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Controlling a Letnal Growth Process

by

Marcel F. Neuts

1. Introduction

The particles, referred to in this paper, may be diseased cells in
a tumor, bacteria causing an infection or parasites infesting a vegetal or
animal organism. In each case the carrier of a tumor, infection, etc., will
be referred to as the "organism” or the "host".

We will assume that the number of particles grows in time according
to a linear growth process and that the mortality rate of the host in-
creases with the number of particles present.

Furthermore it will be possible to remove a random number of the
particles by treatments, sucn as radiotherapy, chemotherapy, etc., but this
benign effect will be counterbalanced by undesirable ones due to the
toxicity of the treatments. These countereffects will impose limitations
on the dosage and frequency of treatments.

Finally we specify the objectives of treatment and nere we will make
only a few cnoices from among many. In scneduling treatments and dosages

we may try to maximize the expected (or average) lifetime of organisms

under treatment. Alternatively we could try to maximize the probability of

survival in a given interval (o,T) of time. Otner objectives could be
proposed; each one will lead to a different mathematical model so, for
the sake of exposition, we must limit ourselves a few of the more "reasonable"

ones.
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2. Tne Mathematical Model

a. The growth model.

We assume that at time t = o, there are N particles present.

If at any instant t of time there are n particles present, we as-
sume that the probability that one new particle is born in (t, t+dt) is
given by An dt and that this event depends only on the number of particles
at time +t. This assumption states that the (unrestricted) growth process
of the particles is a Yule-Furry process. [1, p. 139]

The Yule-Furry process corresponds roughly to an ”exponentiai” growth
model, since regardless of anytning else the expected number of particles

at time t is given by
(1)  wet

and its variance by
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b. Assumptions on treatments

We assume that a treatment of a given dosage destroys particles withn
probability p and leaves them unaffected with probability q =1 - p,
according to a Bernouilli scneme with the number of trials equal to the
number of particles present at the time of treatment.

Specifically, if there are n particles present at the time of
treatment, then the probability that k, o <k<n survive is given by:

n
-k k
3)  p = P g, o<k<n.
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The probability p will depend on tne dosage and on th¢ type of particles.
We assume that the tnerapist can choose tne value of p, but that a high
value of p is likely to destroy not only the particles, but the nost as
well. If we denote by VY(p) the probability that the host survives a
treatment with parameter p, then in general Y¥(p) will be a decreasing

’

function of p on the interval [o0,1], such tnat Y¥(o) = 1. We will

assume that VY(p) is known.

c. Lethality assumptions

We postulate that if tne nost is alive at time +t, the probability
that ne dies during (t, t+dt) depends only on thne number of particles
at time t and on tue number dJosages and times, of treatments already
received. Specifically we assume that the probability that an organism,
which nas n particles in it and has received already v treatments has

a probability
(%) [c +pn+ 8(p 5.0 D, tl,...,tv)]dt

of dying in (t, t+dt).

The quantity o may be interpreted as the death rate of an uninfected
individual. We will assume that o 1is constant for the class of indi-
viduals considered, but it is easy to extend our results to the case where
¢ is a function of time.

The term pn expresses that the deathrate due to the disease is

assumed to be proportional to the number of particles (e.g. to the volume

of the tumor or the number of bacteria present).



The last term corresponds to the "long range” aftereffects of the
’ earlier treatments and is_hard to assess. In our further calculations
we will make the following simplifying assumption: Since in practice
the treatments will be rougnly of equal dosage and more or less equal

timelengtn a apart, we will assume that the last term reduces to

(5) v 6(p,a)dt

where 6(p,a) is some function of the (average) dosage and of the time-

lengtih between treatments.

3. Periodic Treatments of constant dosage

Our discussion will be concerned with the case where treatments are
administered periodically and are all of the same dosage.

We now assume that treatments are given at times a, 2a,... and tnat
all treatments has tine same probability bp of destroying particles then

present.

P

Ny

2
Lor

0 a 2a 3é

50
o+

a. Growth and survival between treatments

Suppose that at time t = ak + (immediately after the (k-th) treat-
ment) tunere are oy particles present and that the organism is still
alive. (k = 0,1,...)

We first calculate the conditional probability that at time ¢,
ak < t < a(k+l) the organism is still alive and that there are n cells,

then present.



We denote tnis conditional probability by P(k)(n,t). The probabilities

P(k)(n,t) satisfy the following system of difference-differential equations:

© P (,6) = - [o+ Quwdn + % e]'P(k>(n,t) 212" (n-1,4), n > n

with:

(7) P(k)(n,t) = 0, n< R,

p()

i
]

k,ak+)
We solve the systems of equations (6) and (7) using generating functions,

defining:

® i)=Y P, e<zgi.

n=o0

We obtain from (6):

(9) 5% 6" (5,8) = [Kz2 - (h+u)z] S% ) (2,8) - (ok0)a™ (2,8)

with:
(10) G(k)(z,ak+) = zn5 .
Equation {9) with initial conditions (10) can be solved by classical methods.

Its characteristic equations are:

(k)
(ll) éi — dz - dG
1 (A +u)z - \zZ - (G+k9)G(k)

whnich upon integration yields:

.



(12) log G(k) + (o+k8)y = ¢,

v

t + (x+u)‘l log 2t [Z - l%E] = C,

so that the most general solution of (9) is given by:

(13)  log G(k)(z,t) + (o+kB)t = & [t + ()t 10g 27t (2 - A%E)]

where &(.) 4is an arbitrary differentiable function.

Setting t = ak+, we obtain from (10) and (13) that:

(14) n, log z + (o+k8)ak = @[ak + (X+u)-l log 2t (z - A%E)] R

wnich yields:

~1
(15) ®(u) = n 1log (l%E) [l - e(X+u) (u-ak)] + ak (o + k8)

k

and finally:

(16) G(k)(z,t) =

- (t-ak) (o+k® + Ank + pnk)
e

1 -ny

JK ) L P () (5-ak)]

We emphasize that G(k)(z,t) is a conditional generating function, given
the event that the organism is alive at time ak+ and that there are ny

particles present.



b. Destruction of particles at treatments

Given that there are n, particles at time ak+ and that the host
is alive, what is the probability that there are By g particles at time
a(k+l)+ and that the host is alive?

From formula (16) we have:

a7y ¢z, akran) =

(==}

}Z 2" P(k)(n,ak+a—) =

n=0
~a(c + k8 + An_ + un )
. e k ' n, - Az [l } e-(k+p)a]
but:
(k+1) 3
(18) P (nk+l’ ak+a+)
> n n-n n
Tkl k
¥(p) E: P q
n—nk+l nk+l
so that
(19) T (4, amsar) =
o]
(k+1) Ug+1
E: P (nk+l’ ak+a+) z =
ny .10

¥(p) G(k)(p + qz, ak+a-)



(k+l)(z, ak+a+) is the conditional generating function

Tie function E
of the probabilities, that the organism is alive after the (k+l) st treat-

ment and that there are 1 particles, given that it is alive after

n
the k-th treatment and that there were then nk particles.
Formulae (16), (17) and (19) will enable us to calculate the probability

that the host is alive and that there are n particles at any point in

time.

c. The general transition probabilities.

Let P(n,t) be the probability that at time +t, the host is alive
at time t and carries n particles, given that there were N particles
at time t = o. The P(n,t) are continuous functions of t except at
the points ak, k > 1, wnere they nave jumps.

We define the generating function.

[>9]

(20)  H(z,t) = }Z P(n,t)z"

n=o

- for all t, except t = ak, k = 1,2,..., where the function will be
left and right continuous only.

We have:

(21)  H(z,0) = 2 ,

and for ak < t < a(k+l):



(o2

(22) H(z,t) = ;Z P(nk,ak+) G(k)(z,t) =

n, =0
> -{t- +
E; P(n ,ak+) e (b-ake) (o + %6 + M unk)
n, =0 k
. [l e-(x+p)(t ak)] ,
_ e-(t-ak)(c+k9)
o~ (t=ak) (h+p)
H s ak+

{1 e-(K+p (t-ak)]

Formula (22) shows that it suffices to know H(z,ak+) for k > o, to ex-

press H(z,t) at all other points t. Also:

(23) H(z,ak+a-) =

. ~a(\ )
. a(o+k0) u {-2e

1. ____[; e—a(l+u)]

by setting t = ak+a- in (22).

Finally we have by (19) that:

(24) H(z,ak+at+) = ¥(p) H(p + gz, ak+a-).
The generating functions H(z,ak+) can be calculated recursively

from:



(25) H(z,ot+) = ZN’
H(z,aktat) = ¥(p) e 2(0VKE)
H ( §p+qz) e—azk+u; , ak+
K +QZ -al)
?\Euq [l e 2 ]

If we know the functions H(z,ak+), then using (22) we obtain H(z,t)

for all other values of +t.

4. Solution of the recurrence (25)

We define the functions M (z), k> o by:

]

(26)  My(z) =2

M (z)

for k > o0, then (25) reduces to

1
Y—k(p)eako + Pl a9k(k-l) H(z,ak+)

(27) M (z) = =

- (praz)e 2 Wrh)
M (2) = |
+1 LA (P +qz) rl e-a(h+u)]
If we define:
(28) o = p(Aty) gma () )
B = aluw) e 3D
Yy =X+ pu-2ap(l - e—a(K+“)),

5 =na(l - e 2 B)y

then we have:

10
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(9) 1, () =w [22BE], ko

We observe that Mb(z) = z and that the successive Mk(z) are obtained
by successively substituting a linear fractional form for =z. This im-
plies that the functions Mk(z) remain linear fractional functions for
all k, so that we may set:

A + Bkz

(30) M (z) _E‘—T—D—;E 5

where Ak’ Bk’ Ck and Dk do not depend on =z,

Moreover:

1
(31)
.1 o ’
Bt B B B\ /Y 8
= Py kzo
Crrr D1 Cr Dy o B
whence:

K
A, B, /o 1\ /v s

(32) = ’ k>o.
¢, D, kl o/ \ o B

The k~th power of the 2 x 2 - matrix on the right may be expressed con-

veniently if we know the eigenvalues of the matrix.



Thne eigenvalues of the matrix

are given by:

I

B g =3[0 e g O]

%{(u +aq)® + 2\:MLP2 - q(km)z] e'i(M“)

-2()\+p,)a}2 ,

1+

v (0 +pa)le

and it is easy to check that they are always positive and distinct,:

provided o< p < 1.

3 = ( )
8 -
o B p1-Y 92-‘{/ o p7 YL PPy

We obtain successively:

/, : \\ k i - _
5) Ao B\ [0l /5 8 \py ©\ [e,mv -8 1
- k 8 (p,-0;)
Gy Dk 1l o (Q;-y P ° Py Y=Ps +8 271

and finally after simplification:

12



of - of
17 P
36 =@ 0 ————
(36) A, b,
K+l kel Kk k
1 2 L TP
B = - p Y e s,
Py 2 1 2
ok pk R k-1
17 Vo 1 T P2
Ce =Y 3TT TP T T T
PL ™ P 1 2
pk pk
D = '——l———é_.
k Py = Py

Substitution in (26) gives an explicit expression for tne functions
H(z,ak+) in terms of the original parameters of the problem.

For further use, we evaluate Mk(l), given by

p1i:+1 __pg+1 . (pi ) pg) [p L eaOm) o) +_Kq)]
R S R TS e GRS

or in a more convenient form:

(38) M (1) =
AT o s (o) (o - )

PSS k_ K
py - oy + (8-8) (py - 0,)

The following lemma is of importance:

13
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Lemma
For any given values of A >0, y > 0, a > 0, p > 0 the sequence

Mk(l) is monotone decreasing in k and o < Mk(l) <1.

Proof':

+ +1y\ =
pg) (pi ool eor brevity,

. . _(.k
Using (38) and setting T, = (pl - Py

we obtain the following inequalities successive by:

(39) Y - o =Aq + W [l - p‘e'a(l+“)] >0,

it

(40) B -8 q[h + W e-a(K+u)] >0,

(1) (v - @)=(a - 6) = 1 - e2OW]

-1 -1
_ K o K+l  ktl Kt2  k+2] < o
(k2) BT,y = -(pyp,) (py-p,) [pl - Py ] [pl - Py ]

The first three inequalities shows that Mk(l) < 1. To show that

Mk(l) > o and decreasing, we denote by the largest of the two

Py

eigenvalues and note that

(T, - Top) (y-0-B+5)

1- (g=5) Tk] [1 - (B~5) Tk+l]

(3)  m,(1) - M (1) =[

The numerator is (43) is negative. It suffices to show that the denominator
is positive.
By (41) we have:

(8) 1 (G-6)m >3- (el > 1= (yee) Tin Ty = 1 - (y-a) o7
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But o< y-g <p; so that 1 - (v-o) pil > o . To prove this, we note

that the quadratic function

(15) % - (B+v)p + BY - a8

evaluated at Y-o is equal to a(a-y+a-5) wnich is negative, éo that
(46) o< p,<v-a<p, .

This completes the proof of the lemma.

5. Maximizing the probability of survival in [o,T7.

Suppose we are given a number T > o and are asked to find a and p
50 as to maximize the probability that the host is still alive at time T.
If no treatment at all is given, tne probability that the nost is alive

at time T dis given by:

-N
(47)  H(L,T) = &"OF - NT(a+u) [1- rﬁ; (1 - e-(w)az]

using formula (22).

If k treatments are given in (o,t], then we have necessarily

(48) ——<a<

k+1 ? k21

Wik

Tne probability that the host is then alive at time T, which we will

denote by Hk(T), is then given by:

. - (Teak) (A\+)
_ _=(T-ak)(c+k6) e . +
(49) Hk(T) =€ ae/ne H 1 A [l ] e-(x+p)(T-ak)] ) ak

At

\\J"

by formula (22).
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Using (26), Hk(T> can be written successively as:

-T{c+k0) + %aek(k+l)

(50)  H (1) = ¥*(p) e

Mﬁ o~ (Ap) (T-ak) }
A ~(\rp) (T-ak
1o [1 - o= () (T-ak) |

. N
Ak [M+K e"(l+u)(T-ak)] +Bk(h+p) e-(k+p)(T-ak)

0 [ & O] ) o) (2-k)

P

. -T(o+k0) + %aek(k+l)
- ¥ (p) e
The values of a and p for which the probability Hk(T) is maximum
can of course be found by numerical methods only.

The following discussion suggests a good initial guess for the
values of a and p. Thne values found may then be improved upon by evalu-
ating the function Hk(T) at a number of values close to the initial
guess.

A good initial guess is provided by regquiring that T is an instant
at wnich treatment is given, since the probabilities Hk(T) are easiér
to calculate when T = ka- for some k and a .

On intuitive grounds the solutions so obtained will not be optimal.
To see this we note that at an instant of treatment the function Hk(t)
has a downward jump, but that after the treatment the total mortality
rate is smaller or equivalently the slope of the curve is less negative.

This is illustrated on the graph below.
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This corresponds to the well-known therapeutic phenomenon of treatment
shock. It takes some time for the organism to reap the benefit of a

treatment.
Let us now discuss the initial guess in some more detail.
If T = ak-, then formula (50) reduces to:

o) ren
ook or B Sy

(51)  H (ak-)

Yk(p;le—cT—%eT(k-l) Mg(l) .

|l

For a fixed value of a, we know that Mk(l) decreases as k in-
creases, whereas for a fixed value of k, Hk(ak-) decreases with a.

Here we consider the function in (51) only for those points where
T = ak,

In general as k ranges over integer values and p ranges over

(0,1), the function Hk(aku) will have a unique maximum at ko(p) for each p,



This shows that for a given p, the maximum of HCL,T) is attained
for a close to E§T57 and a search procedure using values of a near
this initial guess should enable us to find the extreme value more
accurately.

It is possible that the maximum will be attained for may pairs
(a,P). If this is the case, then we have a further degree of freedom

in choosing a policy (a,p). Whether this is so will depend on the

actual choice of the functions VY(p) and 6(a,p).

6. Maximizing the Expected Lifetime.

If 1L denotes the lifetime of the host, then:

(o o]

(52) E(L) =f H(1,t)dt

o}

This integral converges rapidly due to the exponential factors appearing

in the integrand, but again, it would be to our advantage to have a good

18

initial guess for the values of a and p which maximize it, rather than

to tabulate E(L) for many a and p values.

We note that:

Z a(xt+l)
(53) E(1L) = ZJ i} H(1,t)dt

k=0

so that, by use of (22), we may approximate E(L) by numerical inte-

gration once we know tne function H(z, ak+) for k = 0,1,...
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To obtain a good initial guess for the optimal a and p in this
case, we note the following. ©Suppose that the death of the host is re-
corded only at ak+a+ if it occurs during the interval (ak, ak+] and
let L* be the time until death is recorded, then with probability one

we have:
*
(54) L<L <L+a

. *o '
and hence E(L) < E(L ) < E(L) + a . However we have:

4 I a ,ak-a+) - , ak+
(5k4) E(L ) ﬁél k {H(l k-a+) - H(1, ak )}
= a }Z H(1, ak+)

~ako-ak (k-1)
a E: v (p) e °2 Mﬂ(l) )

k=0

and the numerical computation of this sum is easy, using (37) or (38).
It is also worthwhile to compare the expected lifetime with treat-
ment to the expected lifetime without treatment.

The latter is given by:
N (° -ot-N(A+p)t SOty
(\+p) f e [u+x e ] at
o .

by use of (47).
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7. Computational work

The computational procedure for finding optimal pairs (a,p) suggested
in this paper, was programmed for the IBM 7094 at Purdue University, by
Mrs. Louise Imi, to whome the author expresses his sincere thanks.

The values of Hk(ak-) in formula (51) were computed for several
examples., Five values beyond the maximpm value Hk (ako—) were computed

o]
to get an idea of the dependence on k . When the value of L was

ko

small compared to T, it was chosen as the approximation.

If ko was small, so that %— was large compared to T, the function
H (T) was calculated for severalovalues of a in the interval (%—IT’ %—)

(o] o o]

in order to find an improved value of the a (corresponding to a given p)
for which the survival probability was maximum. This procedure was re-
peated fér about twenty values of p, chosen in the interval (o,1).

A major difficulty in exploring numerical examples was to find more
or less "realistic" expressions for the function Y¥(p) and suitable
choices for the parameters A, w, o, 6, and T,

Since the examples we worked were purely "ad hoc" and had no foundation
in real experimental work, we prefer not to report any such numerical re-
sults. The computational procedure is quite fast. It took approximately

20 seconds to search the optimal pair (a,p) for any given set of para-

meter values.
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