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Abstract
3 - : : _ : .
A service unit I, with Poisson input and general service times 1s in

series with a unit II, with negative-exponential service times. The inter-
m;diate waifingfoom can accomodate at most k persons and a customer cannot
leave unit I when the waitlngroom is full.

. The paper shows that this system of queues can be studied in terms of
eu 1mbedded semi-Markov process. Equamlons for the time dependent distri-
Butions are gi§én; but the main emphasis of the paper is on the equilibrium
q%ndifions'and on asymétotic fesults.

Dgscription of the model.

; The system of queues, discussed in this paper, consists of two units:
éustomers arrive at a first unit (I) according to a homogeneous Poisson procs
5?5 of rate h . Their serV1ce times in unit I are independent, identically
disﬁfiﬁuﬁed rendom varisbles with common distribution fuuetion H(*)e We
assume that H( ) has a positive, finite mean « and we will dencte the
Laplace-StieltJes trensform of H(*) by n(s) , Res > o .

Upon completlon of service in unit I, all customers go on to a second

unif(II) via a Pinite weitingroom. We assume that there can be not more

than k customers in unit II and in the waitingroom at any time. If upon

* This research was partly supported by the Office of Naval Research Contract
NONR 1100(26). Reproduction in whole or in part is permitted for any purpose
of the United States government.
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cgmpletion of service in unit I a customer finds the waitingroom full, then
tpe unit I blocks until a service in unit II is completed. At that time he
ig allowed to enter the waitingroom.

| We assume that the service times in unit II are independent, identically

distributed random variables with a negative-exponential distribution with

mean 1/0 . 'The service times in unit II are also stochastically independent
of those in unit I and of the arrival process.

j The case k =1, i.e. when no customers can wait between the two units
vs studied by B. Avi-Ttzhak end M. Yadin [1], T. Suzmuki [11] and U. ¥.
P%abhu [7]. These authors allow the service times in the second unit to have
aégeﬁeral distribution. In the case of a general k , we impose ‘the require-
mént that these service times are negative-exponentially distributed. so as
t; preserve the semi-Markov structure of the process.

’ The techniques used in this paper can easily be adapted to discuss the

following alternate models.

Variant 1.
‘ We may assume that there are several servers in unit II and a common
waitingroom. Provided all servers have the same negative-exponential service-

ﬁﬁme distributions, the model will still have an imbedded semi-Markov process.

Yﬁriant 2.

) Tf the service time in unit IT has an Erlang distribution, the classical
ﬁethod of phases may be employed and the system can again be analyzed in terms
éf an imbedded semi-Markov process, analcgous to that defined below.

| Though each of these variants appears to have some préctical interest,
their detailed discussion leads to expressions which are more complicated
étill than those given below. We will leave them to the initiative of the

more courageous reader.
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A practical situation in which our model occurs, 1s in & vehicle inspec-
tion station. The first unit may consist of a clerical worker, who checks
su?h things as registration, license plates etc,, whereas the second unit per-
fé;ms an ingpection of the technical features of the vehicle. The author thanks

Prof. M. Yadin, who communicated this example to him.
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Tﬁe imbedded semi-Markov process.

Let the successive completions‘of service in unit I oceur in the instants

fﬁ, n2zo. Weassume that T =0, so that the origin of time is an instant
%g_which a service completion in unit I occurs,
ﬁﬂ By §n sy we denote the number of customers in the system, who have not
yét completed service in unit I at the time Tn +0. By gn we denote the
;ﬁmber of customers in the system who at Tn + 0 have completed serwiee in
uéit I, but not Yet in unit II. Clearly 1 < gn <k +1, Ifat Tn + o0,
wg have gn <k, then Tn is a departure point from unit I, whereas if
gﬁ =k + 1 , the customer who finlshes service at Tn in unit I finds the
%éitingroom.full$ He does not free the server I at time Tn s but only later,
ﬁﬁen the next departure from unit IT occurs, Between Tn and the time a de-
é?rtw“?ihﬂnyinmit Il oeccurs, the server I is ineperativey It is clear that the
gération of the interval in which unit I is blocked has a negative-exponential
distribution wlth mean % ..
." Between successive epochs Tn and Tn+1 » the queuelength processes have
agsimple behavior., The number of ecustomers in unit I behaves like a simple
birth process and can only increase, whereas the number of customers in unit
Ii behaves like a simple death process end can Only decreasey:

: It follows from the independence and Poisson assumptions which we have

made, that the sequence of triples:



(1) {gn d gn ? Tn+l" T,inzZ o}

Torm a semi-Markov sequence with state space {0,1,0000} X {1,2,000,k+1} .

A general discussion of semi-Markov sequences may be found in Pyke [8,9].
EQ? their use iﬁ the analysis of various queueing models we refer to Neuts
[3,4,5,6].

:«; The timedependence and the equilibrium conditions of the model may be
éﬁPdied completely in terms of the seml-Markoy sequence (1). It sufficeé to
Kébw the initial distribution of (go s Qo) and the transitlon probability

matrix Q(x) , whose entries are defined by:

<x |g =1, =1}

(2) Ui,rs ,v5 x) = PLE 1= ds Cpg= Vs Ty pg- T S X U5 n

for 120, J>0,1<r,v<kil,x>o0.
. We denote by q(i,r; j,v; s) the Laplace-Stieltjes transform of
Q(i,r; j;v;”x),
The explicit expressions for the probabilities (2) sre fairly complicated.
Wg list them below. |

Casé 1: Jj<i=-1l or v>r +1,

3) Q(L,r; J,v; x) = o

Case 2: 1 =o0, T <k, 1<vgr+l,

(4) Q(o,r; J,vs x) =

r jy o-(Ao)y (y=pw)? (oy)™7 A du @ H(y-u) ,
0 %0 31 (I‘-V'*'-t]-)l



(5) alo,r; ,v; s) =

TTK (o)) 08)) (owon) T L
oo

Jt (r-v+L1)!

(6) Q,(O,I'; Js1; x) =

T FY 0ol Oyaw? (op)
1 2k o

V=r i

A du d H(y-u) ,

(7) alo,r; j,1; s) =

, (sno)(urt) (18) (ourot)

Ji vl

du da H(t),

5 18
0o ~—8

0o “——8

Case b: i>o0, r <k, 1<v<r+1l, j>i-1,"

(§) QL5 4,v5 x) =

T ~0)y Gt (o)t n(y) |
o (3-1i+1)! (r-v+1)!

(9) ali,r; §,v; s) =

Te-<s+m)y 09 oy

d H(Y) >
o (j~i+1)! (r-v+1)!
Case 5: i>o0, r<k, v=1 j>i-l,
(10) Q(i,r; 3,1 x) =
: © X J-i+l v
~-(\to .
5’ I o)y (Ay) (oy) a 5y) ,
L j-i+1)! !
ver o (3-i+1) vi



(11) q(i,r; 3,15 s) =

& oo G0
L j-i+1)t vl

Vv=r (¢]
Case 6: r =Xktl, i =0, 1 <v < k+l,

(12) Q(o,k*1; j,v; x) =

k-v+l

X U.l
I T J e My duy ¢ %o au e—c(y-u) (oy-ou)

- 1
0o o (k-v+1)!

oA (7o) ________._()‘y"?‘ul)J a H(y-up)
3t

o(y-u) (oy-ou) V™

(k-v+1)!

Y du,y ™% qu e

+
O t—
O t—dq
O g

M) ) gy

Jd-e
The first integral corresponds to the case, where a customer leaves unit
II before a customer arrives in unit I and the second integral corresponds to
the case, where a customer arrives in unit I before a departure from unit II

TPCurs.

Upon taking transforms, we obtain after routine calculations that:

(;3) Q(O:k+l§ Jsvs S) =

AT { T T o~ (E+C)(stht0) (g)?  (ggiog) M ag a H(g)

stto o0 ! (k-v+1)!

~(50ea) 0eng)) @O g )
3t (k-v+1)!

+
o «—8
O “—8



Case 7: r =ktl, 1 =0, v=1,

In a manner analogous to case 6, we obtain:

(14) alo,k4; 3,15 s) =

e oee J v
\o EJ{ J b o~ (4 ) (s 0) (X§3 iEEE%Ql_ a ¢ aH(E)
sRI0 oo A
. ookﬁ!: . j v
s I L (B ) (s 40) ikéfic) ()" 3¢ 4 H(g)} .
00 ot v

Case 8: r =k+l, i >0, 1 <v <kH, j>i-l,

(15) Q(i,k+; j,v; x) =

4 J=i+l o ykeviHl |
j j oe~% 4y oM (AF) (oy=ou) =" = -0(y-uly pyoy)
5 o (-i+1)! (k-v+1):

(16) a(i,k+1; 3,v; s) =

)k-v+l

o du 4 H(g) ,

TTe4wm@ﬂm>1@ﬂQ*“1 (o8
o5 (3-1+1)! (k-v+1)!

Case 9: r =ktl, 1 >0, v =1, j > i-1,

(17) Q(1,k4; 3,1; x) =

© xy j=i+l v
2 J che-cm au e M ()\Y) (oy-ou) e—c(y-—u) d H(y-u) ,
vk 6 o (5-i+1 ) v!
(18) q(i,k+1; 3,1; s) =
() (snio) Qune) M @e)Y ey

<

| 8
a, 1
0O —— §
o &8

(3=1i+1)F vl



3. @Ee Renewal functions of the imbedded semi-Markov process.

We define the powers of the transition matrix Q as follows:
(o), .
(19) Q7 (5,5 3yvs x) =65 6,0 u(x),

/

where Uo(') is the distribution function which is degenerate at zero.

+
(20) Q4,05 5,75 x) =

y (n)( . R ) * Q o 3 .

/7, Q i,r; p,v; X (p;V: JsV; X) )

p=0 v=L

for n>o0 .
The renewal functions M(i,r; Jsvs x) of the imbedded semi-Markov process
are defined by:
: (o]

(21)  M(a,rs gvs k) = ) @ (4,r5 g, x)

n=o

i:E 0, Jj=o0, 1<r, v<kt*tl, x>0,
f The function M(i,r; j,v; x) expresses the expected number of visits to
the state (Jj,v) during the interval [o,x]. The visit to (i,r) at t=o0
is included in the count.

Analytic expressions for the renewal functions may be obtained in principle
as follows. The equations (19) - (21) yield in terms of transforms that:
(22) a®) (1,25 3,v58) = 6

ij 6rv ’

and for n > o0 .



(23) q(n+l) (i,r; J,v; s) =

o kit
y S ( ) (l,I‘, p}\)J S) d (P;\): J)V: S)

p=0 v=1

We define the generating functions:

(24) o) (z,0) }: ™) (1,25 w5 0) 20,

(25) W, (zw,8) = ) U™ (z,8) v

n=o
fbr 1<v<k?d, |z| <1, Re s> o, lw! <1 or Re s> o, |W| <1,
Note that these generating functions depend on the initial coﬁditions (i,r).

The series:

©

(26) E: alp,v; J,v3 s) 29

J=o

sﬁms to one of the following expressions:

al

(a') p =0, v>1 V‘lf\)fk:
; - s e ] —
[ \ e (s 4o )u du f . (stato-rz)t (outot) a H(t)
' - !

. o (v-v+1)

_(b) p=o, vk, v =1,
/T [7\ e-(s+x+o)u au I (s 4o-1z)t (outot)” a H(t)
o=V

(o] o



(¢) p>o0, v<k, 1<v<vy+l,

< v=v-lL
-1 J" o~ (stio-dz)y  (oy) a Hy) ,

(v-v+1)!

() p>o0, v<k, v=1,

.- 12 J - (s o-Az)y (cry) a 1ly) ,

_\) o] a'
(e) p=o0, v =Xktl, 1 <v <ktl,
° i k-v+1
He-<§+c)(s+x+c)+h§z (ogi0C) \ d ¢ a HE)
st 5 o (k-v+1)!
+ A o , J e-(s+)\+c~Xz)g cg)k' a 1(c) ,
sthto sthto-hz (k-v+1)!

(f) p =0, v =k¥, v =1,

Q
0O ~—— 8

Te (8+C)(s#r+0 )€z ;’ﬂo&ﬁcﬁ) \dCa HE)
o

o -k

b A ) J -(s+>\-lc-)\z)g>‘ cg) a 5o) ,
st\to gtAto-Az ol

o=k
(g) p>0, v=kt, 1<v<kt,
® k=vtL
- -& + -
Lt ¢ [ o-&(sthio-dz) (o) a 1e) ,
sthto-Az (k-v+1)}

(h) p >0, v=Kk+¥, v =1,

[o2]

-1 _ o fe-«;(sﬂw—kz) g: ©El o x(e),

&

stto-Az ©

~ !
a=k

10



11

Substituting in formula (24), we obtain:

. .
e W) =6, G, 1svzra,

and for n=> o0, 1 <v < k+lL:

(28) U£n+l) (z,s)

o K+l ( ) ) 99 .
y }“ (1,75 pyv5 8) ) ale,vs §,vs s) 27,
p=0 v=1 j=o

which leads to:

(29) 20{™*(z,5) -

K+l o
ZZq(n)(i,r‘ 0,v; S)E a(o,v; 3,15 s) z°
v=1 j=o

S ) e, 0-aM 25 005 ] j (ethio-haly 241911-— a Hy)
v=1 =y

[¢2]

+ [U(n)(z,s)-q(n)(i,r; 0,k*1; s)] J e-(s+x+0-1z)y'§:£§y)g;_d Hy)
k+1 sH\t0-\Z O a=k o!

and for 1 <v <k+1 !

(30) ) (3,) -
kgl
;T3 0O,V;S sV JaV3; ) Z
v_vql (1 T; )JZOQ(O JsV; 8
+y [U(n)(z S-) q(n)(l;r) O, V; s] r -<s+)L+O- XZ)Y "(91)‘\1"_ d H(y)
V==l o (v-v+1)!
, i . k~v+l
# [0 (2,500 (1,25 0,115 8)] L [ 7 SeMioA2) Q)T g e

kel s Hodz (k=v+1)1

2
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Substituting in formula (24), we obtain:

) oz s, st 1svswn,
2

and for n > o0, 1 <v < ktl:

(28) ©{*) (z,0) =
o k1 ® :
Y ) a(1,5 0,05 8) ) ale,vs 4,73 8) 20
p=0 v=1 Jj=o

whi ch leads to:

(29) 20"z, =

kil ©
ZZq(’n)(iJ“ 0, V3 S)Z a(o,v; 3,15 5) 2
\)=l j=0

k+1
+z [U\()n)(z; ) ( )(1,1‘ O,V S)] I S+K+G )\Z I Zm— d H(Y)
v=1 '

©

+ [U<n)(z,S) q( )(1, r; o,k+l; s)] ——L——I ~{s#hto- lz)y;—-ql)—— a 1(y) ,
sTAt0-AZ © o=k ol

and for 1 <v < k+l :

(30) ™) (z,0) -

k41 _
z yq(n)(i;r; O,v;S)Zq(o,v; 3oV 8) 7
vEv-1 =

j=o

S V=Vl
+ [U(n)(z,ﬁ)— (n )(i r; o,v; s] f ~(shio-rzly (oy) d H(y)
S o % (\)-v+l)£
+1

+ [Ul({:l_}_(z,s)—q(n)(i,r; 0,k*l; S)J R I -g(S+>\+U~7\Z) _Gg_z_.L a H(g) ,

st to~Az O (k-v+1)!
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Substituting in formula (24), we obtain:

(27) U_\(ro)(z,s) =8, zb, 1l<v <k,
: 2

and for n>o0, 1 <v < ktl:

(28) ") (z,5) =

o K+l 3
y y l:r Psv; S) \' Q(p;\’; JsVs S) Z b)

p=0 v=1 J—O

Which leads to:

(29) 208"z, 5) =

l.
k+l ( ) )
qu (1)-: O,V5 S) L Q(o)\), Js1s S) Z

Zm“%zwq(kbnow,ajj Sﬂﬂkﬂyzﬁﬁ—anw>

v=1
[0 (2,8)-0 (05,5 0,005 6)] —F— [ orensomnaly § @ o gy
st to-Az o o=k o!
and for 1 <v <ktl :
(30) _zU(:;ﬂ) (z,s) =
Kl '
Z; (n)(l:r: 0,V; S)Z a(o,vs 3,75 8) 2
v=v-1. j=o
k < . V=Vl
+_§ﬁ [U(n)(z,s)—q(n)(i,rg o,v; 8] f e—(s+k+0-hZ)Y ng)___wégd H(y)
vl VY S (v-v+1)!
( ) ( ) o T 'E(S+K+U-XZ) GE k-v+l
+ [Uk+l(z,s)-q Bl r; 0,k¥1; 8)] — ]" e 8~ ~ 4 H(E) ,
stAto-Az O (k~v+1)!



Finally, substituting (29) and (30) in (25), we get:

(31 Z Wl(Z,W’S) =

2 —l &
T k+1(Z:W:S) '(S+)\+U KZ)%S (oE)* a H(g)
sTATO-AZ o o=k ol

+ wiwv(o,w,S) {z z a(o,v; 5138)2 f -(stho-hzly Z o) H(y)}

== 1
v=1 j:o o=y o!
[o=3 ’ -
] -8(s+\io-
+ w Wk.;.l(O,W;S) {Z y q(o,k+1; J.1; S) ZJ— s I o S(S Mo 7\2)
j=o sMAo-AZ o

i;igg%f a 5(s)}

re=k
and for 1 <v <k+l,

: i+
(32) Z Wv(z W:S) = 61‘ v Z

* WEW (z,w,s) j ~(sto-nz)y (oy)
(v-v+l)!
v=v-1

a H(y)

Lo [ letomra)e ()T

stAto-AZ2 o (k"V+l)!

tw (Z W,s)

M a H(g)

~(g+ - v=-v+l
+ WZW (o,w,s) { yq(g,\,J 3,73 s) ZJ I (s to-\z)y (—Gﬂ—_-
v=v-1 Jj=o0 (v-v+1)1

2 H(y)]

+ W Wkﬂ(o,w,s){z Z alo,k+1; j,v; s)zd- — T J" e_(s+)\_+g..')\z)y
j=0 sRIO-AZ o

(O' )kvl
z;j*j;;;;-d H(y)}
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In order to simplify the discussion, the following matrices and vectors
are defined.
(a) W(z,w,s) is a row vector with components Wv(z,w,s), V = 1,ee0,k¥l,
(b) I 4is the unit matrix of order k+l,
(¢) ¥(u) and R(z,s) are square matrices of order k+l, whose components

are defined as follows:

(33) (1) For 1 = 1,e00,k, j=1,

v, (u) = J o~ (w0 )y 2—(9&)-01 a H(y) ,
al

o =i
< ® g o
R, (z,8) = ZJ )\e-(s+7\+0)3’ dYJ e—(s+x+o-)\z)t Zmﬁj:c_)_ 4 H(t)
(o] (o] o=1 as
[s+] w; o
_ I e-(s+’)\+0-)\z)yz (oy) a Hly) ,
(o] o=1 :
g o [ _~(uro)y T (oy)®
(11) ¥4 l(u) = — Jv e y a 1(y) ,
’ otu o ol
o=
R, 4(258) = == Ie-(g+g)(s+)\+c)+>\gzz (o8%00) 5 4 ¢ a H(g)
? st\10 5 o o= ot
© 2 o
- o J e'(S+K+G'KZ)Y'§:(CY) a H(y) ,
st\to . o

(iii) For 1<i< j-1,

1

\yij(u) = Rij(Z’S) %) J



1k

(iv) For j-1<i <ktl,

e P
¥, () J" )

T T | 1-3+1
Ri'(Z1S) -y J Ke-(s+ﬁ+o)y dy J e-(s+%+cexz)t (oy+ot) a H(t)
J . p (i-j+1)!
- | o(shione)y (o) 0T ;
o (i-j+L)!
(v) For 1< j<kil,
e k-J+1
Y o) =S [y vty
*J who (k-3+1)1
© @ . ) k-j+1
(z,8) = & o~ (C*E)(sirt0) gz (08t0C) x4 ¢ a EE)
Rk+l;J 7 s\ 4o “([ ‘£ (k-3+1)!
Lo Ftenealy @

ST (kej+1)r

The equations (31) and (32) may be written as follows:

(34) W(z,w,s) [z I - w ¥(st-dz)] = 25 = T +w W(o,w,s) R (z,8) ,

Systems of equations, such as (3&), occur frequently in the theory of Queues.

;ﬁ the particular problem under discussion, the system may be solved recursively
ﬁhanks to the almost triangular nature of the matrix ¥(+) . First of all how-
éver, it must be shown that the unknown functions Wv(o,w,s) may be determined
Qniquely. The proof of this follows verbatim proofs given in Neuts [3] and

more generally in ginlar [2]. Ve will therefore present only a summary of the

proof, here.
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The coefficient matrix =z I - w ¥(s+\-Az), has several important prop-

erties, which we 1list below:

Property 1

The matrix ¥(w) , Re u > o , defined in equations (33) is the matrix of
Léplace-Stieltjes transforms of the entries of a (k+1) x (k+l), irreducible

sgmi—Markov matrix.

“‘ It suffices to show that each of the entries Yij(w) of the matrix is
tﬁe Laplace-Stieltjes transform of a mass function on [o0,2) and that the
?bﬁ-suﬁs of the matrix are the Laplace-Stieltjes transforms of probability
distribution functions on [o0,=).

The first statement follows from (33) by inspection and the second one

follows from the fact that:

k+L
(35) ) () =n(w), 1sisk
J=1
and
k+1
(36) ? v, (u) = —— h(u), i =k+,
l j:i +J ot+u

%here h(u) is the Laplace-Stieltjes transform of the service time distri-

bution H(*) for unit I.

Property 2
From property 1 and thm. 1 in Neuts [3] it follows that the determinant

of the coefficient matrix 2z I - w ¥(s¥\-Az) has exactly k + 1 zeros in

the unit disk |z| <1 for every given pair (w,s) with Re s > o, |w| <1

ér Re s 2 o, |W‘ <1.
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Progertz 3

The unknown vector W(o,w,s) may be determined uniquely using property

il

2. If we solve the equations (34) for Wj(z,w,s), J=1,.ee,ktl, then we

w ¥(s+\-Az) as their

Q?tain fractions, which have the determinant of 2z I
éémmon denomingtor and linear functions in Wj(o,w,s), J=1,eee,ktl as their
numerators.

| The requirement, that the numerators and the denomlnator must have the
seme zeros in the unit circle |z| <1, leads to a system of (k+1) in-
dependent linear equations for the unknowns W (o,w,s), from which the latter

may be obtained.

If the matrix ¥(u) is diagonalizable for all u with Re u > o , then
Neuts [3] nas shown that the k + 1 zeros of the determinant of 2 I - w Y(s+k-kz)

ﬁay be found as the roots of the equations
@B7) z=w(sh-dz) , 1<p<kil

which lie.in the unit disk! Each such equatioﬁ then has a unique root in
|z| <1l.

If the matrix Y(V) is not diegonalizable, the discussion of the relation-
éhip between the eigenvalues of Y(u) and the rootsvis much more complicated,
_but may be found in anlar [2].

Unfortunately this solution for the functions W, (z,w,s) is purely formal,
eince it is impossible to supply general expressions for the zeros of the deter-
'uilinant z I~ w ¥(sf-Az)s

Nonetheless, the equations (34) yield many results of a qualitative nature,

which we will now discuss in detail.
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4. The Equilibrium condition for the Queue.
: Since all the first moments of the distributions of the intervals be-
tween transitions in the imbedded semi-Markov process are bounded, it suffices
tp find necessary and sufficient conditions for positive recurrence of the im-
bedded Markov chain of the semi-Markov process.
I Q(n)(i,r 5 §,v; x) is the n-step transition probability between the
states (i,r) and (J,v) , then the n-step transition probability P(n)(i,r; 3,V)

for the imbedded Markov chain is given by:

bt

(i38) Q(n)(i,r; 3,V @) = P(n)(i,r; 3,v) = q(n)(i,r; 3;v; 0)

Since the imbedded Markov chain is irreducible and speriodic, the limits

(39) my, = Mn P (s, g,v)

n——lm
exist and are independent of the initial conditions.

If we define

(ko) HV(Z)=anvzj, lz) <1, 1<v<xf,

J=0

then it is well-known that:

(h1) ’Fv(z) = lim (1-w) Wv(z,w,o) , 1l<v<k#,
Wl

so that equation (35) yields:
(k2) T (z) [2I - ¥(A-2z)] =1 (o) R (2,0) ,

where W (z) is the (k+l) - rowvector with components ﬂv(z) .
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The discussion of the existence of a nontrivial solution to equation (42)
is completely analogous to that given in Neuts [31, particularly thm._2{ given
ﬁhere. |

The equilibrium condition may be stated as follows:

Let us denote by T(u) the Perron~Frobenius eigenvalue of the matrix

¥(u) for u> o, then the system (42) nas a unique nontrivial solution, such

that:

: k1

(k3) 2 1.(1) =1,
v=1

if and only if:

(-}»u) f> - M (o),

Moreover the quantity - ﬂi (o+) is given explicitely by:

. ' -

where the numbers are the stationary probabilities corresponding

el, - .’.‘, ek-l—l
to the stochastic matrix ¥(o). See Neuts [3] p. 206, formula (13).

It follows that the qusue is in equilibrium if and only if:

' 1 1
> g += >
§h6) = Oy g 2 84 Z O

The condition (46) is intuitive, The term o is the expected service time in
gnit I and the second term corresponds to the inferaction between the two units

due to blocking. We will calculate 6 explicitely in the next section.

k+1
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The quantity ek+l :

The quantities 61,62,.f.,6k+1 satisfy the following system of linear

equations:

! k ® @
(h7) a8 = ) % Lt O 2B,
=] =i a=k

b. for 1< j<ktl,

k
= +
% E Oy Pigs1 T Pkl Proyer
i=j-1

- where

(58) p; = j ™t Q%El— d Hu) , j>o.

If we set ei =0 i=1,.4i4,ktl, we obtain:

et] Pgegsg?

| (h-9) Q¢ AO = 1 5

J
. A = - - .
b By Ay = Ay Zpi Bjugsr = Py
i=1
for 0L j<k-1,

k

-1

Co Opyq 7 [ Z Aj] ’
Jj=o

The relations (49) are very important in discussing the dependence of the

equilibrium condition (46) on the size k of the waitingroom. We note that
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(%9 a. and b.) enable us to calculate the quantities Aj’ j > o, recursively

; on k appears only in (49 c.)

It is of some interest to study the properties of the generating function

for any Jj ; the dependence of ek+

of the quantities Aj’ J >0 . We define:

(50) 4 (z)= ) & 27,
. i

where the numbers Aj satisfy (49 a., bs) for all values of j > o .

A routine calculsation leads to:

) a0 - Geekleme)

iéSide the largest circle about the origin in wvhich the function on the right
ié analytic. The denominator in (51) vanishes &t most at one point inside
t#e unit circle. This is proved by the classical argument based on Rouché's
tﬁeorem Takacs [12].

I o> % , Tthe denominator has a unique root K , with o<K<1. In
ﬁhis case the powerseries (50) converges for |z| <k .

When o < % , the denominator has no root inside the unit cirecle, but
V?nishes for 2z =1 . The radius of convergence of the powerseries is then
af least one, but may be larger depending on whether or not z =1 is a re-
m?vable singularity.

‘ Vhen o > % , the point z = K is a simple pole of the function Alz) &

It follows from Tauber's theorem that in this case

(52) 4, = o),

as j-—;m"
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From formula (51), we may also obtain an explicit expression for the

numbers Aj , when the service time in unit I is negative-exponential.

Iet
(53) n(s) = —+— ,
: 1+ys

then from (51) we obtain:

1 1
(5’*) A(Z) = ) |Z| <,
: l-coz oo
and:
(55) A, = (o)), j20 ,
| _ __l-caoc R
(56) &y =—Fmwm: ©FLs
- l-¢ (o :
1
9 = T co =1,
k+1 k41

ﬁhrther Limit Theorems.

Several limit theorems of practical interest may be obtained ag special
qéses of general theorems of Pyke and .Schauiele: [10] for semi- Markov procesées.
.; These authors proved strong laws of large numbers and central 1limit theorems
f?r a wide class of functionals defined on a recurrent semi-Markov process. Un-
f?rtunately the central 1imit theorem is of limited applicability due to the
véry complicated expression for the asymptotic variance. The strong*lay of
lérge numbers on the other hand yields easily tractable limits, which have con-

siderable qualitative and intuitive appeal.

We will state several instances of such results below and indicate the

proof in one of them.



22

Let the equilibrium condition (46) be satisfied, so that the imbedded
semi-Markov process is positive recurrent. We denote the stationary proba-
bilities for the jmbedded Markov chain by njv’ jzo, 1L v'f k+tl , These

probabilities may be determined from formula (42). We further set:

(57 m, = Ym =0(1), 1<v<ka,

The Blocked Time
If we denote by B(t) the length of time during (o,t] that the unit I
is blocked, then B(t) may be described as follows. Unit I can be blocked

only when the imbedded semi-Markov process enters one of the states (j,k+l),

¥
£

5 > o . When this occurs, the time required until the gueue becomes unblocked
p :

has a negative exponential distribution with mean /o .

: We can now associate with each transition in the imbedded semi-Markov
ﬁrocess a random variable which is equal to zero if the transition is into a
State (3,v) , L<v<k and which is equal to the duration of the blocking,
ﬁhen the.transition is into a state of the type (j,k*1), § > o.

: Asymrtotically B(t) is equivalent to the sum of this sequence of random

varisbles defined on the semi-Markov process. It follows from Pyke and Schaufele's

law of large numbers that :

(58) 1im B(t) =
w8
-1
T, k+L def
- -1 -1 T
o\ n.,o+c n_dk+1-(k+c) Mo, k41

almost surely.
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The cemtral limit theorem in [10] asserts that:

1
Vs

B(t) - At
(59) —

is asymptotically normal with zero mean, but with a complicated asymptotic
variance.

In a similar way, if Bl(t) denotes the length of time during (o,t]
that a customer in unit I cannot begin service due to blocking, then

B, (¢)

(60) lin
‘ t %

oL -(A+0)flﬁo

Tr
L,k L, k+1
1

) — T
+ -
ath n,,0+c ﬂ-,k+l (Ato) ﬂo,k+l

I Bg(t) denotes the length of time that unit I is idle during (o,t]‘ then:

B2(t)
(61) lim ——— =
: toeo %
k+1
X-]'§: T
: 0,V
=1 eS8
-1 -1 -1 7omeme
o ﬂ!)o+0 ﬂ.,k+l-(l+°) ﬂo,k+l

Ir B3(t) denotes the length of time that unit I is idle, but blocked, then:-

' By (%)
(62) lim - =
: o %
A o,kHL
MG e
1 -1 -1
a+th ﬂ,50*0 n.,k+l~(h+o) o, K+
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If N(t) denotes the number of customers served by thé system in (o,tj, then:

(63) 1im M) |
: tre

[a+i-ln +o'ln
.,O [ ]

1-1

8+S.
0,k+1" ?

-1
sy~ (M9) T

f@eBusy Periods for unit I.

' In this section, we will study the probability that in a given number of
%;ansitions the queve in unit I does not become empty. In doing so, we Will
é@ow how the so-called "zero-avoiding transition probabilities" may be obtain-
é? in principle. Along with the renewal functions, discussed in section 3,
fhese probabilities may be used to express such items as thé distribution of
tﬁe queuelength in continuous time and the waiting time distributions quite
simply. Unfortunately, just as in section 3, we find that.only g formalism
can be developed and that actual numerical methods must be looked for in
éther directions.

. We will not pursue the subject of transform solutions for the time de-
pendence of this queueing system very far. Only results of some qualitative
interest will be derived.

Let OQ(n>(i,r; 3,73 x) denote the probability that, given the initial
;tate (i,r), there are at least n service coméletions in unit I before one
6f the states (o0,1),.+.,(0,k+l) is reached and that at the end of the n-th

service completion the imbedded semi-Markov process is in state (j,v). By

q(n)(i,r; j,v; s) we denote the Laplace-Stieltjes transform of OQ(n)(i,r;j,v;s).

Q
K We define the generating functions:
® .
(61) OU§n>(Z,S) =) oq(n)(i,r; 5vis)’, n>1,
: 520

and:
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(65) i (zs) =y wPze), 1svcwn,
n=1

It follows that:

(66) 1(z,0) = 2*1 v, (s-Az), 121,

and
(61) 2 0 (z,0) =
k+l

L
v=v=-1

for 1L <v<k+#, 1i>1, n>1,

(68) = OU_'E_n-'-l)(Z)S) =

k+1
v=1

for i>1, n=>1,
K+
(69) =z va(z,s) - Z on(z,s) va(sﬂ-?\z) =

v=v=-1

k+1
i
zZ Yw(z,s)- Z OWV(o,s) va (s+\-rz)

v=v-1

for 1 <v <ktl and:

- . .

3 = } )\ -
g70) 2 W (z,8) =7 ¥ ooy (sth-ha)

+ ) _ -

}: owv(z,s) Yv,l (sH-2z)
v=1
K+

- -
Zl M (o,s) ‘Yv,l(s A-AZ)

Y [bU\()n)(z,s) - Oq(n)(i,r; 0,v;s)] Yo, (s+\=-2z) ,

[oU\()n)(Z’S) - Oq(n)(i,r; 0,V; s)] Y\)l (S‘*')\-?\Z).,

25
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These equations may be written as:
(12) ¥ (z,8) [z I - ¥(sth-rz)] =
z ET(s+h-XZ) -2 (0;8) ¥ (sH\-rz2)

where Oﬂ(z,s) is the row vector with entries OWv(z,s), 1 <v <kl and
¥ (s¥h-Az) is the r-th row of the matrix Y(sH-rz).

. When i = o, the equations obtained are slightly different from those
given above. Instead of the term zi gr(s+kahz) the r-th row of the matrix
ﬁ(z,s) appears:

: We restrict our attention further to the case i >1 .

We will a}so assume that the eigenvalues np(s) of the matrix Y¥(s)
are distinct for all points s , Re s > o . If this is not the case; then

a more delicate analysis duve to g;nlar [2] is required.-

Diagonalizing the matrix Y(s+\-Az) , we cbtain:
(72) ¥(st\-rz) = L(s*-Az) H(s+x-xz)»L‘l(s+x-xz) 3
where :
+)\ - = A=\
}73) Lij(s A=Az ) aij(s+x rz)
(L;l)' (s#-2z)= B, .(s*\-Az)
ij i3 ’
Hij(s+k-kz) = 513 nj(s+x;xz),

1<1i,j < kH,
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The equations (71) yield: (1 <v <k*l),

§7)+) OWV(Z’S) =
k+1
i }1 arp(s+m-xz) np(s+x-xz) pr(s+m-xz)

o= z-np(s+m-xz)

o (s#-rz) N _(s*\-rz) B8 (s+\-Az)
- ? 7 W (O)S) vp £ oy
B o v

: ;ﬁi 0= z—ﬂp(s+ﬁ-kz)
?he k+1 roots of the equation:
;75) det [z I - ¥(str-az)] =0, |z} <1,
are then given by the unigue roots in the unit circle of the k+l equations
176) % - np(s+m-xz)‘= 0, P =lyeee, KtL .
?e denote these roots by yp(s), p=1,400,k+l .

If we requiré that the expressions on the right in equations (7h) ve
analytic functions of 2z in the unit disk, we obtain the following additional

conditions:

k+1
(77) E: 6Wv(0,s) o [s+h-xyp(s)] =
\):
arp[s+m-xyp(s)] y; (s), p =1,vee,ktl .

We define the matrix T(s) by:

(18) Tvp(s) = [s+ﬁ-kyp(s}] N
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ginlar proved that under our non-singularity assumptidn the matrix T(s) is
&
non-singular for Re s > o0 & -

Furthermore, let T(s) ~be the diagonal matrix with
(79) Fpp(s) = v, (8), p =1,000, k¥1,

If we write ﬁﬁi)(s) for OWv(o,s) when the initial state of the semi-

Markov process is (i,r) and if we define the matrix
éBO) W) = 606, 150,

fhen, we obtain from equation (77) that:

2(81) #5(s) = 2(s) () 77X(s)

B, iso.

The matrix ﬁ(i)(s) has an important interpretation. Its entry ﬁii)(s)
is the Laplace-Stieltjes transform of the probability mass function for the
length of a busy period starting in st?te (i,r) and ending in the state
(o,v). We will prove below that W(l)(s) is the transform-matrix of a
(k+l) - th order semi-Markov matrix of the only of the queue is in equilib-
fium;

Formula (81) is important in that it shows that a busy period starting in
state (i,r), i > 1 has a simple relation to a busy period sterting in a state
with 1 =1,

If as before, ﬂl(s+m—XZ) is the Perron-Frobenius eigenvalue of V¥(s+\-\z)

for s+A-Az > o, then equation (77) with p =1, yields:
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K+l
(82) E: wii) (s) o, [sf%-kyl(s)] =
\)..':

_ 4
o [s\ Kvl(S)J Yl(S).: Re s 20 .

If and only if the equilibrium condition:

>0[+-]-'-9
- ()

>

(83) k+l 2

holds does yl(s) tend to one as s = o + , This was shown in Neuts [3].

In this case also we have:
+) =
(84) e (o+) =1,

so that:

k+1 (1)
(85) z LMy (o+) =1, v =1,04., kLl ,
=1

proving that in the equilibrium queue, the matrix ﬁ(l)(s) is the transform
of a stochastic semi-Markov matrix.
If the equilibrium condition does not hold, we obtain:
)
86) ) - -
(86) W1(0) oy Didy {o)]
v=1
1
arl[?\ )\.'Yl(o).l "Yl(o) 2
with yl(o) <1 and arl[x-xyl(»o)] >0, 1= 1,000, kK1 &

Tt follows from the Perron-Frobenius theory that ﬁ(l)(o+) is a strictly

substochastic matrix.



30

Concluding remarks, Acknowledgement.

To £ind the relations linking the queuelength in continuous time to the
renewal functions for the imbedded semi-Markov process is a routine matter
énd is analogous to arguments presented in Neuts [L4,5,6] for other types of
ﬁueues. For a general service time distribution in unit I such relations are
again purely formal and do not lead fo further qualitative results. We will
ﬁot present them here.
| When the service time in the unit I is negative exponential, the queue-
iength in continuous time may be studied as a bivariate birth and death process.
This coufse of investigation was pursued by M. Yadin [13], to whom the author

is grateful for regenerating his interest in this model and for communicating

his own results prior to publication.
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