

0,1,4+0,n. Now if c § R¥ U 8% then

x ¢ [-1,1] and e u(sv) =1, v
the e = are not constanf (hence u(x) f constant) and do not alternate

in sign so that there exists a J such that €j€$+l > 0. Then u(x) hgs
a change of direction at sl,sg,...,sn_l and at least one in the opeﬁ inf

terval (Sj’sj+l)' We therefore have a contradiction since u(x) has n

changes of direction and is nonconstant.

§h, Optimal Designs for the Individual Regressioh Coefficients.

Let c,= (0yeee50,1,0,...,0) denote the vector with a one in the
p+lst component and zeros elsewhere. In this case (cp,e) = ep. For

p=n it follows from Theorem 2.2 that if fo"“"fn—l is a T-system then

the unique cn-qptimal design is supported by the full set of Tchebychelf

points 84 < Sq < vee < S.° This result was first proven in Kiefer and .

Wolfowitz (1959). The purpose of this section is to show that under



b
suitable assumptions the uniqﬁe cp—optimal design (p > 0) is supported by
this same full set of Tchebycheff points if n-p is even and by the full
set of Tchebycheff points of one lower order if n-p is odd. For p = O,
n > 2 the unique cp optimal design is'supported entirely on x = O. This
result is motivated by certain extremal properties of the ordinary Tchebyéheff
polynomial Tn(x) = CcoS né, X = cos e._ The assumptions to be made on theire—
gression functions will be such that they resemble to a very large extent
the ordinary powers 1, x,...,xn on [-1,1].

We shall assume the following:

(i) {fi}i for k=n-2,n-1,n, are T-systems on [-1,1]

i

(ii) fo(x) 1

(1ii) fi(x? (-1)* £,(x) 1=01,..,n

(iv) for every subset i.,ij,...,i, ©of 0,1,...,n the system f, (x),
1’72 k i,
£, (x),...,fi (x) is a T-system on the half open interval (0,1],
2 K
i.e. every linearly combination of fi ,...,fi has at most k-1
1 k '
distinct zeros in (0,1].
n
(v) every polynomial Z aifi either has fewer than n changes of
o
direction on (-1,1) or else is constant on (-1,1).

Since {fi}g and {fi}z—l are both T-systems, the polynomials Wn(x)=w(x)
. . . . n-1 ;
and Wn_l(x) exist. (Wn-l is defined in terms of {fi}o ). Denote the
Tchebycheff points for Wn by so=l < 84 <...< 5, = 1 as before and the
Tchebycheff points for Wn_l(x) by to=-1<t) <... <t q= 1. From .
the uniqueness properties of Wn and wn-l both of the sets {51}2 and

{ti}g_l are symmetric about zero as in fhe case of the ordinary powers.:

m

Tn fact for n even, say n=2m, Wn = k§o ot fgk; while for n=2mtl,
n =

W = X &

n oK+l Tok+1"

k=0
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The powers l,x,...,xn satisfy all of the conditions (i)-(v). A
simple constructive method of obtaining further systems satisfying these

conditions is as follows. Let WqoW

AYREETL M be any n strictly positiye

coptinuous functions on [-1,1] such that w(x) = w(-x) and define

fo(x) =1
£.(x) = fx wy () a§;
0O gl
£,(x) = f; w, (5 fo W (E,) 48, g
| & Sn-1
e (0= [ (e [ uple) o [ wylE,) aggeag
0 O o ;

Tt can be shown (see Karlin and Studden (1966a), Ch. 11) that the above
system satisfies conditions (1) - (v). The powers arise for the special
case wi(g) =i, i =1,2,...,0. The proofs for this special case can be
found in Natanson (196L4), é. 53.

Now for p =0 and n =1 it is clear that € 1is cp-optimal if end
only if £ is symmetric about zero. For p=0 and n >2 it is easily
seen that the unique cp-optimum design concentrates mass one at X = 0. We
shall therefore assume that p + 0 and n > 2.

Theorem 4.1. Let {fi}g satisfy conditions (i) - (v) and suppose that

n>2 and p#o.

(a) If n -p is_even then c, € R, = R¥, i.e. the unigue cP—optimal

design is supported by the full set of Tchebycheff points so,sl,...,sn.; The

cp-optimal design and the minimal value of V(cp,g) are explicitly character-

ized in Theorem 2.2.
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(b) For n-p odd the unigue cp-optimal design is supported by the

t and this design is obtained

full set of Tchebycheff points to,tl,..., n-1

from Theorem 2.2 by considering the lst n component of cp' (The vector

¢ is in fact, contained in the set Ro(n—l) = R*¥(n-1) defined analogous

. n-1 n
to R, using {ti}o instead of {si}o.)

The above'theorem relies on the following result. For the ordinaryi
polynomial case the proof is given in Natanson (1964), p. 53. The prooff
for the more general systems follows essentially word for word and will
therefore be omitted.

n

Theorem 4.2. If n-p is even then of all polynomials u = X aifi in
' i=0

)

which the coefficient of fp is equal to unity the polynomial Wn(x)/aég
minimizes

sup [u(x)].
-1<x<1

If n-p is odd then the polynomial wn_l(x)/aén-l) has_the above property.

a(n) and a(n"l)
D - P

(The quantities

are the coefficients of fp in Wn and

LS respectively).

With the aid of the above theorem we can prove

Iemma 4.1. For n >2 the cp—optimal design is supported by the Tchebyéheff

points so,sl,...,sn if n-p 1is_even and by the Tchebycheff points

t t if n-p is odd.

A AR

Proof. By Remark 2.1 following Lemma 2.1 we have
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(C )a)2

inf V(c_,€) = inf sup P 5
g P e a |(a,f(x))7g(ax)

(Cp,a)2

sup inf

a £ [(a,f(x))%e(ax)

2
(Cp:a)
= sup s
a sup (a,f£(x))
1<x<1
(ar()n))2 n-p even
(al()n-l))2 n-p odd.

Suppose that go is cp-optimal and n-p is even. Then

2
) (Cp)a)
V(cp’to) = 8sup

a [(a,2(x))% (ax)

(a{®))?

>
™ Jor ()% (ax)

Z (aI()n) )2 .

Since ]Wn(x)| = 1 only for so,sl,...,sn stfict inequality holds at the
last step unless §o is supported by so,sl,...,sn. The argument for n-p

odd is the sane.

Proof of Theorem 4.l. Suppose that n-p is even, n >2 and D + 0. Since
any cp-optimal design is supported by SO’Sl""’Sn there must exist a .so-

lution {ev Pv} to the system of equations
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n

(4.1) Be,, = Z e, p, £(s)s Bdﬂ%mL
v=0

It suffices to show that pv + 0 since in this case our assumption (v) 1to-

gether with the Kiefer-Wolfowitz result (iv) described in Section 3 tell;

us that either the €, alternate in sign or they are constant. HoweVeri

since p + 0 the first component of (k.l)} reveals that €, cannot be a%l

of one sign. Therefore cp € RO = R¥, f
Now suppose that p,= O for some fixed i. From equation (4.1) the

determinant with column vectors f(so),,.., f(si_l), c,s f(;i+l)""’

f(sn) is zero. Therefore there exists a polynomial P(x) = & aifi(x)

such that g a? > 0, 8= 0 and P(Sv) =0 for v#i. Sinc: n-p is

even, two czses mey arise (a) n and p are both even or (b) n and P

are odd. If n and p are even and n=2m we note, with the aid of condi-

tion (iii), that

Q(x) = P(x) + P(-x)
m
= }: 8 f2k<x)’ 8, = 0.
k=0

The polynomial Q(x) has at most m terms since a?= 0 and hence has gt
most m-1 zeros on (0,1] by condition (iv). Note that s =0 and

s.= i=0,1,.0.,m-1. If i=m, Q(x) vanishes at s

.= =5 . vee,S
i 2m~-1 m+1’ ’Com

implying that a,,=0 k =0,l,.00,m. If 1 % m we suppose that i > m.

2k

In this case Q(sm) =0 and @ now has m-1l terms and vanishes at
X = sj, J=mtl,...,2m, Jj + i again implying that By = 0, k =0,1,...,m.

Therefore
m

P(x) = Z: Bop-1 Tok-1
kel
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vanishes at SO’Sl""’sm—l and hence at Sm+l""’s2m' We conclude thgt
P(x) = 0 which is a contradiction. The case (v) where n and p are odd

is handled in & similar manner using Q(x) = P(x)-P(-x). The proof is omit-

ted.
Now when n-p 1s odd the cp-optimal design is supported by to’tl"7"

t and hence there exists a solution f{e p_} of -
n-1 vy

n-1

-1 (n-1)
. = f(t = .

(4.2) Be, = E: e, V) B Eh

v=0

Omitting the last component the resulting system of equations reduces to
the case n-p even so that Pv + 0 and as before the Ev alternate in
sign.

For the ordinary polynomials the explicit values of inf V(cp,g) ‘cgn
be readily obtained from the coefficients of Wn(x) or Wn_l(x). Tﬁus if

n-p is even and k = O,l,...,[%] then

n n-k
(

n~2k-1+2
n-Ek’g) B {n-k k }

inf V(e ) 2
c

5

while for n-p odd and k = 0,1,..., [Eéij we have

JE) = n-1 (n—l-k

inf
o viey 1 oox ik b ok

~2k-2,2
) 2" 3-.

We observe that for fixed k the minimal variance for estimating O i$

equal when n = k+2i and n = k+2i+l, i=0,1,... .
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§5. Remarks. We observe that the vectors % ¢ P f(s ) = Be with
—_— w=0 YV V v
€, alternating or €, of one sign form two sets of opposing n~dimensional
convex faces :in the boundéry of f. Now each of these faces determines a
convex cone such that any vector c¢ in the cone has a c-optimal design sup-
ported on the Tchebycheff points. The simple property we wish to utilizé
is that a cone is closed under linear combinations with nonnegative coef@i-
cients. FEach of these faces is, of course, the convex hull of the extre@e
points which are known; however it is of interest to determine, for examéle,

in which face each of the vector cp lie. For this purpose we consider the

two cones
n
n-v
0y = lelee = ) (-1 Ve, £(s), £ >0}
v=0
and
‘n-1
3 3 _ n-i-y
Cpy = [elbe = ) (-1 g (8 ), 8 > 0)
v=0

where Pv’qv >0 and X pv= 1l and X q,* 1 .
v v

Suppose that {fi}g ig a T-system on [-1, ») such that

O’ l,--.,l’l

(5'1? F (xo,xl,...,xn> >0

vhenever -1 <xj <x; <...<x . Inthis case £f(x) eC  for x>1 and

hence

k

}: My f(xi) e C,
i=1
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for X, > 1 and Ay 2 0. In fact
(5.2) 2 aux) e

for any nonnegative measure p on [1,o) for which the integral is de-
fined. The optimal designs for such linear combinations can easily be ob-
tained using Theorem 2.2, For example the optimal design for the vector

in (5.2) places mass
at s where @, = IILv(x?Idp(x), v=0,1,...,n.

In order to determine in which face each of the vectors cP lies we

shall assume that for k = n~2, n-l, and n

0, 1,..., k
(5.3) F ( ) >0

XyrXyseees Xy

whenever =1 <x < .,.. < xk < 1l.
—O w—

Theorem 5.1l. Let {fi}g satisfy conditions (i) - (v) of Section k4 and

suppose that (5.3) holds. If n-p is_even then

k
(5.h? (-1? C o € Cpy k= o,l,...,[gﬂ

and if n-p is odd then

Lk = n-1
(-1) Cj-op € Cpiqs k= 0,1,000,[ 5 1.
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Note that we have normalized the system {fi}g_l in such a way that

¢ is always in C_. If n =1L then ¢, -c,, ¢ liein C  so that
n n Ly o n

2’
Xh I x2c2+xoc € Cn when xo,xe,xu are nonnegative and hence xheh x292+xoeo

is optimally estimated by a design on the points Sreee a8y

Proof of Theorem 5.1. The arguments are somewhat similar to that given in

Theorem 4.1. We shall consider only the case where n-p is even and p % O.
The remainding cases are similar.

Observe that cPeC when D (c )>O and -cp€ Oy ¢ if D (c < 0. Now
the sign of D (c ) is the same as the s1gn of the coeff1c1ent of fp %n

the polynomlal

O 3 lJroo, n—l n
F( )

S ;5. ,0ee38 x.
0’71’ 7"n-1

I}

P(x)

1

E:ai £, (x?.

i=0

For n = 2m the polynomial
m
a(x) = 27 HEER(x)) = ) ay Ty (x)
' | k=0
venishes at s = O (so that a= 0) and at the m-1 points s

m+l,..., 7

Som-1°
Now the system {fgk}? satisfies Descartes Rule of Signs (see Theorem

4.4, p. 25 in Karlin and Studden (1966a)). That is, the number of zeros of
Q(x) on (0,1] is bounded above by the number of sign changes in the se-
guence ag,au,...aEm where zero terms are omitted if there are any. Since

Q(x) has m~l1 zeros the sequence &,,8),«++,8 must alternste in sign.
_ 277 2m
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Since a._ >0 we have (-1) >0, k = 0y...,m. Therefore

2m 8y -0k
(-1)k ok € Cp for k = O,1,...,m.

§6. A Counterexample. From the papers of Hoel-Ilevine, Kiefer-

Wolfowitz and Karlin-Studden it is apparent that the assumption that thef
functions {fi}g form a T-system provides enough structure to analyze
certain design problems. Now in the case where fi(X) = xi, i=0,1,..e,n
on [~1,1] it is known that the minimax design, whicﬁ minimizes

max V(x,£), is supported by ntl points, namely the zeros of
-1<x<1

(l-xg) Pﬁ(x) = 0 where P is the nth Legendre polynomial. In fact in’
the ofdinar& polynomial case all admissible designs (see Kiefer (1959)) |
use only n-l1 points in the open interval (-1,1). The purpose of this
section is to exhibit a simple exemple of a T—sysfem for which any minimax
design must be supported by more than n+l points. Ve shall utilize the
theorem of Kiefer and Wolfowitz (1960) which states that §O minimizes

max V(x,8) if and only if & maximizes the determinant of M(E),
1 <x <1 :

Moreover V(x,go) < nt+l for all x e [-1,1).

i

Consider the functions f_,f on [-1,1] where f

1t 2 o) L fl(x) =X
and f, is such that fg(x) >0, fg(o) = 0, fg(iJJ==1 and f, 1is convex.
With these assumptions the design which minimizes max V(x,E), among
-1 <x<1 '

those concentrating all mass on 3 points, has equal mass at the points
-1, 0, 1. This is geometrical clear after noting that for a design g with

welghts Xcﬂxlka on xo,xl,x2 we have

[
IM\Q?I X lngdetlf (x |lJ o



2l

and that the above determinant is the volume of the parallelopipe spanned

by f(xo?, f(xl?,f(xz?.
Now if the design €O with equal mass on =-1,0, 1 is minimax then

(6.1) (£(x), M‘l(go)f(x)) <3 for x e [-1,1].

However the quadratic form

1
(l;Y:Z) M_l(go>< ¥ > =3
. 7
is given by
2= %2 1 (33

which is strictly positive for y + 0 . Thus (6.1) cannot hold when

f2(x) is ''sufficiently chose'' to zero. It can éasily be verified tha?
the éystem {l,x,xh} does not satisfy (6.1) and hence the minimax desigpn
is on at least four points. Further analysis in this particular case shéws

that four points actually suffices.
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