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1. Introduction and Summary. The joint distribution of s non-null charac-

teristic roots of a matrix in multivariate analysis given by Fisher [1],

Girshick [2], Hsu [3] and Roy [12] can be expressed in the form

s
n
(1.1)  £(eys-+e5 85) = C(s,mn) T 07(1-0,)" 1 (8;- 05)
i=1 i>3

0 < el < ... < es <1l ,

where

(1.2) C(s,m,n) = {1‘[%S S r[3(2m+2n+s+i+2)]} /
i=1

ri3(Cm+i+1l)r[3(2n+i+1)r(31)}

{

I g== /]

i=1

and the parameters m and n are defined differently for various situatious

as described by Pillai [7], [9]. Now Pillai's V(S) criterion may be defined

s (s)

as % ei. In this paper an attempt is made to obtain the exact cdf of V
i=1

extending the work of Nanda [5] who derived its cdf in the special cases of
m=0 and s =2 and 3. Explicit expressions for the cdf are obtained in

this paper for s = 3 and integral values of m< 3, and s = 4 and m=0

This research was supported by the National Science Foundation, Grant
No. GP-L600 and GP-T7663.



and 1. Further, exact upper percentage points of V(S) are presented for
values of s and m given above and selected values of n. It may be pointed
out that the exact cdf for s = 2 was obtained by Mikhail [L] and the exact

non-central cdf for s = 2 for different tests by Pillai and Jayachandran [ll].

2. Nanda's method for m = O. In this section, the method of approach of

Nanda [5] will be given briefly in order to describe the extension of the method

in the next section. 1In (1.1) transform g =mno;, 1 =1,2,...,8, and let

1

n — o, then

8 -8

i m
(2‘1) fl(gl’gE""’gs) = K(sam) H (e * gl) H (gl- g-) 3
i=1 >3 J
0« gl < ... Z = <@ ,

where

e(sm) =n%% / (1 rrdemaa) T G0)

Now consider the cdf of the largest root, Bys and transform Xy; = 855

1
we get
s -8 o s
(2.2) J .. f T (e * & 0 (g.-g.) I de.
i=1 REEEES
O<g. <. .. <8 <X
1—"""="s
[
S
1 X X yl S S
ms+5s(s+1 i=1 m
=x = 2 (s+1) f cee f e Iy, I (yi— yj) I dyi .
i=1 T i>j i=1

O<y <. v ¥ <L

Now replace y, by 1 -y, (i = 1,2,...,8) on the right side of (2.2) and then

change m to n on both sides, we get



-SX Xsn+-é—s(s+l)

(2.3) C(s,0,n) V(x3s-1,8-2,...,1,0;-1) = e M(x,0,n,s)

where M(x,0,n,s) denotes the moment generating function of V(S) when

m=0 and V(x; qp,...,ql;t) is given by

X ontq, Ty X
Vg s e S dyS e J y§+ql etys dy
Yo o) : s
(2.4) V(x5 g5 qg3t) =
Vo DG etyl . jyé n+gy etyl N
Jq Iy AR . I I1

Now for illustrating the method further let us consider s = 3 which is as }

far as Nanda has proceeded. Thus

(2.5) M(x,0,n,3) = ¢(3,0,n) 3% x'(3n+6) V(x;2,1,0;~1)
wa it can be shown that
(2.6) V(x;2,1,0;-1) = 2 I(x32n+3,-2) I(x;n,-1)a2 I(x;2n+2,-2) I(x;n+l,-1) -

+ (n+1)‘lEQIO(x;n+2,-l) I(x;2n+2,-2) + Io(x;2n+3,-2) I(x3n+1;-1)7,

where
ble by
I(x3q,t) = f e y%ay
o
and
I (x3q9,t) = et v IX
oV o

Further, put y = xu and we get from (2.6)



(2.7) v(x;2,1,05-1) = X305 [2I(132n+3,-2x) I(13n,-x)
- 21(1;2n+2,-2x) I(1;n+l,-x)
-1 -X -2x
- (n+l) © {-2e T I(1l;2n+2,-2x) + e I(l;n+l,-x2ﬂ .

3n+6

By integrating by parts we can get X as a common factor on the right side

of the above equation. We use the value of V(x;2,1,0;-1) thus obtained in

(2.5) to get

(2.8)  M(x,0,n,3) = C(3,0,n) [I(n+2,x) / {(n+2)(2n+3)} + 21(2n+h,2x) / (n+2)
- 41(2n+3,2x) / (2n+3) + 21(2n+3,2x) I(n+l,x) /

(2n+3)] / (n+l) ,

where

1 x(1-u) b |
I(g,ex) = j e% u? au = f e (1-u)? aqu
o] o
As the mgf is known, the cdf can be obtained, once we know the contribution of
each integral on the right side of (2.8). We get corresponding terms for

I(n+g,x) and I(2n+k,2x) by integrating the density (l—u)n+£ of u and

(1-u)®™® of 2u respectively. Hence
(1-(1-2)"Y/(n4g11) 0z <1
(2.9) I(n+g,x) > -
(n+ﬁ+l)-l 0<z<?2

and



(1-(1-2/2)P* 1y / (onirl) 0<z <2
(2.10) I(2n+k,2x) —> |

(2n+k+l)'l 2<z<3

However, to get the contribution of I(n+g,x) I(2n+k,2x) we consider vy

and y,, two random variables, distributed in (0,1) with densities

n+g )2n+k

(l-yl) and  (1-y, Then

n+o 2n+k
(2.11)  T(ntg,x) I(2n+k,2x) - j j‘ (L-y ) 15, gy, @y,
yl+2y2_sz

Ogcz<?3

The integral in (2.11) is obtained through geometrical consideration of
the region of integration (See Section 6 for a similar case) in intervals

0O<z<1l, 1<z<2 and 2 <z < 3 separately (See Nanda [51L Thus, for

m= 0
(2.12) Pr(v(3) <z) = 1-¢(3,0,n) W(3,0)
where
5 -
Py 3(l-z)n+3 + E: % 3 (l—%z)zn-l-J Wy 32 B(zl,zz; 2n+k4,n+3)
5=l
0 <Lz < 1
5 .
W(3,0) =/ [ }: % (1-%2)2n+3 tTwg3p B(zl,l;2n+h,n+3) 0<z<2
J= ' '
B(0,1;2n+4,n+3) 2<z<3

\fo 32



where

- k -1
(l):m X . - 2n+2,22 (3n+ +,@,+l) hm K z,. Zl ='(2-Z)/(3-—Z), Z2 - 2(3—Z) ,

By 5 = [(0#1)(m2) (m43) (203)} ™Y,y = - [(0e)) ()P},

of (n+1)(n+2)(2n+5)} 7, b ]

do 5 o = 2{(n+l)(n+2)(2n+3)}-l, m=0,1,2,3,

and

b
B(a,b,c,d) = f 7 ()3t ax
a,

3. Extension of Nanda's method. In order to obtain the mgf of V(S) for

larger values of m, we proceed as follows: Multiply the right side of (2.1).
s

by the factor 1T (l-gi)n and replace K(s,m) by C(s,m,n). Now, as in (2.3),

i=1

interchanging m and n, let us consider the following integral thus obtained:

s g 4
(3.1) [--] mo(e e)) I (g-e) ) (mi/i .. t)(-a) Tu.
i=1 i>j . T
O<gls...5gs<x 1O+...+1S— m

] is S
((-0%)° 1 g
i=1
where ai(i = 1,...,8) is the ith elementary symmetric function (esf) in s g's.
Now using Pillai's lemma [10] on the multiplication of a basic Vandermonde detgr-
minant by powers of esf'sjtransforming Xys =85 first and then vy to 1 - yi,

we can express the mgf in the form

1
sX _-sn-5s{s+1l -
(3.2) M(x,myn,s) = X x~SA2s(541) E: CoV(X3a5,0g_y5eensay3-l) X%
B



where ¥y denotes summation over all possible determinants obtained by using
&

S
Pillai's Lemma [10], o = 31 (qj- j + 1), and C6 are constants independent
]
J=1

of x.

Next step is to evaluate the determinants under ¥ . For that we abply
)

Pillai's reduction formula [8] which in the present context may.be stated as

follows:

Lemma 1. The determinant V(x;qs,qs_l,...,ql,t) = A(S) + B(ﬁl(n+qs) C(S) »

where
al®) = 1 (x5a_,t) V(xsa,_psa t)
o\¥34g> 305 729 0o 00 9y5 3
1
8 s-j-1 /
(%) <2 2 (-1)7797" T(xsa+ ay,2t) V(X?%qs_la'--a 54179401000 +20138)
j=s~1 ’
and
]
ol®) - V(x39,-3, ag_j5e-05q;5%) .

We may illustrate the method by considering m =1 and s = 3. In this
case one of the determinants occuring in (3.2) is V(x3;3,1,0;-1) which is

evaluated as follows.
(3'3) V(X;351,05—1> = A(3) + B(B) + (n+3) C(3) s
where

A(B) = - Io(x;n+3,-l) V(X;l;o§‘l> s



B(3) = 2I(x;2n+h4,-2) I(x3n,-1) - 2I(x;2n+3,-2) I(x;n+l,-1) |,

and

0(3) = V(x32,1,03-1)

X-(3n+7)

Now, note that the multiplying factor for V(x;3,1,0;-1) is But

IO(X;n+3,-l) V(x;1,0;-1) gives only x,3n+5 hence A(3) has to be integrated

(3)

by parts twice. Similarly B and 0(3) have to be integrated by parts to
take care of the power of x. In general this is true for all V(x;q3,q2,ql;-}).

Thus we get

(3.14) V(x33,1,0;-1) L (30+7) 3x

={(n+1)(n+2)(2n+3)}‘1[10(2n+3,2x) I(n+3,x%)-4(n+2)I,(n+3,x)I(2n+3,2x)
+ 6(n+2) I(n+l,x) I(2n+h,2x) + 3IO(2n+h,2x) T(n+2,x)

+ h(2n+3) I.(n+l,x) I(2n+5,2x) » 4(n+3) Io(n+2,x) I(2n+k4,2x)],

of
where

_ ax(l-u) g1
Io(Q:OlX) = € u |O

Similarly other determinants involved in (3.2) with m=1 and s =3
can be evaluated to obtain the mgf in this case. The cdf can be derived from
the mgf as indicated in the previous section. Further, the above method can be

applied in the general case i.e. for M(x,m,n,s) using (3.2).

4, The exact cdf of V<3) for m = 1,2,3., Using methods outlined in sections

2 and 3, the cdf of V(3) has been derived for m = 1,2 and 3. The mgf's and

cdf's in the corresponding cases are given below:



(1)

(4.1)

Then

(k.2)

where

W(3,1) =

where

P13

m= 1. The mgf is given by
- +6 -
M(x,1,m,3) = e x"(30%0)e(3,1,n) (v (x52,1,035-1)-x"F ¥ (x33,1,05-1)

+ %72 ¥(x33,2,05-1) -x0 V(x;3,2,13-1)]

Pr(V(3) <z) = 1-2¢(3,1,n) W(3,1)
-k T >
_ . ot
{ E: plj(l-z)n+3+-§: qu(l-z/Q) oy E: O30 B(zl,22;2n+k+l,n+3)
J=3 j=h k=3
+ 153 B(zl,z2;2n+6,n+h) + Wy 3), B(Zl,22;2n+h,n+5)} 0<z<l
7 5
or
<{Z qu(l—z/z) o Z W0 B(zl,l;2n+k+l,n+3)
=h k=3
+ w153 B(zl,l;2n+6,n+h) * wyg), B(zl,1;2n+h,n+5)} l1<z<2
5
{ E: W30 B(0,l;2n+k+1l,n+3) + 153 B(0,1;2n+6,n+k)
k=3
i\ + @3 B(0,1;2n+4,n+5)} 2<z<3

= (2n+1)pyys Py, = {(bno+ 200%+ 31n + 12) poa}/{(nth)(2n45)]

ay, = (2(c>+ U+ 3n-3) q 3/ [(043) (neh) (2ne3)}



qlS

]

-2/{(n42)(1+3) (205)} 5 agg = -2/{(n+1)(ne2) (n43)°}

2/{(n+1)(n+2) (n+3)(2n47)}, hy5p = Bogps Byyp = -30y55

hygp = 2/{(n+1)(n42)}, hyg5 = -2/{(n+2)(n+3)(2n+5)}  and

b ) = -2/{(n+3)(nth)]

(ii) m = 2. The mgf is given by

(u'3) M(x,2,n,3) =

Therefore

(b.b)

where

o3 x~(3046) C(3,2,n)[V(x;2,1,0;-1) -2x"* V(x33,1,0;-1)

+ X_z {V(X;h,l,d;-l) + 3V(X33>2703'l)}
- 2x-3 {v(x;bk;2,05-1) + 2v(x;3,2,1;~1)}
+ x-u {V(x;4,3,0;-1) + 3v(x;k4,2,1;-1)}

- 2x™? V(x34,3,15-1) + £ v(x3k,3,2;-1)]

PT(W(3) <z) = 1-¢(3,2,n) W(3,2)

10



11

5 9 i 7
) -
{, z sz(l-z)n+3+ Z qzj(l-z/2) n+j Z z wsz(zl,z2;2n+k+l,n+z+1)}
3=3 j=h 2=2 k=g+1

W(3,2)={ {same as above except Do 0 (j=3,4,5) and replace zZ, by 1}

l<cz<x?2

{same as above except PZj =0, j=3,M,5;q23= 0, j=b,...,9 and replace

zy and 2z, by O and 1 respectively} 2<z<3

where
Dys = -{6(n2+3n+l) po3}/{(n+3)(2n+5)}, Py, = -{(hn3+12n2+17n+3) PO3}/
{(n+h)(2n+5)} ,
P25 = 30}_303/{(n+h)(2n+5)(2n+7)}5 qQLI- = ’qou/(2n+3)9 q.25 = ")4(3112"'1011‘*12)/?(1'1):
G = 2‘(31,13J|_29I12+90n+9).p)(2n+3)/{(n+3)(n+lp)r(n)}, o™ en(en+5)/r(n+1) ,

Gpg= -6/{(n1)) (1)}, ayq = bpgq(2043)/[(ne) (2n49)} -,

2

Boso = Boges Bayp = Zhyyps Bpsp = 6(207H0NH3) by o/ {(2043)(2045)}
hogp = =2hy5p(20+7)/(043), Bons = Bygys hgyg = -6/{(n42)(n43)}
h253 = 8/{(n+2)(n+3)}, hogy = “9hi53s Bogg = 4/ (n+2) (n+3)}

h

o5y, = -/ {(n+h)(2n45)}, g = -Bhigy, Bogy, < by g/ (0T)
and where
r(n) = (n+1)(n+2)(n+3)(2n+3)(2n+5), and (a.)i = a(a+l) ... (a+i-1)



12

(iii) m = 3. The mgf is given by

(M'S) M(X:39n>3) = e3X x~(3n+6)

C(3>3sn)

- -2
[V(2,1,0)-3x"1V(3,1,0)+3x " {V(},1,0)+2V(3,2,0)}
_x‘3{v(5,1,o)+8v(u,2,o)+1ov(3,2,1)}+3x'h{v(5,2,o)+2v(u,3,o)+3v(h,2,i)}
-3x'5{V(5,3,O)+2V(5,2,1)+3V()+,3,l)}+x"6{v(5,)+jo)+8V(5,3,l)+lOV(’+,3,2)}

-3x'7{v(5,3,2)+V(5,4,l)} + 3x‘8v(5,h,2) -.-X-9V(5,1¥,3)] .

For brevity in notation V(x;qs,qs_l,...,qlg-l) will be written V(qs,qs_l,...,ql)

if there is no room for confusion as in (4.5) above. Now from (4.5) we get

the cdf
(1.6) el <) = 1-03,3,m) WE,3)
where
7
6 11 5 9
' ] } _ 2n+j Y
{Z Py, (1) 4 X ag(1-2/2) + z z O3
j=3 J=h =2 k=g+l
B(zl,z2;2n+k+1,n+z+l)} 0<z<l
11 5 9
_ en+j Y N )
W(3,3)-—< E: q3j(l-z/2) + Ez ZJ O35 B(Zl,l,2n+k+l,n+g+l) /l <z < ?
sl 9=2 k=g+1
5 9
Z Z Wy, B(O,132nHktl,mes+l) 2<z<3

\;&=2 k=g +1



where

Pag = (kn3+ 3802+ 85n+33) / {(n+3)(n+4)r(n)}

Dy, = - (8n+6bn™+216n3+395n°43160+216) / [ (n+h)2(2n+7)r(n)}

P = (BrO+6Bn"+250n3+k30n2 41 Tn+78) / [ (nth)(n5)(2n+T)r(n)}

Pag = -630 / {(n+h)3(2é+7)(2n+9)r(n)}Jq3h= Ao »

Gyg = -H(6nNgm21 )R/ (2045, agm (hon™+b6ln3+1885n2+3327n42240) /

{(n+3)(n+h)r(n)} s
Q3= 2(10n5+63n”-308n3-3&29n-9668n-9120)/[(n+1)5(n+3)(2n+5)(2n+7)} R
dag= (8nh+95n3+339n2+250n-h22) q28/{3(n+5)(2n+7)} R

I5g° -2(n2+3n+8)/{(n+2)u(2n+9)}, 43 10% 24/ (n¥1)5(nt5),

a3 17 = l2/{(n+l)5(2n+ll)} )
Bago™ Bigos Byuo™ Myyps Bagp™ 3(8n2+uun+63)h152/{(2n+3)(2n+5)] ,
hogo= -2(6un3+500n2+1261n+1035)/r(n), h372= 6(5n+l9)/{(n+l)3} ,
hago= -6(2n+9)/{ (n+1) (n+2)(n+h)}, h392= h152, Ba)3= hoya s

h353= L(16n+43)/{ (n+2)(n+3)(2n+5)}, haea™ 3(6n2+26n+25)h153/(n+3) ,

- 2 =
haga™ 3(20n +1hun+265)h153/(2n+7), hags= 16(2n+9)/(n+2)3 ,

h393= —6/(n+2)23 h35u=6h25)+, h36)+= 3(7n+20 )h26)+/ (2n+5) ,

hao)= —2(l6n+59)h27h, hag),= -18h27uJ hag),= 3h,c,/2

13



1k
hags= -2/{(n+3)(n+5)},  Baoc= 12/{(n+5)(20+7)} ,
85" -6/{(n+4)(n+5)} and h395= -2/ { (n+l)(n+5)(2n+9)}

By

(3)

5. Percentage Points of V . In this section the expressions for the cdf

(3)

derived are made use of in computing exact upper percentage points of V
for m = 1,2, and 3 and selected values of n. Approximate percentage points
obtained by Pillai [9], using the two moment quotients, were taken and used to
compuﬁe on IBM 7094 the probability corresponding to these approximate percen-
tage points. Further, exact percentage points were computed starting with the
approximate ones. Table 1 gives the results thus obtained. It may be pointed
out that Pillai's beta approximation to the distribution of V(S) [6], 97 is

good enough for values of n beyond those selected here.



Table 1. Approximate and Exact Percentage Points of V

(3)

15

Approximate Upper

Exact Upper

n percentage points Probability percentage pointe
(Pillaei's tables) .
m= 1 i

5%

5 1.288 .95032 1.28722
10 0.892 .95008 0.89184
15 0.682 .95006 0.68191
20 0.552 .95012 0.55185
25 0.6k .95053 0.46340

1%

5 1.459 .9900k 1.45858
10 1.028 .98988 1.02894
15 0.794 .98991 0.79456
20 0.6hL7 .98999 0.64707
25 0.545 .9898L 0.54574

m= 2
5%

5 1.476 .94951 1.b7715
10 1.053 .9k996 1.05308
15 0.818 .95026 0.81758
20 0.668 .95001. 0.66799
25 0.565 .95025 0.56471

1%

5 1.639 .98962 1.64237
10 1.191 .99002 1.19083
15 0.933 .98996 0.9332k
20 0.767 .98999 0.76707
25 0.651 .98998 0.65107

m=3

5%
10 1.190 .95008 1.18985
15 0.937 .95029 0.93653
20 0.772 .95008 0.77189
25 0.657 .95050 0.65638

1%
10 1.326 .98999 1.32610
15 1.053 .98996 1.05325
20 0.873 .98997 0.87317
25 0.745 .99550 0.74556
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s

6. Exact cdf of V(h). The mgf in this case can be obtained by putting s = L

in (3.2), use of lemma 1 and further integration by parts as indicated in sec-
tion 3. In the final form the mgf involves the integrals I(n+g,x), I(2n+k,2x),
I(n+g,x) I(2n+k,2x) and I(2n+g,2x) I(2n+k,2x). In order to obtain the cdf

of V(u) it is necessary to know the contribution of each of the four types of
integral terms above. Of these, the first three can be immediately written

down similar to the results of s = 3. We get

{l-(l-z)n+z+l}/(n+z+l) 0<z<1
(6.1) I(n+g,x)- )
1/ (n+g+1) l<z<h
A= (1-(1-32)"" Ny (onuenl) 0 <z <2
(6.2) I(2n+k,2x) -
1/ (2n+k+1) 2<z<h

B = {A/(n+g+1)
-aB(z

N

en+k+l,n+g+2)} O0<z <1

1)22;

(6.3) I(n+g,x) I(2n+k,2x) Change z, to 1 in B l<z<2

Put 2z = 2, change (zl,zg) to (0,1) in B
2cz<3

1/ {(n+g+1l)(2n+k+1)} 3<z<h

where

3n+k+g+2

+o+1
a = 274 / 5

(n+g+1)z

Now, to obtain the contribution ¥F(k,g) (say) of I(2n+p,2x) I(2n+k),2x),

proceed as follows:



Let vy and Vo be two r.v. distributed in [O,l] with densities

(l—yl)2n+z and (l-yg)2n+k respectively, then

_ ' 2n+y, 2n+k
(6.1) F(k,g) = U (132 (1-3,) " ay; ey,
where S = {(yl’y2); 0 _<_ yi S l, i = 1,2; 2yl+ 2y2 S Z}

Tt is obvious that the value of F(k,y) depends on that of 2z and let

(6-5) F(kaﬂ) = Fi(kaﬂ) Z g S

where §; = [2(i-1),2i7 N s and i=1,2.

Consider the unit square, OPQR, in Fig. 1 and let AB be the line
Yt v, = % (0 <z<?2) and CD the line Yt Y, = z/2 (2 <z < &), Then
Fl(k,g) and Fz(k,g) are obtained by integrating over the areas OAB and

OPCDR respectively.

Y2
R D . Q
B
C
. h Y
0 A P 7 91

Figure 1. Region of Integration of F(k,g)



%Z %Z-yl 2n+/, - yentk
(6.6) F1<k:f&>=fo jo (17, )P (15,7 ay, ay,
2n+k+1
%Z 2n+,e [l-(l—%2+yl) ]
- jo (1-y) ok L vy
1—(1-%2)2n+ﬁ+l B(z3,zu; on+k+2,2n+4+1)
(2n+g+1) (2n+k+1) (2n+k+l)z§un+k+z+2)
and
1 1

2n+ 2n+k
Jl (1-y,) . (1-v,) dy, dy,

22 -1 %Z -yl

(6.7) Fy(ks2)

_ 1 _ B(0,1;2n+k+2,2n+g+1)
(2n+g+1) (2n+k+1) (2n+k+1)z£un+k+£+2) g

where zj = (2-z)/(4-z) eand z) = 2/(k-z). Therefore

A

N
IA

\V]

Fo(k,0) 0%
(6.8) I(2n+g,2x) I(2n+k,2x) = j

A
=

Fo(k,g) 22

7. The exact cdf of V(u) for m = O. Using the method outlined above the

(4)

mgf and cdf of V for m = 0 can be obtained. First, for m = 0 and

s = 4 we get from (3.2)
(7.1) M(x,0,n,k4) = ehx X-(hn+lo) c(k,0,n) v(x;3,2,1,0;-1)

Now by the method of the previous section we get

18



(7.2)

19
M(x,0,n,4) = c¢(4,0,n)
[1/{(n+2)r(n)} {-(4n+9) I(n+2,x) + I(n+l,x)}
+ {4(n3)/((n+2)r(n))} T(2n+h,2x) - {4/ ((n+1),(2n+5))} I(2n+5,2x)
+ {2/((n+l)2(2n+3))} {21(20+6,2x) - I(n+l,x) I(2n+k,2x)}
+ {8(n+3)/r(n)} I(2n+3,2x) I(2n+5,2x)
_ - {2/((n+1)(n+3))} I(n+l,x) I(2n+6,2x)
+ {4/ ((n+1)(2n+5))} {I(n+l,x) I(2n+5,2x) + I(n+2,x) I(2n+5,2x)]}

- 2/ (m+2)?} I(n+2,x) T(2n+h,2x)]

Now, the cdf is obtained by using results (6.1) to (6.3) and (6.8) in (7.2),

which gives

(7.3)

where

(7.4)

when

| Pr(v(”) <z) = 1-c¢(%,0,n)wk,0)

w(k,0) = {-(Lm+9)/((n+2)(n+3)r(n))}(l-Z)nﬁ’-{l/((r1+2)(n+14L)1‘(n)](l-Z)nJ'rLL

2n+5

- {h/((n+l)(n+3)(2n+5)2)}(l-%z) +{2(n2+3n+3)/

((n+l)3(n+2)2(2n+3))}(l_%z)2n+6

+{2(2n+5)/((2n+7)r(n)}(l-éz)2n+7+{u(n+3)/

((n¥2)r(n))}zi(un+lo)B(z3,zh;2n+5,2n+6)

H2™3/ ((041)23" )} [ - ((242),) 7B (2, 738047,043)

1255
+{2§!((n+2)(2n+5)B(zl,z2;2n+6,n+3)
~{z5/ ((n+2)°(2n+3))}B(2, , 232045 ,1+3)
i/ (n43) (2045) )12 , 232046, 044
_{2%£n+l)/((n+2)2(n+3))}B(zl,22;2n+5,n+h)]

O<z<1



For obtaining W(k4,0)

changes on the right side of (7.h4).

a) 1<z

(1)
(2)

<2
Drop all

Change

b) 2<z

(1)
(2)
(3)
()
c) 3<z

(1)

(2)

<3
Drop all
Drop all
Replace

Replace

<4k

Drop all

Replace

terms involving

5 to 1

terms involving
terms involving
z4 and Z, by

z3 and z), by

terms involving

20

in the other three intervals, we may make the following

1 -2, and

(l-Z) s
(l - %Z) 9
0 and 1 respectively, and

0 and 1 respectivelyb

z except those with

B(Z3’Zh; 2n+g+2,2n+k+2), and

z3 and Zh by 0 and 1 respectively.

8. Exact cdf of V(u) for m = 1. In this case, the mgf of V(h) - can be

written as

(8.1)

M(x,1,n,4) = c(k,m,n)e

hx
x

'(un+lo)[V(x;3,2,l,O;—l)-X-l V(X;h,2,ljo;"l)

+x-2V(x;4,3,l,O;-l)-x'3V(x;h,3,2,O;-l)+x'uv(x;h,3,2,l;-l)] .

On simplifying (8.1) and using results (6.1) to (6.3) and (6.8), the caf of Vgu)

is obtained in the form:

(8.2)

where

Pr(V(u) <

z) = 1 -c(L,1,n) w(k,1) ,
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n+3

(8.3) W(k,1) = [{-(un”+38n3+136p2+213n+11u)/(t(n))}(1-z)

n+l

- 2(8n6+12hn5+790n4+26u7n3+u923n2+u816n+1917) ((n+4) (2n+Pt(n))}(1-2)
{

+{6/((n+5)(2n+7)t(n))}(l-z)n+5+{2(10n2+37n+31)(n+h)/((n+2)(2n+5)s(n))}

(l--é—z )2n+5

L

+{(16n5+200n +98un3+237un2+2837n+137u)/((n+2)(n+3)(en+7)s(n))}(l_%z)en?6

{4 (kP +56n 432503495007 +142604860)/  (n+2) (20+7) s (n) )} (1-32)

+{u(un”+uon3+1u5n2+225n+131)/((n+u)(eg+7)s(n))}(1-%Z)QH+8+{6/((2n+9)s(p))}

(1-32)7"9

#2722 (78) (1) 11 (2(20Paned) (143)/ ((m42) (2043) (2045) JB(2, 255

2n+6,n+3)
_zélB(zl,22;2n+7,n+3)-{(n+3)/(n+h)}zé3B(zl,22;2n+9,n+3)
_{2(n+l)/(n+2)}B(zi,22;2n+5,n+h)+{2(2n2+9n+6)/((n+2)(2n+5))}
z lB(z 2n+6 n+4)
_{2(2n+7)(n+l)/(n+3)(2n+5)}zéeB(zl,22;2n+7,n+h)+{2(2n+3)/(2n+7)}

Z-BB(Z

1,22;2n+8,n+§)

[{2(n+1)/ (neh) )2 'B(2 2, 32049, ek ) )+ {uens90+13)/ ((n+l) (21145)))

1°%23

z2 B(Zl, o

;2n+6 n+5)
+{8(n+2)/(n+3)2]253B(zl,z2;2n+7,n+5)+{h(2n2+9n+8)/((n+h)(2n+7 )} |

Z;HB(zl,z2;2n+8,n+§)]

+{uzi(hn+10)/(n+l)3}[{(n+3)/((n+2)(2n+3)(2n+5))}B(Z3,Zh;2n+5,2n+6)
+{n/(2n+3)}zilB(z3,zu;2n+5 2n+7)
+{(n+3)/(2n+3)}z;25(z3, %), 32045, on+8 )= {(n +2n+2 /((n+2)(2n+3))}zulB(z3,zu,2n+7 2n+5)

-{n+5)/(2n+5)}zng(z3,zu;2n+6,2n+7)-{h/(<2n+5)(2n+7))}z; B(23,2),32n+6,2n+8)
+{(n+l)/((n+h)(2n+5)(2n+7))}Z;MB(Z3,ZM;2n+9,2n+6)], 0<z<l ,
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where s(n) = (n+l)h(2n+3)(2n+5) and t(n) = (n+2)es(n) . For obtaining the

- cdf of V(h) when z > 1 , make changes a) to ¢) as in the previous section,

9. Percentage points for V(h)° As in section 5, upper percentage points are

(4

computed fyom expressions given in the above sections for the exact cdf of V
for m=0 and 1, but only for selected values of n. These are presented
in Table 2 along with approximate percentage points from Pillai [9] and the

corresponding probabilities.

(%)

Table 2. Approximate and Exact Percentage Points of V

Approximate Upper Exact Upper
n percentage points Probability percentage points
(Pillai's tables)

m= 0

5%
5 1.h411 .95048 1.40976
. 10 0.97h4 .94999 0.97401
15 0.7hk .95008 0.74386
20 0.602 .95028 0.60160
25 "0.505 .95001 0.50499

1%

5 1.594 .99009 1.59305
10 1.118 .98994 1.11847
15 0.861 - .98986 0.86191
20 0.701 , .98998 0.70111
25 0.590 . .98982 0.59088

m= 1
5%

5 1.693 .94983 1.69343
10 1.203 .95022 1.20253
15 0.932 .9kgg2 0.93212

1%

5 1.875 .98985 1.87653
10 1.352 .99002 1.35179
15 1.056 .98996 1.05628

20 0.866 .98984 0.86690
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Finally, it may be pointed out that the values of m for which exact
cdf of V(S) has been obtained in the paper are very useful especially for the
test of (i) independence between a p-set and a g-set of variates from a
normal population in which case m = 3(g-p-1), p < ¢, and (ii) the equality
of mean vectors of ¢ p-variate normal populations having a common covariance
matrix in which case m = 3(|g-p-1}-1).

The authors wish to thank Mrs. Louis Mao Lui, Statistics Section of
Computer Sciences, Purdue University, fof the excellent programming of the
material for the computations in this paper carried out on IBM 7094, Purdue

University's Computer Science's Center.
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