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1. Introduction. We exhibit a decomposition for an Ll—bounded mar-
tingale that allows us to'dbtain bounds for the distributions of various
random variables defined in terms of the martingale. The decomposition,
which is of some interest in itself, was devised as a tool to obtaln ai-
rect proofs of certain inequalities due to D.L. Burkholder [1]. ’Burk-
holder's proofs are based on an elegant but indirect and rather difficult
technique for establishing maximal inequalities developed by him in an
earlier paper {2]. The decomposition permits us to estimate the relevant
probabilities directly, and its presentation is gelf-contained to the ex-

tent that nothing beyond the standard lore of martingale theory is required.

5. The Martingale Transform Inequalities. Iet £ = (fl,fe,...) de-
note a sequence of random variables defined on a probability space (Q,%,P),
where the random variable fn is measurable wifh,reSPect to a sub-field

Fpp Fpy STy 021 Let m:(%ﬁ%”.d be the f-increment sequence,

so that £ = Z§=l @ B > 1. Denote by I}fl{p = s;?Ilfkllp, where

.[lfkllp, 1 <p <o is the usual Ib-norm of the random variable fn. The
letter C = constant, not always the same from line to line.
We are interested in a class of quasi-lineér mappings from segquences

of random variables to random variablés. This class, which we call

*
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*fclass @'Y, is deséribed below. For the moment, however, we list its most
prominent members

(a) £% = sup Ifn|;
. n

() s, (£) = (£, Y3

(c) s(f) = lim Sn(f).

n-— o

The following theorem concerning these msppings is due to D.L. Burkholder

[1].

Theorem 2.1 (Theorem 8 of [1]) If f is a martingale, then

P(s(£) >») < cllg}| /n

2nd o
clls(e)l ]y

?J

for all A > 0.
From the inequalities of Theorem 2.1 and the Marcinkiewicz interpola-
tion theorem, one may deduce the following:

Theorem 2.2 (Theorem 9 of [1]) Let 1 <p < w. There are positive

real numbers Cp and AC£ such that if £ is a?ﬁartingale, then

f < |f < Q!
plls (11, < el s ¢glls ol
for all n >1.
The inequality in Theorem 2.2 was proved for special cases by Paley,

and Marcinkiewicz énd Zygmund. Paley [4] proved it for martingales derived
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from Walsh-Fourier series. In this context, it.plays a fundamental role as
a substitute for the conjugate function norm inequalities, available for
trigonometric series. The results of Marcinklewicz and Zygmund have been
used tp obtain generalizations of Kolmogorov's strong law of large numbers,
and more recently, Chow [3] has used Theorem 2.2 to the same end.
Burkholder's proof of Theorem 2.1 is based on the following result.

Theorem 2.3 (Theorem.6 of [1]) If f and g are martingales relative

to the same increasing sequence of ¢-fields and Sn(g) S_Sn(f), n > 1, then

per >2) < ol 2],/

for all A > 0.
In the present apprcach, we circumvent this theorem and prove Theorem

2,1 from the decomposition and the properties of class R mappings.

3. A Decomposition Theorem and the Class . Our main result is the
following deconposition theorem.

Theorem 3.1. ILet T Dbe an I}-bounded martingale. Corresponding to

any A > 0 the martingale f may be decomposed into three martingales a,

b, d, so that I = atb+d.

. . . : 1
(i) The martingale a = (al,ag,...?, a = Z£=l o is L -bounded,

]|a|{l <¢c l!flll and the increment sequence o = (ai,ae,...) is such

that P § 0) < cll£]]/ne

(11) The martingale b = (by,byyee.), by = Z£=1 B, is sbsolutely

E.QE&’E?EEEE: Hz‘z=llﬁkl Hl SC Hflll’

It

o . . _n .
(iii) The martingale d (dl’dg”“)’ d =% by iS uniformly

IA

bounded, [all, < ¢, Ilally ollelly, ana [allf gen [elly.

\,
N



The proof of the decomposition theorem is postponed until later. Ve
now show how the decompositionAmay be used to obtain inequalities for alcer-n
tain class of random variables. |

The mappings £*¥ and S(f) have a few common features which seem to
determine the kind o% inequalities that one can prove. Wé abstract thesé
features and list them under the title ''class R''. This definition seems
justified if only to focus on the essential character of subsequent argu-
ments .

Definition. A mapping T from random variable sequences to random
variables is said to be of class ® if:

1. T is quasi-linear, i.e. |D(f+g)| <c(]ze] + |7el).

o, p(|TE| + 0) < CP(£* § 0)

3. The mapping T safisfies the following norm inequalities:

(2) |lzell, < cllzll,

(v) 1 f= (£,£,,--+) vhere T = Z,_q @, and

Hzizllcpk] HlSCHle then ”TleSCHle‘

The mappings f*. and S(f) Dbelong to class @ when f is a martin-
gale. Consider T(fs = f¥ = suplfnl. Requirements 1 and 2 are obviously
satisfied. Requirement 35 is Kolmogorov's maximél inequality for L?-
bounded martingales, and>requirement 3b is obviously éatisfied.

Consider T(f) = S(£) = (I cpi)lle

. Requirements 1, 2, and 3a are
easily checked. Réquirement 3b is satisfied since Z§=l ¢§ < (Z§=l|mk|)2
spites (151, <ol lal 11y <cllelly:

For further examples, let Vv = (vl,ve,...) be a sequence of trans-

forms, i.e. v 1is measurable with respect to ¥ __,, n 21, such that
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Q* < ¢ <= Iét f be an Ll-bounded martingale.and define the transform

g’= (gl,ge,...) by setting g = ZE:l v, @ - Here again, T(f) = g¥ and

() = 8(g) afe class £ msappings. ]
Proposition. ILet T Dbe an.Ll-bounded martingale and T a mepping

belonging to class {R. Then

p(lze| > < cllz]| /.

This Proposition folldws from Theorem 3.1 and the properties 1l-3 of

class /. Write f = atb+d, so that |Tf| < c(|Tal+|Tb|+|Td]). Then

p(|Te] > ) < P(|Tal > r/30)+ B(|TD] >\/3cye(|d] > 2/3¢),

so that it suffices to show that each term on the right hand side of this
inequality is bounded above by C||f||l/x.

First

p(|Ta] >») <B(|Tal + 0) SoR(ax £ 0) <Cllll/n

by property 2 of class ® and (i) of Theorem 3.l.

Second,
p(|mo| >2) <cllzhl,/n

by the Chebychev inequality, property 3a of class P, and (ii), Theorem 3.1.



Third,

p(|mal 1) < ollal |5/

<clfel] /n

by the Chebychev inequality, property 3b of the class @3, and (iii) of
Theorem 3.1.
In summary, all class ,® mappings of Ll—bounded martingales are weak

type (1,1) (see [5], page 111). In particular,

P(s(£) > ) <cllgl| /A

so that one half of Theorem 2.1 is proved. For the other inequality, we
observe, following Burkholder ([1], Proof of Theorem 2.) that by Khinchin's

inequality for Rademacher functions rk(t), k>1, .

15 7t o)l 1y < el Iy

for some t_, 0 St <1 Let v = (rl(to), rg(to),...); then f is the
transform of g =‘(gl,g2,...), g, = Z;zl rk(to)mk under v, and again

by the properties of class (2 mappings and Theorem 3.1,

B(ex >2) < cllel [/ <clls®)] ]/

This completes the proof of Theorem 2.1.



5, Proof of Theorem 3.1. We may assume that the martingale f 1is

nonnegative since it is well-known that every Ll-bounded martingale T

+

may be written as the sum of two nonnegative martingales, f = f -f,
. x

with  [[£7]]] < |1£]],. We let I(+) denote the indicator function of

the set in parentheses.

Define the following two stopping times: First, let
r = inf{n: £0> e

n . B _
Now recall that f_ =L _; @ and write € = @, I{r=n). The second

stopping time

s = inf{n: &_ Ble,|[5) >

and finally,
t = min(r,s).
Then

P(t <) <P(r <) + P(s <)

IA

AIERINERIERIN

IN

cliel] /.

t
Iri = -1 = .o » =
Write a = £-f'; then a (al,az, ) vhere a_ Zﬁ:l o

= 5 g I(t <k).
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Ckﬁﬂy,HaHlSEHle and P(o* + 0) <P(t <=) <cl|ff[,/». There-
fore, the martingale a satisfies requirement (1) of Theorem 3.1
Now let us examine the martingale ft; the typical term
t n . ) .
fo= 5 1 B I(t >k). Since I(t Zrk) = I(r > k).I(s > k), we may write
P, (t >k) = (yk + ek) I(s > k), where Y, = ¢ I(r >k) and e-= @kl(r=k).

Notice that

By 15 1) = Bly, - ¢ Iz 2 K7 ;)

-B(e, |17, _)-

. ; . : t | !
Therefore, we may write the martingale fn = Zk:l(yk k ek) I(s > k},

n >1 as the sum of two martingales

n o
4, = R (v + Blel1F 1)) T(s 2 %), 0 21

and

183 o
b= (e E(ek||¢k_l) I(s > k), n > 1.

We now show that b = (bl’b2"") and 4 = (dl’dg"") have the pres-
cribed properties (ii) and (iii) of Theorem 3.l.
oo 3
The sum %, By where B, = ek~E(ek||wk_l) I(s > k) is absolutely

convergent since



f215k152jzek=2j¢t1(t<m)
’ k=1 k::l
gejft 1(t <) <2l]ell,

Therefore, the martingale b satisfies property (ii).
Now we»show that the martingale dn_= Zizl 6y n > 1, where
= (yk + E(ekllﬁk_l)) I(s > k) satisfies property (iii).

In fact,

IZ{:.::L Ykl = |Zf{l=l (.Pk I(I‘>k)! S)\,, nZl
and
0<=}  Ee [lg. ) 1(s > k) < s-1 E(e ]!f ) <
S B Bl lif Zk) S8 5 Bl

for all n > 1. Therefore, ||a||_ <2r. Aalso, |5, v [l < llgl]y

and [|5_; B(e |l5 )||l_C[|fH s0 that

2y aclly TRy (y + el 15y 1)) 1(s 2]y <cllel]y
for all n > 1. Finally,
2 w
H““ 2! H <flkl k —<-2>‘j[2k=16k|

<ealiell,

s0 that property (iii) is satisfied. This completes the proof'of Theorem

3.1.
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